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Abstract

Jacobi’s results on the computation of the order and
of the normal forms of a differential syStems are ex-
pressed in the framework of differential algebra. We
give complete proofs according to Jacobi’s arguments.
The main result is Jacobi’s bound: the order of a
differential system Pi,...,P, is not greater than the
maximum O of the sums Z:_l:l a4 s(i)» for all per-
mutations o of the indices, where g;; := ordxu(‘) P,
viz. the tropical determinant of the matrix (ai;). The
order is precisely equal to O if and only if Jacobi’s
truncated determinant does not vanish.

Jacobi also gave an algorithm to compute O
in polynomial time, similar to Kuhn’s “Hungarian
method” and some variants of shortest path algo-
rithms, related to the computation of integers ¢;
such that a normal form may be obtained, un-
der genericity hypotheses, by differentiating ¢; times
equation P;.

Some fundamental results about changes of or-
derings and the various normal forms a system may
have, including differential resolvents, are also pro-
vided.
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Introduétion

History

Borchardt [36] after a transcription by S. Cohn, followed by a second one

in the volume Vorlesungen iiber Dynamik, edited by Clebsch in 1866 [37].
These two papers contain the following main result: the order of an ordinary
differential system of n equations P; in n variables x; is, at most, the maximum O
of the “transversal” sums Y7 ordxg(i) P; for all permutations o € S,. Known as
Jacobi’s bound, it mostly survived during the xx'" century in the differential al-
gebra community, thanks to J.F. Ritt, who gave a first complete proof of it in the
linear case. It was extended by Kondratieva et al. [52, 53] to systems satisfying
Johnson’s regularity hypothesis [48]. But some important aspects were com-
pletely forgotten, such as a simplest normal form reduction, bounds on the order
of derivations requested for computing normal forms, including differential re-
solvent, and a first polynomial time algorithm to solve the assignment problem,
i.e. in our setting computing the bound faster than by trying the n! permutations.
A similar algorithm was rediscovered by Kuhn in 1955 [56]; Cohn [13] was the
first, in 1983, to mention Jacobi’s contribution. Jacobi’s bound was rediscovered
in 1960 by Volevitch [78] for differential operators and his simples§t normal form
reduction by Shaleninov in 1990 [72] and Pryce in 2001 [68] for the resolution of
implicit DAE’s. One may also mention that in modern vocabulary the expression
of Jacobi’s number O is known as the tropical determinant [60]. Two algorithms
introduced by Jacobi to compute his minimal canon may be regarded as precur-
sors of Dijstra’s [19] and Bellman [3] shortest paths algorithms.

It is difficult to know precisely when were written the manuscripts related
to Jacobi’s bound. Jacobi did not use to date his writings. We know that it is
a byprodu¢t of his work on isoperimetric systems, evocated in a letter to his
brother Morifs in 1836 [44]. The second part of his paper on the last multiplier
[38], which appeared in 1845, contains a section devoted to these systems, where
he promised to publish later his method for computing normal forms.

I N 1865 appeared in Crelle’s journal a posthumous paper of Jacobi, edited by

Proofs are often omitted in Jacobi’s manuscripts. The style of some passages
evocates a mathematical cookbook, providing computational methods without
justifications, but no examples of precise differential systems are given, only gen-
eral abstract families of systems like isoperimetric equations. 1t is clear that the
efficiency is a constant preoccupation, even if it is not formalized. This work is
closely related to Jacobi’s interest in mechanics; there was at that time a strong
need for fast computational tools, mostly for astronomical ephemerides [31]".

!Jacobi himself had an experience in practical computing, on a smaller scale and in a different
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In his 1840 letter to the Académie des Sciences de Paris [39], Jacobi said that
he was working for some years on a publication that included his last multiplier
method. One may guess that the various unpublished fragments were intended
to take part in this never achieved ambitious proje¢t entitled Phoronomia. As
Ritt guessed [70], the bound may have been suggested to him by his method for
computing normal forms. We refer to our survey [67] for more historical details.

Aims of this paper

We present Jacobi’s main results related to the order and normal forms of differ-
ential system, using the formalism of differential algebra. We prove them under
hypotheses that could have been implicit in Jacobi’s work and using, as far as
possible, methods suggested in his work. Two particular aspects require atten-
tion.

Jacobi gives no detail about the nature of the functions he considers. Never
does he describe the tools to be used to perform the requested eliminations. We
restri¢t here to polynomial equations. It seems implicit that Jacobi’s attention
was foccussed on physical equations, generating prime differential ideals. How-
ever, we tried to consider the case of systems defining many components, when-
ever the extra work remained little. Jacobi’s results related to normal forms of dif-
ferential systems will be translated using characleristic sets of differential ideals.

Jacobi often considers implicit genericity conditions and will sometimes give
first a “generic” theorem (i.e. a proposition that §tands in some Zariski open set)
followed by a second theorem describing the cases where the first assertion fails
to be true. We will try to provide explicitely such conditions, most of the time
expressed by the non vanishing of some Jacobian determinant.

Keeping in mind such particularities of the xx*® century mathematical $tyle,
we recommend the reading of Jacobi’s original papers, this text beeing only a
partial commentary, completed with some technical parentheses devoted to con-
temporary developments.

The computation of the tropical determinant occcupies a large part of Jacobi’s
manuscripts and of this paper too. Contrary to those related to differential sys-
tems, Jacobi gave [36] very precise proofs of his combinatorial results. This may
have dispense of longer comments, but a more carefull study shows that com-
plexity issues are by no means obvious as well as the relations between Jacobi’s
canons and Egervary’s covers, a notion that allows us to make a link between
Jacobi’s shortest reduction and the choice of a ranking on derivatives used in dif-

field, when he published his Canon arithmeticus [43]. The revision of the half million numbers
it contains requested the help of his friends and relatives [44], including Dirichlet’s wife and
mother!



4 Jacobi’s Bound

ferential algebra algorithms. The implicit but fundamental role played by basic
concepts and problems of graph theory must also be underlined.

Content

Section 1 introduces Jacobi’s bound in the context of applying his last multiplier
method to isoperimetrical equations. We limit ourselves here to an informal
presentation of the genesis of the results. The next section 2 details Jacobi’s al-
gorithm, extended to retangular matrices and studies its complexity.

It is followed by a short combinatorial parenthesis about the “strong bound”
and reduction to order one, completed with algorithmic hints to get block decom-
positions. A second algebraic parenthesis is devoted to quasi-regularity, a key
implicit assumption in Jacobi’s proof and Lazard’s lemma 5 contains some pre-
liminary technical results of algebra related to “Lazard’s lemma”, that will play a
central part establishing the results on shortest reduction that characterizes some
quasi-regular components.

Jacobi’s bound is proved in section 6, together with the necessary and suf-
ficient conditions for the bound to be reached, expressed by the system’s trun-
cated determinant V. The shortest normal form reduction is presented in section
7, followed in setion 9 by a method for computing a characteristic set for some
ordering, knowing one for some other ordering. The setion 10 is devoted to
resolvent computations and the last section 8 by a study of the various possible
normal forms of a given system, including a complete description of the possible
structures for zero dimensional linear ideals in two variables.

Notations

We will consider here equations Py, . .., P, in the differential polynomials alge-
bra F{xi, ..., x,}, where ¥ is a differential field of characteristic 0. The perfect
differential ideal {P} is denoted by Q and is equal to the interseétion of prime
components N;_;P;. Jacobi’s bound is denoted by O, the notations A, A; a;; a;, ,[3].
are introduced in definition 13, V, ¥ in def. 65, Ssn in def. 1.

If A is the characteristic set of a differential (resp. algebraic) ideal, we denote
by Hy the produ¢t of initials and separants (resp. initials only) of its elements.

By convention we write F(n,,...,n,) = O(G(ny,...,n,)), with F,G :
N? +— N if there exist conslants A and B such that F < AG+ B.
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1 The last multiplier and isoperimetric systems

1.1 The last multiplier

The last multiplier method is first evocated by Jacobi in a short paper published
in French in 1842, entitled “On a new principle of analytical mechanics” [40],
followed by a second one in Italian in 1844: “On the principle of the last multiplier
and its use as a new general principle of mechanics” [41]. It is not the place here
to give details on the subject and we shall limit ourselves to a few hints in order
to help understand the link with the genesis of Jacobi’s bound. The reader will
find illuminating illustrations on classical examples in Nucci and Leach’s papers
(64, 65].

Jacobi presents his last multiplier as a generalization of Euler’s multiplier p.
If one has a Lagrange system in two variables:

dxl _ de (1)

a1<x1> xz) az(xh xz)’

Euler’s multiplier may be defined by the property d(u(1/a;dx; — a/,dx;)) = 0.
Knowing the exat differential p(1/a,dx; — 1/a,dx,), finding a first integral for
the system (1), which is a solution of a%%‘c‘; + aizg—;; is reduced to the computation

of integrals [ aildxl =w+ C(x)and [ aizdxg = w+ G(x).

In the case of a Lagrange sy$tem in n variables,

dx; o dx,,’ @)

the last multiplier may be defined in the following way. Let w;, 1 < i < n, be first
integrals for (2), any first integral o is a solution of

90 . Do

Bxl axn
S, Own

8fc1 (9?(,, —0.
8(,0,,71 . 86{),.71

ox1 o Oxp
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Let us denote by D; the Jacobian determinant

Qoo ., Ba  Ba , , dau
8X1 8)(,'71 Bxi+1 8xn
= 0.
Own—1 . Own—1 Own—1 I Own—1
6x1 8x,~_1 <9x,-+1 6)("

The last multiplier p is defined by

" 0 n 0
H;aia* = ;D"a?,"

i
which is for n = 2 the definition of Euler multiplier.
Given any sy$tem of ordinary differential equations of order 1
X =fi(x), 1<i<n,
one may complete it with ¢ = 1 and associate to it the Langrange system

dx; dx, @‘

f() il 1

Jacobi’s goal is explicitly exposed in 1842 [40]: having first remarked that for a
system in two variables, the computation of solutions only requires integrations,
he claims that his last multiplier method allows to generalize this result to any
system of ordinary differential equations in n variables, provided that one already
knows n — 1 first integrals. This circumstance is of course very unlikely, but in
1840 he insisted on the inportance of a remark of Poisson [42] providing a method
to compute a sequence of new first integrals, for any conservative mechanical
system, that already possesses two first integrals, independently of energy.

The definition obviously depends of the choice of the first integrals, but also
of the coordinate functions x;. The multiplier is also given by the formula:

of;
ll — e_fZ?:l Txlidt7

which may be interpreted as a Wronskian, expressing the variation of a volume
form along a trajectory, so that the last multiplier y, associated to coordinates y,
must satisfy

_ 19y

1,
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a formula that appears (up to a logarithm) in manuscript [II 23 a)] [37, formula
7)].
The application of the last multiplier method thus requires the knowledge of
a normal form for a system of equations, and the result, after order 1 reduction,
will depend on the chosen normal form, which may explain in part the interest of
Jacobi in the various normal forms a given system may possess and differential
elimination.

1.2 Isoperimetric equations

In 1844 and 1845, Jacobi published in two parts a 135 pages paper in latin, de-
scribing his last multiplier method for the integration of differential systems [38].
Among the examples of applications he gives, stands the isoperimetric problem.
“Let Ube a given funétion of the independent variable ¢, the dependent ones
x, y, z etc. and their derivatives ¥/, X”, etc., y/, y/', etc., Z, 2, etc. etc. If we propose
the problem of determining the functions x, y, z in such a way that the integral

/ Udt

be maximal or minimal or more generaly that the differential of this integral
vanish, it is known that the solution of the problem depends on the integration
of the system of differential equations:

ou 2 OU
_ ou_ 457 | a7
0 + p

= 5 R i etc.,
9 49y 422U
__ ou _ Toy ayr
0 = ay o T a2 etc.,
ou 4585 | &2
0 = 9. Tar T —4p — et etc.,

I will call these in the following isoperimetric differential equations ..”
[GW IV, p. 495]

For simplicity, we write xi, ..., x,, instead of x, y, z, etc. and denote by P, = 0
the i isoperimetric equation. Jacobi noticed the difficulty of applying his last
multiplier method if he could not fir§t reduce the system to a normal form (see

also [36, first section]). If the highest order derivative of x; in Uis xl(ei), the or-
der of x; in the i isoperimetric equation is at most e; + ¢;. If the ¢; are not all
equal to their maximum e, then we cannot compute a normal form without using
auxiliary equations obtained by differentiating the i*" isoperimetric equation A;
times, and a first problem is to determine minimal suitable values for the A;. In
1845, Jacobi had clearly in mind a thorough $tudy of normal forms computation
for he wrote: “I will expose in another paper the various ways by which this op-
eration may be done, for this question requires many remarkable theorems that

necessitate a longer exposition” [GW IV, p. 502]
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Jacobi’s method for computing a normal form may be sketched in the fol-
lowing way. Assume that the Hessian matrix ((92 U/ 8x§ei)8xj(ej)) has a non zero
determinant. We may further assume, up to a change of indices, that the se-
quence e; is non decreasing and that the principal minors of the Hessian have
full rank. ,

From the fir§t isoperimetric equation Py, as 9P, /0x\"%) = +0?U/ (xgel)> #
0 one will deduce on some open set, using the implicit function theorem, an
expression

(2e1) ._ (2e1—-1) (e1+ez) (e1+en)
x = F(x,.,x Xy, X ey Xy e x0T

Using the first equation and its derivatives up to the order e, — e, together with
the second equation, one may invoque again the implicit func¢tion theorem, using
the fact that the Jacobian matrix of P, and ﬂfz‘“), with respect to the derivatives
x&elﬂz) and xgzez), is equal to the second principal minor of the Hessian of U, which
is assumed not to vanish. One deduces an expression

(282) = Fz(xl’ (26171) (26271) (62+€3)

X €2+€n)).

cey X X2y ey Xy 3 X3y ey Xy ,...,xn,...,xg
Repeating the process, we get a last expression

2en) . (2e1—1) 2en—1
X2 = Fi(xq, ..., x e Xy 2T

that may be obtained using each isoperimetric equation P; = 0 and its derivatives
up to order A; :=e, — e

In this normal form, each variable x; appears with the order 2e;, so that the
order of the system is 2>_" | e;. This appears to be both a special case of Jacobi’s
bound (see sec. 6) and of Jacobi’s algorithm for computing normal forms (sec. 7),
using the minimal number of derivatives of the initial equation, provided that the
“syStem determinant” or “truncated determinant”, here equal to the Hessian of
U, does not vanish. In case of arbitrary equations P; for which a;; := ord,,P; can
take any value, things become more complicated, starting with the computation
of the bound max, > | a; (), that is the subject of our next section. But we
easily understand how this particular simple example may have suggested the
whole theory.

In setion 2. of [36], we have restored a passage of [II/13 b), fo 2200] that
quotes the isoperimetrical equations as an example for which all the transversal
sums have the same value.

2 Computing the bound. Jacobi’s algorithm

In algorithms, we will assume that matrices are represented by some array
Structure, so that one may get or change the value of some entry a;; with
conslant cost
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The assigment problem has been firs§t considered by Monge in 1781 [62], in
the special case of the transportation problem (moving things from initial places
to new places, minimizing the sum of the distances) and in a continuous set-
ting (digging excavations somewhere in order to create some enbankment some-
where else). Such kind of problems reappeared in the middle of the xx'" Century
in the following form: n workers must be assigned to n tasks; assuming that the
worker i has a productivity a;; when affected at task j, how can we find an affec-
tation j = o(i) that maximizes the sum of produétivity indices?

At a meeting of the American Psychological Association in 1950, a partici-
pant described the following reaction: “[he] said that from the point of view of a
mathematician there was no problem. Since the number of permutations was finite,
one had only to try them all and chose the best. [...] This is really cold confort for
the psychologist, however, when one considers that only ten men and ten jobs mean
over three and a half million of permutations.” ([74] p. 8.) Jacobi did not consider
the brute force method as a solution... and he gave a polynomial time algorithm!

The assignment problem also appears as a weighted generalization of the
mariage or maximal bipartite matching problem: a graph describing couples of
compatible boys and girls is represented by a s X n matrix of zeros and ones. The
problem of computing the maximal number of compatible couples between these
s boys and n girls amounts to computing a maximal transversal sum.

Kuhn’s [56] and Jacobi’s algorithms are quite similar. The main difference is
the following. Jacobi remarks that if the columns of the matrix admit maxima
placed in different rows, then their sum is the maximum to be found. He will
then add minimal constants A; to the rows in order to get a matrix with this
property. Kuhn considers integers o; and f;, with }°!, a; + f; minimal, such
that a;; < a; + f; this is called the minimal cover. He then uses Egervary’s
theorem [23, 74]: Y-, (o + f;) = MaX,es, i i o) He will then look for the
minimal cover a; and f;, adding constants to the rows and columns of the matrix.
On this precise topic, I cannot do better than refeering to Kuhn’s excellent—and
moving—presentation [57].

Some of Jacobi’s results could be extended with no extra work to the case of
underdetermined systems. This is why we will expose his algorithm in the case
of a s X n matrix A, with s < n. Entries are assumed to belong to an ordered
additive commutative group, i.e. a commutative group with an order such that
x > y<= x—y > 0. The special case of —oo entries will be considered in
subsec. 4.1.

DEFINITION 1. — Let s < n be two integers, we denote by S, , the set of injections
o:[1,s] —[1,n].

2From some optimistic standpoint, it may have been a way to escape ethical issues raised by
the use of psychology in management.
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Let A be a s X n matrix of elements in N U {—o0}, the Jacobi number of A is
defined by the formula

and is denoted by O 4.

Without further precision, a maximum a;; in A, is understood as being a maxi-
mal element in its column, i.e. such that a;; > ay ;V1 < i <'s. We call transversal
maxima a set of maxima placed in all different rows and columns. It is said to be
a maximal set of transversal maxima if there is no set of transversal maxima with
more elements in A.

Let ¢ be a vector of s integers , we denote by A+ ( the matrix (a;;+ (;). We call
a canon a matrix A + { that possesses s transversal maxima and also the veétor {
itself.

The partial order we will use on canons is defined by { < (' if V1 < i <'s
0; < L.

Remark 2. — In the case of a square matrix, if £ is a canon and if a; ,(;y + ¢; is
a maximal set of transversal maxima, then >>7_, a; »(;) is the maximal transversal
sum we are looking for.

For s < n, one may compute O := maxX,cs, >_ir; @ (;) by completing A with
n — srows of zeros, which reduces the problem to the case of a square matrix.

Applied to a retangular matrix, Jacobi’s algorithm still returns the minimal
canon A°, that will be used in section 7 to compute the shortest reduction in
normal form, A; being the minimal number of times one needs to differentiate P;
in order to compute a normal form (under some genericity hypotheses). But the
sum of the corresponding maxima, and so the order of this normal form, may fail
to be equal to O.

Example 3. — Consider the matrix

1 0 3 4
0120/

The minimal canon corresponds to 4; = A, = 0; however the sum of the cor-
responding 3 pairs of transversal maxima are 2, 4 and 5 whereas the maximal
transversal sum is 6. To find it, we may add two rows of zeros:

S O O =
S O =k O
S O NN W
S O O

31ts existence is shown in prop. 4 below.
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Then the minimal canon corresponds to A; =0, A, =1, A3 = 2and Ay = 2:

N DN ==
NN DO
N DD W W
N N =

The following proof of the unicity of the minimal (simplest) canon (assuming
canons do exist) is due to Jacobi [36, th. IV, sec. 2].

PROPOSITION 4. — Let A be a s X n matrix of elements in N U {—oco}, £ and ¢’ two
canons:

i) The s-uple (" := (min(¢;, (})) is a canon for A.

ii) There exiSts a unique minimal canon for the ordering defined by { < (' if
(;</lifor1 <i<s.

Proor. — LetI:= {i € [1,s]|(; > ¢} and I := [1,s] \ I Let o and ¢’ be the
elements of S;, corresponding to maximal sets of transversal elements for the
canons A + ¢ and A + (. We define ¢’ (i) = o(i) if i € I'and ¢”(i) = o¢’(i) if not,
so that ¢”'(i) # o’ (/') if i # { are both in I or both in I'. Furthermore, if i € I and
i € I, then a; o) + {; < ay o) + Uy (as ay o) + Ly is maximal in A + ¢) and
ay oty + Uy < ay oy + Uy (as i € I'), so that

i o(ry + Ui < ar vy + Ly

By construction, a; ,»(; + /; is maximal in its column. The inequality above im-
plies then that o’ (i) = o(i) # o’(i') = o”({'): o is an injection. This achieves the
proof of i), of which ii) is a $traightforward consequence. =

2.1 Jacobi’s algorithm

See [36, § 3] for Jacobi’s proof of the algorithm and [37, § 1] for a detailed example.

Input: an s X n matrix A. The case s = 1 is trivial, so we assume s > 2.
Output: its minimal canon A if it exists or “failed”.

Step 1. (Preparation process) — Increase each row of the least integer such that
one of its elements become maximal (in its column). This $tep requires O(s?)
operations. It produces a new matrix A’ = A + /; such that each row possesses
a maximal element. The number of transversal maxima in A’ is at least 2, that
corresponds to the case where all elements in row i and column j are maximal
(except perhaps the element a; ). If s = 2, the problem is solved.
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If s > 2, we enter §tep 2 with A', /; and a set of exaltly 2 transversal maxima.

Step 2. — a) For readability, we may reorder the rows and columns, so that the
transversal maxima in A’ are the elements a;; for 1 < i < r < s. Left (resp. right)
columns are columns j < r (resp. j > r). Upper (resp. lower) rows are columns
j < r(resp. j > r), as bellow.

We define the §tarred elements of A" as being the transversal maxima a *.

left right

upper

lower

b) Assume that there is a maximal element located in a right column and a
lower row. We can add it to the set of transversal maxima. If it now contains s
elements, the process is finished. If not, we repeat $tep 2.

c) We say that there is a path® from row i to row 7 if there is a §tarred max-
imum in row i, equal to some element of row i located in the same column, or
recursively if there is a path from row i to row i’ and from row ’ to row 7. We
also recursively define first class rows as being upper rows with at least a right
maximal element, or rows to which there is a path from a first class row. The
cons$trudtion of the set of first class rows, together with paths to them from rows
with a right maximalterm may be done in O(sn) operations, using an array F
of booleans with F.i = true if row i belongs to the first class (we cannot afford
looking into a lit).

d) If there is no lower row of the first class, we go to Step e).

Assume that there is a lower row of the first class, then there is a path to it
from an upper row i, containing a right maximal element a;, 4. Let it be a path of
lenght p, consisting of rows i, to iy, so that for all 0 < a < pthe element a;,_, ;, is
equal to the starred element a;, ;. We can then construct a set of p+ 1 transversal

*Jacobi defined also the maximal elements in right columns as “Starred”; we prefer to reserve
this denomination to left transversal maxima to underline the specific roles played by these two
sets of maxima in the algorithm.

5This notion is closely related to that of increasing path, as defined in [32], which explains the
choice of that word in the translation of transitum datur in [36].
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maxima by replacing a,, ;, by 4., i, for 0 < i < p, and adding a;, g to the list,
as illustrated in the figure below, where the new increased set of transversal
elements is written in bold letters.

ipyig " ai,p

If p+ 1 = n, we have finished, if not, we repeat step 2 a), c¢) and d) untill no lower
row of the first class is found.

The next lemma is given by Jacobi in [36, sec. 3].

Lemma 5. — The maximal number of transversal maxima in A’ is r iff there is no
lower right maximum, nor lower row of the first class.

Proor. — The algorithm above proves that the given condition is necessary.
Let us assume that there is no lower right maximum, nor lower row of the first
class, but that there exists a set Tof ¥ > rtransversal maxima a,,v,- Some of these
must belong to left columns and the others to upper rows. As there are only r
left columns, h > ¥ — r of them, say a1 < i< ¥, are upper right maxima.
From their first class rows, one can build paths as above, starting from rows y,,
1 < i < h, and considering only maximal elements A, and Ay 1 <0< Y. The
sets of rows in such paths are disjoints, for T'is a set of transversal maxima. As
there is no lower first class rows, these h paths must end with some element g,
such that there is no v; = j, i.e. no maximum in Tlocated in the same column. So
that there are in T hright elements and at most r— h left elements, a contradiction.

DEFINITION 6. — We define the rows of the third class as being the lower rows and
all the rows from which there is a path to a lower row. The rows not in the first or
third class form the second class.
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We increase the third class rows by the smallest integer y such that one of
their elements become equal to a right maximum or a starred element located in
some first class of second class row. This may be done in at mosét O(sn) operations.

We then iterate $tep 2 with a new matrix A’ = A + ¢ and a new vettor /.

If this element belongs to a second class row, this row will go to the third class
and the cardinal of the second class will decrease. If it belongs to the first class,
then at the next step there will be a lower right maximal element (if it is in a right
column) or a first class lower row (if it belongs to a left one), so that the number
of transversal elements will increase. Let p be the number of Starred elements,
there are at most p — 2 second class rows, at least 1 firét class and 1 upper third
class row, so that we need at most p — 1 iterations to exaust the second class and
increase the number of transversal maxima, which can occur at mos$t s — 2 times.
So $tep 2 is iterated at most >>5_5(p — 1) = (s — 1)(s — 2)/2 times before the
algorithm returns the requested result.

If the integer inlement of A are bounded by C, then each integer operation
requires O(In C) bit operations.

This leads for s = n to a O(n*) complexity, which corresponds to that of
Kuhn’s original Hungarian algorithm [7, Ch. 4.1 p. 77].

THEOREM 7. — The above algorithm returns the minimal canon, if it exists, in at
mos$t O(s’n) elementary operations. Assuming that the elements in the matrix are
integers of size C, it requires at most O(s’nlog C) bit operations.

Proor. — The termination and complexity of the algorithm have already
been proved. We only have to show that the obtained canon is the smallest.
The proof, that follows Jacobi’s, relies on the following lemma.

Lemma 8. — Let A be the minimal canon for A, assume that a;; 1 < i < r form the
set of transversal maxima in A’ + 0', I' < A, with respect to which the classes are
defined at step e) of the algorithm and that there is no lower right maxima nor first
class lower row. Then there is no unchanged row of the third class in A’ + (', i.e. a
third class row of index iy with A;, = (; .
PROOF OF THE LEMMA. — We assume a;; 1 < i < rto be a maximal set of
transversal maxima in A’ + ¢'. Let Aio(i) + A, 1 < i < sbe a maximal set of
transversal maxima in A" + A.

If row iis an unchanged row of the third class, the element g, ,(;) is maximal
(in its column) in A’ + A, and so it is also maximal in A"+ /¢'. Tt cannot be an upper
right element, for then the row i would be of the first class, and it cannot be lower
right, for third class rows are considered only if no lower right maximum is found
a step 2. b). So,1 < (i) < r.

Let H denote the set of integers 1 < i < rsuch that row i is an unchanged
row of the third class. For i € H the elements a; ;) + £} and a,(;),»(;) + K’U(i) are
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both maximal elements of the column o(i). So, the row o(i) must be unchanged
in A" + A and, as there is a path from it to row i, it belongs to the third class:
o : H+— His a bijection. Hence, there is no unchanged lower row 7' of the third
class, for we would have o(/') € Hand i ¢ H.

Let the row i, be and unchanged row of the third class. Due to the third class
definition, we can find a sequence of third class rows i,, 0 < @ < p, such that:
D) @iy = i3
ii) rows iy, 1 < @ < p are upper rows;
iii) row i, is lower.
The row i, is unchanged. Using i), we prove by recurrence that all rows i,, 0 <
a < p are unchanged. As row i, is lower, we arrive to a final contradiction, that
concludes the proof of the lemma =

Fach row of a canon mu$t contain a maximal element. So 1 > /¢, where ¢
is the vector produced by the preparation process. As there is no unchanged
row of the third class, and as, during step 2) e) we increase third class rows by
the minimal integer requested to change the class partition, the canon returned
by the algorithm must be the minimal canon A. This concludes the proof of the
theorem. =

Remarks. — 9) Let the n X n integer matrix A be defined by a;; = (n—1)* — (i —
1)(j — 1), one shall apply §tep 2 precisely (n — 1)(n — 2)/2 times. E.g. for n = 4,
the matrix is:

I 99 99
III 9 8 7 6
III 9 75 3|’
I 9 6 3 0

where we have indicated the classes of the rows on he left, the Starred maxima
being in bold. Step 2 shall be applied 3 times and here is the sequence of matrices
it produces, with the increment of each rows, the last being the canon.

I 9 9 9 9 0 I 9 9 9 9 0 9 9 99 0
II 10 9 8 7 1 III 10 9 8 7 1 11 10 9 8 2
III 10 8 6 4 17 III 11 9 7 5 27 12 10 8 6 3
III 10 7 4 1 1 III 11 8 5 2 2 12 9 6 3 3

10) Jacobi gave the criterion of lemma 5 as a way to help finding a maximal set
of transversal maxima, but seemed to assume that, most of the time, one will find
them by inspection, as he does for the 10 x 10 matrix provided as an example in
[37]. So, our presentation is a modern reinterpretation that does not fully reflect
the spirit of a method intented for hand computation.

In his analysis of Jacobi’s contribution [57], Kuhn made a distinction in the
algorithm between a Kénig $lep, i.e. finding the maximal number of transversal
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maxima, and an Egervary Slep, i.e. increasing the number of transversal maxima.
This underlines the deep similarity with the Hungarian method and is coherent
with Jacobi’s presentation.

Jacobi completed his work with a few more algorithms, allowing to compute
the minimal canon, knowing an arbitrary canon or a maximal set of s transversal
maxima ([53], lemma 3), which he did not use in his study of differential systems
that will be exposed in the next section 3, together with some complements about
algorithms and complexity. We will conclude this paragraph with the case of the
maximal matching problem, followed by some properties of covers that will be
needed in sections 6 and 7.

2.2 Maximal matching

Egervary’s results were influenced by the following theorem of Kénig [54, 55,
73] (see also [53, lemma 2]), which was in turn inspired by previous works of
Frobenius [25, 26] (one may refer to Schrijver [74] for historical details. It is
an easy consequence of Jacobi’s criterion for characterizing maximal transversal
families of maxima (lemma 5).

THEOREM 11. — Let A be a s X n matrix of zeros and ones, with s < n, m be the
smallest integer such that the ones are all located in the union of p rows and m — p,
then m is the maximal diagonal sum O in A.

ProoF. — It si easily seen that O < m: in any diagonal sum, at most p “ones”
belong to these p rows, m— pto these m— p columns, and the sum is m—p+p—gq,
where g is the number of ones that belong both to these rows and these columns.

To prove O > m, one may use Jacobi’s construction. Assume that we have
r = O diagonal starred ones, that we may assume to be a1, ..., a.,, We can
use lemma 5 with the following change : the ones are the maximal elements, the
zeros the non-maximal elements. According to the lemma, there are no lower
right ones. Let p be the number of first class rows, that we may assume to be
rows 1 to p. Rows p+1 to rdo not belong to the first class and so they contain no
ones located in columns 1 to pnor r+ 1 to n. Rows r+ 1 to s belong to the third
class and, in the same way cannot contain ones in columns 1 to p nor r + 1 to
n, which would contradict the minimality of r. So, all the ones belong to p rows
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and r — p columns, as illustrated by the figure below.

r

This concludes the proof. =

2.2.1 A naive algorithm

ALGORITHM 12. Input data: A s X n matrix of zeros and ones.
Output: A maximal transversal sum in A.

Classes of rows will be constructed here, not with respect to maximal ele-
ments, but with respect to “ones”.

To solve the problem, we only have to construct the set of first order rows,
with a cost of O(sn) operation, and to apply lemma 5, which may only occur p—1
times, where p is the size of the matching; hence a total cost of O(s*n) operations
for the whole algorithm. This is the complexity of an improved version of Jacobi
algorithm (see below 3.2).

But it is posible to lower the complexity with a slight modification, due to
Hopcroft and Karp[32]. See below 3.1.1.

2.3 Covers

If not stated overvise, we consider in this section only square matrices A. Covers
do not appear in Jacobi’s paper and it is interesting to investigate their relations
with canons.
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DEFINITION 13. — We call a cover for A the data of two veélors of integers
(Hys -y p,) and (vi,. .., v,), such that a;; < p,+ v;. A cover p, v is a minimal
cover if the sum Y | pi. + v; is minimal.

Let yu, v and i/, v be two covers for A, then we say that they are equivalent if
there exists some integer y such that if; =y, + y and v, = v; — y.

PROPOSITION 14. — i) == A cover y, v of A is minimal iff there exists a permutation
o such that a; o(;y = p; + Vo(s)-

<= Let us assume that there is no such permutation o. Then, the entries a; ; with
a;j = 1,4 v; belong to p rows and m— p columns, with m < n, that we may suppose
toberows1,...,pandcolumns1,...,m—p. Let e:= min{_, min}’:m_p(,ui +v—
ai ), we define f; := p, if i < i < pand p; = p,—eifp <j<n v i=v+elif
1<j<m—pandv,=v;ifm—p<j<n:yl,V isacover, withy_,(y;+ V) =
Y+ vi) — (n—m)e.

ii) Let { be a canon for A. We will denote by L := max;_, {;, y;, = L — {; and
V; = max;_, a;; — j;. The vectors y, v form a minimal cover for A, that we define
as the cover associated to the canon /.

iii) Let u, v be a cover for A, the integers {; := maxy y1, — pi, form a canon for A,
that will be called the canon associated to the cover p, v.

Proor. — i) We have, by hypothesis, >>7", p; + v; = >>1, a;,(;) and, by
definition of a cover, >_; y; + v; > 3=, a; +(;), hence the minimality of the cover y,
V.

ii) By construétion, y; + v; > a;;, so that o, fis a cover. Minimality is a
consequence of i), remarking that if a; ;) + ¢; form a maximal transversal sum
in A+ /, then a; ;) = p, + vi.

iii) By i) there exists a permutation o such that a;,;) = p; + Ve(;), so that
Qi o() + Ui = Vo) + L > ay o5 + Ly forall 1 < i < n, so that /is a canon. =

DEFINITION 15. — The minimal cover associated to the minimal canon will the
called the Jacobi cover or the canonical cover.

Remarks. — 16) Knowing the minimal canon, we may obviously compute the
Jacobi cover in O(sn) operations.

17) If A is a matrix of non negative integers, then any cover is equivalent to a
cover of non negative integers. It is easilly seen that min; g, +min; v; > min;; a;,
so that one just has to define y, := p, — min, y; and v, := vy — min, g, to be sure
that 1/, > 0 and v} > 0.

18) In our definition, covers are vectors of integers and not non negative integers
as assumed by Egervary [23]. It is easily seen that any matrix of non negative
integers admits a minimal cover of non negative integers, but we cannot restrict
to this case, even if differentiation orders are non negative, because we will need
to consider in sec. 4.1 —oo entries.
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(57)

admits no minimal cover of non negative integers: p, + v; = 0 would imply
y, = 0, so that v, > 2, which contradits p, + v, = 1.

To try to get an equivalent cover of non negative integers, we may add min; v;
to all the y; and substract it from all the v;; doing so, one gets a new cover 4/,
Vv with min; 1/J = v;,0 and min; y; minimal. If some ,u’l.o remains negative, no
equivalent cover of non negative integers exists, but then a;,;, < 1, + V| <O0.

The matrix

19) For any integer matrix A of zeros and ones, all minimal covers are equivalent
to minimal covers that are veétors of zeros and ones, as well as their associated
canon.

20) In the Jacobi cover, some a;, = 0 must be 0.

If «, B is the Jacobi cover of A, B, a is not in general the canonical cover of
A, and the canonical cover of A is not even in all cases equivalent to f3, . For A
such that a;; = a; + B, the canonical covers of A (resp. A") will be equivalent to
a, p (resp. f, a) and they will even be equal if some a;, = 0 (resp. some f, = 0).

But the canonical cover of the matrix

N

I
—_ e e e
S O = =
S O O ==
S OO =
©C O O = o=

is (1,1,1,0,0), (1,0,0,0,0), that of A*is (1,1,0,0,0), (1,1,0,0,0) and the two
covers have no obvious relation.

21) Assume that a;; form a maximal transversal sum in the matrix A. For any
cover y, vof A, there is an elementary path from line i, to line i; of the canon of
A (sec. 2.1 step 2 ¢) iff a;, ;, = p;, + Vi

22) If A is a canon, then A" is not necessarily a canon, but we can easily compute
the associated cover 1., v; for A, then v;, y, will be a cover for A" and the associated
canon /; := maxy p, — p, will be easily computed, viz. in O(n*) operations.

23) Let A be a matrix. We may compute its simplest canon B and the simplest
canon C of B'. The matrix C' is the simplest matrix D that is a canon for A and
such that D' is a canon for A®, meaning that minimal quantities are added to the
rows and columns of A to obtain D.

24) Let A be a matrix of zeros and ones, and y, v a cover of A. The non zero
elements of A are located in the rows i with y; # 0 and columns j with v; # 0.
We recover Kénig’s theorem. Reciprocally, if R and C are two sets of rows and
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columns containing all the ones appearing in A, with §R+§Cminimal, then y, = 1
if i € Rand v; = 1if j € C defines a minimal cover for A.

So, in this case, a cover is exaltly equivalent to the associated minimal sets
of rows and columns.

25) Let A be a matrix of non negative integers and g, ,(; be transversal maxima
for A, then this matrix has at most

n

[1(aiee + 1)

i=1
covers of non negative integers and this number is reached if all elements of A
except these transversal values are 0 or less. Assume that the g;; belong to some
ordered group G where there is no infinite $tri¢tly decreasing sequence, then any
square matrix admits a finite number of covers, up to equivalence.

On the other hand, if there are an infinite number of values ¢ € G such that
MiNjse(;) Gy < € < @iy 4(ir), there are an infinite number of non equivalent covers
Hig "= € Hiziy = H55 Vo) °= Ginsoli) = & Vizo(ig) = Vi

The next proposition will help to clarify the situation and to compute, in case
of need, non Jacobi covers and their canons.

PROPOSITION 26. — Let A be a matrix, we assume without loss of generality, that
a;; form a maximal transversal sum. Let u, v be a minimal cover for A. Using
remark 21, we will use the reflexive transitive closure of the path relation <, defined
on rows of the associated canon of A and the transposed relation <" defined on the
rows of the associated canon of A®, i.e. the columns of A. Rows and colums will be
denoted by their indexes. For convenience, we repeat the rules:
)iy < iy if ay, = Wy, + Vis
i) iy <" b if ay, = py, + Vi,

i) For any integer iy, the rules:

Wi=p+e and Vii=vi—e if i <i

1

and
Wo=p, and V,:=v; ifnot,
where
e< min (g, +vi—ar,), (3)
g <1
iy A1

define a minimal cover for A.

i') For any integer iy, the rules

"
i

=p—e and V:=vi+e if i <"i
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and
W=y, and V{:=v; ifnot,
where
e< min (g+vw—ay),
ip <" i
iy A"

define a minimal cover for A.

ii) There exists no minimal cover i/, v for A such that j, > p, , pt; < p,+ 1y, —
and iy < i.

ii') There exists no minimal cover i/, V' for A such that ji;, <y, i > p— 1t + g1,
and iy <" i.

PrROOF. — i) As the transversal sum is unchanged, the minimality is granted.
We only have to prove that we obtain a cover. If iy < iand and i, < jor iy £ i
and iy A jthenay; < i+ V.= p+v. fip < iandiy £ j, a; < p,+v; <
pi+vi=pm+vit+elfip Aiand iy < j, ai; <y + v, = p; + v; — e by (3).

The proof of i’) is similar.

ii) We may chose i with a shortest path from i, to i. Let i, be the penultimate
row of the path. Then a;; = y, + v, by the path definition, 1, > p, + 1, — p,
by the path minimality hypothesis and a;; < 4/ + v, by the cover definition. As
the cover is minimal, we need to have for all k 1/, + v, = p, + v So

o= @i, — Vi = gt v — Vo= g — v
A contradiction. The proof of ii’) is exatly similar. =
The following examples are easy illustrations of the use of this theorem.

Examples. — 27) A matrix A with a;; = y, + v;, admits a single class of minimal
covers: that of y, v.

28) A triangular matrix of ones

11 11
0 1
0 0
: 11
00 --- 01

has exactly n+ 1 minimal covers of non negative integers indexed by 0 < k < n,
defined by

=1 if i<k and =0 if i>k

p=0 if j<k and f,=1 if j>k
They belong to n classes, as the covers obtained for k = 0 and k = n are obviously
equivalent and correspond to the minimal canon.
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Remark 29. — We could have defined covers for rectangular matrices, butif s < n,
we need to impose some lower bound for the v; in order to ensure the existence
of a minimal cover: if not the covers y; + cand v; — ¢ will be equivalent, but

N

Z<iui+c)+Z(Vj_c) = (2%+§‘6) — (n—s)d

i=1 j=1

If we impose v; > 0, for any matrix A of non negative elements (viz. a;; > 0),
the minimum cover p, v is such that

Z K+ Z vy = 0.
i—1 =1

so that Jacobi’s bound (see def. 1) could also be handled using covers in a direct
way, without adding n — s lines of 0. But this trick is more general, as it works
without any restriction on the entries in A.

Minimal covers in this setting are characterized, as one may easily check, by
the fact that there exists an injection o € S, such that y;, + vo;) = a; ;) and
v; = 0 for all j that do not belong the the image of o.

3 Related algorithms and deeper complexity
analysis

Discussing the complexity of Jacobi’s algorithm is an interesting subject, but we
need to keep in mind that it is anachronical to do it in the setting of modern
computation models, when Jacobi’s concern was to spare the work of useless
lines rewriting, in a time when paper and pen remained the main computation
tools. We will now provide some improvements that lead to a better complexity,
in our contemporary formalism.

3.1 Finding a maximal set of transversal maxima. The
Bipartite matching problem

We have encountered with Jacobi’s algorithm the following special problem of
finding a maximal set of transversal maxima. This amounts to solving the assign-
ment problem with a matrix of zeros and ones, using jacobi’s characterization
(see lemma 5). In what follows, as all maximal values will be 1, we will speak
of transversal ones, $tarred ones instead of transversal or $tarred maxima. This is
known as the maximal bipartite matching, or mariage problem.
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We could change the data structure and use the graph of the relation a;; = 1,
smaller that the full matrix, as initial data, but for the sake of clarity, we will stay
here in the dense setting.

3.1.1 Hopcroft and Karp’s algorithm in Jacobi’s setting.

First, we may repeatedly look for lower right ones. This may be done in se-
quence, until no one is found with a total cost O(sn). On may notice that Kénig’s
theorem 11 implies that this first Step already produces [O/2] transversal ones.

The elementary relation “there is a path from row i to row j” can be con-
Structed with co§t O(sn) and its graph has size at most s*>. The main idea is to
build a maximal set (in the sense that it is not $tri¢tly included in another such
set) of disjoints paths of minimal length leading to a lower first class row, before
building a new path relation. So the main $tep of the algorithm is not to produce
a single augmenting path, but, at each stage k, a maximal set of disjoint paths of
the same length fS,.

ALGorITHM 30. Length. — Input data: a matrix A and a transversal set of “ones”,
given by an injeftion o : [1,r] — [1,s] X [1,n], and that we assume here for
convenience tobe g;;, 1 <i<r.

Outputs: the list of sets of rows L;, 0 < i < k, that may be reached from a first
class row with a right “one” with paths of length at least i, and the minimal length
k of a path from L, to a lower row, or “failed” if no such row exists.

We $tart with the upper lines with right “ones”, that form the set L,. Let
M := Ly°.

At §tep 1, we define L; to be the set of elements not in M such that there is a
path to them from some element of L,. We increase M with L,;. We then define
L, to be the set of elements not in M to which there is a path from an element of
Ly, etc.

We $top this process as soon as L; is empty—and we return then “failed”—
or contains a lower line, that will be by construction a first class lower line. The
integer k will be the minimal length of a path leading to a lower first class row,
that we return.

This process is achieved in O(s*) operations.

To find a maximal set of disjoint paths we may use for brevity the follow-
ing recursive process (see [32] for a different more detailled presentation). The
maximal number of disjoint paths is bounded by the cardinal of L, and these el-
ements are the possible §tarting points of any of them. We define first a set F

®We assume it is possible to know with constant time if some integer belongs to any such
subsets of [1, s], by §toring boolean values in some array.
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of available rows, which is initialized with the set of rows not in L,. We define
first the following function, assuming that the length k has been computed as in
algo. 30.

ALGORITHM 31. Path. Input data: an integer jand a row iin L;.

Output: some li§t of rows i, ¢ F that forms a path of length k — j leading from
row ito a lower first class row, or “failed” if no such path exists.

Global variable: F, a set of elements to be used for building paths during the
process.

Step 1) Let Cbe the set of elements of L;;; N Fsuch that there is a path from
i to them.
Ifj=k—1and C# (), let ¢ € C, remove c from Fand return c.
If j < k— 1, remove from F the elements of C and go to $tep 2).

Step 2) For ¢ € C, if Path(c) = L is a path, then we put back in F the elements
of C to which “Path” has not be applied and we return the list [c, L].

This process clearly returns a path of length k to a lower first class row. The
elements in that path are removed from F, as well as the elements of L; from which
no such path of length k— i has been found. So repeated call to that funétion will
produce disjoint paths and the function Path can be applied only once to a given
row.

This implies that we can apply in sequence Path to the elements of L, to get a
maximal set of disjoint paths of minimal length k in O(s*) operations.

ALGORITHM 32. Increase. — Input data: a list T of transversal maxima, and an
“Increasing” path [j,, . . ., ji| from a row with a right maxima to a lower firét class
row.

Output: an increased list of transversal maxima. We proceed as in 2.1 $tep 2) d)

p- 12.

ALGORITHM 33. Hopcroft—-Karp. — Input data: a matrix A of zeros and ones.
Output: the elements of a maximal transversal sum of A and a minimal cover.

Step 1) As $tated above, we repeatedly look for lower right ones, producing
first at least [O/2] transversal ones ag(;), 1 < i< r.

Step 2) Let k :=Length(A, o, 7). Itk =“failed”, then return o.
If not, for i € L, do:

— J:= Path(k, i).

— If 7 +# “failed” then o :=Increase( o, ¥).

— Repeat Step 2).

The total cost of Steps 1) or 2) is O(sn), so the key point in bounding the com-
plexity is to evaluate how many times $tep 2) is performed, which is the goal of the
next two lemmata 34 and 39.
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Lemma 34. — Let f, be the length of the paths used at stage k, then the sequence f3,
is $§trictly increasing.

PrOOF. — Assume it is not the case and . < B, ,. We may assume that k
is minimal with that property. We call a changed line, a line that has been used
in some path at stage k — 1. In any path used at stage k, there must be a changed
line. If not, whever f, = p,_, and this contradicts the fa¢t that algorithm 31
produces a maximal set of disjoint paths of length f, |, whever g, < f, , and
this contradicts the minimality of the length of paths produced by algorithm 30.

An injective funétion ¢ : [1,s] — [1, s] defines a unique set of disjoint paths
and loops, the union of which is equal to the union of its image and its definition
domain. If 3r ¢'(i) = i, then i belongs to a loop, if not let ry := max{r|¢~"(i) is
defined} and r; := max{r|¢'(i)is defined}, then i belongs to the path ¢~"(i), ...,
" (i)

Let ¢ be the function defined by the 7 paths of Stage k — 1 and i, ..., ig,
be a path of Stage k: it must have some rows in common with the paths of
Stage k — 1. Let them be iy, ..., in,, r > 1. If ¢ '(iy,) is defined, we replace
in the graph of ¢ (¢~ '(ip,), in,) With (¢~ (ix,), in.+1). We then add to the graph
of ¢ the couples (iz,ir41), 0 < ¢ < r, { ¢ I(h) and the couples (iy,, ¢(in,)),
1 < k < 1, ¢(ip,). This con$truction is illustrated by the following figure.

1 e e N row(pfl(ihk)
Elementary path relations

at stage k—1 are indicated by : : .
and at Stage k by |; after rear- : 1 - rowip—
rangement by |. : [I

i 1 - 1 - rowip
The starred ones of Stage [ .
k — 1 by 1and those of stage k | .- s TOW g
bY 1 1 row ¢(ip, )

This defines an injection to which is associated a new set of paths and (possibly)
loops.

Then, the sum of their lengths is at most 7,_, + f, — r (and $tri¢tly smaller
iff loops do exists). So, as f, < f,_, one path must be of length strictly smaller
that f, ,. This contradiéts the minimality of f, ;. =

Remark 35. — Our paths of length rcorrespond to paths of length 2r+1 following
the conventions of Hopcroft and Karp [32]. This is due to the fa¢t that they define
the path relations, not between rows but between the “ones” involved in the path
relation. In their setting, starred elements appear with a minus sign and the
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others with a plus sign. So the process of reconstruction reduces to computing
the sum of the two paths. E.g. denoting by 1,; a one placed in row i and column
j we have:

(411 — 155+ o3 — 15y + Lag) + (12 — 155 + 133)
= (Flia = 15+ Igs) + (1o — 15, + Lua).

The element 1,5 that appeared two times has vanished and the two paths of
lengths 5 and 3 are replaced by two paths of lengths 3 and 3.

Examples. — 36) In the following example, the $tared ones 0 1 1 0
of the first stage (k — 1 in lemma lemma-decreasing) are itali- 110 0
cized and those of the second stage (k in the lemma) bold. The 1.0 0 1
first—increasing—path includes rows 1, 2 and 3. The second 00 1 0

rows 3, 2, 1 and 4. Using Hopcroft and Karp’s convention we

have (115 —1io+ 1, — 11+ 151) + (13— 131+ 11— 1o+ 12— 13+ 143) =
154 + 14 5. This means that we have, in Jacobi’s setting, two paths of length zero,
viz. lower right ones.

37) Using the same conventions as above, the first path in- 0 1 1 0
cludes rows 1, 2 and 3, the second rows 3 and 4. In Hopcroft 110 0
and Karp’s convention: (115 — 1;5 + 12, — 155 + 135) + 10 0 1
(134 — 151 + 141) = (113 — Lipg 4+ 1o — o1 + 141) + 134 10 0 0
In Jacobi’s setting: one path of length 2, formed of rows 1, 2

and 4, and one of length 0, viz. a lower right “one”: 15 .

38) The first path includes rows 1, 2 and 3, the second rows 3, 1 110
1and 4. In H & K’s convention: (135 — 1,2+ 1,5 — 121+ 154) 17100
+ (1sa— 1314+ 11; — s+ 143) = (111 — Lo+ 1o — 1p4) + 10 0 1
154 + 143. Jacobi’s: one loop, formed of rows 1 and 2, and two 001 0

lower right “ones”™: 15, and 14.

Lemma 39. — Let (a;j)(ijcc, and (aij)ijec,» where Gi, G, are the graphs of two
funétions [1,s] — [1, n|, be two families of r, := $G, and r, := G, transversal
ones of A. We assume r, > ri. Lower right “ones” in the family (a;;)(ijca,. i.e.
elements that are not placed in the same rows or columns as the elements of Gy, will
be considered to be paths of length 0.

Then, using only the $§tarred “ones” in (a;;)(ijcc, and the “ones” in (a;;)(ijea,
placed in the same columns, we define a path relation such that there exists a path
of length at most |r/(r, — r1)|.

Proor. — If lower right “ones” exist in (a;;)(;jcc,, then the result stands
according to our convention. We obtain possibly loops (if G; and G, have a
element (i, j) in common, then we consider it as a loop from row i to itself) and
at least r, — r; open paths, as there are as many elements from G, and G, in loops.
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As a path of length m involves m §tarred ones in G, the sum of the lengths of all
paths is at most r; and there exists a path of length at moét |r/(r, — ry)]. =

THEOREM 40. — Assume that the maximal number of transversal “ones” in A is s,
then the algorithm requests at most \/s, steps. Its complexity is O(s(l,/zsn).

PROOF. — Let k := |s) — /5] and £ be the number of $teps. Let G; be set of
starred ones at step m < ¢ — k and G, the maximal set of Starred ones at step .
Using lemma 39, the length of a path at step m is a most s,/,/5,, so that there are

at most /s, | steps before §tep £ — [, — /5] and £ < [/5]. =

This problem was fir§t considered by Frobenius [25] in order to decide a priori
if a matrix where non zero element can appear at known places has an identi-
cally vanishing determinant. It is a desappointing that the complexity of solv-
ing this problem is for the moment bigger than that of computing a numerical
determinant. We can only achieve the exponent of matrix multiplication with
probabilistic algorithms using random numerical values! See Ibarra and Moran
[35]. One may notice that this method, when it succeeds, only gives a cover, but
no maximal matching and its seems uneasy to compute it faster that the Hopcroft
and karp method, even if a cover is a priori known.

3.2 A O(s*n) version of Jacobi’s algorithm

In order to improve the complexity of Jacobi’s algorithm, we only have to remark
that it is useless to reconstruct the whole path relation in order to reduce the
number of second class rows or make some lower first class row appear, as the
starred maxima will remain unchanged.

At tep 2 c) p. 12, we also have to define the set Cy; of first and second class
rows. For each i € Cy 1, we compute the minimal distance d; between its starred
maximum a;; and some third class row element in the same column, or between
some upper right maxima of a first class row i and some third class row in the
same column.

All this is done with a coét at most O(sn).

c¢’) We will then increase all third class row by d;, := minc, d;. If this
creates a lower first row, step c) is finished. If not, we remove i, from the set
Cr 11, and add it to the third class. We redefine d; to be the minimum of d; and the
distance between its Starred maximum q;; and a;, ;, or between some upper right
maxima a;; and a;, ;. We iterate §tep c’) with these new values.

The subétep ¢’) is performed with a total co§t O(n) and will be interated at
most s — 2 times, until 2) is completed and we don’t need step e) any more.

THEOREM 41. — Using substep 2. ), the complexity of Jacobi’s algorithm is bounded
by O(s*n).
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This improved complexity O(n®) was fir§t obtained for square matrices by
Dinic and Kronrod [20] in 1969, rediscovered independently by Tomizawa [77]
in 1971 and then by Edmonds and Karp [22] in 1972.

Remark 42. — As we have already seen (see rem. 9), we cannot escape, in some
cases, to repeat at least s — 2 times step 2 of Jacobi’s algorithm. It could be pos-
sible to speed up the construction of elementary step relation, as in most cases
they are unchanged or reversed. But it seems unavoidable to escape a O(s*) com-
plexity when building the class partition. In this situation, we don’t know how
to construct in a single step a large set of augmenting paths, as we have been
able to do for the maximal matching problem (see 2.2).

One may notice that pionnering aspects of Jacobi’s work include reachability
issues and computing the transitive closure of a directed graph. But this problem
is not formalized and its solution is implicitely assumed to be achieved in some
naive way for small size data. However, some of his algorithms solve problems
equivalent to some instances of the shortest path problem.

3.3 A canon being given, to find the minimal one

In order to solve this problem, Jacobi proposes ([36] VII) first to compute a maxi-
mal set of transversal maxima, which may be done using the method developped
in 3.1 with complexity O(n*/?) for a square matrix A. Knowing transversal max-
ima, we may use then the following method.

ALGORITHM 43. Data: a square matrix A of size n and a maximal system of
transversal maxima for a canon of A, that we assume for simplicity to be a;; + ¢;.

Step 1. We decrease all the /; by min!_, /;, so that, at least one /; is 0.

Step 2. We build the path relation. Then, we establish the list L; of rows with
¢; = 0, or to which there is a path from a row with ¢; = 0, and the list L, of the
remaining rows.

Lemma 44. — If there is a path from all rows to a row i with {; = 0, then the canon
is minimal.

PrROOF. — Assume it is possible to decrease some /;, to a new value ¢;. We
may choose /;, so that there is a path of minimal length from row i, to a row i
with ¢; = 0. It means that there is a path from row i, to some row i; with ¢;

unchanged, meaning that a;,;, + ¢} < aj;, + /;, a contradition. =

By lemma 44, if L, = (), we have finished. If not, we compute

b := min(min ¢;, min min a;; — ay ;),
i€Ly i€L; /€L, ’



Jacobi’s results translated in Kénig’s, Egervary’s and Ritt’s mathematical languages 29

that is the minimal distance between some Starred element in L; and the elements
in the same column in some row of L,. Step 2) may be achieved with complexity
o(n?).

Step 3. We decrease all the ¢;, i € L, by b. In this way, some rows will go from
L, to L,. We then repeat step 2).

A naive complexity analysis gives a O(n*) complexity for the whole process.
It is possible to turn it to O(n* In(n)), using “balanced trees” or “AVL trees, from
the name of their inventors Adelson-Velsky and Landis [1]. See also Knuth [50,
6.2.3 p. 451]. This tree structure allows to maintain dynamically an ordered list
of p elements, allowing to insert, delete, search the order of an element or an
element of a given order in O(In p) operations.

ALGORITHM 45. We use the same input and data and convention as above (alg. 43).

Step 1) a) Decrease all the /; by min?_, /;. Create a list L; of the rows i with
¢; = 0 and a li§t L, of the remaining elements.

b) For i € L,, create a balanced tree T, containing for all the the rows i of
L, the pairs (min(¢;, ay ; — a;;), ') of L, sorted by reversed lexicographical order.
This may be achieved with total cost O(n? In n).

Step 2) Compute the smallest pair (min(¢;, ay;, — ay.,,), 1) in the trees T.
Decrease the ¢; of the value min(¢;,, ay ;, — a;y,;,). For all i € Ly, suppress the pair
(min(¢; , az ; — ai;), iy from T,. Add row i, to L; and suppress it from L,. Create
a balance tree T; as above.

All this may be done with total co§t O(nln n).

If L, is empty, we have finished, if not we iterate step 2), which will be per-
formed at most n times, providing a total co§t O(n? In n).

THEOREM 46. — Knowing a canon for a square matrix of size n X n and a set of

transversal maximal elements in this canon, one may compute the minimal canon
with cost O(n*In n).

PROPOSITION 47. — Let B;; be a square matrix at least a transversal set of maxima,
that we may assume to be: b;;. Then, the reflexive transitive closure of the path
relation does not depend on the choice of this transversal set.

ProoF. — Assume that b;; and b; ,(;) be two transversal sets of maxima. We
denote by <; (resp. <) the path relation defined using the fir§t family (resp.
the second). Assume that there is a elementary path i <; j. Consider the cycle
ip = iand ipy; = 0(i,). Let i, = i. According to the path definition, there is an
elementary path i, <; i,;1 and i,;1 < i,. Using the cycle, we have

i <g by =g+ <o iy = o(i) <3 J,

so that the reflexive transitive closure of <; and <, are the same. =
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DEFINITION 48. — We will denote by 7, the path relation associated with the min-
imal canon A + A of A.

Remarks. — 49) Generically, i.e. if quantities a;;— a;; are all different, 74 defines a
forest of rooted trees with n labeled vertices, where the roots correspond to rows
with A; = 0. By a variant of Cayley’s formula there are (n+ 1)""! possibilies, and
as much formulas for the values of the minimal canon /;. If there is an elementary
path from row i, to row i;, then to row i, ...up to row i, with A; = 0, then

-
)Lio = § :aikaikfl = Ay
k=1

If a given row i, may be connected to two different “roots” (i.e. rows i with A; = 0,
it is enough to consider one to fix the value of A;. This may be visualized using
some mechanical con$truction (see below subsection 3.8).

50) In the case of a re¢tangular matrix, we cannot use this method. E.g. consid-

ering the matrix
2 21
(112):

with a canon ¢ = (0, 1)" and the transversal elements in bold, we cannot decrease
the canon without changing these transversal element. However, the minimal
canon is 0 with the transversal elements in italics.

51) Assume we have computed Jacobi’s bound O for some s x n matrix by adding
n — slines of 0 and that O = >} | a;;. Then, for any canon /, the value of /;, for
s <y < nismaxi ,max;; a;;+ ¢;. This means that,if one needs to compute
the minimal canon for such a matrix, one just has to compute the minimal canon
of the square matrix (a;;)1<;j<; in O(sln s) operation, and then the common value
of the ¢, s < i < nin O(s(n — s)) operations.

Assume now that we want to compute the minimal canon for a matrix A with
n — s columns of 0. We may assume that the transversal maximal elements are
ai;, 1 < i <s. Then, it is easily seen that for / > s, the minimal canon A is such
that Ay = max} , 4.

Before leaving this subject, we will emphasize the special case of matrices of
zeros and ones, associated to maximum matching problems. For this, the algo-
rithm 43 will run in O(n?) Steps, as we only need to apply $tep 2) one time. It is so
efficient enough and will allow us to maximize the number of rows (or columns)
in Kénig’s theorem 11.

PROPOSITION 52. — Let A be some s X n matrix of zeros and ones (possibly hori-
zontally or vertically rectangular), A’ the max(s, n) x max(s, n) matrix obtained
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by adding |n — s| columns or rows of 0 to A. Let A be the minimal canon of A', u
and v the associated canonical cover and O the maximal transversal sum of A'.
i) If some A; is not 0 (or equivalently some y; = 1 — A; is not 1), then for any
sets R of rows and C of columns containing all the 1 in A, iy € R implies A;, = 0.
ii) In Kénig’s theorem, there exists a unique couple of sets of rows R and columns
C with R maximal for inclusion (resp. with C maximal for inclusion).

Proor. — The assertion i) is a straightforward consequence of the minimality
of .

ii) The result is straightforward if the Jacobi number O of A is s. Then R =
{1,..., s} is the maximal set of rows.

If some A; = 1, then the result is a direct consequence of i).

If all the A; are 0 and O < s, one just has to consider the (max(s, n) + 1) x
(max(s, n)+1) matrix A” obtained by adding to A’ a row of max(s, n)+1 ones and
a column of max(s, n) zeros. We get a maximal transversal sum of value O for
A" by completing one for A’ with the 1 in column and line of index max(s, n) + 1.
As there must be some zero in any maximal transversal sum, some A; must be 1
in the minimal canon of A”, so that we can now apply 1).

The statement for columns is obtained by considering the transpose matrix
A m

DEFINITION 53. — We call this cover the row maximal (resp. column maximal)
minimal cover.

ALGORITHM 54. A s X n matrix A of zeros and ones being given, together with the
elements of a maximal transversal sum of elements of A the following algorithm
computes a row maximal minimal cover.

Step 1. Compute the Jacobi number O of A. If O = s, then the s rows of A
form the row maximal cover.

Step 2. Make a square matrix A’ by adding to A |n — s| rows or columns and
add a row of max(s,n) + 1 ones and a column of max(s, n) zeros to define a
(max(s,n) + 1) x (max(s, n) + 1) matrix A” as in the proof of prop. 52. Then
compute the minimal cover of A” using algorithm 43; the rows 1 < i < s with
¢; = 0 form the row maximal minimal cover of A.

3.4 Transversal maximas being given, to find the minimal
canon
If we don’t have a canon but just know the place of transversal maxima in the

matrix A, then we can proceed in the following way:.

ALGORITHM 55. We assume that the transversal family is a;;. For1 < i < n,
increase row i by max}_, ax; — a;;. This may be done in O(n*) operations.
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Repeat the process untill all rows remain unchanged.

PrOPOSITION 56. — This algorithm produces the minimal canon in O(n*) opera-
tions.

Proor. — The process in the algorithm will be repeated at most n times, the
exact number being, in the generic case the maximal distance from any row to a
row with A; = 0, according to the path relation of def. 48. =

Remarks. — 57) This algorithm may be easily modified to compute the path
relation forest. Given any transversal family a; ,(;), it may be used to test if it cor-
responds to transversal maxima, the stoping of the algorithm after n step beeing
a necessary and sufficient condition.

If the algorithm does not stop, it means that the path relation contains a loop
7 (which may be tested before step n), so that 3 a; (i) < > @i zo0(i)-

58) The last example of [36, § 3] is the transpose of a canon. Then, this transpose
is not a canon, but the terms of a maximal transversal sum are known and we
can apply the above method. We may also compute a cover and deduce of it a
canon (see rem. 22), allowing to use the more efficient method of 3.3. In Jacobi’s
informal setting, the two methods have comparable complexities.

3.5 Tropical geometry

We will denote by M ® N the tropical matrix multiplication. One may wonder
why the analogy with the determinant cannot be used in a straightforward way.
One may remark first that the analogy suffers important limitations: the analog
of addition is “max” that has no inverse and the tropical determinant of a tropical
product of matrices is not in general the sum of their tropical determinants. Such
a property §tands only in special situations, e.g. |A ® Bl = |A|r ® |B|rif Bis
a canon and A the transpose of a canon. Moreover, the tropical determinant is
also the tropical permanent...

Assume that a;; is a transversal family with a maximal sum. Then, reducing
row iby a;; we get a new matrix Bwith b;; = 0, the result of the last algorithm 55
is the tropical matrix product: (ay,...,a,,) ® B". A O(n®) algorithm for the
tropical multiplication would produce a O(n”In(n)) algorithm for the problem of
finding a minimal canon, knowing the elements of a maximal transversal sum.

3.6 Minimal canons subje¢t to inequalities

PROPOSITION 59. — Let A be a square n X n matrix, and ¢;, 1 < i < n positive
integers. Then there exisls a unique minimal canon subjeét to the condition {; > c;.
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Proor. — Consider the new matrix A’ := A + c¢. Then, ¢ is a canon of A,
subject to ¢; > ¢;iff ¢ — cis a canon of A', so that the unique minimal canon A of
A is such that A + cis the unique minimal canon of A, subjeétto ¢; > ¢;. =

This proof obviously provides an easy algorithm to compute such minimal
canons, that we will be used in se¢tions 9 and 10 to bound the order of derivation
of initial equations or normal foms necessary to perform change of orderings or
resolvents.

3.7 Minimal canons and shortest paths

Let A4/ be a canon for A; assume that a;; form a maximal transversal sum. Then,
we define a weighted directed graph G on the set {0, 1, . .., n}, by associating the
weight w;; := a;;+{; — a;; — {; > 0 to the ordered pair (j, i), and wy; := ¢; to the
ordered pair (0, i).

Reciprocally, we may associate to any such dire¢ted graph with positive weight
a square matrix A and a canon A + /, defined by a;; = C, for C > 2max;; w;,
li=wy;and a;j := C— wj; +{; — (.

ProrosITION 60. — The veclor of integers A is the minimal canon of A iff there
exists in G a shortest path of length {; — A; from vertex 0 to vertex i.

Proor. — It is enough to remark that there exists such a shortest path from
vertex 0 to vertex iin G iff there exists a path, in the meaning of lemma 44, from
row ito arow iy with 4;, = 0. So, according to this lemma, A + A, is the minimal
canonof A. =

In the same way, let A be a n X n square matrix. Define an oriented weighted
graph on the set of vertices {0, 1,..., n} by setting w,; := 0 on edge (0, i) and
w;; = a;; — aj; on edge (j, i). Reciprocally, define for any such weighted graph a
matrix A with g;; := C = max(0, max;; w;;) and a;; := C — wj,.

ProposITION 61. — i) The entries a;; of A form a maximal transversal sum iff G
admits no negative cycle.

ii) Assuming the a;; to form a maximal transversal sum, the vector A is the
minimal canon of A iff there is a shortest path of length — A; from vertex 0 to vertex
iinG.

Proor. — i) There is a cycle in G, with negative value y iff there exists a
permutation o : [1,n] — [1,n], so that Y7, a; ;) = —y + YL, a;;, so that the
a;; do no form a maximal sum.

ii) To see that A is a canon, it is enough to remark that if a;; + 4; < a;; + 4,
then there is a path from 0 to i of length —A; + w;; = =4+ a;;—a;; < —A;. =

This means that the problems considered in sections 3.3 and 3.4 are equiva-
lent to computing a shortest path, respectively for a directed graph with positive
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weights and a directed graph with arbitrary weights but no negative cycle. Al-
though this contribution is non explicit, it seems that Jacobi deserves some men-
tion of his pionnering contribution to graph theory. The complexity of Jacobi’s
original algorithm is O(n*), similar to that of Bellman [3] that computes minimal
paths between all couples of vertices. See Schrijver’s very interesting article for
more details and references on the history of the shortest path problem [75].

3.8 Physical analogies
It is always a greatest help for mathematical intuition to rest on physical models;
one may easily design devices computing minimal covers.
3.8.1 Mechanical computation of a minimal cover

E.g., one may consider a mechanical system consisting of 2n horizontal rods, n
standing for the rows and n standing for the columns, crossing at right angles.
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At each crossing of two rods i and j, a cable passing to
a pulley is attached to both of them, so that if the relative
height y; and v; of the two rods, as well as the height a;
of the pulley is defined to be 0 at rest, when the q;; are
increased to take new positive values, one has:

that becomes y;, + v; > a;;,

. V;
,UI_Z‘_] Z ai,j7

by chosing a half scale for the pulley height. Under grav-

+2
1 ity, the total energy of the system, which for rods of equal

masses is proportional to

Z IJi + Vi,
i=1

will be minimal, so that this device will produce a minimal cover. Assuming that
the weight of a rod is M, adding a little extra weight to those §tanding for the
rows, say 0 < ¢ < M/n, the equilibrium point will be unique and will correspond
to minimal values for the p,, which corresponds to the minimal canon, provided
that we impose p, > 0, using some wedge.

Using such a device, —oco” entries can be modeled by suppressing the cable
and pulley at some crossing. One can also allow rods to move down, so that
negative values for the v; can be achieved too. If O is —o0, then some rods will
fall down... untill they are stopped by the finite length of the cables.

3.8.2 Materialization of the path relation

A second mechanical device may help visualize the graph of the path relation
74 (see def. 48) and rem. 49. Some vertical paterns reproduce the profile of each
row of the matrix, e.g. below on the left row 3 of some 7 x 7 matrix. At the top
of the part of each patern i correponding to a;;, an orthogonal rod is fixed. The
paterns are assumed to be able to move vertically, so that if some g;; is greater
than g, ;, the rod of patern i will rest on patern j. The lowest paterns rest on the
floor corresponding to ¢; = 0. The drawing below on the right corresponds to
the minimal canon of

3 4 2 3 4 2
A=|1 3 4|, whihiss A+ | 1]|=]2 4 5
11 3 3 35

See subsec. 4.1.
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If we use some wedges to impose minimal values c; for the height of some
profiles, one will obtain the minimal canon subje¢t to the condition ¢; > ;.

3.8.3 Electrical computation of a minimal cover

We finish with an ele¢tric circuit that may be used to compute a minimal cover.
The voltmeters placed in the rows and columns of the circuit will mesure quan-
tities corresponding to the covers p;, and v;. Some adjustable voltage generators
are connected at each crossing, providing a tension corresponding to a;;. The
presence of a diode realizes the inequality: y, + v; > a;;. So, y, vis a cover. We
cannnot with this device model entries a;; < 0; the absence of connection or a
generator with a negative voltage are equivalent. If all the internal resistances
of the voltmeters are equal to some value R, we need have >, u; = 3_; vj, as the
intensity in and out of the circuit must be equal.
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If we assume that the a;; are 0, except for a;; := 1,1 < j < nand a;; := 1,
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1 < i < n, one finds the solution p; = v; = (n—1)/nand that g, = v; = 1/n for
1 < i,j < n, which is not a minimal cover.

We need some extra assumption: let |a| := max;;a;; (assuming |a| > 0) it
is then enough to replace the a;; with b;; := a;; + (n — 1)|a| to have a working
device.

Let indeed b;; = p;, + v; for r rows and s columns, with r + s minimal. For
simplicity, let these r rows be rows 1 to r and these s columns be columns 1 to s.
Let I; be the ele¢trical intensity from the fir§t r rows to the last n — s columns, I,
from the last n — r rows to the fir§t s columns and 7 from the first r rows to the
first s comlumns; by hypothesis, the intensity from the last n — r rows to the last
n — s columns is 0. For 1 < i < r, the minimal value of y, is at most R(I; + J)/r
and the minimal value of v; for 1 < j < sis R(I, + J)/s. In the same way, the
minimal values p; of y; for r < i < nand the minimal value v;, of v;for s < j < n
are resp. at moét RI; /(n — s) and RL/(n — r).

As i, +vj;, = by, fors < j < n,weneed have R((L+7)/r+1/(n—s)) < nla
so that

5

r(n—s) nlq|
<—
n—s+r R

In the same way, we have
L < s(n—r) M.
n—r+s R

This implies that y; is at most sn|a|/(n—r+s) and v, is at most rn|a|/(n—s+7).
We will show that r+s = n, so that y, vis a minimal cover. If not, r+s < n—1,
p;, < snA/(2s+ 1) and v, < rnA/(2r+ 1) so that

N

v < ) rlal < (n=Dld] < b,

n—r+s n—s—r
and we need have y, + v, = b;,;,. Equality is achived for some “lower right”
element b, ;, which contradiéts minimality of r + s.

Precise computations of the values y; and v; would exceed the ambition of
this example and are left to the reader. The conception of a better analog device
for computing the tropical determinant may have some practical interest.

3.9 Conclusion of section 3

The besét complexity bounds for the assigment problem rely on “scaling” meth-
ods, that is recursively replacing in A a;; by |a;;/2] to obtain an approximate
maximum, as in Gabow and Tarjan [27], where a O gns/ 2 ln(nC)) complexity is
achieved (with a;; < C). See Schrijver [74] or Burkard et al. [7] for more details.
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The basic idea is to use Hopcroft and Karp algorithm, which is faster, to improve
the approximation at each of the In C $teps; some extra In n §teps are required to
check the last approximation and deduce from it the exact value.

We have seen that Jacobi’s work contained the germs of important notions
in combinatorial optimization and graph theory. The efficiency considerations
in Jacobi’s papers reflect his computational tools: pen and paper, but his algo-
rithm for the assignment problem may be easily adapted to express improved
complexity bounds obtained in the early seventies.

4 A differential parenthesis. Various forms of the
bound.

4.1 Ritt’s strong and weak bound

Jacobi did not mention what should be done if some variable x; and its derivatives
do not appear in some polynomial P;. The easiest answer is to define it as 0, but
a better choice in such a case is the convention introduced by Ritt [70] ord, P; =
—o00. Lando [59] defined the first choice as the weak bound, and the second as the
§trong bound. Our definition also includes some minor modifications in order to
extend the bound to underdetermined systems.

DEFINITION 62. — By convention, ord,,P; = —oo if x; and its derivatives do not
appearin P;. Let a;; := ord,P;, we define S, , to be the set of injections [1, s] — [1, n].
We define Jacobi’s number as Op := O, = maxses, , 21— @io(i)-

Remark 63. — An easy consequence of remark 49 is that, assuming that A is
a matrix of non negative integers and —oo elements, with max;;a;; = C and
04 € N, then, assuming that for the minimal canon A, the sequence A, is non
decreasing, 0 < A; < (i— 1)C, and the associated minimal cover «, f is such that
0<ao<(n—i)Cand —(n—1)C< B <C

So, if A is a n X n matrix of integers and —oo values, we may use also any
value smaller that —nmax;; a;; instead of —oo to define a new matrix A’ such
that O(A') < 0 <= O(A) = —o0.

If s < n we can also complete the matrix g;; of orders with n — s rows of
zeros, in order to get a square matrix A’. Jacobi’s bound is then also equal to
MaXyes, 2 oig a’w( > this equivalent definition allows to compute the bound, using
Jacobi’s algorithm.

Of course, we described this algorithm for matrices with coefficients in an
ordered abelian group, and Z U {—o00} with the convention Z — co = {—o0} has
not such a $tructure. So it is be§t to use the group {acc + b, (a,b) € Z*} with
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(a100+ by) + (ay00 + by) = (ay + az)00 + (b + b;) and (a;00+ by) < (az00 + by)
< q; < ayora; = a;and b; < b,.

Jacobi also introduces a determinant V, the non vanishing of which is a nec-
essary and sufficient condition for the bound to be reached. In order to define it,

he considers the matrix (OP;/ ﬁyc](-ai’j)) and forms its determinant. Then, he only
keeps the produts + [, OP;/ 8x((;z"li)” ©) such that S Gio(y = O. this is why he
calls this expression the truncated determinant® of the system. We may equiva-
lently use the following definition.

DEFINITION 64. — Let A" be the order matrix of the syStem P, completed with n — s
rows of zeros and A" be the minimal canon of A’. The minimal cover o, f8' is defined
as in definition 13: A" := maxy_, A, o, = A" — A; and f; = max}_, @, — of. We
pose furthermore B' := max}_, f; and yf, := B' — f.

Let Q € k[x|, we define ord)JCjQ = ord,,Q + i and ord’ Q = max”_, ord;]g_Q.

DEFINITION 65. — We denote by J, the matrix (OP;/ 83cfi+ﬁj). If s = n, we call the
system determinant and denote by V the determinant of Jp. If s < n, V will denote
the set determinant of all s X s submatrices of Jp.

It is straightforward that this definition of V is equivalent to Jacobi’s one,
which is to keep in the Jacobiaan determinant only the terms corresponding to
maximal sums in the order matrix. Partial derivatives OP;/ 8xfi+ﬁj are in faét non
zero iff orde](-l Vo= ordJPl-. Moreover, this result stands for any cover, not only

Jacobi’s cover.

PROPOSITION 66. — Let i, v; be any cover for the matrix A := (ord,P;), V =
‘api/axj(ﬂrf"’j)l.

4.2 Reduéction to order 1

We conclude with the well known reduction to first-order equations. Lando [59]
did prove Jacobi’s bound for order one systems, also considering underdeter-
mined systems, but only with the weak bound. She remarks that the weak bound
for the first order reduction may be greater than that of the original system, but
that the strong bound remains the same. We can even prove that the truncated
determinant is unchanged, up to sign.

We introduce new variables u;; for1 < i < nand0 < k < r; := max;_,ord, P,
and replace in the equations P; x](»k) by i for 0 < k < ryand by u;,_, for k = r;,
obtaining a new equation Q.. We complete the new system with the equations
Wik =t —uiforl1 < k<.

8 Determinans mancum, or Determinans mutilatum.
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Lemma 67. — Let P be a system of n differential polynomials in F{x}, and Q, W the
syStem of n+ >, r; equations in F{y} obtained by reduction to the first order, as
defined above, the P; and the then Op = O¢ w, Vp = £V and in the canon { for
the order matrix B for the system Q, W the integers {;, 1 < i < s are the same than
the A; in the canon A for the order matrix A of P.

Proor. — We choose to put first in the system the P;, in the same order, and
then the W and use on the u;; the order u;, < wyy <= j < jorj= jand
k > K. To build the order matrix Ao, we take first u; ,,_1, ..., up,,—1 and then the
W,k in the same order as the ;. We will show that Vp = £V ,; it is clear that

the choice of a different ordering can only change the sign of V.
The order matrix B of Q has the following shape: (L, - - - L,) with L; :=

e BPPN 15 PP 5

Gl B

U< RPN v IR 5

.. T3 rows:- - -
Z.7<J J

. E L Tjrows: .-
J>j

For more readability, only terms possibly different from —ooc are displayed. The
terms [/ ;] are 1if ord, P; = r;, 0 if ord, P; = r,— 1 and —o0 otherwise. The terms

[/] for 0 < k < r; — 1 are 0 if xj(-k) appear in P; and —oo otherwise. It is easily
seen that n transversal non elements in the first n rows may be completed in a
maximal set of transversal non —oo elements in one and only one way. Indeed,
once an element [}’] is chosen in L; there is a unique choice of integer tranversal
element in L;, represented in bold above. And among them there are exactly k 1,
so that their sum is equal to k. These elements appear in bold in the figure above.
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Hence, there is a one to one correspondence between maximal transversal
sums in A and B, so that both matrices have the same tropical determinant.

The $truéture of the sy$tem determinant V(Q) is similar and an easy compu-
tation relying on the number of inversions shows that

V(Q) = (—1)Zm iy (p),

Indeed, for any term in a determinant that corresponds to the permutation o,
we may define an inversion as the case when i > i and (i) < o(7). So the
number of inversions is 3=, ; With 1; := 3,0y (;)<,(r) 1. Then, the signature e(o)
of a permutation being determined by the number p of transpositions 7; in any
decomposition 0 = 7,0 --- 7, e(0) = X, 1.

We have shown that for any permutation o for A is associated to a single
permutation in B. First, one sees that the inversion numbers i; for the first n lines
are the same for A and B. Then, one only has to consider the remaining lines that
are decomposes in blocks

Zj< ;1 TOWS

> 5> Tj rows

The presence of the —1 terms compensates the extra inversions, so that we may
reduce to the diagonal of 1, for which the total inversion number in block M; is
n — j+ 1 for each term and that produces a total of (n — j+ 1)r;.

In order to show that /; = A;1 < i < s, we fir§t remark that if A is a canon for
Band }’; a,(;),; a maximal transversal sum, then the rows of B corresponding to
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equations W, w > a,(),; must be respectively increased by max, ~q,, (@i —
w+A;—1, provided that this quantity is positive. On the over hand, for w < as(; ,
the rows must be increased by max; ming<yjg, o0 Ai + k — w.

The definition of a canon for the column of u;,, implies that we must have
max; a;; + A; < aq(); + Ag(j)). Then, the A; of the minimal canon for B are the
minimal integers with this property, which also characterizes the canon of A, so
that 1, =/¢;,1<i<n =

Remark 68. — It may be difficult to model —oo entries for a matrix in some
computer algebra system. An easy trick is to replace them by some suitable
negative value, say D := —(nC + 1) if A is matrix of non negative integers
and —oo elements with max;;a;; = C. Then, the tropical determinant of A
is O(A) = —aoco + b iff that of the new matrix A’ is O(A") = aD + b with
—(a)D< O(A) < —(a—1)D.

4.3 Block decomposition

If the integer elements in the order matrix admit a minimal cover of a rows and
b columns with 0 < a,b < n, then the system P admits a non trivial triangular
block decomposition. In the case where s = n and a + b = n, one may look for
such a block decomposition using the reflexive transitive closure of the elemen-
tary path relation, as defined in subsubsection 3.3. One gets so a partial preorder
that defines equivalence classes of rows i, j with i < jand j < i. Sorting the vari-
ables and equations according to this preorder produces a block decomposition,
the block corresponding to these equivalence classes, that do not depend on the
choice of a maximal transversal family by prop. 47.

In the same spirit, considering the reflexive, transitive and symmetric closure
provides a diagonal block decomposition. We will not develop these easy results,
but they can be very helpfull to clarify the §tructure of a system before any at-
tempt to solve it, whenever its size makes difficult to find the requested form by
simple inspection.

5 An algebraic parenthesis. Quasi-regularity and
“Lazard’s lemma”

Jacobi considers functions without any precision about their nature. One may
present his results in the framework of diffiety theory, provided that the equa-
tions are defined by C* functions, satisfying some natural regularity hypotheses
(see [66]). We use here the formalism of Ritt’s differential algebra, that allows
effective computations. Here characdteristics set will be used instead of Jacobi’s
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“normal forms”, and Lazard’s lemma will take the place of the implicit funétion
theorem.

5.1 Quasi-regularity

As we will see, quasi-regularity, although it remains an implicit hypothesis, plays
a central role in Jacobi’s proof of the bound. The informal meaning of this notion
is that a differential sy§tem P;(x) = 0, “behaves like” the linearized system dP; =
0, viz. Y1, 232, 0P/ xPdx® = 0, in the neighborood of a generic point of
some component of {P}.

This idea was formalized by Johnson [45, 46, 47] who used it to prove Janet’s
conjecture [48]. It is also the key of the first complete proof of Jacob’s bound in
the non linear case, given by Kondratieva et al. [53]. Ritt was able to prove the
bound for general components, that is without the quasi-regularity hypothesis,
but only for s = n = 2 [71, Chap. VII 6. p. 136].

We will provide here a more general definition than the one used in [53, 66],
in order to underline that the property used is wider than the “independence” of
Kahler differentials dP; of which it is a consequence, in the spirit of the “regular”
differential ideals, as defined by Johnson [47]. Quasi-regular was chosen because
this property is shared by some components of a differential equations, that the
classical theory considers as “singular” (See Houtain [33] or Hubert [34]).

5.1.1 Notations and definitions

In the following, J will denote a differential field of characteristic 0. We refer
to Ritt [71] and Kolchin [51] for more details about diffferential algebra, and to
Boulier [5] for charatteristic sets. It is natural here to $tate the definition for an
arbitrary differential field F,, with a finite set A := {4, ..., §,} of commuting
derivations, possibly empty.

DEFINITION 69. — Let G/ denote the differential field extension defined by P C
F{x1,...,x,}, A denote the set of derivations of the differential fields F and G. We
denote by D := G[A] the non commutative ring of differential operators and by M
the module § @g(q Qg5 M isa D free module generated by dx;, 1 < i < n. For
any Q € F{x}, dQ € M denotes the differential of Q.

LetPi1 < i < s bedifferential polynomials inF{x,, ..., x,}, and {P} = N_, P,
where the P; are prime differential ideals such that P; C P; implies i = j. The
prime ideals P; are called the components of { P}. We say that P; is a quasi-regular
component of the system P = {Py, ..., P} ifdP = (dP)x

In the ordinary differential case, we say that P; is strongly regular if the family
(8°dP,), k € N, 1 < i < s, is linearly independent. Obviously, §trong regularity,
that corresponds to the usual definition, implies regularity.
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This property is very usefull, mostly combined with the following properties
of d.

Lemma 70. — Let P be a quasi-regular component of P.

i) A charadleristic set A exists for P for some ordering < on derivatives with
main derivatives v, 1 < i < n iff a Standard basis exists for the D-module dP, for
the ordering induced by < on differentials Y (whereY denotes the set of dedivative
of the x;), with main derivatives dv;, 1 < i <.

i') The main component P = [A] : HY® of a system A that is a characleristic
set of some prime differential ideal P is regular and strongly regular in the ordinary
case.

ii)Let Y C {xy,...,x,}, PNF{Y} # (0) iff (dP) N (dY) # (0).

iii) The component P is §trongly regular iff it is regular and of codimension s.

PROOF. — i) =. Assume that A is a characteristic set of P for some ordering
<. Then any Q € P is reducible by A so that dQ is also reducible by dA. It is
easilly checked that (A;, A;) is reducible by A implies that (dA;, dA;) is reducible
by dA, so that dA is a standard basis for the D-module dP and for the ordering
induced by <.

<. If Gis a standard basis of dP for some ordering, consider a character-
istic set A of P for the corresponding ordering. By what preceeds, dA is also a
standard basis for the same ordering and G and dA have the same leading terms,
hence the result.

i') It is a $traightforward consequence of i).

ii) Using i), it is enough to consider an ordering < that eliminates letters not
in Y.

iii) The component P is of codimension s iff there is no non trivial relations
between the dP; and their derivatives. =

In the “algebraic” case, that is when A = (), Lazard’s lemma provides a simple
criterion for quasi-regularity.

5.2 Lazard’s lemma

Many proofs of this folkloric result are already available in the differential al-
gebra literature (see e.g. Morrison [61] or Boulier et al[5]). The interest of the
following one is to make a link with the implicit func¢tion theorem by using New-
ton’s method.

THEOREM 71. — Let Py, ..., P; be polynomials in k|xy, ..., x,) with s < n and
J:=(0P/0x|1 < i,j<s). If Q= (P) : [J|° # (1), then

"We denote by H, the produét of initials and separants of polynomials in A.
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i) Any component P of Q is a quasi-regular component of the system P and of
codimension s;

i) QN k[xgp1, -, x0) = (0);

iii) Q is radical.

Proor. — i) We notice that dP, = >3, OP; /0x;dx;, so that the differentials
dP, 1 < i < s, are linearly independent. This means that the codimension of P is
at least s. By the dimension theorem, it is at most s, so that it is s, a characteristic
set of P as s elements and dP = (dP).

ii) is a $traightforward consequence of i) and lemma 70 ii).

iii) We will denote here by D the ringF{x}/Q[A] and by M the module
F{x}/Q ®g(x Qo(x}/5; dQ will denote the differential of Q in M using this defi-
nition. Let G be a §tandard basis of v/Q, we will show that G C Q. Let ?denote
the adjugate matrix of 7, then for any Q € G,

710 = (9Q/0xi,. .., 0Q/0%)I(Py, ..., P) [V,

as dQ, = 0. Assume that VQ € G, J*Q0 = Q, € Q[\/§2p], then the elements of

Q% are linear combinations of monomials depending on the Q € G. Applying
+1

this result recursively, we find ]“2P+“Q =0 € Q[\/@zp |. For p great enough,

\/gzp C Q, hence the result. =

COROLLARY 72. — Assume that P 4, ..., P; belong to k[x 1, ..., %,].

i) For any prime component P of (P) : |J|°°, PN k(x4 11, - - -, Xn] is a prime com-
ponent of (P41, ..., Ps) : |J,|°°, where J, is the jacobian matrix of the polynomials
Py 11, ..., Ps with respect to the variables x;, + 1, . . . , x;.

Proor. — i) Let A be a characteristic set of P for the ordering x; > - -- > x,,. If
Ay > o> A the set {Ag 41, - .., A} is a charalteristic set of PN k[xg 41, - - -, Xy
([71] § 17-19 p. 88-90). This ideal must be included in a prime component of
(Pyt1,---,Ps) : ||, which, according to the theorem, has the same codimen-
sion s — sy, so that it must be equal to P N k[xg 41, ..., %,). =

6 Jacobi’s proof of the bound

In manuscript [II-13 b)] (cf. [36, prop. 1 p. 16 and pro. 2 p. 17], Jacobi gives two
different versions of this result. In the first, he writes that the order is H, but in the
second, he claims that the order is H iff the truncated determinant vanishes. A
modern reader may be surprised by this way of giving in a first theorem a generic
result, and then describing more precisely, in a second theorem, the possible
exceptions to the first one. However, such a style of presentation is, as we have
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seen, quite common in the set of manuscripts we consider here. Jacobi’s proof
also contains paradoxical arguments that led Ritt to conclude it was whimsical.

It seems however possible to save the proof and get the second version of
Jacobi’s theorem, more precise than that of Kondratieva et al. [53].

We first prove the theorem in its original form, assuming s = n.

THEOREM 73. — Let O denote Jacobi’s bound for the system P, 1 < i < n of differ-
ential polynonials in k[xy, ..., x,) and P be a $§trongly quasi-regular component of
P.

i) The order of P; is at most O.

ii) The order of P; is equal to O iff V ¢ P.

Proor. —

Before considering Jacobi’s arguments, we need firét the following lemma.

Lemma 74. — If P is a $§trongly quasi-regular component of P, it is of differential
dimension 0 and © € N,

Proor. — The first part of the claim is lemma 70 iii). The variant of of
Koénig’s theorem (see above th. 11), that is also stated by Cohn [13], shows that,
if O = —o0, then one may find a rows and b columns in A’, containing all the
elements in N, with a + b < n. So that n — b > a equations in dP must depend
of a differentials dx;, which contradict strong quasi-regularity. =

Remark 75. — Generalizing this lemma to an arbitrary components is related to
a difficult conjecture: the dimensional conjecture. Cohn has shown that it would
be implied by Jacobi’s bound (even week) for arbitrary systems [13].

a) First argument Linearization. — Jacobi first claims that one may reduce
the problem to the case of a linear system. This, of course, cannot $tand in all
cases: we needed the strong quasi-regularity hypothesis. We can assume that
such assumptions were implicit in the physical situations that were considered by
Jacobi: for proving that the order of P corresponds to the dimension of the space
of solutions of dP, Jacobi used the fact that, if the set of solutions of P depends of
parameters y,, then OP/0y, is a solution of the linearized system dP = 0.

The order of the differential field extension §/F is the dimension of the quo-
tient module Qg5 = M/(dP)y by lemma 70 i).

b) Second argument Stationnary systems — Jacobi claims then that one can
assume the linearized system dP to have constant coefficients. This affirmation
seems really paradoxical, but it is dubious that he could have written it with-
out a precise idea in mind. One may also notice that Cohn and Borchardt made
no remark on that point. We have only the following indication, the $tart of an

9T the linear case the result has been proved by Ritt [70].
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argument that have been ruled out by Jacobi: In explogrando ordine systematis
cum tantum altissima differentialia respiciuntur, in aequationibus differentialibus
linearibus, ad quas proposita revocata sunt, supponere licet Coéfficientes esse con-
Stantes. Nam aequationibus 3) iteratis vicibus differentiatis, ut novae obtinentur
eequationes [...] .

We propose the following argument, inspired by the theory of standard bases
of D-module (cf Catro-Jiménez [8], which agrees with Jacobi’s idea of looking
at highest derivatives in the linearized system dP.

DEFINITION 76. — We denote by K the field G equipped with the derivation &, with
Soc = 0 Ve € K, and by M, the free K[8,|-module generated by the dx;.

Let m € M orm € My, m = > ¢y c,u, where Y denotes the set of derivatives
of the x;. We extend the definition of ord’ to M and M, and define the head of m
tobe k m:= 3 1 —ord’m CoUs the sum of terms of greatest order.

Lemma77. — IfV € P, then P is a §trongly quasi-regular component of { P} and
k (dP)y = k (kdP)y and k (dP)y, = K (K dP)yy,-

Proor. — If V ¢ P, the matrix J = (OP;/ 8x](»ai+ﬁ") is invertible in G, so that the

families kdP; = -7, OP;/ aac;aiJrﬁ’) and dP generate respectively free submodules
of My and M, with x(dP) = k(kdP). =

So, if V ¢ P, it is indeed enough to prove the bound for some constant
coefficient linear system. Assume that V € P, then let i, be the smallest integer
such that the first i, lines of Jare dependent. We may find some ¢; € G,1 < i < i
with ¢;, # 0 such that ° | ¢;6'k dP; = 0. So, (dP) is generated by the family
dpP, ..., dP, 1, 38, ¢;5MdP; = 0, dP; 41, ..., dP,. We may compute Jacobi’s bound
for this new linear system, that will be $tri¢tly smaller than O.

We may iterate the process until we find a free linear system m;, 1 < i < n,
generating (dP), with a non vanishing sy§tem determinant V. This must happen,
for O > 0 and if O = 0, as m generates (dP), which is of differential dimension

0, V cannot vanish.

iii) Third argument Determinant degree. Assume that we have a linear system
with constant coefficient m; = 0, 1 < i < n. We may represent it as a matrix of
differential operators M(8,) with m;; = 3% ¢i;,60: M(8)(dxi, ..., dx,)T = 0.
The number of independent solutions of such a system is the number of roots ¢
of [M(y)| = 0. Jacobi did only consider the simple case of all different roots. The
general situation was later investigated by Chrystal [11].

Looking for the order of the syStem, as one only considers the highest derivatives in the
linear equations to which the proposed ones are reduced, one may assume [their] coefficients to
be constants. For differentiating the equations 3) iterated times in order to obtain new equations

[.]
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This equation has degree at most O, := max,es, > i, aij, and the coefficient
of y°m is equal to V,, = |c;jq,|, so that the order of the system is exaétly O if
V ¢ P. This concludes the proof of the theorem. =

It is now easy to extend Jacobi’s bound to underdetermined systems. We
need firét to define the order of such a system, by analogy with the degree of an
algebraic sys$tem, as done in [66].

DEFINITION 78. — Let P be a prime differential ideal of F{x} of differential di-
mension m. The order of P is the maximal order of quasi-regular components of
differential dimension 0 of the ideals P+ [Ly, . .., L,|, where the L; are linear equa-
tions of order 0, with coefficients in J.

COROLLARY 79. — For any $trongly quasi-regular component P of P, the order of
P is at most O.
The order is equal to O iff the matrix 7,'* has full rank in G.

Proor. — We have seen that O is obtained by completing matrix A with n—s
lines of zeros that corespond to the orders of generic linear equations L;. So, the
theorem, applied to the system P, L implies that the order of P is bounded by O.

We may find coefficients for the L; such that Vj; does not vanish iff J, has
full rank. So, using theorem again, the order is equal to O iff J, has full rank. =

7 Shortest normal form reduéction

We consider here one of Jacobi’s results that may have the greatest consequences
for improving the resolution of differential systems in most practical cases. Jacobi
describes the method that, generically, i.e. when his system determinant V does
not vanish, allows to compute a normal form or a characteristic set, using as few
derivatives as possible of the syStem equations: more precisely, it is enough to
differentiate P; up to order A;, where A is the minimal canon and, generically, it is
impossible to compute a normal form by differentiating one of the P; a smallest
number of times.

In fact, except for minimality, Jacobi’s results stand for any canon. One may
guess that Jacobi was aware of this fact although he did not state it explicitly. In
[37, § 3], he claims indeed that, if a normal form can be computed using the equa-
tions Pj, ..., P, and a minimal (for inclusion) set of derivatives of these equations,
then there exist a permutation o such that the highest derivative of x; appearing
in these equations, appear in in the highest derivative of P,;. Such a property
is not general, but is valid if the truncated determinant does not vanish and the

12See def. 65 p. 39.
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normal form is associated to a canon and what we have called Egervary ordering
on the derivatives.

This method may be suggested as a default §trategy in computer algebra sys-
tems, when it is requested to compute a characteristic set without specifying a
precise ordering. It may also be used as a first step in methods using a change of
orderings, such as Pardi !, designed by Boulier et al. [4].

Shaleninov [72] and Pryce [68] proposed $trategies for the integration of im-
plicit DAE that turn to be equivalent to Jacobi’s shortest reduction. It seems that
in many practical situations V actually does not vanish, so that this method can
be efficiently used.

Jacobi only considers the case when there are as many equations as variables.
The generalization to underdetermined sy$tems is easy.

DEeFINITION 80. — Let I and § be two ideals of some ring, we denote by I : J° the
ring {alVb € J3n € N ab" € I}.

It is well known, using a folkloric version of Rabinovich trick [69], that, if
LJC kjx]and Q;1 < i < sgenerate J,thenI: 7° = (L >;_, w;Q,— 1) N k[x]. The
following proposition is easily established.

PROPOSITION 81. — If,  C k[x] and = (Q,1 < i< q), VI: F° = NL,VT: Q.
DEFINITION 82. — Let A be an order matrix for a differential system, a,  a cover
for A, we say that an ordering < on derivatives is an Egervary ordering, if k— f; <

K — B, implies that x](k) < xj(,kl).
An Egervary ordering is the Jacobi ordering if o, f is the canonical cover (as

defined in prop. 14).

Remark 83. — Considering these more general Egervary ordering may prove to
be usefull even if they require a greater number of derivation. E.g. if one needs a
characteristic set that is by chance of this kind, then it should be easier to compute
it dire¢tly than computing first a characteristic set for a Jacobi ordering and then a
package such as Pardi. This of course requires experimentations. However, there
is no extra work to expose this more general case.

THEOREM 84. — i) The ideal Q := [P} : (V) is radical.

ii) Let A be a canon for the order matrix of P, u, v the associated cover and
< the corresponding Egervary ordering on derivatives, as defined in def. 82. Let
J:=(PP1<i<s0<k<A): (V)™ we may find a decomposition I = N%_,J;
such that J; is a radical ideal that admits an algebraic charadteristic set B; for <
with J; = (B,) : H3 . Let A; be the minimal autoreduced set contained in B;, there
exists a decomposition Q = N, D,, where the D; are radical differential ideals with
characteristic set A; for < and D; = A; : Hy.

iii) Assume that the polynomials A; in A, are indexed by increasing order, then
ord’A; = .
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iv) Assume that the n matrices obtained by suppressing the row iy in J, and the
column j, 1 < j < n, have all full rank in some prime component P of Q. Take
integers (;, 1 < i < s such that (;, < A;, where A is the minimal canon. Let A be
any charadlteristic set for any rankmg of P, there exists some element A in A that
is not a zero divisor modulo (Pl(k)|1 <i<s0<k<{): (V).

Proor. — i) Let P be a prime component of Q. We assume that the equations

P; are ordered according to the ordering induced by < on derivatives. Let x(” )

be the greatest derivative according to < such that 0P, / 8x§1” ) ¢ P. We recur-

sively define xj(l_” ) to be the greatest derivative such that the determinant A; of
the minor of }, contained in the fir§t i rows and the columns j, ..., j, does not
belong to P.

For r € N, we consider the algebraic system P" defined by the derivatives
P,(k), 1<i<s0< k< A+ r Its Jacobian matrix with respect to the derivatives

a C . imal mi di he derivati (k)
ppearing 1n 1t contain a maximal minor corresponding to the derivatives x; ~,

1 < i< sp+v < k< p+ v, + r, the determinant of which is A=
ANAR | by AA ~*41_with the convention A, = 0! So, its determinant is not in P
and we can apply Lazard’s lemma to the ideal (P) : ;] and conclude that it is
a non trivial radical ideal.

The ideal Qp := UreN(P[ ]) ] is thus a radical differential ideal, contained
in Q and containing P. This proves that Q is equal to the intersection of radical
ideals N3Qyp, and so is radical. This achieves the proof of i).

ii) We may find a decomposition of (P]) : A7y as an intersection of radical
differential ideals J;, with characteristic sets B; for < such that J; = (B;) : Hy
(see [5]). By Lazard’s lemma, the J; contain no polynomial that do not depend
of the derivatives x]( ), 1 <i<sp+v < k< p,+ v +r, so that these are
precisely the leading derivatives of the polynomials in B;. As A does not vanish
on J;, any generic zero of a component of J; may be completed into a generic zero
of (P) : Apj forany r > A. So, (P1) : A NTF{x}a) = (PH) Afy» which implies
that [Bj] : Hy N F{x}n = (B;) : Hy. We may now extract from B; a minimal
autoreduced set A;. All the elements of [B,] : Hy are reduced to 0 by A;, and
[Ai] - HY C [By] : Hy, so that A, is a characteristic set of [A;] : HY = [B] : Hy.

We conclude the proof by considering the union of all such decompositions,
associated to all the possible sequences A, constructed as in the proof of i), that
do not vanish on some component P of Q.

iii) As the main derivatives of the polynomials in B, are the xj(ik), 1<i<s
p;+ v, S k < p, + v; + r, the main derivatives of the polynomials in A, must

be xj(lu’ , so that ord7A; = .

iv) Here a, ff denotes the canonical cover. Assume that A = {A,, ..., Ay and
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that all the A; are zero divisors modulo (P,(k)|1 <i<s50<k<{): (V)
Then, using prop. 81, there exists A € V such that A may be completed to form
a characteristic set B of a prime component of the radical of the algebraic ideal
(ng)|1 <i<s0<k</{): (A, for some ordering.

For all 1 < p < s, there exists a polynomial S, and an integer n, such that
ASA™ = 370, Zii:o iji,kak). Without loss of generality, we may assume that
the /; are the minimal integers such that expressions of that kind exist, so that
some elements of A adtually depend of the Pff‘i), such that the ¢, — A, are maximal,

equal to ry. Let Ay, ..., A, be these elements.

The leading derivatives of these A; must be some xj(»AJrrﬁﬂj). First, we may

show that some of these derivatives do appear in them. If not, we could chose
B according to an ordering on the derivatives™ such that these derivatives are
greater than those present in A. Cor. 72 implies that elements of A appear in a
charatterigtic set of a component of (Pfk)|1 <i<s0<k</): (A, with
ﬁ; — A, < r, which contradi¢ts the minimality of /. Assume now that the leading

o A+ro+B; L
derivatives of Ay, ..., A, are not among the x]( " ﬂj). Then, these derivatives

must be $trict derivatives of the derivatives of the remaining elements A .4, ... A,

so that they cannot appear in Ay, ..., A,. A contradiction.

(A+m+@0

We may now assume than the leading derivative v = x; ) of A; is

smaller than those of A,, ..., A,,. So, v must be the only derivative among the

(A+m+@

x; ) that do appear in A;. But this is impossible, as the matrix obtained by

suppressing row iy and column j, in J, must have full rank modulo P. =

With more work, one should be able to prove when s = n a similar result by
only assuming that the square submatrices of J, that possess non zero diagonal
elements have a non zero determinant.

Examples. — 85) Consider the sy§tem x\” + x/ + %/ = 0, %, = 0, ¥ — x, = 0.
We have A = (0,1,2), « = (2,1,0) and f = (3,0,1). We have two possible
classes of characteristic sets that may be computed using the shortest reduction,
viz. by derivating the second equation 1 time and the second 2 times: A; :=

(7, o, 2 — %} and Ay = {0, X, % — %}

86) The syStem x\”) 4 x + x = 0, &, + x/ = 0, ¥, = 0 admits a single class of
characteristic sets for the shortest reduction: A := {x§5), %, %, }. However, if we
suppress the row 3 and the column 1 in J, we get a matrix that is not of full rank,
so that the condition of the theorem iv) is not satisfied. It is easily seen that, in
order to compute A, it is enough to differentiate the last equation 1 < A; = 2
time.

BThis ordering does not need to be compatible with the derivation, as we consider here an
algebraic ideal.
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87) The system ") + ¥/ + 2/ = 0, ¥/ = 0, ¥, + x, = 0 admits a single class
of char. set for Jacobi orderings, that may be computed using the shortest reduc-
tion, viz. by differentiating the second and the third equations only 1 time. It is
represented by A := {x§5>, Xy, %, + x4 }. However, with the same derivatives, we
may also compute the following characteristic set, that does not correspond to a
Jacobi ordering, but to an Egervary ordering: B := {xES), Xy, X, + x, }. By chance,
it may be computed with fewer derivatives than predicted by the bound.

Remark 88. — Jacobi [37, end of § 3 p. 58] claims that the number of possible
normal forms of a system that one may find by the shortest reduction, is equal
to the number of monomials in the truncated determinant, or equivalently to the
number of transversal maximal sums in the order matrix. The last example has
already produced a contradiction.

Restricting ourselves to normal forms, or classes of characteristic sets, associ-
ated to Jacobi orderings does not solve the problem. It is also easily seen that the
number of normal forms may be smaller than n! for systems such as x+ y+z = 0,
X+y+27Z =0,x¥"—y"+7" = 0, for which all 6 possible monomials appear in V,
only has 4 different normal forms: x= —y— 2,2 =0,y =0, y= —x—z,7Z =
0, =0,z=—x—yx¥ =—y,y =0andz=—x—y,y = ¥, ¥ =0
Furthermore, a system such as x + y = 0, ¥ = 0 has only a single monomial in
V but two normal forms: x = y,y = 0, y = x, ¥ = 0, for the Egervary ordering
associated to the canon 4, = 1, 4, = 0

The best bound I could find on the possible number of normal forms for Jacobi
orderings is the following. But first, we need a new definition.

DEFINITION 89. — Let A = {Aj]i < i < p be a charaéleristic set of a prime
differential ideal in F{x}. We assume that a reduction process using A has been
chosen and recursively denote by ;\l(»k) the reduction of Al(»k) by the 215,’” with i # i
ork < k.

Any finite subset B of{AEk)ll < i < p,k € N} is the chadteristic set of the
prime algebraic ideal (cB) : Hy .

ProposITION 90. — With the notations of the theorem, let P be a prime component
of Q. Assume that the polynomial P; are listed by decreasing {;. For any injeclion
o :[1,s] = [1, n], the three following propositions are equivalent:

i) there exists a characleristic set A = {Aj|1 < i < s} of P, such that the leading

. . . (aitBym)
derivative of A; is X5 (i) ;

ii) there exisls a charadteristic set A = {A;|1 < i < s} of P, such that, denoting
by (in)o<n<p the increasing sequence such that iy = 0, i, = s and the remaining i,
are the integers satisfying {;, < {; .1, the set {;l,(k)|1 <i<ipn0<k<{(—{,}isa
characteristic set of a prime component of the algebraic ideal (P,(k)|1 <i<ip0<
k<tl;,—10,):(V)>;



Jacobi’s results translated in Kénig’s, Egervary’s and Ritt’s mathematical languages 53

iii) for all 1 < i < s, the determinant of the minor contained in the rows 1 to i
and columns (1), ..., o(i) of Jp is non zero modulo P.

Proor. — i)=-ii). Up to a change of ordering, we may assume A to be such
that A; does not contain the derivatives xi(]([ii/,Jrﬁ”(i/)) for / > i. With this assump-
tion, we shall prove, by induction on h, that the set A of i) also satisfies ii). The
property is straightforward for h = 0.

Assume the result is true for ¥’ < h. The sy$tem Py = {ng)ll < i<
i, 0 < k < ¢; — ¢, } must be reduced to 0 by A. If we reduce a element of
Py using only the set By = {tA,(»k)|l < i< ip0<k</{—1{,}, wefinda
rest R. If R is not zero, the induction hypothesis implies that the reduction by

{tAP]1 < i < i,_1,0 < k < ¢, — £;} does not depend of derivatives of each

x; greater than x](-aiﬁﬁj). The reduétion by {Aj|ir—; < i < iy} cannot introduce

derivatives of the x,(;, i > i, being not less than «; + ﬁd(ih), according to our
assumption on A. So, R is irreducible by A, which is impossible.

By [71] § 17-19 p. 88-90, By is a characteristic set of a prime ideal that
contains Pj;. As P is a prime component of Q, B, must be the characteristic set
of a prime component of (Py)) : (V)*, and so exactly of codimension equal to
§ Py = 4 Bpy. So, By must be the char. set of a prime component of (Py) : (V).

ii)=-ii). As {dAi]1 < k < i} and {dP|1 < k < i} generate the same
differential vecltor space, the determinant of one of these minor does not vanish
modulo P if the corresponding minor of J, does not, which is straightforward.

iii)=-i). It is a consequence of the theorem. =

From a combinatorial standpoint, it means that the maximal number of such
characteristic sets is, for a generic system, at most the number of permutations o
such that for all 1 < i < s, the minor matrix contained in the i fir$t lines and the
rows o(1), ..., o(i) of Ap+ ¢ possesses a set of i transversal maxima—but the set
for i need not be included in that for i + 1!

The first difficulty in computing characteristic sets for non linear differential
systems is to differentiate the equations. Using a classical representation of data,
the sizes of the successive derivatives are exponential in the order and it is well
possible to saturate the available memory before $tarting any actual elimination.

As this method reduces the number of requested differentiations to the min-
imum, it suggests many computational applications and easily implemented im-
provement of existing softwares such as Diffalg[4, 5].
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8 The various normal forms of a system

Jacobi considers in [II/13 b)] [36, p. 9-14] and [II/23 a) f* 2217 seq.] (cf [37,
p- 37-43] the various normal forms that a given syStem may possess. Systems in
normal form include those of the form:

A =fix), 1<i<n,

with ord, f; < a; foralll < i, j < n, which he calls explicit normal form. But Jacobi
also includes in this category systems A;(x) = 0, with ord,,A; = «; and such that

|0A;/ (9x](»aj)| # 0, such as our charadteristic sets enter in this category.

Jacobi claims that, if one cannot reduce a system to an equivalent one, with
fewer equations than variables, that is, in our language, if the differential dimen-
sion is zero, then one can eliminate all dependent variables, except one, and get
an equation of which the order is the order of the system. This is only generically
true, and Jacobi was aware of it, for in [II/23 a), fo 2217, note], he introduces the
order in some different way, claiming that the reduction to a simple equation
was sometimes impossible, e.g. if each equation A; depends only of x;.

The order does not depend of the chosen explicit normal form and is equal to
> 1, a;. If we associate to the system a prime differential ideal P, the order is the
algebraic transcendence degree of the associated differential field extension §/F.
At the time of Jacobi it was refered to as the number of arbitrary constants ap-
pearing in a complete integration, constants that could be, e.g., initial conditions.
Jacobi claims that, in the generic case, the orders of the leading derivatives in a
normal form may be arbitrarilly chosen, provided that their sum is equal to the
order of the system.

Then, he considers systems possessing fewer possible normal forms, starting
with the example of two equations in two variables.

Lemma 91. — Let {A;, Ay} be a characleristic set of a prime differential ideal
P € F{x1, %}, such that the main derivative of A; is x; and a;; := ord, A,.

i) If x; appears in A,,
a) there exists a new charadteristic set B of P with ord,,B; = a,;, and ord,,B, =
QG2+ A11 — 15
b) there is no characteristic set B of P with a;; > ord, B; > a, ;.

ii) If x; (resp. x,) does not appear in A, (resp. A;), then there exists no charac-
teristic set B of P with p, < a; (resp. B, < ).

Proor. — In this proof, one may consider by lemma 70 i’) that the system
A = 0 is linear.

i) a) Consider a new order < such that X" = x%? and < K@),
Then we may take B; = A, and for B, the reduction of A; by A,, which depends

a —da: . .
on Ag b 2’1), so that it has order ay, + a;; — az; in x;.

az,l) aZ,l*l)
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b) In such a case, B is irreducible by A;, we may reduce it using derivatives of A,
of order at most ord,,B; — ord,, A, < ord, A; —ord,,B; < ord, A; — ord,, A;. So,
the order of the rest in x; is less than ord,, A;: the reét is unreducible and must be
0. This implies that B; depends only on A, and $tri¢t derivatives of A,, so that A,
cannot be expressed as a linear combinnation of B; and B,, which is impossible.

ii) The proof is similar toi) b). =

Jacobi comes then to the case of an arbitrary number of variables and consid-
ers the problem of increasing the order of m variables xi, ..., x,, in a normal form,
when decreasing the order of variables x,,1 1, ..., X2, the orders of the remaining
variables staying unchanged. He gives then the following result.

Lemma92. — Let A = {A,, ..., A,} be a charadleristic set of a prime differential
ideal P C F{xy,...,x,}, let x,(ai) be the leading derivative of A;. Let xl(ﬂ") be the
highest derivative of x; appearing in the equations A1, ..., Azm.

If\(?AmH/@x;'B"); 1 <i,j< m| ¢& P, then there exiSts a charadteristic set B of P
such that

i)for1 <j< m,ord,B = ﬂj < a

ii) form < j < 2m, ord, B > aj;

iii) for2m < j < n,ord, B = a;;

Proor. — Itis enough to chose an ordering < on derivatives, such that x](ﬁ") -

. —1 . A .
x§“l),1§j§ m,m<i§2m;x§ﬁ’ )—<x,(al),1§j§ m,m<i§n;xj(a’)>—xj(a‘)

TN oWl am<j<n1<i<2m W

What happens if |8Am+i/c9xj(ﬁj); 1 < i,j < m| ¢ P? Jacobi concludes with
these words: “Such questions require then a deeper investigation, that I will expose
in some other occasion”. One may guess that Jacobi was thinking of applying his
method for computing normal forms. So, we will return to this problem in the
next section 9.

It must be noticed that the requested transformation may be performed, even
in the case when {A,,11, .. ., A2}, considered as a syStem in x, ..., x,, alone, does
not generate a differential ideal of dimension 0, as in the following example:

and x](

Examples. —93) Consider the explicit normal system of 4 equations in 4 variables

A =1 =04 =5, x =

If one wishes to decrease the orders of x; and x, and to increase that of x; and
x4, we cannot use the preceding lemma, nor any generalization of it, for the 2
last equations do not depend of x,. However, we can achieve our goal with the
following normal form:

/ "o =0 A = o
Xp = X4, Xy = X4, X3 = 0,0, = X5.
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The next example shows that one can decrease the order of 2 variables, when
increasing the order of a single one.

94) Consider the system:

"o /' — 0 o
X] = X2, X = U, X3 = Xy,

it is possible to decrease the order of x; and x; in the following normal form:

X, = xy, % = 2y ¥ = 0.

Testing the existence of a charadteristic set B with leading derivatives xj@j),

for given f3;, some characteristic set A being known will be the subject of the next
section.

We denote by ordersA the n-uple (a1, @), where ; = ord,A;, assuming
that the main derivative of A; is a derivative of x;. Let P be a prime ideal, we
denote by ordersP the set {orders A|A a char. set of P}. We will conclude our
investigations with a description of the possible values of orders®, for a prime
differential ideal P of diff. dim. 0 and order e. In two variables, it can take any
value compatible with the order, as shows the next proposition.

PROPOSITION 95. — Let I C [0, e], there exiSts a prime differential ideal P such that
orders? = {(a, e — a)|a € I}.
PrOOF. — Let a! < & < --- < & be the elements of . Define recursively

4= a0 M, = 0

A= A A TiA = A
i—fiz ~ ):'124 ’iA(a"—a"*l) i—?jl ~ (:A
272 2°71 272 ’ 2 2772

Let then for j= 1,2 iAj = A+ A and A; = {'A,,'A, }. By construction, for
1 < i < r, the A, are characteristic sets of the same prime differential ideal P and
by lemma 91, orders®? = {(a,e — a)la € I}. =

For a greater number of variables, the situation is more complicated...Tam
quaestiones altioris indaginis poscuntur.

If one try to visualize the set of possible characteristic set for a given system
in 3 variables, it is convenient to use triangular coordinates, as the sum of the 3
maximal orders in the 3 variables is con$tant.

Examples. — 96) If one considers the system
X =X,
:ij// — .XJZ,
xji% =X,
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easy computations show that it admits 6 normal forms.

97) For the sy§tem x| — x, = 0, )/ = 0, ¥, — x, = 0, only 3 normal forms exist.
lel, =0, le = XIZ? le = sza
X, =x, % =0, % =x,
Xo=x % =X o5 =0

The two examples may be illustrated by such drawings, where the points cor-
responding to existing normal forms are surrounded by a loop.

Example 96 Example 97
Those drawings look very much like these ones, that appear on the margin of
[II 13 b), fo 2206a].

We conclude this subsection with a proposition, showing that for more than
two variables, the set orders®P cannot be arbitrary.

PROPOSITION 98. — Let P C F{xy, x,, x3} be a prime differential ideal and A a
characteristic set of P. Assume that there exist oy > p > y such that orders®P
contains (ay, az, 3), (B, ax + oy — B, o) and (y, az, a3 + a1 — y) and no element
(61, 8, 1) with ay > &8 > por (8, m,8) with g > & > y), then ordersP
contains (y, o, + ay — Byas + f— y).

Proor. — In such a case, we have ord,,A; = ay, ord,,A; = o, ord,; A3 = o3
and oy > f:= ord, A, > y:= ord,, A;. Then, we get a characteristic set B with
ordB = (B, a; + a1 — B, a3) by reducing A, with A,, A; remaining unchanged.
So ord,,B; = y, hence the result. =
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9 Change of orderings

Change of orderings on monomials for standard bases computation (FGLM) [24],
or derivatives (Pardi) [4] for charadteristic set computations have been consid-
ered in the computer algebra litterature. It may be noticed that the main the-
oretical works of the xx'" century often restriét to particular orderings, Janet
orderings (Janet), elimination orderings (Ritt), but for many applications, one
need to use particular orderings, e.g. testing identifiability or observability in
control theory requires to eliminate precise sets of indeterminates. In [II/23 a)
fo 2217-2220] [37, p. 36-43], Jacobi considers, in full generality, the problem of
computing a normal form of an ordinary differential system, some normal form
being known for a different ordering. The method he gives is quite similar to the
tools of contemporary litterature and he provides moreover sharp bounds on the
requested number of of derivations, that may be used to improve the efficiency
of our algorithms.

Considering a system in explicit normal form eri) = Fi(x),1 < i < n, the
problem is to compute a new normal form of the system ng") = Gi(x). In a first
step Jacobi divides the indeterminates in three sets. For i € I, f; > e; for i € L,
fi<eandforic L, f, = e

Using the derivation
Jacobi claims that it is possible to compute the new normal forms using the first
ones, completed with the equations xl(eiJrk) = 5kFi(x), ic€cl,1<k<f —eand
that the new normal form exists iff

n

a ei—2 .
= Z (Fi(x)(e—l) + Z xj( 1)
Ox;" k=0

=1

0
%M

OS5,

9

|l€Il,0§kal‘—el, ]6127ﬁ§a<ej

£ 0.

The following theorem translates this result, in the framework of differential
algebra, using the ;l,(k) in the place of §* (xgei) — F,~(x)> (see def. 89). For the sake of
simplicity, we restrict here to the case of prime ideals. In more general situations,
splitting may occur that may be considered a la D5 [18]...

THEOREM 99. — Let P be a prime ideal of differential dimension 0 of F{xy, ..., x,}

and A = {Ay,...,A.} a charalleristic set of P for some ordering, such that the

. " (e
main derivative of A; is P

i) Assume that there exists a charalleristic set B = {By,...,B,} of P, being

such that the main derivative of B; is xlgi) and that we have f, > e, fori€ I, f; < L

forie L andf,=e fori€ L =[1,n]\ I N L. Then,
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a)B c (AP]i¢ L, 0 < k< fi — &) : HY, more precisely, {Bi|i € L} C
(APlien, 0<k<f—e): HY;

b) if for some iy € L {;, < f; — e, then B;, ¢ (Agk)\l <i<s, 0<k<{):
H.

ii) A characteristic set B satisfying the hypotheses of i) does exist iff

2 (k)
A
87@|1611,0§k§ﬁ—€,, ]GIz,f]‘S(Z<€J§é9)
X
7

Proor. — i) The char. set B cannot contain polynomials involving deriva-
tives of each x; of order higher than the ﬁh. If B exists, it must be included in

(AE"’“‘% <i<n 0<k< a),a)isa consequence of 72. If for some i, € [
¢, < f, — e, then xg") does not appear in the generators of (;\l(-k)|1 <i<s50<
k < ¢)): if B, were in (;l,(k)\l <i<s 0< k</{): Hy, 8Bi0/8xi0°) would be in
P, which is impossible as B is the char. set of a prime ideal. This proves b).

ii) Using lemma 70 iv), the problem is reduced to the existence of a standard

basis for (dP)y, with main derivatives dxi(f"). The non vanishing of the determi-

nant implies that an autoreduced set with the requested main derivatives exists,
that must be a standard basis by invariance of the order. Assume reciprocally
that such a standard basis exists. Lemma 70 iii) implies that (dP)y, N <dx,(k) 10 <
k < max(e; f;)) = (dA¥lien, 0<k< f; — €. Defining the B as in def. 89,
we see that for i € Land 0 < k < ¢ — f, B e (dP)n, N (dxl(k)|0 < k<
max(e;, f;)) = (d;l,(k)]i €I, 0 < k < f,— &), so that the determinant cannot
vanishinG. =

Jacobi did not stop his investigations at this step. Claiming that it was some-
times more efficient to use derivatives of the A; instead of the ;l,(k) obtained by
substitutions. This strongly suggests a practical experience of computing changes
of ordering, although no explicit example is found in his manuscripts. We have
already noticed that derivation, introducing new derivatives, produces an expo-
nential growth of the equations in dense representation. The situation becames
worse if substitutions are done at the same time, for then the degree will increase
too. The best known bounds for the required eliminations imply to use Bézout’s
theorem, and the degrees will be the smallest using the A; instead of the AS")...
We see that Jacobi’s intuition of the complexity issues meets here again con-
temporary research, such as D’Alfonso et al. [14, 15, 17, 16] in the spirit of the
Kronecker algorithm [28].
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This problem is considered in § 18 of [II/23 a)] [37, p. 40-43]. The end of this
manuscript seems lost, as the sentence at the end of fo 2220 remains unachieved,
but we can understand the general idea.

With the notations and hypotheses of th. 99, one needs to differentiate equa-
tion A; f; — e; times if i € I,. Let ord, A; := a;, then, generically, A;, 1 < i < n,
must be differentiated ¢; to compute the derivatives A, i € I, with /; such that:
ell, > f,—e;fori € I, and a;;+ ¢; > max; a;;+ ¢;, so that the necessary reductions
could be performed. The minimal solution of this problem is obtained by com-
puting the minimal canon of the matrix g;; + max(f; — e;, 0), using the methods
of subsection 3.6.

Remarks. — 100) Using explicit normal forms, we may assume that the leading
derivatives xl(ei) do not appear in the right members F;(x). It is no longer the case
with characteristic sets. All we know is that the leading derivative of A; may only
appear in A; with a stri¢tly smaller degree. But we may, without changing the
main derivatives, assume that the A; for i € I; do not depend on the main deriva-
tives of the x; for j ¢ I;. With this assumption, the bound in the charadteristic set
setting coincides with Jacobi’s one.

10 Resolvants

For a modern treatment of the question, one may refer to Cluzeau and Hubert
[10].

Assume that P is a prime regular component of [P] : V°°. One may define
resolvants following Ritt [71, chap. IT § 22].

DEFINITION 101. — We call a resolvant of P the data of two differential polyno-
mials R and S together with a charadleristic set A of the prime differential ideal
[P, Sw—R] : S (in F{xy,...,x,, w}), such that vy, = x;, 1 < i< n.

As P is regular, we know that its order is Jacobi’s bound O, so that v,,,, =
w®),

Jacobi [37, § 4] assume that a resolvent exists when choosing w = x; and
proposes to compute the order up to which one needs to differentiate each equa-
tion P; to be able to compute the resolvent. The word resolvent was not used by
Jacobi, but he evocates the notion as something well known in the the mathemat-
ical folklore of his time: ‘Tt is usual that this type of normal forms be considered
before others by mathematicians”.

One may summarize his findings with the following theorem.

THEOREM 102. — Assume that w = x; and that A is a resolvent for a prime
component P := [P| : T of differential dimension 0, then A € [PP]0 < k <
Oi;,) : T, where O,;, is the tropical determinant of the matrix (a; ;| # i,) # j,)-
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Proor. — Replace x; in P; by w;; we obtain a new system P.. Then one may
fix w; for i # iy and the system P, i # i, in the variables x;, j # j, has order at
most 0. Eliminating the x;, one finds an equation of order at most O, in w
that depends only of the w;. Replacing then all the w; by w, one gets a non zero
polynomial that obviously belongs to the requested algebraic ideal; if it were 0,
the equations P; would not be independent, and P would not be of differential
dimenson 0. =

Remark 103. — ] The heuristic way in which Jacobi presents the result his in-
teresting. He claims that one should differentiate P; up to order Op, and then
computes a minimal canon such that /; = Op, in the spirit of subsection 3.6. This
means that we can efficiently compute the O, knowing a canon for the order
matrix of P by using a shortest path algorithm, as explained in section 3.7'.

Conclusion

We have seen that the corpus of results contained in Jacobi’s posthumous manus-
cripts provides a large set of applicable methods for the resolution of ordinary
differential systems. From the automatization of easy ideas, such as looking for
block decompositions to more sophisticated tools, allowing to produce simpler
normal form redudtions or better ways to perform change of ordering, they can
improve in many ways the existent computer algebra algorithms.

In all cases, Jacobi’s bound by itself is able to replace advantageously Ritt’s
analog of the Bézout bound, in all situations where is is proved, i.e. at this time
quasi-regular components or systems of two equations [71, Ch. VII § 6 p. 136].
Its interest to produce sharper complexity bounds, upper and lower, is obvious.

Using these tools as widely as possible is a promizing task, and generalizing
them to arbitrary systems a challenging goal. Let us insist on the fact that this
paper has no claim to exhaustivity and that we encourage the reading of the
original works.
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