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Abstract. A pebble tree is an ordered tree where each node receives some colored pebbles,
in such a way that each unary node receives at least one pebble, and each subtree has either

one more or as many leaves as pebbles of each color. We show that the contraction poset on

pebble trees is isomorphic to the face poset of a convex polytope called pebble tree polytope.
Beside providing intriguing generalizations of the classical permutahedra and associahedra, our

motivation is that the faces of the pebble tree polytopes provide realizations as convex polytopes

of all assocoipahedra constructed by K. Poirier and T. Tradler only as polytopal complexes.
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1. Introduction

Permutahedra and associahedra are among the most classical polytopes in algebraic combina-
torics. The (n−1)-dimensional permutahedron has a vertex for each permutation of [n] := {1, . . . , n}
and an edge for each pair of permutations related by the transposition of two adjacent entries.
The (n− 1)-dimensional associahedron has a vertex for each binary tree on n nodes and an edge
for each pair of binary trees related by a rotation. These two families of polytopes admit com-
mon generalizations explaining their similar behavior, including the permutreehedra of [PP18], the
quotientopes of [PS19], and the (m,n)-multiplihedra of [CP22]. All these polytopes are actually
deformed permutahedra (defined as generalized permutahedra in [Pos09, PRW08]), meaning that
their normal fans all coarsen the braid fan. This paper is devoted to another common generaliza-
tion to the permutahedra and associahedra, which are not deformed permutahedra in general.

The combinatorics of this generalization is based on pebble trees. A pebble tree is an ordered
tree where each node receives some colored pebbles in such a way that each unary node receives
at least one pebble, and each subtree has either one more or as many leaves as pebbles of each
color (see Figure 1). We consider the set of pebble trees with a fixed number of leaves and fixed
sets of unbalanced and balanced colors (i.e. for which colors the whole pebble tree as one more
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Figure 1. Some ◦-balanced and •-unbalanced {◦, •}-pebble trees. The first two are related by a
contraction (Section 2.2), while the last two are related by a flip (Section 2.4).

or as many leaves as pebbles). It is immediate from the definition that these pebble trees are
closed by arc contractions, and our main result is that the contraction poset is the face poset of a
simple convex polytope, that we call the pebble tree polytope (see Figure 13). For this, we first
construct the pebble tree fan, associating to each pebble tree a polyhedral cone in a very natural
way, and then prove that this fan is the normal fan of a polytope by checking that its wall-crossing
inequalities are satisfiable.

Our construction recovers the combinatorics and geometry of the permutahedra and associahe-
dra in two degenerate situations. On the one hand, pebble trees with a single leaf can be seen as
ordered partitions of their balanced colors, and the pebble tree polytope is the permutahedron.
On the other hand, pebble trees with no pebbles are Schröder trees, and the pebble tree polytope
is the associahedron. But the special situation which motivated this paper is when there is exactly
one color of pebbles. The pebble trees are then in bijection with some specific oriented planar trees
considered by K. Poirier and T. Tradler in [PT18] for the combinatorics of algebraic structures
endowed with a binary product and a co-inner product. These structures are closely connected to
the V∞-algebras of T. Tradler and M. Zeinalian [TZ07] that arose in a tentative algebraic model
for string topology operations defined by M. Chas and D. Sullivan [CS99]. It is proved in [PT18]
that the contraction posets on these oriented planar trees are face lattices of the assocoipahedra,
which are polytopal complexes refining the boundary complex of the Cartesian product of an as-
sociahedron with a simplex. We prove here that all assocoipahedra can actually be realized as
convex polytopes using faces of pebble tree polytopes (see Figure 14).

The paper is organized as follows. Section 2 is devoted to the combinatorics of pebble trees. In
Section 2.1, we provide more precise definitions and notations for pebble trees, we introduce some
natural maps between families of pebble trees, and we give the precise bijection with the oriented
planar trees of [PT18]. We introduce in Section 2.2 the pebble tree contraction poset, prove in
Section 2.3 that it is the face poset of a pseudomanifold called the pebble tree complex, and discuss
in Section 2.4 the adjacency graph of this complex called the pebble tree flip graph. Section 3 is
devoted to the geometry of pebble trees. After quickly reminding some geometric preliminaries
in Section 3.1, we construct the pebble tree fan in Section 3.2 and the pebble tree polytope in
Section 3.3. Finally, Section 4 is devoted to the numerology of pebble trees. We compute the
generating functions of the maximal pebble trees in Section 4.1 and of all the pebble trees in
Section 4.2, and gather explicit expansions of these generating functions in Section 4.3. While the
methods are standard computations based on generatingfunctionology [FS09], the results reveal a
few surprises.

2. Pebble tree combinatorics

In this section, we define pebble trees (Section 2.1) and study the pebble tree contraction poset
(Section 2.2), the pebble tree complex (Section 2.3), and the pebble tree flip graph (Section 2.4).

2.1. Pebble trees. Recall that an ordered tree is either a leaf or a node with an ordered list of
subtrees. These subtrees are the children of the node, and this node is the parent of these subtrees.
As we only consider ordered trees, we omit the adjective ordered and only say tree. For a node n
in a tree T , we denote by Tn the subtree of T rooted at n. For a subtree S, we denote by L(S)
the set of leaves of S.
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Figure 2. A ◦-balanced and •-unbalanced {◦, •}-pebble tree (left), the ◦-balanced and •-unba-
lanced {◦, •}-pebble tree obtained by mirroring it (middle left), the {◦, •}-balanced {◦, •}-pebble
tree obtained by •-balancing it (middle right), and the {◦, ?}-balanced and •-unbalanced
{◦, •, ?}-pebble tree obtained by ?-inserting it (right).

Definition 1. For a finite set of colors Γ, a Γ-pebble tree is a tree with pebbles colored by Γ placed
on its nodes such that

(i) each leaf receives no pebble, each node with a single child receives at least one pebble, and
each node with at least two children receives arbitrary many pebbles (possibly none),

(ii) for each subtree S and each color γ ∈ Γ, the number of leaves minus the number of pebbles
of color γ in S is either 0 or 1.

Example 2. Two classical combinatorial objects are extreme examples of pebble trees:

• pebble trees with a single leaf can be seen as ordered partitions of their pebble colors,
• pebble trees with no pebbles are Schröder trees (where each node has either none or at

least two children).

Some more generic examples of pebble trees are illustrated in Figure 1.

Notation 3. We call γ-pebbles the pebbles of color γ. We call γ-pebble default of a subtree S
the difference ∆γ(S) between the number of leaves and the number of γ-pebbles of S. We
say that S is γ-balanced (resp. γ-unbalanced) if ∆γ(S) = 0 (resp. ∆γ(S) = 1). We denote
by B(S) := {γ ∈ Γ | ∆γ(S) = 0} (resp. U(S) := {γ ∈ Γ | ∆γ(S) = 1}) the set of colors γ ∈ Γ for
which S is γ-balanced (resp. γ-unbalanced).

Notation 4. We denote by PΓ
L the set of all pebble trees with leaves L and pebble colors Γ,

and by PB,UL the subset of B-balanced and U -unbalanced pebble trees of PΓ
L for any B t U = Γ.

For `, b, u ∈ N, we define Pb,u` as P [b],[b+1,b+u]
[`] . Note that PB,UL is isomorphic to Pb,u` for arbi-

trary L,B,U with |L| = `, |B| = b and |U | = u. It is however convenient to keep the notation PB,UL

to define certain operations on pebble trees (see Definitions 6 to 9) and for recursive decompositions
of the pebble trees (see Section 4).

Remark 5. Some immediate consequences of Definition 1:

• PΓ
L is finite for any L and Γ, thus Pb,u` is finite for any `, b, u ∈ N.

• The number of γ-pebbles at a node p with children c1, . . . , ck is
(∑k

i=1 ∆γ(Tci)
)
−∆γ(Tp).

Hence, the number of γ-unbalanced children of p is the number of γ-pebbles at p, plus 1
if p is γ-unbalanced.

• Each unary node has at least one pebble, and at most one of each color.
• There is no consecutive chain formed by |Γ|+ 1 unary nodes

We now define five natural maps between pebble trees (see Figures 2 and 3), that will induce
isomorphisms in Propositions 17, 25 and 42. In Definitions 8 and 10, we call γ-leaf the only pebble
tree of P{γ},∅1 , i.e. whose root has a single pebble of color γ and a single child which is a leaf.

Definition 6. The mirroring map sends a pebble tree T of PB,UL to the pebble tree µ(T ) of PB,UL

obtained by a vertical symmetry of the tree, meaning that µ(T ) is defined inductively by

• if T is just a leaf, then µ(T ) is just a leaf,
• if T is a node with pebbles P and children C1, . . . , Cj , then µ(T ) is a node with pebbles P

and children µ(Cj), . . . , µ(C1).
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Figure 3. A fully balanced {◦, •}-pebble tree and the fully balanced {◦, •}-pebble trees obtained
by rerooting it at leaves x, y and z respectively (left). A fully unbalanced {◦, •}-pebble tree and
the fully balanced {◦, •, ?}-pebble tree obtained by ?-uprooting it (right).

Definition 7. If γ ∈ U , the γ-balancing map sends a pebble tree T of PB,UL to the pebble tree βγ(T )
of PB∪{γ},Ur{γ}

L whose root has a single pebble of color γ and a single child T .

Definition 8. If γ /∈ B ∪ U , the γ-inserting map sends a pebble tree T of PB,UL to the pebble
tree ιγ(T ) of PB∪{γ},UL obtained from T by replacing each leaf by a γ-leaf.

Definition 9. If x ∈ L and U = ∅, the x-rerooting map sends a pebble tree T of PB,∅L to the
pebble tree ρx(T ) ∈ PB,∅L obtained by hanging T from its leaf x, i.e. defined inductively by

• if T is just the leaf x, then ρx(T ) is just a leaf denoted r,
• if T is a node with pebbles P and children C1, . . . , Cj and i ∈ [j] is such that x ∈ L(Ci),

then ρx(T ) is obtained by replacing the leaf r of ρx(Ci) by a node with pebbles P and
children Ci+1, . . . , Cj , r, C1, . . . , Ci−1.

Definition 10. If ` > 1, B = ∅ and γ /∈ U , the γ-uprooting map sends a pebble tree T of P∅,U
[`] to

the pebble tree θγ(T ) of PU∪{γ},∅[`−1] obtained from T by first hanging T from its rightmost leaf, then
deleting the leftmost leaf and placing a γ-pebble at its parent, and finally replacing all remaining
leaves except the first by a γ-leaf.

Finally, our next three remarks connect pebble trees with other relevant families of trees.

Remark 11. Consider a word α ∈ {i,o}`+1 starting with o (here, i and o stand for incoming and
outgoing). An α-tree is a rooted oriented planar tree such that

• labeling the external arrows counterclockwise starting from the root, the ith arrow is
incoming if αi = i and outgoing if αi = o,

• each internal node has at least one outgoing arrow,
• there is no node with precisely one incoming and one outgoing arrow.

These trees arise in the combinatorics of algebras endowed with a binary product and a co-inner
product. They are studied in details in [PT18]. It turns out that they can be understood from
pebble trees.

First, as illustrated in Figure 4, there are simple bijections between the pebble trees of P1,0
`

and the o`+1-trees:

• Starting from a pebble tree T ∈ P1,0
` , orient each arc (p, c) of T from c to p if c is balanced,

and from p to c if c is unbalanced, and forget all pebbles.
• Starting from a o`+1-tree, place at each node one less pebbles than its outdegree, and

forget the orientations.

In the present paper, we prefer our interpretation as pebble trees as it enables us to consider
several pebble colors simultaneously.

Consider now an arbitrary signature α. Although not explicit in [PT18], there is a clear map
from α-trees to o`+1-trees, which consists in replacing each incoming external arrow (like ↑) by a
node with a pair of outgoing arrows (like l). This leads to a bijection between the α-trees and the
pebble trees of P1,0

` where the parent of the ith leaf is a unary node marked with a pebble.
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Figure 4. Examples of the bijection between the pebble trees of P1,0
3 and the o4-trees.

Remark 12. The reader familiar with the bijective combinatorics of planar maps might also see
some connections with the β-trees of [JS98, CS03]. Indeed, labeling each node p of a pebble tree
by the pebble default ∆γ(Tp), we obtain a β(1, 1)-tree. However, this map is clearly injective but
not surjective, and the additional condition given by the pebble trees is unclear on β(1, 1)-trees.

Remark 13. There is also a natural map from the pebble trees of P1,0
` to the painted trees corre-

sponding to the faces of the multiplihedron [Sta70, For08, CP22]. Namely, we can just forget all
pebbles which have a pebble on the path to the root of the pebble tree to obtain a painted tree.

2.2. Pebble tree contraction poset. We now define the contraction poset on pebble trees, and will
see that it is the face poset of a simplicial complex in Section 2.3 and of a polytope in Section 3.3.

Definition 14. For any node c (not a leaf, nor the root) with parent p in a pebble tree T , the
contraction of c in T is the pebble tree T/c obtained by replacing c by its children in the list of
children of p and adding to p the pebbles of c. The pebble tree contraction poset PPb,u` is the
poset of contractions on pebble trees of Pb,u` .

Example 15. In the extreme situations of Example 2:

• the pebble tree contraction poset PPb,u1 is the refinement poset on ordered partitions of [b],
• the pebble tree contraction poset PP0,0

` is the contraction poset on Schröder trees with `
leaves.

The pebble tree contraction posets PP0,1
3 and PP1,1

2 are illustrated in Figures 5 and 6. The fact
that PP0,1

3 and PP1,1
2 are isomorphic can be seen applying successively Points (5), (4), and (2) of

Proposition 17 below.

Remark 16. Observe that:

• The set of pebble trees Pb,u` is clearly closed under contraction. Hence, the pebble tree
contraction poset is a simplicial poset (a poset where each interval is a boolean algebra).

• The pebble tree contraction poset is ranked: the rank of a pebble tree is its number of nodes.
• The maximal pebble trees of PPb,u` are the pebble trees with only unary nodes containing

a single pebble and binary nodes containing no pebble (hence, they have `(b+u)−u unary
nodes and `− 1 binary nodes, thus rank `(1 + b+ u)− u− 1).

• The minimal pebble tree of PPb,u` is the corolla with ` leaves and `(b+ u)− u pebbles at
the root (hence it has rank 1).

Observe now that the mirroring, balancing, inserting, rerooting and uprooting maps of Defini-
tions 6 to 10 obviously commute with contractions. This implies the following statement.

Proposition 17. Consider the operations of Definitions 6 to 10.

(1) The mirroring map of Definition 6 defines a poset automorphism of PPb,u` .
(2) If u > 1, the balancing map of Definition 7 defines a poset isomorphism from the peb-

ble tree contraction poset PPb,u` to a principal upper set of the pebble tree contraction
poset PPb+1,u−1

` . Hence, PPb,u` is isomorphic to a principal upper set of PPb+u,0` .
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Figure 5. The pebble tree contraction poset PP0,1
3 .
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Figure 7. Some ◦-balanced and •-unbalanced {◦, •}-pebble trees T and the associated sim-
plices Λ(T ). Each node n of T is labeled by the concatenation of the elements of the set λ(Tn).

(3) The inserting map of Definition 8 defines a poset isomorphism from the pebble tree con-
traction poset PPb,u` to a principal upper set of the pebble tree contraction poset PPb+1,u

` .
(4) The rerooting maps of Definition 9 define poset automorphisms of PPb,0` .
(5) If ` > 1, the uprooting map of Definition 10 defines a poset isomorphism from the

pebble tree contraction poset PP0,u
` to a principal upper set of the pebble tree contrac-

tion poset PPu+1,0
`−1 .

Finally, we connect the α-trees of [PT18] to an upper set of the pebble tree contraction poset.

Remark 18. Following Remark 11, observe that for any signature α ∈ o · {i,o}`, the α-tree
contraction poset is isomorphic to the principal upper set of the pebble tree contraction poset PP1,0

`

generated by the pebble tree whose root has `−|α|i pebbles and ` children, and whose ith children
is a leaf if αi = o and a unary node with one pebble and a leaf if αi = i.

Remark 19. The following observations are consequences of Remarks 11 and 18 and Proposition 17:

• the o`+1-tree contraction poset is isomorphic to the pebble tree contraction poset PP1,0
` ,

• for any α ∈ o · {i,o}` with a single occurrence of i, the α-tree contraction poset is isomor-
phic to the pebble tree contraction poset PP0,1

` ,
• for α = ooi`−1 or α = oi`−1o, the α-tree contraction poset is isomorphic to the pebble

tree contraction poset PP0,0
`+1 (i.e. the contraction poset on Schröder trees).

2.3. Pebble tree complex. As mentioned in Remark 16, the pebble tree contraction poset PPb,u` is
a simplicial poset. We now construct the corresponding simplicial complex. Recall that we denote
by L(S) and B(S) the sets of leaves and of balanced colors in a subtree S. We will moreover need
the following notations.

Notation 20. For an interval L := [s, t] ⊆ [`] and a subset B ⊆ [b+ u], we define the sets

L⊗B :=
⋃
p∈B

[`p+ s− 1, `p+ t− 1] and L�B := [s, t− 1] ∪ (L⊗B).

Definition 21. The pebble tree complex PCb,u` is the simplicial complex whose simplices are the
sets Λ(T ) := {λ(S) | S subtree of T} for all pebble trees T ∈ Pb,u` , where λ(S) := L(S) � B(S).

Example 22. In the extreme situations of Example 2:

• the simplices of the pebble tree complex PCb,u1 are the flags B1 ( B2 ( · · · ( Bk ⊆ [b],
• the simplices of the pebble tree complex PP0,0

` are the collections of pairwise nested or
non-adjacents intervals of [`− 1].

Figure 7 illustrates some more generic examples of simplices Λ(T ).

Proposition 23. The pebble tree complex PCb,u` is a pseudomanifold, whose face poset is isomorphic
to the pebble tree poset PPb,u` .

Proof. Observe first that Λ(T/n) = Λ(T ) r {λ(Tn)} for any node n (not a leaf, nor the root) in
a pebble tree T . Hence, the face poset of PCb,u` is indeed isomorphic to PPb,u` . We thus obtain
that PCb,u` is a pure simplicial complex since PPb,u` is a ranked simplicial poset. It remains to prove
that PCb,u` is a pseudomanifold, meaning that any ridge (i.e. codimension 1 face) is contained in
precisely two facets (i.e. maximal dimensional faces). Consider thus a pebble tree of corank 1,
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obtained by contracting precisely two maximal pebble trees. In the second (resp. third) picture,
we mark Y (resp. X) with a • to indicate that it is •-balanced. Neither X nor Y are •-balanced
in the fourth picture.

and let p be the only node which is neither unary with a pebble, nor binary with no pebble. We
distinguish two cases:

• If p has three children and no pebble, then there are two ways to open p as usual (see
Figure 8 (left)) and it does not matter whether p and its children are balanced or not for
each pebble color.

• If p has two children and a γ-pebble, then p is γ-balanced, and there are still two ways to
open p depending on whether its children are γ-balanced or not (see Figure 8 (middle)).

• If p has one child and two pebbles of different colors, then there are still two ways to
open p choosing which pebble goes in the parent and which pebble goes in the child (see
Figure 8 (right)). �

Remark 24. In contrast to the special situations of Example 2, the pebble tree complex is not flag
in general. For instance, PC1,0

2 and PC0,1
3 are not flag.

Finally, we translate Proposition 17 and Remark 18 to the pebble tree complex.

Proposition 25. Consider the operations of Definitions 6 to 10.

(1) The map defined by `j + i− δj 6=0 7→ `(j + 1)− i for any (i, j) ∈ ([`]× [0, b+ u]) r {(`, 0)}
induces an automorphism of the pebble tree complex PCb,u` .

(2) If u > 1, the pebble tree complex PCb,u` is isomorphic to the link of the face [`] � [b] in the
pebble tree complex PCb+1,u−1

` . Hence, PCb,u` is isomorphic to a link of PCb+u,0` .
(3) The pebble tree complex PCb,u` is isomorphic to the link of the face {{i}� [1] | i ∈ [`]} in

the pebble tree complex PCb+1,u
` .

(4) The rerooting maps of Definition 9 induce automorphisms of the pebble tree complex PCb,0` .
(5) If ` > 1, the pebble tree complex PC0,u

` is isomorphic to the link of the face {{i}� [1] | i ∈ [2, `− 1]}
in the pebble tree complex PCu+1,0

`−1 .

Remark 26. Following Remarks 11 and 18, observe that for any signature α ∈ {i,o}`+1, the α-tree
complex is isomorphic to the link of the face {{i}� [1] | αi = i} in the pebble tree complex PC1,0

` .

2.4. Pebble tree flip graph. As the pebble tree complex PCb,u` is a pseudomanifold by Proposi-
tion 23, it is natural to consider its dual graph.

Definition 27. Two maximal pebble trees T and T ′ of PPb,u` are related by a flip if there are
nodes n of T and n′ of T ′ such that the following equivalent conditions hold:

• the contraction T/n coincides with the contraction T ′/n′.
• Λ(T ) r {λ(Tn)} = Λ(T ′) r {λ(T ′n′)},

All possible types of flips are illustrated in Figure 9. The flip graph is the graph whose vertices
are the maximal pebble trees of PPb,u` and whose edges are the flips between them.
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X Y
Z ←→ X

Y Z

•
X

Y• ←→
•

X Y•

X• •
Y
←→

•

X• Y

•
X

Y ←→ X •
Y

◦
•
X

←→
•
◦
X

Figure 9. All possible flips in a maximal pebble tree. In the second (resp. third) picture, we
mark Y (resp. X) with a • to indicate that it is •-balanced. Neither X nor Y are •-balanced in
the fourth picture.

Example 28. In the extreme situations of Example 2:

• the flip graph on Pb,u1 is the graph of adjacent transpositions on permutations of [b],
• the flip graph on P0,0

` is the rotation graph on binary trees with ` leaves.

These extreme situations correspond to the right and left cases of Figure 9 respectively. Figure 10
illustrates a sequence of flips in maximal pebble trees of P1,1

3 . Figures 11 and 12 illustrate the
flip graphs on maximal pebble trees of P0,1

3 and P1,1
2 (which are isomorphic by Proposition 17 as

already mentioned before).

As the dual graph of a pure simplicial pseudomanifold, the pebble tree flip graph is regular. Its
degree is `(1+b+u)−u−2. As we will see in Theorem 39 that it is the graph of a simple polytope,
it has the connectivity of its degree. Among various further properties of this graph that would
require more investigations, we mention the following problem in connection to [STT88, Pou14].

Problem 29. Evaluate the diameter of the flip graph on maximal pebble trees of Pb,u` .

Finally, note that Proposition 17 and Remark 18 directly translate to morphisms between the
flip graphs on the corresponding trees.

3. Pebble tree geometry

This section is devoted to the geometry of pebble trees. After quickly reminding some geometric
preliminaries (Section 3.1), we construct the pebble tree fan (Section 3.2) and the pebble tree
polytope (Section 3.3).

3.1. Geometric preliminaries. We refer to [Zie98] for a reference on polyhedral geometry, and only
remind the basic notions needed later in the paper.

A (polyhedral) cone is the positive span R≥0R of a finite set R of vectors of Rd or equiva-
lently, the intersection of finitely many closed linear half-spaces of Rd. The faces of a cone are its
intersections with its supporting hyperplanes. The rays (resp. facets) are the faces of dimension 1
(resp. codimension 1). A cone is simplicial if its rays are linearly independent. A (polyhedral)
fan F is a set of cones such that any face of a cone of F belongs to F, and any two cones of F in-
tersect along a face of both. A fan is essential if the intersection of its cones is the origin, complete
if the union of its cones covers Rd, and simplicial if all its cones are simplicial.

Note that a simplicial fan defines a simplicial complex on its rays (the simplices of the simplicial
complex are the subsets of rays which span a cone of the fan). Conversely, given a simplicial
complex ∆ with ground set V , one can try to realize it geometrically by associating a ray rv of Rd
to each v ∈ V , and the cone R≥0R4 generated by the set R4 := {rv | v ∈ 4} to each 4 ∈ ∆. To
show that the resulting cones indeed form a fan, we will need the following statement, which can
be seen as a reformulation of [DRS10, Coro. 4.5.20].

Proposition 30. Consider a closed simplicial pseudomanifold ∆ with ground set V and a set of
vectors (rv)v∈V of Rd, and define R4 := {rv | v ∈ 4} for any 4 ∈ ∆. Then the collection of
cones {R≥0R4 | 4 ∈ ∆} forms a complete simplicial fan of Rd if and only if

• there exists a vector v of Rd contained in only one of the open cones R>0R4 for 4 ∈ ∆,
• for any two adjacent facets 4,4′ of ∆ with 4r{v} = 4′r{v′}, we have αvαv′ > 0 where

αv rv + αv′ rv′ +
∑

w∈4∩4′

αw rw = 0

denotes the unique (up to rescaling) linear dependence on R4∪4′ .
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Figure 10. A sequence of flips in maximal ◦-balanced and •-unbalanced {◦, •}-pebble trees.
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•
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•

•

•
• •
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•
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Figure 11. The flip graph on pebble trees of P0,1
3 .
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• ◦
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•

◦
•
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◦ •
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•
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Figure 12. The flip graph on pebble trees of P1,1
2 .
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A polytope is the convex hull of finitely many points of Rd or equivalently, a bounded intersection
of finitely many closed affine half-spaces of Rd. The faces of a polytope are its intersections with
its supporting hyperplanes. The vertices (resp. edges, resp. facets) are the faces of dimension 0
(resp. dimension 1, resp. codimension 1).

The normal cone of a face F of a polytope P is the cone generated by the normal vectors to the
supporting hyperplanes of P containing F. Said differently, it is the cone of vectors c of Rd such
that the linear form x 7→ 〈 c | x 〉 on P is maximized by all points of the face F. The normal fan
of P is the set of normal cones of all its faces.

Consider now a complete simplicial fan F of Rd with rays (rv)v∈V and cones R≥0R4 for4 ∈ ∆,
where R4 := {rv | v ∈ 4} as in Proposition 30. To realize the fan F, one can try to pick a height
vector h := (hv)v∈V ∈ RV and consider the polytope Ph :=

{
x ∈ Rd

∣∣ 〈 rv | x 〉 ≤ hv for all v ∈ V
}
.

The following classical statement characterizes the height vectors h for which the fan F is the nor-
mal fan of this polytope Ph. We borrow the formulation from [CFZ02, Lem. 2.1].

Proposition 31. Let F be an essential complete simplicial fan in Rn with rays (rv)v∈V and
cones R≥0R4 for 4 ∈ ∆. Then the following are equivalent for any height vector h ∈ RV :

• The fan F is the normal fan of the polytope Ph :=
{
x ∈ Rd

∣∣ 〈 rv | x 〉 ≤ hv for all v ∈ V
}

.
• For two adjacent facets 4,4′ of ∆ with 4r {v} = 4′r {v′}, the height vector h satisfies

the wall crossing inequality

αv hv + αv′ hv′ +
∑

w∈4∩4′

αw hw > 0

where

αv rv + αv′ rv′ +
∑

w∈4∩4′

αw rw = 0

denotes the unique linear dependence on R4∪4′ such that αv + αv′ = 2.

3.2. Pebble tree fan. Fix `, b, u ∈ N and consider the intervals

I0 := [`(b+ 1)− 1] and Ii := [`(b+ i), `(b+ i+ 1)− 1] for all i ∈ [u]

whose union is the interval

I := I0 t I1 t · · · t Iu = [`(b+ u+ 1)− 1].

We work in the Euclidean space RI with canonical basis (ei)i∈I . We denote by 1J :=
∑
j∈J ej the

characteristic vector of a subset J ⊆ I. As our constructions actually live in the linear subspace

Hb,u` :=
{
x ∈ RI

∣∣ 〈1Ii | x 〉 = 0 for all 0 ≤ i ≤ u
}
,

we define the vector

rJ :=

u∑
i=0

(
|Ii r J | · 1Ii∩J − |Ii ∩ J | · 1IirJ

)
∈ Hb,u`

for each subset J ⊆ I. It is immediate to check that these vectors satisfy the linear dependences

rJ + rK = rJ∪K + rJ∩K

for any J,K ⊆ I. Finally, we associate to any pebble subtree S the vector rS := rλ(S) = rL(S)�B(S)

where L(S) and B(S) denote the sets of leaves and of balanced colors in S, and the operation �
was defined in Notation 20. Note that rS = 0 when S is the entire tree T (because L(T ) = [`]
and B(T ) = [b] so that λ(T ) = I0) or when S is a leaf i (because L(S) = {i} and B(S) = ∅ so
that λ(S) = ∅). We now use these vectors rS to construct the pebble tree fan.

Definition 32. The pebble tree fan PFb,u` is the collection of cones C(T ) := cone {rS | S subtree of T}
for all pebble trees T ∈ Pb,u` , where rS := rλ(S) = rL(S)�B(S).
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Example 33. In the extreme situations of Example 2:

• the pebble tree fan PFb,u1 is the braid fan, with a ray rJ for each proper subset ∅ 6= J ( [b]
and a maximal cone C(σ) for each permutation σ of [b], defined by the inequalities
xσ(1) ≤ · · · ≤ xσ(b),

• the pebble tree fan PF0,0
` is the sylvester fan, with a ray rJ for each proper interval J

of [`] and a maximal cone C(T ) for each binary tree T , defined by the inequalities xi ≤ xj
whenever there is a path from i to j in the tree T labeled in inorder and oriented towards
its root.

Note that the sylvester fan coarsens the braid fan: the cone C(T ) of the sylvester fan can also be
obtained by glueing the cones C(σ) of the braid fan corresponding to the linear extensions σ of T .

Theorem 34. The pebble tree fan PFb,u` is an essential complete simplicial fan in Hb,u` , whose face
lattice is the pebble tree contraction poset PPb,u` .

The proof of Theorem 34 relies on the description of the linear dependences among adjacent
maximal cones described in Lemma 36. To obtain these dependences, we need the following
preliminary statement, where we use the operation ⊗ defined in Notation 20.

Lemma 35. For any maximal pebble tree S and any B ⊆ B(S), there are in S some distinct unary
subtrees U1, . . . , Uk with children V1, . . . , Vk respectively such that rL(S)⊗B =

∑
i∈[k] rUi

− rVi
.

Proof. If a subtree U has a γ-pebble and a unique child V , then we have rL(U)⊗{γ} = rU − rV
because L(U) = L(V ) and B(U) = B(V )t{γ}. Hence, for any γ ∈ B(S), if we denote by U1, . . . , Uk
the closest descendants of S with a γ-pebble and by V1, . . . , Vk their respective children, then we
have rL(S)⊗{γ} =

∑
i∈[k] rL(Ui)⊗{γ} =

∑
i∈[k] rUi

− rVi
because L(S) =

⊔
i∈[k] L(Ui). The result

follows since rL(S)⊗B =
∑
γ∈B rL(S)⊗{γ}. �

Lemma 36. Let T and T ′ be two adjacent maximal pebble trees and let S and S′ be the subtrees of T
and T ′ such that Λ(T )r {λ(S)} = Λ(T ′)r {λ(S′)}. Then there is a linear dependence among the
rays rR associated to the subtrees R of T and T ′ where the rays rS and rS′ both have coefficient 1.

Proof. We analyse the five possible types of flips described in Figure 9. In all cases, we denote
by R the parent of S and S′.

X Y
Z

R
S

←→ X
Y Z

R
S′

Case 1. We have
L(S) = L(X) t L(Y ) L(S′) = L(Y ) t L(Z) L(R) = L(X) t L(Y ) t L(Z)
B(S) = B(X) ∩ B(Y ) B(S′) = B(Y ) ∩ B(Z) B(R) = B(X) ∩ B(Y ) ∩ B(Z)

which yields

rS + rS′ = rR + rY + rL(S)⊗(B(S)rB(R)) + rL(S′)⊗(B(S′)rB(R)) − rL(Y )⊗B(Y )

Since rL(S)⊗(B(S)rB(R)) (resp. rL(S′)⊗(B(S′)rB(R)), resp. rL(Y )⊗B(Y )) is a linear combination of the
rays rP for some subtrees P of S distinct from S (resp. of S′ distinct from S′, resp. of Y ) by
Lemma 35, this is indeed a linear dependence among the rays rQ associated to the subtrees Q
of T and T ′ where the rays rS and rS′ both have coefficient 1.

•
X

Y•

R

S ←→
•

X Y•

R
S′

Case 2. We have
L(S) = L(X) L(S′) = L(X) t L(Y ) L(R) = L(X) t L(Y )
B(S) = B(X) t {•} B(S′) = B(X) ∩ B(Y ) B(R) = (B(X) ∩ B(Y )) t {•}

which yields rS + rS′ = rR + rX − rL(Y )⊗{•}

Again, we can develop rL(Y )⊗{•} using Lemma 35, so that we indeed obtained a linear dependence
among the rays rQ for the subtrees Q of T and T ′ where the rays rS and rS′ both have coefficient 1.

X• •
Y

R

S ←→
•

X• Y

R
S′Case 3. Symmetric to Case 2.
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•
X

Y

R

S ←→ X •
Y

R

S′

Case 4. Assume first that R has an ancestor with a •-pebble. Then we
additionally denote

• by U0 the closest ancestor of R which has a •-pebble,
• by U1, . . . , Uk the closest descendants of U0 but not descendants of R

which have a •-pebble,
• by V0, V1, . . . , Vk the (unique) children of U0, U1, . . . , Uk respectively.

We have
L(S) = L(X) L(S′) = L(Y ) L(Ui) = L(Vi)
B(S) = B(X) t {•} B(S′) = B(Y ) t {•} B(Ui) = B(Vi) t {•}

and moreover L(U0) = L(S) t L(S′) t L(U1) t · · · t L(Uk). Using Lemma 35, we get

rU0
− rV0

= rL(U0)⊗{•} = rS − rX + rS′ − rY + rU1
− rV1

+ · · ·+ rUk
− rVk

or, written differently

rS + rS′ = rX + rY + rU0 − rV0 − rU1 + rV1 + · · · − rUk
+ rVk

Now if R has no ancestor with a •-pebble, then using that rL(T )⊗{•} = 0, we obtain similarly

rS + rS′ = rX + rY − rU1
+ rV1

+ · · · − rUk
+ rVk

where

• U1, . . . , Uk are the closest descendants of the root of T but not descendants of R which
have a •-pebble,

• V1, . . . , Vk are the (unique) children of U1, . . . , Uk respectively.

◦
•
X

R
S ←→

•
◦
X

R

S′

Case 5. We have
L(S) = L(X) L(S′) = L(X) L(R) = L(X)
B(S) = B(X) t {•} B(S′) = B(X) t {◦} B(R) = B(X) t {◦, •}

which yields rS + rS′ = rR + rX
�

Proof of Theorem 34. Note that PFb,u` is included in Hb,u` since all rays rJ are. To prove that it
is a complete simplicial fan, we just check the two criteria of Proposition 30. The second criterion
is guaranteed by the description of the linear dependences in Lemma 36. For the first criterion,
consider the vector

v =
∑

i∈[`−2]

r[i] +
∑
i∈[b]

2`+ir[`i,`(i+1)−1] +
∑
i∈[u]

2`+b+ir[`i+1,`(i+1)−1],

and a pebble tree T such that v is contained in the interior of C(T ). As the last `− 1 coordinates
of v are strictly larger than all other coordinates, each of the last `− 1 leaves of T is preceded by
a unary node with pebble colored by b+ u. Repeating the argument, we obtain that the first leaf
of T is preceded by a chain of unary nodes with pebbles colored 1, . . . , b while each of the last `−1
leaves if T is preceded by a chain of unary nodes with pebbles colored 1, . . . , b + u. Finally, we
obtain that the rest of the tree T is the left comb since it is the only Schröder tree whose cone in
the sylvester fan contains the vector

∑
i∈[`−2] r[i]. Finally, PFb,u` is essential as the dimension of

its cones matches the dimension of Hb,u` . �

Remark 37. A few observations on the pebble tree fan:

• The simple descriptions of Example 33 for the braid fan and for the sylvester fan unfor-
tunately fail for arbitrary b, u ≥ 0. Indeed, there is a natural way to label the nodes of
a maximal pebble tree: label the binary nodes in inorder by [`− 1] and the unary nodes
by the only leaf first covered by this pebble. This labeling yields a cone C(T ) for each
maximal pebble tree T , defined by xi ≤ xj whenever there is a directed path from i to j
in the tree T oriented towards its root. However, the cones C(T ) for all maximal pebble
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trees T do not define a complete simplicial fan (check out the case ` = 2, b = 1 and u = 0).
In fact, our pebble tree fan PFb,u` is not refined by the braid fan in general

• Our definition of the pebble tree fan PFb,u` respects some symmetries of the pebble tree
complex PCb,u` but not all. See Proposition 42 for a precise statement directly on polytopes.

• Lemma 36 actually proves that the pebble tree fan PFb,u` is smooth, meaning that the
principal vectors spanning the rays of any maximal cone of PFb,u` form an integral basis
of the space (in other words, the corresponding toric variety is smooth).

3.3. Pebble tree polytope. Our next step is to construct a polytope whose normal fan is the pebble
tree fan, using the criterion of Proposition 31.

Definition 38. A submodular function on n is a map f from the subsets of [n] to R≥0 such
that f∅ = 0 and

fA∪B + fA∩B ≤ fA + fB

for any subsets A and B of [n]. We then define

∆f := min
(
fA + fB − fA∪B − fA∩B

)
where the minimum ranges over all subsets A and B of [n] such that A 6⊆ B and A 6⊇ B. Note that

•
∑
i∈[k] fAi

−fA ≥ (k−1) ·∆f for any A =
⋃
i∈[k]Ai where A1, . . . , Ak are pairwise disjoint,

• ∆λf = λ∆f for any scalar factor λ.

We say that f is strictly submodular when ∆f > 0.

Theorem 39. Pick three strictly submodular functions f on `, g on `, and h on b+ u such that

∆f > 4(`b+ `u− u) · (max g + maxh) and ∆g > (`b+ `u− u+ 1) ·maxh.

Then the pebble tree fan PFb,u` is the normal fan of the pebble tree polytope PTPb,u` (f, g, h), the

(`+ `b+ `u− u− 2)-dimensional polytope defined in the subspace Hb,u` by the inequalities〈
r[s,t]�B

∣∣ x 〉 ≤ f[s,t] + g[s,t] · |B|+ hB

for all 1 ≤ s ≤ t ≤ ` and all B ⊆ [b+ u].

Proof. To shorten notations in this proof, we define for a maximal pebble subtree S

fS := fL(S), gS := gL(S), hS :=hB(S), and ϕS := fL(S) + gL(S) · |B(S)|+ hB(S).

Observe that if V is the unique child of U , then ϕU − ϕV = gU + hU − hV because L(U) = L(V )
and |B(U)| = |B(V )| + 1. We just need to prove that the function ϕ satisfies the wall-crossing
inequalities of Proposition 31 for each of the linear dependences boxed in the proof of Lemma 36.

Case 1. By Lemmas 35 and 36, we have

rS + rS′ − rR − rY −
∑
i∈[k]

(rUi
− rVi

)−
∑
i∈[k′]

(rU ′
i
− rV ′

i
) +

∑
i∈[k′′]

(rU ′′
i
− rV ′′

i
) = 0

for distinct unary subtrees U1, . . . , Uk of S (resp. U ′1, . . . , U
′
k′ of S′, resp. U ′′1 , . . . , U

′′
k′′ of Y ) with

respective children V1, . . . , Vk (resp. V ′1 , . . . , V
′
k′ , resp. V ′′1 , . . . , V

′′
k′′). Since L(R) = L(S) ∪ L(S′)

and L(Y ) = L(S) ∩ L(S′), we have

fS + fS′ − fR − fY ≥ ∆f > 4(`b+ `u− u)(max g + maxh)

≥ (gR + hR) + (gY + hY ) +
∑
i∈[k]

(gUi + hUi) +
∑
i∈[k′]

(gU ′
i

+ hU ′
i
) +

∑
i∈[k′′]

(gV ′′
i

+ hV ′′
i

),

where the last inequality holds since Ui 6= Uj (resp. U ′i 6= U ′j , resp. V ′′i 6= V ′′j ) for i 6= j, and the
pebble tree T has `b+`u−u unary subtrees. Since f, g, h take non-negative values and ϕU −ϕV =
gU+hU−hV when V is the unique child of U , we obtain that ϕ satisfies the wall-crossing inequality

ϕS + ϕS′ − ϕR − ϕY −
∑
i∈[k]

(ϕUi − ϕVi)−
∑
i∈[k′]

(ϕU ′
i
− ϕV ′

i
) +

∑
i∈[k′′]

(ϕU ′′
i
− ϕV ′′

i
) > 0.
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Case 2. By Lemma 36, we have

(rR − rS′)− (rS − rX)−
∑
i∈[k]

(rUi
− rVi

) = 0

for distinct unary subtrees U1, . . . , Uk of Y with children V1, . . . , Vk, such that
⊔
i∈[k] L(Ui) = L(Y ).

Since L(R) = L(S) t L(Y ), we obtain that

gR − gS −
∑
i∈[k]

gUi ≥ (k − 1) ·∆g ≥ ∆g > (`b+ `u− u+ 1) ·maxh ≥ hS′ + hS +
∑
i∈[k]

hUi ,

where the last inequality holds since S 6= Ui 6= Uj for i 6= j, and the subtree R has at most `b+`u−u
unary subtrees. Since f, g, h take non-negative values and ϕU − ϕV = gU + hU − hV when V is
the unique child of U , we obtain that ϕ satisfies the wall-crossing inequality

(ϕR − ϕS′)− (ϕS − ϕX)−
∑
i∈[k]

(ϕUi − ϕVi) > 0.

Case 3. Symmetric to Case 2.

Case 4. Assume first that R has an ancestor with a •-pebble. Then by Lemma 36, we have

(rU0
− rV0

)− (rS − rX)− (rS′ − rY )−
∑
i∈[k]

(rUi
− rVi

) = 0.

Since L(U0) = L(S) t L(S′) t
⊔
i∈[k] L(Ui), we obtain that

gU0
−gS−gS′−

∑
i∈[k]

gUi
≥ (k+1) ·∆g ≥ ∆g > (`b+ `u−u+1) ·maxh > hV0

+hS +hS′ +
∑
i∈[k]

hUi
,

where the last inequality holds since S 6= Ui 6= Uj 6= S′ for i 6= j, and the subtree U0 has at
most `b+`u−u unary subtrees. Since f, g, h take non-negative values and ϕU − ϕV = gU + hU − hV
when V is the unique child of U , we obtain that ϕ satisfies the wall-crossing inequality

(ϕU0 − ϕV0)− (ϕS − ϕX)− (ϕS′ − ϕY )−
∑
i∈[k]

(ϕUi − ϕVi) > 0.

Assume now that R has no ancestor with a •-pebble. Then we have

(rS − rX) + (rS′ − rY ) +
∑
i∈[k]

(rUi
− rVi

) = 0.

The wall-crossing inequality is thus even easier to satisfy since ϕU0
− ϕV0

does not appear.

Case 5. By Lemma 36, we have

rS + rS′ − rR − rX = 0

Since L(R) = L(S) = L(S′) = L(X) and B(R) = B(S) t {◦} = B(S′) t {•} = B(X) t {◦, •}, we
have

ϕS + ϕS′ − ϕR − ϕX = hS + hS′ − hR − hR > 0. �

Remark 40. Note that the conditions of Theorem 39 are just sufficient conditions to ensure the
wall-crossing inequalities. To find functions satisfying these conditions, pick three arbitrary strictly
submodular functions f, g, h and rescale first g by a factor 4(`b + `u − u + 1) · maxh/∆g, and

then f by a factor (`b + `u − u) · (max g + maxh)/∆f . We just write PTPb,u` if we want to

consider PTPb,u` (f, g, h) for arbitrary f, g, h satisfying the conditions of Theorem 39.
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Figure 13. The pebble tree polytopes PTP0,1
3 (left) and PTP1,1

2 (right).

Example 41. In the extreme situations of Example 2:

• the pebble tree fan PFb,u1 (a.k.a. braid fan) is the normal fan of the classical permutahe-

dron, which can be obtained for hB =
(
b+1

2

)
−
(|B|+1

2

)
(the functions f and g are irrelevant

here, since [s, t] is constant to [1]),
• the pebble tree fan PF0,0

` (a.k.a. sylvester fan) is the normal fan of the classical associa-

hedron [SS93, Lod04], which can be obtained for fX =
(
`+1

2

)
−
(|X|+1

2

)
(the functions g

and h are irrelevant here, since B is constant to ∅).

Figure 13 illustrates polytopal realizations of the pebble tree fans PF0,1
3 and PF1,1

2 . Note that,
while they have the same combinatorics by Proposition 17, their geometric realizations differ.

Finally, we translate the first three points of Proposition 17 and Remark 18 to pebble tree
polytopes. Note that the last two transformations of Proposition 17 do not respect the geometry
of the pebble tree polytopes.

Proposition 42. Consider the operations of Definitions 6 to 8.

(1) The map defined by e`j+i−δj 6=0
7→ e`(j+1)−i for any (i, j) ∈ ([`]×[0, b+u])r{(`, 0)} induces

an isometry of the pebble tree polytope PTPb,u` (f, g, h).

(2) If u > 1, the pebble tree polytope PTPb,u` (f, g, h) is a facet of the pebble tree polytope

PTP
b+1,u−1
` (f, g, h). Hence, PTPb,u` (f, g, h) is a codimension u face of PTPb+u,0` (f, g, h).

(3) The pebble tree polytope PTPb,u` (f, g, h) is a codimension ` face of the pebble tree poly-

tope PTPb+1,u
` (f, g, h′) where h(X) = h′({x+ 1 | x ∈ X}) for X ⊆ [b+ u].

Remark 43. Following Remarks 11, 18 and 26, observe that for any signature α ∈ {i,o}`+1,

the α-assocoipahedron of [PT18] is realized by a face of the pebble tree polytope PTP1,0
` . For

instance, Figure 14 shows faces of the pebble tree polytopes PTP1,0
4 and PTP1,0

3 which realize the
α-assocoipahedra for α = oiioi and α = oooi presented in [PT18, Figs. 8, 9, 14 & 15]. Note that
the combinatorics of the oooi-assocoipahedra represented in Figure 14 (right) is also isomorphic

to the pebble tree polytopes PTP0,1
4 represented in Figure 13 by combining Points (2) and (4)

of Proposition 25.
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Figure 14. The α-assocoipahedra for α = oiioi (left) and α = oooi (right), realized as faces of

the pebble tree polytopes PTP1,0
4 and PTP1,0

3 .

4. Pebble tree numerology

In this section, we compute the generating functions of the maximal pebble trees (Section 4.1)
and of all the pebble trees (Section 4.2), and gather explicit expansions of these generating func-
tions (Section 4.3). While the methods are standard computations based on generatingfunctionol-
ogy [FS09], the results reveal a few surprises. All references like A000108 are entries of the Online
Encyclopedia of Integer Sequences [OEI10].

4.1. Enumeration of maximal pebble trees. We start with the enumeration of the maximal pebble
trees which is significantly simpler.

Definition 44. For `, u, b ∈ N, we denote by mb,u
` the number of maximal pebble trees of Pb,u`

(i.e. with ` leaves, b balanced and u unbalanced colors). We consider the generating functions

Mb,u(x) :=
∞∑
`=1

mb,u
` x` and Mk(x, y) :=

k∑
u=0

Mk−u,u(x)
yu

u!
=

∞∑
`=1

k∑
u=0

mk−u,u
` x`

yu

u!
.

Proposition 45. The generating functions Mb,u(x) satisfy the functional equations

Mb,u(x) = x · δb=0 + b ·Mb−1,u+1(x) +

u∑
v=0

(
u

v

)
·Mb+v,u−v(x) ·Mb+u−v,v(x),

where δ is the Kronecker delta. Hence, Mb,u(x) is algebraic for any b, u ∈ N. Moreover, the
generating function Mk(x, y) satisfies the differential equation

Mk(x, y) = x
yk

k!
+
(
k
∂

∂y
− y ∂2

∂y2

)
Mk(x, y) + Mk(x, y)2.

Proof. A maximal pebble tree in PB,U[s,t] is:

• either a leaf if s = t and B = ∅,
• or a unary node with a single pebble colored by γ ∈ B and a child in PBr{γ},U∪{γ}

[s,t] ,
• or a binary node with no pebble and two children in PB,V[s,r] and PB,UrV

[r,t] for some r ∈ [s, t]
and V ⊆ U .

http://oeis.org/A000108


18 VINCENT PILAUD

The functional equations for Mb,u(x) are immediate consequences of this structural decomposition
by classical generatingfunctionology [FS09]. The algebraicity of Mb,u(x) follows as it belongs to
a system of finitely many polynomial equations (all equations for a given sum b + u), and the
functional equation for Mk(x, y) is obtained by classical manipulations on the functional equations
for Mb,u(x). �

Example 46. When b = u = 0, we recover the functional equation M0,0(x) = x+ M0,0(x)2 which
yields the classical Catalan generating function

M0,0(x) =
1−
√

1− 4x

2
= x+x2+2x3+5x4+14x5+42x6+132x7+429x8+1430x9+. . . (A000108)

Example 47. For b+ u = 1, we obtain that

M1,0(x) = M0,1(x) + M1,0(x)2 and M0,1(x) = x+ 2 ·M1,0(x) ·M0,1(x)

from which we can compute the expansions

M1,0(x) = x+ 3x2 + 16x3 + 105x4 + 768x5 + 6006x6 + 49152x7 + . . . (A085614)

M0,1(x) = x+ 2x2 + 10x3 + 64x4 + 462x5 + 3584x6 + 29172x7 + . . . (A078531)

These functions actually both satisfy a cubic equation, namely

2 ·M1,0(x)3 − 3 ·M1,0(x)2 + M1,0(x)− x = 0 and 4 ·M0,1(x)3 −M0,1(x)2 + x2 = 0.

Example 48. For b+ u = 2, we obtain

M2,0(x) = 2 ·M1,1(x) + M2,0(x)2,(1)

M1,1(x) = M0,2(x) + 2 ·M2,0(x) ·M1,1(x),(2)

M0,2(x) = x+ 2 ·M2,0(x) ·M0,2(x) + 2 ·M1,1(x)2.(3)

From which we can compute the expansions:

M2,0(x) = 2x+ 24x2 + 496x3 + 12560x4 + 354048x5 + 10665088x6 + . . .

M1,1(x) = x+ 10x2 + 200x3 + 5000x4 + 140000x5 + 4200000x6 + . . . (A156275)

M0,2(x) = x+ 6x2 + 112x3 + 2728x4 + 75360x5 + 2242304x6 + . . .

The expansion of M1,1(x) is quite surprising, but can be explained by a tiny functional miracle.
Indeed, observe that we obtain that 2 ·M1,1(x) = M2,0(x) ·

(
1−M2,0(x)

)
from Equation (1) and

that M0,2(x) = M1,1(x) ·
(
1 − 2 ·M2,0(x)

)
from Equation (2),. Replacing M0,2(x) on both sides

of Equation (3), we obtain

M1,1(x) = x+ 4 ·M1,1(x) ·M2,0(x) ·
(
1−M2,0(x)

)
+ 2 ·M1,1(x)2 = x+ 10 ·M1,1(x)2.

This shows that m1,1
` = 10`−1C`, where C` = 1

`+1

(
2`
`

)
is the Catalan number. We have no combi-

natorial explanation for the Catalan numbers to appear again here. Consider the map sending a
maximal pebble tree of P1,1

` to its underlying binary tree. In view of the formula m1,1
` = 10`−1C`,

it is natural to expect that its fibers all have size 10`−1. However, while the size of the fiber of
a binary tree T is clearly invariant under reordering the children of T , it is not constant on all
binary trees already for ` = 4. Namely, the fiber of the binary tree whose children are both the
tree on 2 leaves contains 968 pebble trees of P1,1

4 , while the fiber of each of the remaining 4 binary
trees on 4 leaves contains 1008 pebble trees of P1,1

4 . This yields the following problem.

Problem 49. Give a (bijective) combinatorial explanation for the appearance of the Catalan num-
bers in the generating function

M1,1(x) = x+ 10x2 + 200x3 + 5000x4 + 140000x5 + 4200000x6 + . . .

http://oeis.org/A000108
http://oeis.org/A085614
http://oeis.org/A078531
http://oeis.org/A156275
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4.2. Enumeration of all pebble trees. We now consider all pebble trees.

Definition 50. For `, n, u, b ∈ N, we denote by pb,u`,n the number of pebble tree with ` leaves, n
nodes, b balanced and u unbalanced colors. We consider the generating function

Pb,u(x, y) :=

∞∑
`=1

∞∑
n=0

pb,u`,n x
` yn.

Proposition 51. The generating functions Pb,u(x, y) satisfy the functional equations

Pb,u(x, y) = x · δb=0 + y ·
b∑
s=1

(
b

s

)
·Pb−s,u+s(x, y) + y ·

∑
d≥2

X1,...,Xb
Y1,...,Yu

d∏
k=1

Pbk,uk(x, y)

where δ is the Kronecker delta, where each Xi ranges among arbitrary subsets of [d] while each Yj
ranges among strict subsets of [d], and where bk := | {i ∈ [b] | k ∈ Xi} | + | {j ∈ [u] | k ∈ Yj} | and
uk := b+ u− bk for any k ∈ [d]. Hence, Pb,u(x) is algebraic for any b, u ∈ N.

Proof. A pebble tree of PB,U[s,t] is:

• either a leaf if s = t and B = ∅,
• or a unary node with some pebbles colored by a non-empty subset S ⊆ B (one pebble of

each color in S) and a child in PBrS,U∪S
[s,t] ,

• or a node with some pebbles and d ≥ 2 children in PB1,U1

[s1,t1] , . . . ,P
Bd,Ud

[sd,td] respectively, for
some s = s1 ≤ t1 = s2 ≤ · · · ≤ td = t and Bi ⊆ B and Ui ⊆ U for all i ∈ [d], such
that

⋂
i∈[d] Ui = ∅.

The functional equations for Pb,u(x) are immediate consequences of this structural decomposition
by classical generatingfunctionology [FS09]. The algebraicity of Pb,u(x) follows as it belongs to a
system of finitely many polynomial equations (all equations for a given sum b+ u). �

Example 52. When b = u = 0, we recover the functional equation

P0,0(x, y) = x+
y ·P0,0(x, y)2

1−P0,0(x, y)

which yield the classical Schröder generating function

P0,0(x, y) =
y
(
x+ y −

√
x2 − 2xy − 4xy2 + y2

)
2(1 + y)

= x+ x2y + x3(y + 2y2) + x4(y + 5y2 + 5y3) + x5(y + 9y2 + 21y3 + 14y4) + . . .

The expansions of the generating functions Pb,u(x, 1) and Pb,u(x, y) for b+u ≤ 2 can be found
in Section 4.3. Finally, we observe that the evaluations of Pb,u(x, y) at y = 1 and y = −1 have a
geometric meaning.

Proposition 53. For any b, u ∈ N, the evaluation Pb,u(x, 1) is the generating function of the total

number of faces of the pebble tree polytope PTPb,u` , and

Pb,u(x,−1) =
x

(−1)b + (−1)ux
.

Proof. By Theorem 39, pb,u`,n is the number of (` + `b + `u − u − 2 − n)-dimensional faces of the

(`+ `b+ `u− u− 2)-dimensional pebble tree polytope PTPb,u` . This implies that

•
∑
n p

b,u
`,n is the total number of faces of PTPb,u` ,

•
∑
n p

b,u
`,n(−1)n = (−1)`+`b+`u−u−2 by Euler’s formula.

This immediately implies the statement. �
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4.3. Expansions of generating functions. Below are the expansions of the generating functions Mb,u(x),
Pb,u(x, 1) and Pb,u(x, y) of Definitions 44 and 50 for all b+ u ≤ 2.

b = 0 and u = 0.

M0,0(x) = x+ x2 + 2x3 + 5x4 + 14x5 + 42x6 + 132x7 + 429x8 + 1430x9 + 4862x10 + . . . (A000108)

P0,0(x, 1) = x+ x2 + 3x3 + 11x4 + 45x5 + 197x6 + 903x7 + 4279x8 + 20793x9 + 103049x10 + . . . (A001003)

P0,0(x, y) = x+ x2y + x3(y + 2y2) + x4(y + 5y2 + 5y3) + x5(y + 9y2 + 21y3 + 14y4) + . . .

b = 1 and u = 0.

M1,0(x) = x+ 3x2 + 16x3 + 105x4 + 768x5 + 6006x6 + 49152x7 + 415701x8 + 3604480x9 + . . . (A085614)

P1,0(x, 1) = x+ 7x2 + 81x3 + 1151x4 + 18225x5 + 308519x6 + 5465313x7 + 100051903x8 + . . .

P1,0(x, y) = xy + x2(y + 3y2 + 3y3) + x3(y + 8y2 + 24y3 + 32y4 + 16y5) + . . .

b = 0 and u = 1.

M0,1(x) = x+ 2x2 + 10x3 + 64x4 + 462x5 + 3584x6 + 29172x7 + 245760x8 + 2124694x9 + . . . (A078531)

P0,1(x, 1) = x+ 3x2 + 33x3 + 459x4 + 7185x5 + 120771x6 + 2129169x7 + 38843307x8 + . . .

P0,1(x, y) = x+ x2(y + 2y2) + x3(y + 7y2 + 15y3 + 10y4) + x4(y + 14y2 + 68y3 + 152y4 + 160y5 + 64y6) + . . .

b = 2 and u = 0.

M2,0(x) = 2x+ 24x2 + 496x3 + 12560x4 + 354048x5 + 10665088x6 + 336114176x7 + 10237958656x8 + . . .

P2,0(x, 1) = 3x+ 115x2 + 7431x3 + 587591x4 + 51702219x5 + 4860786491x6 + 478068368655x7 + . . .

P2,0(x, y) = x(y + 2y2) + x2(y + 9y2 + 33y3 + 48y4 + 24y5) + . . .

b = 1 and u = 1.

M1,1(x) = x+ 10x2 + 200x3 + 5000x4 + 140000x5 + 4200000x6 + 132000000x7 + . . . (A156275)

P1,1(x, 1) = x+ 33x2 + 2061x3 + 160797x4 + 14049369x5 + 1315182201x6 + 128977070373x7 + . . .

P1,1(x, y) = xy + x2(y + 7y2 + 15y3 + 10y4) + x3(y + 18y2 + 124y3 + 412y4 + 706y5 + 600y6 + 200y7) + . . .

b = 0 and u = 2.

M0,2(x) = x+ 6x2 + 112x3 + 2728x4 + 75360x5 + 2242304x6 + 70084864x7 + 2268770688x8 + . . .

P0,2(x, 1) = x+ 13x2 + 765x3 + 58297x4 + 5031129x5 + 467426661x6 + 45606874581x7 + . . .

P0,2(x, y) = x+ x2(y + 6y2 + 6y3) + x3(y + 17y2 + 101y3 + 254y4 + 280y5 + 112y6) + . . .
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