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Abstract: We investigate different methods for testing whether a rational mapping f from k" to k" admits a
rational inverse, or whether a polynomial mapping admits a polynomial one. We give a new solution, which seems
much more efficient in practice than previously known ones using “tag” variables and standard basis, and a majoration
for the degree of the standard basis calculations which is valid for both methods in the case of a polynomial map
which is birational. We further show that a better bound can be given for our method, under some assumption on
the form of f. Our method can also extend to check whether a given polynomial belong to the subfield generated
by a finite set of fractions.

We then illustrate our algorithm, with a application to structural identifiability. The implantation has been

done in the IBM computer algebra system Scratchpad II.

0. Introduction

It is already known that such questions as testing whether a given polynomial @) belongs to k[P, .. ., Py]
can be solved by considering the reduction of @ with respect to the standard basis of the ideal (P; — T;)
in k[X1,...,Xn,T1,...,Tn] for an ordering which eliminates Xy ,..., X,. The technique of using m “tag”
variables is attributed to SPEAR by David SHANNON and Moss SWEEDLER, who made an important work
to apply it for testing membership to a finite subalgebra of a polynomial ring (see [SS1]), or of a field of
fractions (see [SS2]).

Such a method can be used to test if k[Py,..., Py] is equal to k[Xy,..., X,], which means that the
polynomial map from £” to £™ defined by the P; admits a polynomial inverse. SHANNON and SWEEDLER
apply it also for testing whether the field of fractions k(Pi,. .., P,) is equal to k(X1,..., X,;). In that case,
the associated mapping is birational.

We will extend this result in ordering to get a similar one in the case of m rational fractions. We then
prove in the birational case and for f polynomial a majoration on the degree of polynomials calculated during
a standard basis computation, relying on a result of O. GABBER.

Our interest on this problems was originated by the problem of structural identifiability. It led us to
investigate practical tests of inversibility for rational mappings, without caring much for an expression of the
inverse. We were greatly influenced by preceding works by E. WALTER, Y. LECOURTIER and A. RAKSANYI
who applied computer algebra to the study of structural properties in automatics (see [L], [R] or [LW]).
They already used only n additional variables in the same way as we do. But their method relies on
pseudo-divisions and is therefore related to WuU’s one, which is not the most efficient in our case.

We show our method rely on a more precise result, which could be used to test whether a given fraction
belongs to the subfield generated by a finite set of fractions. The ideal we associate to a subfield does not
depend on the set of generators chosen. Furthermore, the preceding bound is still valid and a better one can
be obtained under some assumptions always verified in all the applications we have done so far.
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Our method is still valid to test the existence of a polynomial inverse if n = m. Howether it cannot be
used to answer the membership problem for k[P, ..., Ppy].

The last part is devoted to applications, mostly to structural identifiability. We show here briefly how it
can be reduced to an algebraic problem and then describe the algorithm as implemented in SCRATCHPAD.
Two examples are then given, one of them being unsolved by RAKSANYI’s algorithm.

The last example show the efficiency in a purely rational case, where the extended tag variable method
does not succeed.

1. Testing Inversibility with Standard Basis and Tag Variables

We will allow ourselves bellow, where no confusion can be done to write z® for z{* ...z, k[z] for

klz1,...,2,] and ]{7(%) for k(%, el S—";)

1.1. The Polynomial Case
We consider a polynomial mapping
f k" — k"
(x1,...,2n) — (Pi(zy,...,2n), ..., Pn(1,...,2,))

where k is any field, and want to test whether it admits a polynomial inverse. It is obviously equivalent to
test that k[Py, ..., Pp] is equal to k[X1, ..., X,]. So we will first investigate how the membership problem
for a finite k-subalgebra can be solved. the method we give here is from SHANNON and SWEEDLER (see

[SS1]).
We give ourselves m additional “tag” variables ¢1,...,t,,, and consider the ideal Z generated by the m
polynomials P; — t; in k[z1,...,&,,t1,...,t;m]. As it is the kernel of the ring homomorphism

G klzy, .. xnt, . tm] — k[za, .. m0]
P — Xj

t; — P,

7 is prime. We will show that the reduced standard basis of 7 with respect to some admissible orderings
can be used to answer the membership problem.

DEFINITION 1. The admissible ordering < on monomials of k[z1, ..., &, t1,.. ., ty] is said to eliminate
globally x1, ... x, if for any two monomials m; = z% and my = 27,

n n
Zai < Zﬁi = my < ma.
i=1 i=1

It is well known that for such an ordering, the set of polynomials in the standard basis of any ideal J
whose leading term depends only of the ¢; form a standard basis of J N k[t]. they obviously are in k[t] for
the total degree in x of any of their monomials must be equal or less than the one of the leading monomial,
and so 0.

ProrosiTioN 1. Calling ST the standard basis of the ideal T, defined as above, for any admissible
ordering < which eliminates globally x1, ..., z,, and @ being any polynomial of k[z] the two following
properties are equivalent:

(i) Q belongs to k[P],

(ii) the reduction of @ with respect to ST belongs to k[t].

Moreover, if Q) is in k[P], the reduction of ) gives the expression of @) in function of Py, ..., Ppy,.

PROOF. (=) Z being the kernel of G, for any polynomial @ in k[P], say @ = R(P), R(P)— R(t) =
@ — R(t) is in Z. It implies that the reduction of @ and R(t) with respect to ST are the same (we use here
confluence property of standard basis). As the leading monomial is decreasing during the reduction process,
the reduction of R(t) is in k[t], for any term implying ; would be greater than the leading term of R(t) with
respect to < (here is where we need an elimination ordering).

(<) If R is the reduction of @, Q(x) — R(t) is in Z. But as 7 is the kernel of G, Q(z) — R(P) = 0. So

@ is in k[P] and R gives its expression in function of Py, ..., Pp,.
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COROLLARY 1. if f admits a polynomial inverse, then ST contains n polynomials of the form z; — R;(t)
fort=1,... n, and the R; defined an inverse of f.

PROOF. We already know that we can can find in Z n such polynomials. they must reduce to 0, with
respect to ST. From the property of <, the leading term of any of them is of the form z;. So we can find
in ST a polynomial whose leading term is z; for any ¢ = 1,...,n. the standard basis ST is reduced, hence
they have to be of the wanted form.

The last part is a simple consequence of the proposition.

The last corollary gives us a way of testing inversibility and getting the expression of an inverse.

COROLLARY 2. In the special case n = m, inversibility means that f is in fact one to one. Calling F
the restriction of G to k[t], F' is also one to one and the polynomial R; define its inverse. Furthermore ST
is equal to {z; — R;(1)}

PROOF. the two first parts are known and simple results (see [B]). the second implies that Z N k[t] is
(0), so the leading terms of any polynomial in ST must depend only of z; for some 7. As ST is reduced, it
is therefore of the stated form.

As this situation is related to the well known jacobian conjecture, many other “tests” have been proposed
for it (see [B]). Many of them have a mere theoretical interest. K. ADJAMAGBO has recently proposed a
differential test, relying on the same result of GABBER we are going to use in the next section (see [A]).

REMARK 1. (About orderings) the lexicographic ordering on zi,...,2n,%1, ...,y has obviously the
wanted property

Nevertheless, it is certainly not the most efficient. the elimination ordering of D. BAYER and M. STILL-
MAN, used in their standard basis system MACAULAY would be a very better choice. Unfortunately, it
does not seem to be available in any existing computer algebra system.

1.2. Inversibility in Rational Case

Let us come now to to the case where

ook .
Pi(z1,...,xn P (z1,..,Tn
(@1, 2) — (GE5g o emsy)

is a rational map. We state a general result, which is a slight extension of a theorem that SHANNON and
SWEEDLER gave in the birational case and for f polynomial (see [SS1]). Again, we give ourselves m tag
variables ¢; and m more “inverse” variables u; and consider the ideal I of k[uy, ..., um, 21, ..., Zn,t1, ..., tm],
generated by the m polynomials P; — Q;t; and the m other Q;u; — 1.

ProPOSITION 1. the ideal T is prime.

PROOF. Consider the ring homomorphism

G: klu,z,t] — k(2)

Z; — X;
-1
u;j _ Q]’
-1
t — Pin .

We claim that 7 is the kernel of G, which imply the proposition (see [SS2] for a more detailed proof).

DEFINITION 2. A admissible ordering < on monomials of k[u, z,t] is said to eliminate globally uy, ..., um,
and successively 1, . .., z, if for any two monomials m; = u®z?t” and ms = u?z°t¢,
Ez:l Qi < 2211 6Z
or Dm0 =)Ly b = m; < my.

and 31<i<ngj=¢;forj<iand B <¢g



PROPOSITION 2. In the situation given above, let I' be the intersection of 7 and k[z,t]. then taking
the reduced standard basis ST' of T for any admissible ordering < which eliminates globally the uy, ... uy,
the polynomials in ST' whose leading terms only depend of x1, ..., xy,t1,...,ty form a standard basis of 7',
and a fraction R = % is in k(g) iff there exist a reduced fraction 4 of k(t) such that B does not belong to
7', and MB — AN isin7’.

PROOF. The first part is an easy result, using the property of <.

(=) We first prove the following lemma.

7

LEMMA 1. Let J be any ideal over a k-algebra A, and P;Q} — P!Q; be r members of J. take any
fraction R of k(z1,...,2,) and associate to it

S:R(&)— M(Pa‘])

= ek(pi, . Pryqls-. s qr).
9 N(p,q) ( r r)

then M(P;,Q;)N(P}, Q%) — M(P!,Q})N(P;,Q;) belongs to J.

PROOF. Call w(R) the member of J we associate to B. We only have to prove that for all R and R’ in
k(z1,...,2)

wR)ye J => wRkRNHe J
wR)e Jandw(R)e J = wR+R)eJ
wR)e Jandw(R)e J = w(RR)eJ,
which can be verified by simple calculations.
P
If Risin k(g), let % be a reduced fraction such that Alg) equals . Let %(%% = A(%) in k(p, q¢). From

B(§)
the lemma, we know that C(P,Q)D(t,1)— C(t,1)D(P,Q) = S(z)(MB — AN) isin Z. Hence MB — AN is
in Z’ for 7' is prime.

(<) Now, if MB — AN isin Z’, and B is not, we just have to use the fact that Z’ is the kernel of G to
conclude.

Sadly, we cannot use this to get the expression of R in k(g), or even solve the membership problem

except if k(%) is k(z1,...,2,), which is the aim of the next theorem. We will see in part 2.2. how to solve
the membership problem with another method. The reader can refer to [SS2] to see how that technique can
be used to solve the membership problem for k[g]

THEOREME 1. If f is defined as above and if ST is the standard basis of T for an ordering which
eliminates globally t1, ... t,, and successively z1, ..., z,, the two following properties are equivalent:

(1) f admits an inverse,

(2) for each i = 1,...,n there exits in ST a polynomial of the form B;(t)z; — A;(t).

then the fractions g—z give the expression of an inverse.

PROOF. (=) It suffices to apply the last proposition, to know that such polynomials are in 7' As the
ordering eliminates successively z1, ..., 2,, they must be in ST

(<) Now, if such polynomials are in ST, A; is not in Z for ST is reduced. We conclude as in prop. 1.

COROLLARY 1. If n = m, let J be the ideal of k(t)[u, z] generated by the same polynomials as above,
and ST the reduced standard basis of T for an ordering which eliminates globally the u;. then the two
following properties are equivalent:

(i) f is birational,

(ii) ST contains n polynomial of the form xz; — M;(t).

the inverse is defineded by the n fractions M;.

PROOF. We only have to remark that if f is birational, Z N k[t] is {0} and then use the theorem.
REMARK 1. (About orderings) Another time, the lexicographic ordering satisfies the wanted property

... But to use it would be a disaster. Elimination is very expensive, so it is essential to use it as few as
possible. unfortunately, no computer algebra system allow a better choice.
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REMARK 2. (About inverse variables) If @; belongs to k one can obviously forget all about u;. As
pointed out in [SS], we can only use one inverse variable u and replace u;@Q; — 1 by u@; ...Q.,, — 1. We can
also use more variables and lower the degree by taking all the factors of the ();. We think it is better in most
cases to keep the maximum degree of the generating polynomial small, even if that increases the number of
variables.

1.3. A Bound for Birational Mappings

We have given so far necessary and sufficient condition for inversibility, without caring much for com-
plexity. But we know by experience that such calculations are much faster in the inversible case. So we need
a bound to avoid unusefull calculations in “bad” cases. It is done by using a theorem, proved by O. GABBER,
valid in birational case. So, until the end of this part, f will denote a rational map from k" to k™.

PRrROPOSITION 1. There is a one to one correspondence between rational maps (resp. birational maps)
from k™ to k™ and rational (resp. birational) maps from P,, to P,,.

PROOF. See [H].

DEerFINITION 3. Let F be a rational map from P,, to P, defined by
F(Io,...,rn) = (RO,...,RH),

where the R; are n homogeneous polynomials without common factor. We call degree of F' the common
degree of the R;. If f is a rational map from k" to k7, the degree of f is the degree of the corresponding
homogeneous map.

ProrosiTiON 2. If f is polynomial, its degree if the maximum degree of the P;. In the general case,
the degree of f is bounded by the maximum degree of the P; and of the product of the @);.

ProPosITION 3. (GABBER) If f is birational, then
deg f7! < (deg f)" 7"

PROOF. See [B].
THEOREME 1. If f is a polynomial map of degree d, admitting a birational inverse, polynomials of th.
1.2.1 appears in the standard basis of T where calculations are truncated in degree less than d™ + 1.

PROOF. We first remark that in the polynomial case, we can forget the inverse variables and con-
sider 7 to be the ideal of k[z,t] generated by P, —t;. We define then a weight function p on variables
Ti,...,%n,t1, ..., 1y, such that p(z;) = 1 and p(t;) = degP;. So we have a graduation deg, on monomials of

k[z,t], such that degp(ratﬁ) =3 i+ Yo Bip(t).

We take then another variable zo of weight 1, and we homogenize 7 for graduation deg, with respect

to zg. We write S the polynomial S homogenized, 7 the ideal T homogenized. 7 is equal to (E —1; in

klz1, .., @n,t1,. . tn, 2o]. 7 is prime for it is the kernel of:
¢
kle1, .. &n,t1, .. ta,20] —  kl[zo,z1,...,25]
We further remark that we can extend any admissible ordering < on monomials of k[t1, .. .,%,] to an admis-
sible ordering < on monomials of k[21,...,%,,t1,...,t,, 2o] of the same degree by evaluating z¢ to 1 and

then applying <. So there is a one to one correspondence between standard basis calculations for any ideal
J generated by Si,...,S, in k[z1,...,2n,t1,...,t,] with respect to <, and standard basis calculations for

J, if it is generated by Sy, oy Spin k[z1, ..., @0, t1, ..., e, 2o], With respect to <.

As T must contain a polynomial of the form (QZJJV— Q:)zk (using th. 2.1.) and z( ¢ f, we deduce that

7 contains (Qiz; — R;) whose degree deg, is less than (degf)" + 1. Indeed we have two cases
degp(Qi:L‘T: R;) = degp]%i < mazi{p(V;)} degR;
< degf degR;



or —_— ~
deg, (Qizi — R;) = deg,Qi; max;{p(Yi)} degQi + 1

<
< degf degR; + 1.

Then we only have to use the result of GABBER to show it is less or equal to d" + 1.

7 being homogeneous with respect to deg,, we can truncate the standard basis in degree deg, < (degf)".
But as the ordinary degree is less or equal to deg,, we can a fortiori truncate it in degree (degf)".

Then, we evaluate zg & 1, which cannot increase the degree and get the wanted result.

REMARK 1. We think a bound of the form ed®” could be obtained for f rational. It should be only a
technical problem to free the proof of the homogeneity argument.

2. Standard Basis and Symmetrical Variables

2.1. Membership Problem and Inversibility in Rational Case

We return to the general case with another method. Instead of using m tag variables taking the place
of P;/Q", we take n “symmetrical” variables y; taking the place of z;. We associate to f the ideal J of

k(yr,...,yn)[t1, .., Um,21,.. ., 2,] generated by the 2m polynomials Q;(z)u; — 1, and P;(x) — S’l((i//)) Qi(z).

We define the morphism:
¢ klu,z,t] —  k(y)|u, z]

uj —
Pr(y)
2 — Q"

THEOREME 1. The fraction S = M/N belongs to k(P/Q) iff the polynomial M (z) — M (y)N~1(y)N(z)
belongs to J .

PROOF. (=) It is obvious that ¢(7) is included in J. We apply this to the polynomial of prop. 1.2.2.

(<) As the polynomials defining J are in k(P(y)/Q(y))[u, ] we can consider the ideal J' they generate
in this ring. The wanted polynomial is in J’ by the same argument as above, so M(y)/N(y) belongs to

k(P(y)/Q(y)).

We now have an algorithm to solve the membership problem. All we have to do is calculate the standard
basis of J with respect to any ordering, and reduce M (z) — M (y)/N(y)N(z).

COROLLARY 1. Let ST be the reduced standard basis of J, for an ordering which eliminates globally
Uy, ..., Un, the two following propositions are equivalent:

(i) f admits an inverse,

(i) ST = {zi — yi, uj — Q7 '(y)}-

PROOF. We know that f admits an inverse iff £(P/Q) is equal to k(z). So by the last theorem z; — y;
have to be in J. Then the property of the ordering imply they are in ST. Reducing u;Q;(z) with respect
to these n polynomials, we find that u; — @;(y) is in J and so in ST.

ProrosiTION 1. The bound of th. 1.3.1. is still valid in this case.
REMARK 1. If f is polynomial we can obviously forget the w;.
2.2. the Polynomial Case

f 1s now a polynomial map from k" to k™, defined by n polynomials F;. We associate to it a ideal Z of
klz1,...,Zn,¥1,...,Yn], generated by the n polynomials P;(z) — P;(y).

ProrosiTiON 1. Let ST be the reduced standard basis of T for any ordering < with z; < y;, then f
admits a polynomial inverse iff ST equals {z; — y;} and the standard basis calculation can be truncated in
degree d™.

PROOF. (=) If f admits a polynomial inverse, defined by n polynomials @;, Q;(f(2))—Qi(f(y)) belongs
to Z and is equal to z; —y;. It suffices now to use the property of the ordering to see that those n polynomials
form the standard basis. (<=) We can suppose k is algebraicaly closed by replacing it by its algebraic closure.
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It is known then (see [B]) that if f is an univalent it admits a polynomial inverse. Now, if 2; — y; is in Z for
all i, f is univalent.

The proposition does not extend in the situation where f is from &” to k™ with m > n.

EXAMPLE 1. If we take f(z1,22) = (21,2122, 2123 + 23), it is easy to check that Z is equal to {z; —
Y1, %2 — Y2} which means that f is univalent, but k[zy, 2122, 122 + 2] is different from k[z1,z2]. So f
admits no polynomial inverse.

2.3. A Bound for De JONQUIERE’s Maps

We will show that some assumption on the form of f, a polynomial map defined by Py, ..., Py, allow
us to majorate the degree in the standard basis calculation with a better bound. It has been conjectured
by SEGRE that if f is a polynomial map from £ to &" admitting a polynomial inverse, it can be obtained
as a composition of one to one linear maps and maps of DE JONQUIERE, of the form: g(z1,...,z,) =

(pr(z1,..,20)y ..o, pn(z1, ..., 2,)), where

P1L = I
p2 = 2+ Pa(z1)
Pn = $n+Pn(xla~~~:In—1)~
We suppose f is a polynomial map that can be obtained as a composition of one to one linear maps and
maps of the form g(z1,...,2,;) = (p1(21,...,2n),...,ps(®1,...,2,)) where s > r and
P1 = I
P2 = Q2(z1)02 + Pa(21)
Pr = Qn(1, ... 2r—1)2n + Po(21, ..., 2n_1).
Pr+1 = Pr+1(m1;~"ar7‘)
Ps = Ps(x1:~~~axr)~

If f=p10...0pn, we suppose further that:
Vi<i<rdeg(pro...p;) <deg(pio...p).

DeFINITION 4. If a map f satisfy our assumption, it is said to admit an extended Segre form.

DEFINITION 5. Let A = {Q1,...,Qr} be a finite set of polynomials of k[z1,...,z,], an admissible

ordering been given any of them can be considered as a rewrite rule 2%, Then we call a chain of reduction
from A, a finite list of polynomials Ti,...,T,. such that T; is equal to @; for ¢ = 1...,n and for each
i=mn-+1,...,r there exist j, 7/ < i such that

T; T;
T; — 1; or T; «— 1.

The degree of the chain is the maximum degree of the 7;.

ProprosiTION 1. If f of degree d admits an extended Segre form, then it admits a rational inverse and
the standard basis of the ideal T of k(y)[x] generated by the n polynomials P;(x) — P;(y) is {x; — y;} can be
calculated in degree less or equal to d.

PROOF. f obviously admits a rational inverse, for each p; does. Now, we know than the standard basis
is of the wanted form from cor 1. of th. 2.1. To prove it can be obtained by a standard basis calculation in
degree less than degf, we use the following two lemmas.
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LEMMA 1. We call y; ; the m; polynomials defining p1 o ... o p; and define yug; as x;. Then for
all i < hand all j = 1,...,m;_1, pi—1,j(2) — pi—1,;(y) appear in a chain of reductions of degree d from

{maj(2) — paj () }-
This imply that z; — y; appear in a chain of reductions of degree d from {P;(z) — P;(y)}. We use then
the second lemma.

LEMMA 2. If the polynomial R appears in a chain of reductions of degree d from {Q1,...,Qx}, R is
reduced to 0 by the set of polynomials calculated during a standard basis calculation truncated in degree d.

The second lemma imply that z; — y; appear during the standard basis calculation truncated in degree

3. Application to Global Indentifiability and Other Problems

3.1. Some Automatics

We will be interested in linear state space structures with zero initial conditions. Such a structure M is
a set of models M (f) defined by:
de/dt = A@0)z + B(0)u(t)
Yy = C(f)=
z(0) = 0,

where the input function u(t) € u denotes the action of the experimentator (u is generaly the set of piecewise-
continuous functions), the state vector € R denotes the internal state of the physical or chemical system
described by the model, the output vector y € R" denotes the values measured during the experiment, and
f € D C R” denotes internal parameters of the system.

We will now state some formal definitions.

DEFINITION 6. A property is said to be structural if it is valid for almost all models of a structure.

DEFINITION 7. A model M(f) is globally identifiable if for all ¢’

y(t, 0 u) = y(t,0,u) = 0" =0.

DEFINITION 8. According to the preceding definitions, a structure M 1is said to be globally identifiable
if almost all model M (0);6 € D is.

In practice this means that we want to know a priori if we have a probability 1 to determine a unique
value of # and a unique model, from the experimental results. Such definitions could be given for structures
described by other kinds of differential system. But the considered case has the nice property that we can
summarize its input-output behaviour with a polynomial function of the coefficient of A, B and C|, by taking
the coefficients of the transfer matrix, or the Markov parameters. We suppose for now on that the coefficients
of A, B and C' are polynomials in #. So we only have to test the structural univalence of a polynomial map

f(0). The reader can refer to [L], [R] or [LW] for more details.

So the problem is now to test whether there exist a subset E of D such that f restricted to D\ F is
an one to one. In practice the answer can often been given by considering only the complex case.

ProrosiTiON 1. Let f from C" toC™ be a polynomial map. then, there exist a domain E of zero
measure such that f restricted to C™\ E is an one to one iff f admits a rational inverse.

This property allow us to use cor 1. of th. 2. 1. where we can forget the u; for f is polynomial. If f
admits no inverse, we can use the standard basis calculated to get more precise information. For example,
if the set of solution is of dimension greater than zero, we know that f is not structuraly one to one even in
real case.



3.2. An Implementation in Scratchpad II

The implementation we made in SCRATCHPAD II contains two main parts. The first is the domain
STRUCTLS, whose elements represent linear structures with zero initial conditions. They are mostly repre-
sented as a record of three matrix. It allows the calculation of classical summaries as Markov parameters or
coeflicients of the transfer matrix. Other “special” summaries could be calculated with existing functions of
SCRATCHPAD II. We have developed many functions to store information about the structure in ordering
not to repeat calculations. Structures can also easily be stored on disk, for further use.

The package IDPACK realize the test of inversibility. It builds the list of polynomials P;(z) — P;(y) and
then calls the standard basis package of SCRATCHPAD II. It answers True if the standard basis has the
form of cor. 1. of th. 2.1.1. and False in all other cases. Of course, in this case we cannot be sure of it,
except if the dimension of the ideal is greater than zero. In general, the user can recover the result of the
standard basis calculations which has been stored. As we use degree ordering, we cannnot solve the system
yet. But, the package implemented by J.C. FAUGERE in SCRATCHPAD (see [FGLM]) allow us to get easily
the standard basis for lexicographic ordering. In this form, we can try to define extra solutions and check if
they can or not be in D. This part of work has not yet been developed in our implementation.

Another function treat the case where f is rational, which we do not need yet for structural identifiability.
We will see an application for it with the last example.

3.3. Examples

ExaMPLE 1. ([L] p. 105) In this example, we consider the following structure:

—(014+6,) 0 0 1
j—; = 91 —03 0 =z + Ou
A 05 —6; 0
0 65 0
Y7 0 0 6.

Calculating the transfer matrix, we find the summary defined by polynomials:

P = 0106

P2 = 0106

p3 = 0q07

pa = 0705(01 + 02)

ps = 01 +0,+03

pr = 03(01 + 67)

ps = 03(01 + 02) + 04(01 + 02 + 03)
ps = 04035(01 + 02.)

Computing the standard basis of 7 in k(6')[f], we get two solutions: § = 6" and

0, = 0,—0,

0, = 0

03 = 0,40,

0, = 0,

s = 0105/(05—05)

0: = 0.

It can be shown, using lemma 2. of th. 2.3.1. that the standard basis can be calculated in degree 3, which
is the maximum degree of the p;.

ExaMPLE 2. ([R] p. 115) In this example, ordinary summaries would be too great to be computed. But
the knowledge of the system allow us to find a smaller one, which have been computed in SCRATCHPAD

IT. Then we discovered RAKSANYI made a mistake, and that the structure is not identifiable, as it is said in
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[R]. Applying his method with the right summary, his program stopped by lack of memory after many hours
of calculations. It only takes only 156.467 s to get the standard basis in SCRATCHPAD II.

ExAMPLE 3. The last example has no connection with identifiability. We want to test whether f from
C? to C*? defined by the 12 polynomials p; j x; 4,4,k = 1,2,3j # ik # i in the 9 variables s;,,;[,m =1,2,3:

55,180k

Pijk = Sjk T
9i — Sis

admits a rational inverse. We give a part of the scratchpad session, where 1p is the list of polynomials
defining 7.
groebner 1p

loading GB LISPLIB K1 for package GroebnerPackage

loading GBINTERN LISPLIB K1 for package GroebnerInternalPackage

(10)
[s11 - S11, s12 - S12, s13 - S13, s21 - S21, s22 - S22, s23 - S23, s31 - S31,

$32 - $32, s33 - S33, ul + —--—————-—- , U2+ ——m—m—mm , u3 4 ——————m——o 1

Type:
L NDMP([s11,s12,s13,s21,s22,523,s31,s32,s33,u1,u2,u3],qF
pP[s11,s512,513,521,522,523,531,532,533,G1,G2,G3]I)

1.907 (IN) + 34.772 (EV) + 1.614 (OT) + 5.218 (GC) = 43.512 sec

We have simulated the tag variable method of th. 1.2.1. with MACAULAY by trying to eliminate
globaly the u;. We used MACAULAY because it is much more powerfull for standard basis, than the
package of SCRATCHPAD even in a small computer SPS7 BULL. It stops by lack of memory after about a
day of calculations.
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