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REDUCED EXPRESSIONS
& SUBWORD COMPLEXES



REDUCED EXPRESSIONS

Sn = symmetric group
S = {τi | i ∈ n− 1} set of simple transpositions τi = (i i + 1)

ρ permutation of Sn

reduced expression of ρ = minimal length expression ρ = s1 · · · s` with si ∈ S

Count and enumerate reduced expressions of ρ

Example. ρ = [4, 1, 3, 2] = τ2 τ3 τ2 τ1 = τ3 τ2 τ3 τ1 = τ3 τ2 τ1 τ3
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REDUCED EXPRESSIONS

Sn = symmetric group
S = {τi | i ∈ n− 1} set of simple transpositions τi = (i i + 1)

ρ permutation of Sn

reduced expression of ρ = minimal length expression ρ = s1 · · · s` with si ∈ S

Count and enumerate reduced expressions of ρ

# reduced expressions of w◦ =(
n
2

)
!

1n−12n−2 · · · (2n− 3)1

Stanley.
On the number of reduced decompositions

of elements of Coxeter groups. 1984

Edelmann & Greene.
Combinatorial correspondences for Young tableaux, balanced

tableaux, and maximal chains in the Bruhat order of Sn. 1984



REDUCED EXPRESSIONS AS SUBWORDS

Sn = symmetric group
S = {τi | i ∈ n− 1} set of simple transpositions τi = (i i + 1)
ρ permutation of Sn

Q = q1 q2 · · · qm word on the alphabet S

Enumerate subwords of Q which are reduced expressions for ρ

Example. ρ = [4, 1, 3, 2] = τ2 τ3 τ2 τ1 = τ3 τ2 τ3 τ1 = τ3 τ2 τ1 τ3
Q = τ2 τ3 τ1 τ3 τ2 τ1 τ2 τ3 τ1

Possible subwords:
τ2 τ3 · · τ2 τ1 · · · −→ 34789
τ2 τ3 · · · · τ2 · τ1 −→ 34568
· τ3 · · τ2 · · τ3 τ1 −→ 13467
· τ3 · · τ2 τ1 · τ3 · −→ 13479

etc



REDUCED EXPRESSIONS AS SUBWORDS

Sn = symmetric group
S = {τi | i ∈ n− 1} set of simple transpositions τi = (i i + 1)
ρ permutation of Sn

Q = q1 q2 · · · qm word on the alphabet S

Enumerate subwords of Q which are reduced expressions for ρ

Example. ρ = [4, 1, 3, 2] = τ2 τ3 τ2 τ1 = τ3 τ2 τ3 τ1 = τ3 τ2 τ1 τ3
Q = τ2 τ3 τ1 τ3 τ2 τ1 τ2 τ3 τ1
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GENERALIZATION TO COXETER GROUPS

W = finite Coxeter group
S = simple system of generators for W
ρ element of W
Q = q1 q2 · · · qm word on the alphabet S

Enumerate subwords of Q which are reduced expressions for ρ



SUBWORD COMPLEX

Sn = symmetric group
S = {τi | i ∈ n− 1} set of simple transpositions τi = (i i + 1)
ρ permutation of Sn

Q = q1 q2 · · · qm word on the alphabet S

Subword complex SC(Q, ρ) = simplicial complex with

• vertices = [m] = positions in the word Q

• facets = F(Q, ρ) = complements in [m] of position sets of reduced ex-
pressions of ρ in Q

Knutson & Miller. Subword complexes in Coxeter groups. 2004.



FLIP

flip = two subwords of Q which differ at precisely two positions
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FLIP

4

3

2

1

2

3

4

1

4

3

2

1

2

3

4

1
4

3

2

1

2

3

4

1

4

3

2

1

2

3

4

1

4

3

2

1

2

3

4

1

4

3

2

1

2

3

4

1

4

3

2

1

2

3

4

1

4

3

2

1

2

3

4

1

4

3

2

1

2

3

4

1
4

3

2

1

2

3

4

1

4

3

2

1

2

3

4

1

4

3

2

1

2

3

4

1

The flip graph is connected

GOAL: Find a natural spanning tree of the flip graph



INDUCTIVE STRUCTURE

Q = q1 q2 · · · qm−1 qm and Qa = q1 q2 · · · qm−1
F(Q, ρ) = facets of SC(Q, ρ) = complements of reduced expressions of ρ in Q

F(Q, ρ) = F(Qa, ρqm) t
(
F(Qa, ρ) ? m

)
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INDUCTIVE STRUCTURE
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F(Q, ρ) = F(Qa, ρqm) t
(
F(Qa, ρ) ? m

)



INDUCTIVE STRUCTURE

Q = q1 q2 · · · qm−1 qm and Qa = q1 q2 · · · qm−1
F(Q, ρ) = facets of SC(Q, ρ) = complements of reduced expressions of ρ in Q

F(Q, ρ) =


F(Qa, ρqm) if ρ 6≺ Qa
F(Qa, ρ) ? m if `(ρqm) > `(ρ)

F(Qa, ρqm) t
(
F(Qa, ρ) ? m

)
otherwise

4

3

2

1

2

3

4

1

2

3

4

1

4

3

2

1

2

3

1

4

2

3

4

1

⇒ Inductive enumeration of F(Q, ρ) with complexity O(m2n) per facet



COMBINATORIAL MODELS
FOR GEOMETRIC GRAPHS



TRIANGULATIONS AND REDUCED EXPRESSIONS

bijection between

• triangulations of a convex (n + 2)-gon

• subwords of the odd-even word Q =
(∏

i∈[n2]
τ2i+1 ·

∏
i∈[n2]

τ2i
)n

2

which are reduced expressions for the longest elementw◦ = [n, n−1, . . . , 2, 1]
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FLIP IN TRIANGULATIONS
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ASSOCIAHEDRON

The flip graph is the 1-skeleton of the associahedron



COMBINATORIAL MODELS FOR GEOMETRIC GRAPHS

triangulations

of convex polygons,

multitriangulations

of convex polygons,

pseudotriangulations

of point sets in

general position,

pseudotriangulations

of sets of disjoint

convex bodies.

P. & Pocchiola, Pseudotriangulations, multitriangulations, and primitive sorting networks, 2012.

Stump, A new perspective on multitriangulations, 2011.



GREEDY FLIP ALGORITHM



INCREASING FLIPS & GREEDY FACET

increasing flip = flip from I to J with I r i = J r j and i < j
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The increasing flip graph is acyclic, connected, and has a unique sink

greedy facet G(Q, ρ) = unique sink of the increasing flip graph
= lexicographically maximal facet of SC(Q, ρ)



TWO GREEDY PROCEDURES TO COMPUTE THE GREEDY FACET
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The greedy facet G(Q, ρ) can be constructed inductively from G(ε, e) = ∅
using the following formulas:

G(Q, ρ) =

{
G(Qa, ρ) ∪m if ρ ≺ Qa
G(Qa, ρqm) otherwise

G(Q, ρ) =

{
G(Q`, q1ρ)

→ if `(q1ρ) < `(ρ)

1 ∪ G(Q`, ρ)
→ otherwise

where Qa = q1 q2 · · · qm−1, Q` = q2 · · · qm−1 qm and X→ = {x + 1 | x ∈ X}



GREEDY FLIP PROPERTY

If m is a flippable element of G(Q, ρ),
then G(Qa, ρqm) is obtained from G(Q, ρ) flipping m
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GREEDY FLIP TREE — INDUCTIVE DEFINITION
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F(Q, ρ) = F(Qa, ρqm) t
(
F(Qa, ρ) ? m

)



GREEDY FLIP TREE — INDUCTIVE DEFINITION
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G(Q, ρ) = G(Qa, ρqm) t
(
G(Qa, ρ) ? m

)
t
{

arc from G(Qa, ρqm) to
G(Q, ρ) = G(Qa, ρ) ∪m

}



GREEDY FLIP TREE — INDUCTIVE DEFINITION

Inductive structure of the facets F(Q, ρ) of the subword complex SC(Q, ρ):

F(Q, ρ) =


F(Qa, ρqm) if ρ 6≺ Qa
F(Qa, ρ) ? m if `(ρqm) > `(ρ)

F(Qa, ρqm) t
(
F(Qa, ρ) ? m

)
otherwise

Inductive definition of the greedy flip tree G(Q, ρ):

G(Q, ρ) =



G(Qa, ρqm) if ρ 6≺ Qa
G(Qa, ρ) ? m if `(ρqm) > `(ρ)

G(Qa, ρqm) t
(
G(Qa, ρ) ? m

)
t{arc from G(Qa, ρqm) to

G(Q, ρ) = G(Qa, ρ) ∪m}
otherwise



GREEDY FLIP TREE — DIRECT DEFINITION

g(I) = greedy index of a facet I ∈ F(Q, ρ) =
last position x ∈ [m] such that I ∩ [x] = G(q1 · · · qx, σ[x]rI)
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If I, J ∈ F(Q, ρ) with I r i = J r j and i < j ≤ g(J), then g(I) = j − 1



GREEDY FLIP TREE — DIRECT DEFINITION

The greedy flip tree G(Q, ρ) has

• nodes = F(Q, ρ) = complements of reduced expressions of ρ in Q

• arcs = flip (I, J) such that I r i = J r j with i < j ≤ g(J).
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GREEDY FLIP ALGORITHM

Greedy Flip Algorithm = Depth first search generation on the greedy flip tree

Preorder traversal provides an iterator on the reduced expressions of ρ in Q

Working space in O(mn)
Running time in O(m2n) per facet −→ similar to the inductive algorithm

Implemented in Sage (Stump’s combinat patch on subword complexes)
Experimental time comparison to generate the k-triangulations of the n-gon:



Thank you


