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60 bld. Saint-Michel, 75272 Paris Cedex 06, France
e-mail: rouchon@cas.ensmp.fr

∗Work partially supported by the G.D.R. “MEDICIS” of the C.N.R.S.

i



Abstract

The Lie rank condition for strong nonlinear accessibility is interpreted via the
differential geometry of jets and prolongations of infinite order. It yields to a
new Lie algebraic criterion and to the consideration of first integrals, which
apply to nonlinear systems in quite general form; the latter characterization
in particular is valid without distinguishing between the system variables and
is independent of time-scalings. Weak accessibility is also considered.

Keywords: Nonlinear controllability, strong accessibility, weak accessibility,
Lie brackets, first integrals, jets, prolongations, diffieties, flatness.
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Introduction

Modern nonlinear differential geometric control began more than twenty five
years ago by trying to extend to nonlinear systems Kalman’s controllability
(see, e.g., [7, 18, 33, 34, 42, 43, 61, 64]; more details may be found in [39,
47, 62]). We remark here that the strong and weak accessibility Lie rank
conditions possess an easy and nice interpretation within the framework of
the differential geometry of jets and prolongations of infinite order, which is
becoming a mainstay in some parts of mathematics and physics (see, e.g.,
[3, 4, 32, 38, 41, 49, 66, 67, 69] and the references therein). Motivated by the
study of differential flatness [25], i.e., by dynamic feedback linearizabilty, this
infinite-dimensional geometry is now being developed in nonlinear control (cf.
[23, 24, 27, 28, 29, 48, 52]). Considering those prolongations means taking
into account time derivatives of arbitrary order of the system variables. This
system theoretic trend, which has also been formalized via differential algebra
(cf. [19, 20, 22, 25]), is apparent, not only in dynamic feedback linearization
(see, e.g., [5, 9, 59, 60]), but also with Singh’s nonlinear extension [58] of
Silverman’s structure algorithm; it plays thus a crucial rôle in input-output
inversion and in related synthesis problems like dynamic feedback decoupling
and perturbation rejection, model matching, etc. . . (see, e.g., [10, 11, 12, 13,
14, 15, 16, 19, 36, 37, 45, 46, 47, 51, 53, 54, 55, 56]).

Take a dynamics ẋ = F (x, u), where u = (u1, . . . , um) and x =
(x1, . . . , xn) belong to some open subsets of IRm and IRn; F = (F1, . . . , Fn)
is a smooth IRn-valued function of its arguments. The infinite order prolon-
gation is the infinite-dimensional manifold D (cf. [32, 49]) described by the

coordinates {t, x1, . . . , xn, u
(νi)
i | i = 1, . . . , n; νi ≥ 0}, where the total deriva-

tive d
dt

with respect to the time t is given by the following infinite vector field,
called a Cartan field (cf. [41, 69]),

d

dt
=

∂

∂t
+

n
∑

k=1

Fk

∂

∂xk

+
m

∑

i=1

∑

νi≥0

u
(νi+1)
i

∂

∂u
(νi)
i

The dynamics satisfies locally, i.e., on an open subset, the Lie rank strong
accessibility condition due to Sussmann and Jurdjevic [64] if, and only if, one
of the two following equivalent conditions is verified:

• The tangent distribution on D is locally spanned by the vector fields
{ d

dt
, ∂

∂u
(νi)
i

| i = 1, . . . , m; νi ≥ 0} and their iterated Lie brackets.
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• The only local first integrals or constants of motion, i.e., local smooth
real-valued functions I on D, such that dI

dt
= 0, are trivial, i.e., constant.

The first condition, which is perhaps easier to read than the usual Lie
bracket strong accessibility criterion, only necessitates in practice a fi-
nite number of finite vector fields, i.e., here

∑n
k=1 Fk

∂
∂xk

+
∑m

i=1 u̇i
∂

∂ui

, and
∂

∂uι
, ∂

∂u̇ι
, ι = 1, . . . , m. It is still valid, without any modification, for time-

dependent dynamics of the type ẋ = G(t, x, u, u̇, . . . , u(α)), with derivatives
of the control variables, which may appear in practice (see, e.g., [30]). The
second characterization, which relates strong accessibility to first integrals
and constants of motion, i.e., a classic and important notion in mechan-
ics and physics (cf. [2, 47, 50]), is independent of any distinction between
the system variables. It confirms therefore Willems’ standpoint [68], and ap-
plies to many realistic case-studies which are written in most general implicit
forms, i.e., not necessarily in the classic explicit state-variable representation
(see, e.g., [8, 25, 30, 44] ). The second characterization is also independent
of time scalings, which is playing a crucial rôle in some feedback stabiliza-
tion problems (cf. [26]). We thus introduce the notion of diffiety, i.e., of an
abstract infinite-dimensional manifold equipped with a Cartan distribution
(see [41, 65, 66, 67, 69]), which is justified by an example. We show that
an orbitally flat system, which is Lie-Bäcklund isomorphic to a trivial diffi-
ety, does not possess any non-trivial local first integral. The considerations
and results above lead us to define local controllability as the absence of any
non-trivial local first integral. The proofs are elementary and only require
standard facts in differential geometry and control.

The results on weak accessibility bear strong similarities to the previous
ones. They are obtained by controlling the clock (cf. [23, 24]) which yields
an interesting equivalence between weak and strong accessibilities.

The conclusion lists a further extension and some open questions in this
infinite-dimensional setting.

2



1 Strong accessibility

1.1. Consider the control-affine dynamics

ẋ = f0(x) +
m

∑

i=1

uifi(x) (1)

where the state x = (x1, . . . , xn) and the control u = (u1, . . . , um) belong
to open subsets of IRn and IRm;fj = (fj,1, . . . , fj,n), j = 0, 1, . . . , m, is a IRn-
valued C∞-function of x, which we consider as a vector field (cf. [39, 47]), i.e.,
fj = fj,1

∂
∂x1

+ . . . + fj,n
∂

∂xn
. Let L be the weak accessibility distribution, i.e.,

the distribution spanned by the Lie algebra L generated by f0, f1, . . . , fm; L0

is the strong accessibility distribution, i.e., the distribution spanned by the
Lie ideal L0 in L generated by f1, . . . , fm. Dynamics (1) is said to satisfy
locally1 the strong accessibility Lie rank condition [64] (see, also, [35, 39, 57]),
if, and only if, L0 is locally of dimension n.

Take now the nonlinear dynamics

ẋ = F (x, u) (2)

where the state x = (x1, . . . , xn) and the control u = (u1, . . . , um) belong to
open subsets of IRn and IRm; F = (F1, . . . , Fn) is a m-tuple of C∞-functions
of their arguments. It is easy to verify (cf. [57]) that (2) satisfies locally the
strong accessibility Lie rank condition if, and only if, the following extended
control-affine dynamics shares the same property:

ẋ = F (x, y)
ẏi = vi

i = (1, . . . , m)
(3)

where y = (y1, . . . , ym); the state (x1, . . . , xn, y1, . . . , ym) and the control
(v1, . . . , vm) of (3) belong to open subsets of IRn+m and IRm.
1.2. Associate to (2) the infinite-dimensional manifold D given by the local

coordinates {t, x1, . . . , xn, u
(νi)
i | i = 1, . . . , n; νi ≥ 0}2. The natural topology

1A property is said to hold locally if it holds on an open subset. A local function is a
function which is defined locally, i.e., on an open subset.

2The necessity of including the time t for the time-invariant system (2) will become
clear in the next section when considering first integrals.
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on D is Fréchet (cf. [32]): open subsets of D are defined by the fact that

a finite number of the variables among {t, x1, . . . , xn, u
(νi)
i } belong to open

subsets of IR, the others being arbitrary. A local real-valued C∞-function on
D is a local real-valued C∞-function which depends only on a finite number
of variables among {t, x1, . . . , xn, u

(νi)
i }. Define on D the infinite vector field

d

dt
=

∂

∂t
+

n
∑

k=1

Fk

∂

∂xk

+
m

∑

i=1

∑

νi≥0

u
(νi+1)
i

∂

∂u
(νi)
i

It is denoted d
dt

since when applied to a local real-valued C∞-function
h(t, x, u, u̇, . . . , u(ν)) on D it yields its total derivative with respect to t: d

dt
is

called a Cartan field (cf. [41, 69]). The tangent distribution of D is spanned
by ∂

∂t
, ∂

∂x1
, . . . , ∂

∂xn
, ∂

∂u
(νi)
i

.

1.3. A local first integral, or constant of motion, I on D is a local real-valued
C∞-function I on D such that dI

dt
= 0 (compare with [2, 47, 50]). It is called

trivial if the function I is a constant.
1.4. Theorem. For dynamics (2) the three following properties are equiva-
lent:
(i) (2) satisfies locally the strong accessibility Lie rank condition.
(ii) The tangent distribution of D is locally spanned by the Lie algebra gen-
erated by { d

dt
, ∂

∂u
(νi)
i

| i = 1, . . . , m; νi ≥ 0}.

(iii) The vector fields { ∂
∂xi

| i = 1, . . . n} belong locally to the Lie algebra

generated by { d
dt

, ∂

∂u
(νi)
i

| i = 1, . . . , m; νi ≥ 0}.

(iv) The only local first integrals on D are the trivial ones.
1.5. Proof. It follows from section 1.1 that we may restrict ourselves to (1),
i.e., to the control-affine case F (x, u) = f0(x)+

∑m
i=1 uifi(x). Straightforward

Lie bracket calculations yield

[
∂

∂u
(νi)
i

,
d

dt
] =



















fi if νi = 0

∂

∂u
(νi−1)
i

if νi ≥ 1

and

[
d

dt
, fi] = [f0, fi] +

m
∑

j=1

uj[fj, fi].
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It follows at once that (ii) and (iii) are satisfied if, and only if, L0 is locally
of dimension n. Thus, (i) ⇐⇒ (ii) ⇐⇒ (iii).

Assume that (1) does not locally satisfy the strong accessiblity Lie rank
condition. Then (1) may be locally decomposed into (see, e.g., [39, 47]):

ẋ = f 0(x)
˙̃x = f̃0(x, x̃) +

∑m
i=1 uif̃i(x, x̃)

(4)

where x = (x1, . . . , xk) and x̃ = (x̃k+1, . . . , x̃n). Applying the classic
straightening-out theorem (see, e.g., [2]) to ẋ = f 0(x) yields locally ż1 =
1, ż2 = 0, . . . , żk = 0. We get k non-trivial first integrals z1− t, z2, . . . , zk. Let
us now assume the existence of a non-trivial first integral I(t, x, u, u̇, . . . , u(α))
such that, for some integer i ∈ {1, . . . , m}, ∂I

∂u
(α)
i

6= 0. Then dI
dt

contains the

term u
(α+1)
i

∂I

∂u
(α)
i

; such an affine function of u
(α+1)
i may be identically zero if,

and only if, ∂I

∂u
(α)
i

is so. An immediate induction shows that any first integral

depends only on t, x1, . . . , xn. The existence of such a local non-trivial first
integral clearly contradicts (iii). Thus, (iii) ⇐⇒ (iv). (Q.E.D.)
1.6. Take a time-dependent dynamics

ẋ = G(t, x, u, u̇, . . . , u(α)) (5)

which may contain moreover derivatives of the control variables (cf. [30]) and
an analogous infinite-dimensional manifold E given by the local coordinates
{t, x1, . . . , xn, u

(νi)
i } and

d

dt
=

∂

∂t
+

n
∑

k=1

Gk

∂

∂xk

+
m

∑

i=1

∑

νi≥0

u
(νi+1)
i

∂

∂u
(νi)
i

where G = (G1, . . . , Gn). Associate to (5) the control-affine system

ẋ0 = 1
ẋ = G(x0, x, y0, y1, . . . , yα)

ẏ0
i = y1

i

. . .

ẏα−1
i = yα

i

ẏα
i = vi

(i = 1, . . . , m)

(6)
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where yµ = (yµ
1 , . . . , yµ

m), µ = 1, . . . , α. We obtain at once a similar result to
the theorem in section 1.5.
Proposition. For dynamics (5) the two following properties are equivalent:
(i) The tangent distribution of E is locally spanned by the Lie algebra gener-
ated by { d

dt
, ∂

∂u
(νi)
i

| i = 1, . . . , m; νi ≥ 0}.

(ii) The only local first integrals on E are the trivial ones.
A dynamics (5) which (locally) satisfies one of the two preceeding equiv-

alent conditions will be called (locally) controllable, or strongly accessible.
1.7. Remark. By taking advantage of (3), property (ii) in the above theo-
rem may be checked by looking at the Lie algebra generated by

∑n
k=1 Fk

∂
∂xk

+
∑m

i=1 u̇i
∂

∂ui

, ∂
∂uι

and ∂
∂uι

, ι = 1, . . . , m. We thus only need usual vector fields,
i.e., vector fields which are given by finite expressions and not infinite ones.
From (6) the same conclusion holds for property (i) in the above proposition.
1.8. Remark. Controllability is usually related to some reachability proper-
ties in the state-space (see, e.g., [39, 47, 62] and the references therein) which
might be misleading in the presence of control derivatives. Take, for instance,
the one-dimensional single-input linear dynamics ẋ = u̇. It is uncontrollable
since x − u is a non-trivial first integral3. The equality x(t) = u(t) + const.

demonstrates however that from any point in the state-space IR any other
one may be reached in an arbitrary small time.
1.9. In many practical situations systems are not given a priori as a dynamics
(2) even in the generalized form (5) (see, e.g., [8, 30, 44]). It might even be
unwise to try to write them so as shown by the example in section 1.11
below4. We introduce therefore a C∞-manifold M which is modelled not
necessarily on IRn, where n is finite, but also on IR∞, i.e., on an infinite, but
denumerable, Cartesian product IR × IR × . . . × IR × . . . of copies of IR. As
already said in section 1.2, the natural topology of M is Fréchet. A local real-
valued C∞-function on M is defined in a local chart as an usual C∞-function
of a finite number of coordinates. A diffiety5 is such a manifold M, which is
moreover equipped with an involutive distribution, the Cartan distribution,
of finite dimension, called its Cartan dimension (see [41, 65, 66, 67, 69] for

3Notice that Willems’ trajectory characterization [68] leads to the same conclusion, as
well as its module-theoretic counterpart in [21].

4Another more realistic case-study is the crane considered in [30] and [25].
5This terminology is due to Vinogradov [66], who certainly is the main contributor to

this new and fascinating area.
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more details). A local vector field, which is a local section of the Cartan
distribution, is called a Cartan field. All our diffieties will be ordinary, i.e.,
with Cartan dimension one. Examples of ordinary diffieties are D in section
1.2 and E in section 1.6; in both cases the Cartan distributions are spanned
by d

dt
. In this setting a system S is nothing else than an ordinary diffiety6.

A (local) trajectory of the system is in this setting a (local) integral curve
on the diffiety of a Cartan field (compare with Willems’ behavioral approach
[68]).

A local first integral, or a constant of motion, on S is a local real-valued
C∞-function I on S such that its Lie derivative with respect to a, and there-
fore any, Cartan field is identically zero. It is said to be trivial if it is a
constant.
Definition. The system S is said to be locally controllable, or strongly
accessible, if, and only if, any local first integral is trivial.
1.10. Remark. This latter definition, which is coordinate-free, is clearly
independent of any distinction between system variables and therefore agrees
with Willems’ viewpoint [68]. It is also independent of time-scalings, which
may be understood in this setting as choosing two different Cartan fields,
like in D or E , d

dt
and γ d

dt
, where γ 6= 0 is a local real-valued C∞-function.

1.11. Example. Consider the implicit system

ẋ + ẏ = u

x + y2 = u
(7)

where x, y, u ∈ IR. Obvious calculations yield the explicit generalized dy-
namics

ẏ =
u − u̇

1 − 2y

which is not defined for y = 1
2
. On the other hand, the diffiety associated

to (7) 7 is given by the global coordinates {t, x, y(ν) | ν ≥ 0}. Its Cartan
distribution is spanned by the Cartan field

d

dt
=

∂

∂t
+ (x + y2 − ẏ)

∂

∂x
+

∑

ν≥0

y(ν+1) ∂

∂y(ν)

6Compare with [28] where the notion of diffiety of finite type is utilized.
7Determining the diffiety from the given equations may not be always as straightforward

as here. See [49] and [69] for details.
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The reader will easily check that (7) is locally controllable.
1.12. Example. The trivial diffiety (cf. [65, 69]), or trivial system, IR× IR∞

m

is given by the global coordinates {t, y
(νi)
i | i = 1, . . . , m; νi ≥ 0}; its Cartan

distribution is spanned by

d

dt
=

∂

∂t
+

m
∑

i=1

∑

νi≥0

y
(νi+1)
i

∂

∂y
(νi)
i

It is called trivial since it corresponds to the trivial equation 0 = 0.
1.13. The following result is already known in the framework of homological
algebra, i.e., via Vinogradov’s variational bicomplex (see, e.g., [49, 65, 69]
and the references therein)8. Our proof below is completely elementary9.
Proposition. IR × IR∞

m is locally controllable.
Proof. Take a local first integral I(t, y, . . . , y(α)) where, like in section 1.5,
for some integer i ∈ {1, . . . , m}, ∂I

∂y
(α)
i

6= 0. Then dI
dt

, which contains the term

y
(α+1)
i

∂I

∂y
(α)
i

, can be identically zero if, and only if, ∂I

∂y
(α)
i

is so. By induction, I

depends only on t. The equality ∂I
∂t

= 0 proves that I is trivial. (Q.E.D.)
1.14. A local Lie-Bäcklund mapping10 between two diffieties is a local C∞-
mapping which is compatible with the Cartan distributions (cf. [69]). The
notion of local Lie-Bäcklund isomorphism is clear and leads to a most inter-
esting notion of equivalence between systems (see [27, 28, 29]). A system is
said to be orbitally flat [27, 28, 29] if, and only if, it is locally Lie-Bäcklund
isomorphic to a trivial system IR × IR∞

m
11. The next result follows at once

from section 1.13.
Corollary. An orbitally flat system is locally controllable12.

8Notice that the existence of first integrals on general diffieties may be interpreted in
this homological framework.

9Its generalization to the partial case, i.e., to the case where the Cartan dimension is
strictly greater than 1, is immediate.

10This terminology, which is borrowed from Ibragimov [4, 38] (see, also, [69]), is quite
popular in mathematical physics, although it is heavily criticized by some authors, like
Olver [49]. Vinogradov and his school (see [41, 66, 67]), are writing C-mappings, where C
stands for contact.

11This notion is slightly more general than differential flatness [25, 27, 28, 29, 48, 52],
where time is preserved. See [25, 26, 27, 28, 29] for some applications of flatness and, also,
[1].

12See [27, 29] for another approach to the reachability property of differentially flat
systems.
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2 Weak accessibility

2.1. Recall (cf. [39, 47]) that (1) is said to satisfy locally the weak accessi-
bility Lie rank condition if, and only if, the weak accessibility distribution L,
defined in section 1.1, is locally of dimension n. Standard Lie bracket cal-
culations demonstrate again that (2) satisfies locally the weak accessibility
condition if, and only if, (3) does so.
2.2. Associate to (2) the dynamics

ẋ = vF (x, u) (8)

where v ∈ IR is a new one-dimensional control variable13. Since (8) is drift-
less, standard Lie bracket calculation lead to the
Lemma. (2) satisfies locally the weak accessibility Lie rank condition if, and
only if, (8) satisfies locally the strong accessibility Lie rank condition.
2.3. Theorem. For dynamics (2), the four following propositions are equiv-
alent:
(i) (2) is locally weakly accessible.
(ii) The tangent distribution of D is locally spanned by the Lie algebra gen-
erated by { d

dt
, ∂

∂t
, ∂

∂u
(νi)

i

| i = 1, . . . , m; νi ≥ 0}.

(iii) The vector fields { ∂
∂xi

| i = 1, . . . n} belong locally to the Lie algebra

generated by { d
dt

, ∂
∂t

, ∂

∂u
(νi)
i

}.

(iv) There exists, up to functional independence14, at most one non-trivial
local first integral, which is then necessarily time-dependent.
Proof. Like in section 1.5, we may restrict ourselves to (1). Standard
Lie bracket calculations yield, like in section 1.5, the equivalence (i) ⇐⇒
(ii) ⇐⇒ (iii).

Assume that (1) satisfies locally the weak accessibility Lie rank con-
dition but not the strong one. Combining in the decomposition (4) the
straightening-out theorem and the lemma of section 2.2 shows that k = 1 and
z1 = 1. It yields the time-dependent first integral z1 − t. Thus, (i) ⇐⇒ (iv).
(Q.E.D.)

13Set dt = vdτ . This control of the clock [23, 24] yields indeed dx/dτ = vF (x, u).
14See, e.g., [49] for this classic notion.
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Conclusion

A future publication will relate the strong accessibility condition to the Lie
algebra of generalized symmetries, which is known to play a prominent rôle
in several questions of mathematical physics (see, e.g., [41, 49, 65, 67, 69]
and the references therein). We also suggest that the language and the
techniques from jets and prolongations of infinite order may shed some light
on one of the most interesting research area in nonlinear control, namely local
controllability (see, e.g., [6, 40, 63]). As a matter of fact, local controllability
and optimal control are on one hand intimately related; variational calculus
on the other hand is known to interact strongly with infinite prolongations
(see, e.g., [49, 69] and the references therein).

Observability will be studied elsewhere (see [17, 31] for first hints).
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[24] M. Fliess, J. Lévine, P. Martin and P. Rouchon, Nonlinear control and Lie-
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