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Abstract: Recent works in control theory have shown the interest of differential algebra in this field: it appears to be
a convenient language to express some theoretical problems and, may be, a tool to solve them if algorithmic solutions
could be found, efficient enough to be implemented on computers. On the other hand, control theory strongly motivates
new research on some fundamental and difficult problems of effective differential algebra. We will try through a few
examples to illustrate the strong links between some basic problems in those two fields.

First, we will recall how identifiability or observability may be tested using elimination techniques in differential
algebra. The essential problem is that of efficiency. We will underline the interest of an effective differential nullstellensatz
to prove complexity bounds for an elimination procedure.

If we consider distinguishability, we are led to a difficult problem arising in the formal resolution of general systems.
Nothing is known here except for some special cases of structures, such as linear ones, or single output structures.

Before concluding, we will consider the question of initial conditions in the case of quasi-algebraic structures, and
show that we are then led to some difficult problems of number theory which cannot be avoided using existing methods.

Keywords: Standard bases, characteristic sets, calculability, complexity, computer algebra, differential algebra,
distinguishability, identifiability, effective nullstellensatz, observability.

1. Introduction 2. Basic differential algebra

A satisfactory overview of the subject would be
much too long. We will only try to provide a few
concepts to help the courageous naive reader to un-
derstand the next sections. The classical book [Ka]
provides a very readable introduction.

The history of differential algebra begins more
than a century ago, with the pioneering works of Pi-
card, Vessiot and Riquier. But it is only with Ritt and
Kolchin that this theory came to adult age. As the
basic methods introduced in those works are almost
always effective and could sometimes be easilly trans-
lated into program on modern computers, it is quite
surprising that the computer algebra community be-
gan to pay much attention to them only a short time
ago, mostly under the impulse of WU Wentsiin (cf.
(W),

Differential algebra is a generalisation of com-
mutative algebra. Here the rings to be considered
possess a derivation, i.e. an operator 6 satisfying
8(x 4+ y) = bz + by and é(zy) = é(x)y + 26(y). In
the sequel, we will denote §(z) by 2’ and é(z) by
™. E. g., the polynomial ring k[t] is a differential

In the meanwhile, some control theorists began
using differential algebra, which plays an increasing
role in the study of non-linear structures (see [F]).
This gives a new motivation for algebraists to imple-
ment existing algorithms and to try to find convenient
solutions to old problems, taking a new interest with
the needs of control theory.

We will try to stress here on some computational
issues, naturally arising when testing some structural
properties, and related to problems of complexity, or
of decidability for some problems of differential alge-
bra.

ring with the usual derivation.

To any differential algebra A, one can associate
a differential algebra of polynomials in n variables,
denoted by A{z1,...,2,}, which is the algebra of al-
gebraic polynomials in zq, ..., z, and all their formal
derivatives 2, 2, ... with the unique derivation § ex-
tending the derivation of A and such that 6,7:2(-]) =
;EEJ-H). E.g. 2"z — (2')? is a differential polynomial
in Q{z} (Q has a unique structure of differential ring
defined by ' =0V r € Q).

A system of algebraic (ordinary) differential equa-



tions in n variables over a differential field F will be
a subset of R = F{z1,...,2,}. We can of course
have a geometrical approach as in commutative alge-
bra: namely differential algebraic geometry will con-
sider the set of solutions of differential algebraic sys-
tems in some sufficiently big extension of F, called
a universal extension. It may be considered as some
kind of differential algebraic closure.

Of course, different systems could have the same
variety of solutions, but they will be related in the
following way. First, we may define the differential
ideal generated by a system X. It is the smallest al-
gebraic ideal 7 containing ¥ and such that 67 C 7.
In other words, it is the algebraic ideal generated by
¥, 8(%),62(%), ... It is denoted by [%]. Obviously, two
systems generating the same ideal define the same va-
riety, but the reciprocal is false. E.g. the ideals [z]
and [z?] define the same variety, containing only 0!
We define the radical of an ideal Z to be the ideal
{a|3i € N a’ € T} and denote the radical of [£] by

{x}.

PrOPOSITION 1. — Two systems %, and = define the
same variety iff {¥} = {E}. =

Special cases of perfect ideals—i.e. ideals being
their one radical—are prime ideals, which are such
that PQ € 7 implies P € T or () € Z. If aradical ideal
7 1s not prime, we may split the associated variety
in two different varieties defined by the systems 7 U
{P} and 7 U {Q}. Fortunately, there is only a finite
number of possible such splitting, due to the following
property.

PROPOSITION 2. — Any radical differential ideal T
is a finite intersection of prime differential ideals

£

I:U Ti.

=1

This means equivalently that the variety V(7) is
a finite union of irreducible varieties V(J;). It ap-
pears to be a corollary of the following fundamental
theorem.

THEOREM 3. — For all radical differential ideal in
F{x1,...,2,}, F being a differential field, there exist
a finite system Py, ..., Py such that

I={P,... P}

This means that every differential algebraic vari-
ety may be defined by a finite system.

Examples. — 4) The situation is not as easy as one
may think at first sight. The differential ideal [2"2z —
2(z')?] is not radical. On the other hand, its radical 7
is prime, but there exists no finite system X such that

7 =[x

5) Even a variety defined by a single irreducible
polynomial may be reducible. The polynomial P =
(2')? — 4z cannot be factorized, but it defines two dif-
ferent varieties, the first one associated to the prime
ideal [P, 2" — 2], and the second to [z]. To show it, we
may remark that P’ = 2z'(z" — 2) is not prime, each
factor inducing one of the two components.

In spite of those examples, one may underline the
paralellism with algebraic geometry by defining the
dimension. A way to define it in algebraic geome-
try is to consider the projections on the linear spaces
L(I)I C [1,n] generated by the subset {z;i € I} of
the set of variables. The dimension of V is equal to
max{§I|x(V)is dense inL(I)}—if V = 0, it is taken
equal to —1 by convention. The same definition can
be used in differential algebra. An equivalent alge-
braic definition is to consider subsets I such that

I(V)N Flaili e I} = [0].

3. Algorithmic tools

The basic algorithmic tool in differential algebra
is the notion of characteristic set. We will avoid a gen-
eral formal definition and prefer to stick to intuitive
ideas. We suppose in the following that the differential
ideal 7 is prime.

We will consider the set T = {rgj)} of derivatives.
We may define on this set a total ordering < such that
Vuu < u and ¥ (u,v) u < v implies v’ < v'. There
is two main kinds of such orderings used in practice.
First, the orderly orderings, being such that ordu <
ordv implies u < v, and the elimination orderings:
for a partition of the variables in two sets X; and X3,
an ordering such that z;, € X3 and z;, € X5 implies
;rgil) < mgf)V(jl,jQ) € N? is said to eliminate X,.

Denote the biggest variable of a differential poly-
nomial P by up, then we may define a partial order-
ing on R by P < @Q if up < uqg or if up = ug and
deg, .(P) < deg, .(Q): we sort polynomials first ac-
cording to their main derivatives, and then according
to their degrees in those derivatives. By convention
0 will be the biggest polynomial, and non zero poly-
nomials of degree 0 will be smaller than any non zero
polynomial of positive degree.

DEFINITION 1. — A polynomial P is said to be re-
duced with respect to a polynomial ) if up is not a
proper derivative of ug, and if deg,,  (P) < deg, ,(Q).

We will then present an abstract construction of a
characteristic set of Z. First we pick up in 7 a minimal
polynomial P;. Then, we consider the subset Fy of
polynomialsin Z reduced with respect to P;. If By = ()
we stop. If not, we continue and pick up P» being
minimal in Fs—we may remark that P; < Ps so that
P is reduced with respect to P,. Then F3 will be the
subset of 7 of polynomials reduced with respect to Py
and Ps...This process will stop because if P and @
are reduced, one with respect to the other, their main
derivatives are derivatives of two different variables, so



that the length of such a chain is at most the number
n of variables.
We call the result of that process a characteristic

set A={Py,..., Py} for Z.

The main interest is that characteristic sets, even
if they are not unique can characterize a prime ideal.
Indeed, there is a reduction process, based on pseudo-
euclidean reduction (you may multiply @ by the lead-
ing coefficient of P in order to divide it) which allows
to secure a rest R4(Q) being reduced with respect to
the members of A. It then provides a membership test
for 7.

ProrosiTioN 2. — If A is a char. set of T and T is
prime, then Q € Z iff R4(Q)=0. =

Moreover, we have an (unfortunately non effec-
tive) algebraic characterization of 7, knowing a char.
set .A. Denote by Ip the leading coefficient of P con-
sidered as a one variable polynomial in up, and by Sp
IP/, 1.e. %. Let HA = HPEA IPSP, then

I=[A: HY :={Q|F3i e N QH}, € T}.

Let X = X; U X5 be a partition of the set of
variables, then if A is a char. set of Z for a ordering
eliminating X;, then A N F{X,} is a char. set of
INF{X,}.

We also can determine easilly most useful infor-
mation about 7 once we know a char. set. Let X; be
the set of variables such that their derivatives do not
appear as leading derivatives in A. Then A is also a
char set for an ordering eliminating X;, which shows
that ZNF{X \ X1} = [0]. Indeed, it may be proved
that dim Z = 4 X;.

Ritt has introduced in [R] an algorithm allowing
to compute for any finite set of algebraic differential
equations ¥ a decomposition of {X} into a finite in-
tersection [);_, J;, each J; being defined by a char.
set Aj;.

This methods suffers two main shortcomings.
First, we need to be able to factorize a polynomial
in F[z], which imposes a restriction on the ground
field F. Even if this is possible on “usual” fields such
as Q or Q, factorization are still very expensive. The
second drawback is that we are in general unable to
check that two prime ideals 7 and J, given by char.
sets are included one in the other. Only equality can
be tested. So the decomposition given by Ritt’s algo-
rithm may contain imbeded components.

Other methods could be used in some cases. If
7 is already given by a char set—say for an orderly
ordering—, we may compute a new char set—e.g. for
an elimination ordering, without any factorization
(cf [O1]). We may also try to compute a differential
standard basis, which will provide much more infor-
mation, but such a basis is in general infinite. How-
ever, we have a completion procedure, using only field
operations, converging to the basis and we can obtain

partial informations if we know how to stop it at some
convenient order (cf. [C] and [02]).

Another method, introduced by Seidenberg (see
[D]), allows one to perform elimination by giving
a description of the projection by equations and
inequations—in general it is a semi-algebraic set, e.g.
the projection of V(zy — 1) on the z axis is defined
by # # 0. In this sense it is more precise than Ritt’s
method which only determines the adherence but on
the other hand, it is unable to determine the dimen-
sion or even to check whether a solution do exist.

4. The use of elimination
4.1. Representation of data

This question is a central one when one wants to
manipulate algebraic objects. Sometimes, mostly for
finite objects such as polynomials, the different possi-
ble codings are equivalent, even if some of them could
be better for a given computation. But for infinite ob-
jects, it may often be difficult, or even impossible to
go from one representation to another. In the special
case of differential ideals, it is impossible to describe
them in all cases using a system of generators, because
they are not always finitely generated. Provided they
are radical, we may at least give a finite system X
such that Z = {¥}. Such a system was called by Rit a
basis. In particular, this also applies to prime ideals.
But they can also be defined by a characteristic set.

We may compute a char. set A, ¥ being given,
provided we know a priori that the ideal is prime, but
no algorithm is known to recover a basis knowing 4.
We will see that that the answer to some problems will
depend greatly on the chosen representation of prime
ideals.

We can give the following, now quite classical ab-
stract definition of an algebraic structure or paramet-
ric model. It is a prime ideal of

Flut, .. Uum, 21, .. &0, Y1, Yp, 01,1, 04 ),
where the u; denote the inputs, the z; the state, the y;
the output, and the 8; are the parameters. We impose
the following natural conditions:

(i) the dimension of 7 is m, and Z N F{U } = [0]

() INF{O}=1[0; =0]i=1,...,q], which means
that the parameters are constants.

Off course, to check those two properties, one
needs to use Ritt’s method which may be very dif-
ficult. Often, one will have to deal with structures

defined by equations of the following type:

X' = F(X,U,0)
Y = G(X, 0),

where X stands for (z1,...,2m), F for (fi,..., fm),
etc. and the f; and g¢; are algebraic functions re-
spectively defined by the equations P;(z}, X, U, ©),
Qi(yi, X,0).... Such a systems defines the wanted



ideal—provided we complete it with ©' = 0, because
it is a characteristic set for an orderly ordering. We
may notice that the associated ideal is not prime in
general, but we still can perform most computations
in this situation using the method given in [L]. We
shall need to factorize to check primality. The main
drawback is that it is not always a basis. More general
cases of algebraic structure could easilly be reduced to
this definition.

4.2. State elimination

Suppose that we have a structure, being defined
as above. The problem of state elimination obviously
reduces to the elimination of the variables X, which
may be done in many different ways. If we need a very
precise set theoretic description of the projection, one
may use Seidenberg’s method as Diop did (see [D1]).
It may be faster to determine only its Zariski adher-
ence using Ritt’s method. If we assume the repre-
sentation of the structure by a char. set as above, the
method introduced in [O1] after Lazard’s work [L] also
applies, and allows to avoid factorization.

4.3. Identifiability

Identifiability may also be reduced to an elimina-
tion problem, using the following definition.

DEFINITION 1. — A structure is locally (resp. glob-
ally) identifiable if there exist algebraic (resp. ratio-
nal) functions h; such that 6; = h;(U,Y).

This is easily tested using the computation of a
char. set of the ideal defining the structure, using a
ordering eliminating the X and then the ©. Then, one
only has to check that the char sets contains polynomi-
als R;(6;,U,Y), algebraic in f;. Global identifiability
correspond to the case where R; is of degree 1 in 6;.

Such a method has been introduced by Glad et
Ljung in [GL].

4.4. Distinguishability

We will provide a differential algebraic definition
of distinguishability and show that this problem can
be possibly solved by elimination, or becomes much
more difficult according to the chosen representation
of the structure.

DEFINITION 1. — Let S and S’ be two d. a. struc-
tures defined by ideals T and I'. We suppose that
the two structure are comparable, meaning that they
have the same inputs U and outputs Y. But we take
different sets of variables X and X', © and @' for
their states and parameters. Then, S is distinguish-
able from S" if T'NF{U,Y} C INF{U,Y}, or equiv-
alently if (Z +Z')NF{U,0} £ [0; = 1].

We can already underline some limitations of this
definition: we only consider the generic situation, and
we disregard real problems (effective methods in real
algebraic geometry seems for the moment out of reach

of actual computations). But at least, this is a suf-
ficient distinguishability condition, if we compare it
with more precise ones.

Then, if the two structures are given by two bases
Y and ¥’ such that Z = {X} and 7' = {¥'}, we may
check this by applying Ritt’s method, for an ordering
eliminating all variables except UU®. The ideal Z 47’
is not prime in general, but we only have to check that

Ji N F{U,©} is not [0] for all the components.

If we assume that the structures are given by
some char. sets, we have no algorithm to conclude.
Indeed, no method is known to check whether to irre-
ducible diff. algebraic varieties are included one in the
other, except in the one variable situation. As we as-
sume that the inputs and parameters are generic, we
may reduce to this case for single output structures.
The use of the low power theorem (see [R]) allows then
to conclude.

We may notice however, that for linear systems,
char. sets are always generating the associated ideals,
so that our difficulties are purely non-linear.

4.5. Complexity

The complexity of the elimination techniques
used above also depends of the presentation of data.
The complexity of Ritt’s method is unknown in the
general case, corresponding to structures defined by
bases. But, if we assume that they are already given
by char. sets, we may avoid factorizing, which means
a great gain of practical efficiency. We would even
conjecture a “good”—meaning simple exponential—
complexity in such a situation. The reason is that
Ritt’s analog of Bézout’s theorem allows to bound the
order of derivatives involved during the computation.

In order to secure complexity bounds in the gen-
eral case, one would certainly need an “effective dif-
ferential nullstellensatz”, meaning a bound on the or-
der of intermediate computations necessary to check
whether a system admits solutions. In the algebraic
case, such a bound exists for the degree and has al-
ready allowed to provide a complexity bound for the
first step of Ritt’s method for pure algebraic equations
(see [GM]).

5. The difficulty of working with
initial conditions

5.1. More general systems

It would sometimes be necessary to complete the
data of a structure with a priori known initial con-
ditions. We could also wish to deal with structures
involving transcendental functions. Provided they are
themselves solution of some differential equations, we
may reduce to differential algebraic structures, but the
use of initial conditions becomes then absolutely nec-

essary.
Example 1. — If we consider the pendulum equation:

"

z'" = —0y sin(z) + Oqu,



we can reduce it to an algebraic structure

,1‘/1/ = —61;732 + 92u
1/2 = X1Zx3

2 2
z3=—x5+1,

where 21 stands for z, s for sin(z) and z3 for cos(z).
But we must complete it with the initial conditions
z2(0) = sin(2(0)) and 23(0) = cos(z(0)). Except in
such simple cases as 2(0) = 0, we shall need to intro-
duce transcendental constants.

5.2. Identifiability with initial conditions

It has been shown in [O3] how to treat the prob-
lem of identifiability for general algebraic structure
with initial conditions in a computable field of con-
stants. The same method could be extended for struc-
ture involving arbitrary compositions of transcenden-
tal functions defined by differential equations, pro-
vided we have an oracle to decide equality in the ex-
tended field of constants. Indeed, the essential point
is that we need to test whether a given polynomial
in X,U,Y, 0 is identically 0, according to initial con-
ditions. Other methods for this have already been
proposed (see [S]).

It may be noticed that the general problem of con-
stants is undecidable in a language defined using exp,
log, 0, 1, 4+, x and |z|. If we suppress |z|, nothing is
known, but the problem would be solved if Schanuel’s
conjecture could be proved. Roughly speaking, the
conjecture claims that no new relation can arise be-
sides those one can derive using classical formulas. At
least it provide a satisfactory heuristic test.

5.3. Observability with initial conditions

If we suppose generic initial conditions, we may
disregard them and treat observability again using
simple elimination. This relies on the following def-
inition given by Diop and Fliess (cf. [DF]).

DEFINITION 1. — A structure S defined by the ideal
7 is observable, if for each x; there exist an polynomial
Ri(2;,U,Y,0) in I, being algebraic in ;.

The computation of a char. set for an ordering
eliminating the X will provide a satisfactory solution.
But if we consider the system:

7
r =Uu

y = sin(z).
we may reduce to the diff. alg. equations:

= uzr

rl
(y/)Z _ _(uy)Z + u27
being not observable according to the above definition.
But of course, one needs to complete it with initial
conditions to obtain an equivalent system. So one may
have to deal with more complex criteria. The X being

algebraic over the field extension G = F(U, Y, 6) is cer-
tainly a sufficient condition of observability. On the
other hand, a necessary condition is that they are dif-
ferentialy algebraic over G. The dubious cases should
be solved using initial conditions, but as above, one
will get in great trouble with transcendental constants.

6. Conclusion

We have faced here two types of difficulties. The
first are related to the intrinsic complexity of any
formal resolution of systems of differential equations.
The quasi-equivalence between the problems of dif-
ferential algebra and the corresponding problem in
controls make us think that we cannot escape those
difficulties. Other troubles are more strongly related
to the way one poses the problem. And perhaps this
must depend on the concrete example one wishes to
consider and cannot be solved from a pure abstract
standpoint.

We would like at least to escape problems of num-
ber theory which seem at first sight an artefact, even if
they naturally occur in the situation described above.

On the other hand, one could expect that most in-
teresting systems in control share some algebraic prop-
erties making their formal resolution easier. E.g. it is
shown in [FLMR] that differential flatness allows to
reduce to purely algebraic problems after an algebraic
change of coordinates. But to test such a property
seems a real challenge for algebraist. So control the-
ory will probably continue to motivate in the future
new researchs in differential algebra.
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