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רעזומע Abstra

די און אָרדענונג דער פֿון חשבון דעם װעגן רעזולטאַטען יאַקאָביס
דערװיזן װערן סיסטעם דיפֿערענציאַלן אַ פֿון פֿאָרמעס נאָרמאַלע
גאַנצע גיט מע אַלגעברע. דיפֿערענציאַלער פֿון ראַמען די אין
איז עצם־טעאָרעם דער אַרגומענטען. יאַקאָביס נאָך דערװײזונגען
סיסטעם דיפֿערענציאַלן אַ פֿון אָרדענונג די גרענעץ: יאַקאָביס
אַלע פֿון O מאַקסימום דער װי גרעסער ניט איז P1, . . . , Pn
σ סובסטיטוציעס אינדעקסען אַלע פֿאַר

∑n
i=1

ai,σ(i) סך־הכּלען
פֿון דעטערמינענט טראָפּישן דעם ד״ה ,ai,j := ordxσ(i)Pi ,װוּ
אױב O צו גלײך פּונקט איז אָרדענונג די .(ai,j) מאַטריצע דער
דעטערמינאַנט. אָפּגעשניטן יאַקאָביס נול נישט ס׳איז אױב נאָר און

קאָמפּליצירטקײט פּאָלינאָמישע אַ געפֿינען אױך האָט יאַקאָבי
מעטאָד“ „אונגערישן קונס צו ענלעך ,O חשבונען צו אַלגאָריטם
חשבון דעם צו שײך אַלגאָריטמען, װעג קירצערער מין אַ און
קען מען אַז אַזױ ,ℓi נומערן גאַנצע פּאָזיטיװע קלענסטע די פֿון
Pi גלײַכונג די דיפֿערענצירנדיק פֿאָרמע נאָרמאַלע אַ רעכענען

היפּאָטעזן. גענערישקײט על־פּי מאָל, ℓi בלױז

די און ענערונגען סדר װעגן רעזולטאַטן יסוותדיקע פּאָר אַ
נעמען זײ קען סיסטעם אַ װאָס פֿאָרמעס נאָרמאַלע פֿאַרשײדענע
רעזאָלװענטן. דיפֿערענציעלע אַרומנעמענדיק דערצײלט, אױך זײַנען

Jacobi’s results on the computation of the order and
of the normal forms of a differential systems are ex-
pressed in the framework of differential algebra. We
give complete proofs according to Jacobi’s arguments.
e main result is Jacobi’s bound: the order of a
differential system P1, . . . , Pn is not greater than the
maximum O of the sums

∑n
i=1

ai,σ(i), for all per-
mutations σ of the indices, where ai,j := ordxσ(i)Pi,
viz. the tropical determinant of the matrix (ai,j). e
order is precisely equal to O if and only if Jacobi’s
truncated determinant does not vanish.

Jacobi also gave an algorithm to compute O

in polynomial time, similar to Kuhn’s “Hungarian
method” and some variants of shortest path algo-
rithms, related to the computation of integers ℓi
su that a normal form may be obtained, un-
der genericity hypotheses, by differentiating ℓi times
equation Pi.

Some fundamental results about anges of or-
derings and the various normal forms a system may
have, including differential resolvents, are also pro-
vided.
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2 Jacobi’s Bound

Introduion

History

I
 1865 appeared in Crelle’s journal a posthumous paper of Jacobi, edited by
Borardt [36] aer a transcription by S. Cohn, followed by a second one
in the volume Vorlesungen über Dynamik, edited by Clebs in 1866 [37].

ese two papers contain the following main result: the order of an ordinary
differential system of n equations Pi in n variables xj is, at most, the maximum O

of the “transversal” sums
∑n

i=1 ordxσ(i)Pi for all permutations σ ∈ Sn. Known as
Jacobi’s bound, it mostly survived during the th century in the differential al-
gebra community, thanks to J.F. Ri, who gave a first complete proof of it in the
linear case. It was extended by Kondratieva et al. [52, 53] to systems satisfying
Johnson’s regularity hypothesis [48]. But some important aspes were com-
pletely forgoen, su as a simplest normal form reduion, bounds on the order
of derivations requested for computing normal forms, including differential re-
solvent, and a first polynomial time algorithm to solve the assignment problem,
i.e. in our seing computing the bound faster than by trying the n! permutations.
A similar algorithm was rediscovered by Kuhn in 1955 [56]; Cohn [13] was the
first, in 1983, to mention Jacobi’s contribution. Jacobi’s bound was rediscovered
in 1960 by Volevit [78] for differential operators and his simplest normal form
reduion by Shaleninov in 1990 [72] and Pryce in 2001 [68] for the resolution of
implicit DAE’s. One may also mention that in modern vocabulary the expression
of Jacobi’s number O is known as the tropical determinant [60]. Two algorithms
introduced by Jacobi to compute his minimal canon may be regarded as precur-
sors of Dijstra’s [19] and Bellman [3] shortest paths algorithms.

It is difficult to know precisely when were wrien the manuscripts related
to Jacobi’s bound. Jacobi did not use to date his writings. We know that it is
a byprodu of his work on isoperimetric systems, evocated in a leer to his
brother Mori in 1836 [44]. e second part of his paper on the last multiplier
[38], whi appeared in 1845, contains a seion devoted to these systems, where
he promised to publish later his method for computing normal forms.

Proofs are oen omied in Jacobi’s manuscripts. e style of some passages
evocates a mathematical cookbook, providing computational methods without
justifications, but no examples of precise differential systems are given, only gen-
eral abstra families of systems like isoperimetric equations. It is clear that the
efficiency is a constant preoccupation, even if it is not formalized. is work is
closely related to Jacobi’s interest in meanics; there was at that time a strong
need for fast computational tools, mostly for astronomical ephemerides [31]1.

1Jacobi himself had an experience in praical computing, on a smaller scale and in a different
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In his 1840 leer to the Académie des Sciences de Paris [39], Jacobi said that
he was working for some years on a publication that included his last multiplier
method. One may guess that the various unpublished fragments were intended
to take part in this never aieved ambitious proje entitled Phoronomia. As
Ri guessed [70], the bound may have been suggested to him by his method for
computing normal forms. We refer to our survey [67] for more historical details.

Aims of this paper

We present Jacobi’s main results related to the order and normal forms of differ-
ential system, using the formalism of differential algebra. We prove them under
hypotheses that could have been implicit in Jacobi’s work and using, as far as
possible, methods suggested in his work. Two particular aspes require aen-
tion.

Jacobi gives no detail about the nature of the funions he considers. Never
does he describe the tools to be used to perform the requested eliminations. We
restri here to polynomial equations. It seems implicit that Jacobi’s aention
was foccussed on physical equations, generating prime differential ideals. How-
ever, we tried to consider the case of systems defining many components, when-
ever the extra work remained lile. Jacobi’s results related to normal forms of dif-
ferential systems will be translated using charaeristic sets of differential ideals.

Jacobi oen considers implicit genericity conditions and will sometimes give
first a “generic” theorem (i.e. a proposition that stands in some Zariski open set)
followed by a second theorem describing the cases where the first assertion fails
to be true. We will try to provide explicitely su conditions, most of the time
expressed by the non vanishing of some Jacobian determinant.

Keeping in mind su particularities of the th century mathematical style,
we recommend the reading of Jacobi’s original papers, this text beeing only a
partial commentary, completed with some tenical parentheses devoted to con-
temporary developments.

e computation of the tropical determinant occcupies a large part of Jacobi’s
manuscripts and of this paper too. Contrary to those related to differential sys-
tems, Jacobi gave [36] very precise proofs of his combinatorial results. is may
have dispense of longer comments, but a more carefull study shows that com-
plexity issues are by no means obvious as well as the relations between Jacobi’s
canons and Egerváry’s covers, a notion that allows us to make a link between
Jacobi’s shortest reduion and the oice of a ranking on derivatives used in dif-

field, when he published his Canon arithmeticus [43]. e revision of the half million numbers
it contains requested the help of his friends and relatives [44], including Dirilet’s wife and
mother!
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ferential algebra algorithms. e implicit but fundamental role played by basic
concepts and problems of graph theory must also be underlined.

Content

Seion 1 introduces Jacobi’s bound in the context of applying his last multiplier
method to isoperimetrical equations. We limit ourselves here to an informal
presentation of the genesis of the results. e next seion 2 details Jacobi’s al-
gorithm, extended to reangular matrices and studies its complexity.

It is followed by a short combinatorial parenthesis about the “strong bound”
and reduion to order one, completed with algorithmic hints to get blo decom-
positions. A second algebraic parenthesis is devoted to quasi-regularity, a key
implicit assumption in Jacobi’s proof and Lazard’s lemma 5 contains some pre-
liminary tenical results of algebra related to “Lazard’s lemma”, that will play a
central part establishing the results on shortest reduion that araerizes some
quasi-regular components.

Jacobi’s bound is proved in seion 6, together with the necessary and suf-
ficient conditions for the bound to be reaed, expressed by the system’s trun-
cated determinant∇. e shortest normal form reduion is presented in seion
7, followed in seion 9 by a method for computing a araeristic set for some
ordering, knowing one for some other ordering. e seion 10 is devoted to
resolvent computations and the last seion 8 by a study of the various possible
normal forms of a given system, including a complete description of the possible
struures for zero dimensional linear ideals in two variables.

Notations

We will consider here equations P1, . . . , Pm in the differential polynomials alge-
bra F{x1, . . . , xn}, where F is a differential field of araeristic 0. e perfe
differential ideal {P} is denoted by Q and is equal to the interseion of prime
components ∩s

i=1Pi. Jacobi’s bound is denoted by O, the notations Λ, λi ai,j αi, βj
are introduced in definition 13, ∇, JP in def. 65, Ss,n in def. 1.

If A is the araeristic set of a differential (resp. algebraic) ideal, we denote
by HA the produ of initials and separants (resp. initials only) of its elements.

By convention we write FFF(nnn1, . . . , nnnp) = OOO(GGG(nnn1, . . . , nnnp)), with FFF,GGG :
Np 7→ N if there exist constants AAA and BBB su that FFF ≤ AAAGGG+ BBB.
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1 e last multiplier and isoperimetric systems

1.1 e last multiplier

e last multiplier method is first evocated by Jacobi in a short paper published
in Fren in 1842, entitled “On a new principle of analytical meanics” [40],
followed by a second one in Italian in 1844: “On the principle of the lastmultiplier
and its use as a new general principle of meanics” [41]. It is not the place here
to give details on the subje and we shall limit ourselves to a few hints in order
to help understand the link with the genesis of Jacobi’s bound. e reader will
find illuminating illustrations on classical examples in Nucci and Lea’s papers
[64, 65].

Jacobi presents his last multiplier as a generalization of Euler’s multiplier μ.
If one has a Lagrange system in two variables:

dx1
a1(x1, x2)

=
dx2

a2(x1, x2)
, (1)

Euler’s multiplier may be defined by the property d(μ(1/a1dx1 − a/2dx2)) = 0.
Knowing the exa differential μ(1/a1dx1 − 1/a2dx2), finding a first integral for
the system (1), whi is a solution of 1

a1
∂ω
∂x1

+ 1
a2

∂ω
∂x2

is reduced to the computation
of integrals

∫ 1
a1
dx1 = ω+ C1(x1) and

∫ 1
a2
dx2 = ω+ C2(x2).

In the case of a Lagrange system in n variables,

dx1
a1(x)

= · · · = dxn
an(x)

, (2)

the last multiplier may be defined in the following way. Let ωi, 1 ≤ i < n, be first
integrals for (2), any first integral ω is a solution of

∣∣∣∣∣∣∣∣∣∣∣

∂ω
∂x1

· · · ∂ω
∂xn

∂ω1
∂x1

· · · ∂ω1
∂xn

...
...

∂ωn−1

∂x1
· · · ∂ωn−1

∂xn

∣∣∣∣∣∣∣∣∣∣∣
= 0.
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Let us denote by Di the Jacobian determinant∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂ω1
∂x1

· · · ∂ω1
∂xi−1

∂ω1
∂xi+1

· · · ∂ω1
∂xn

...
...

...
...

∂ωn−1

∂x1
· · · ∂ωn−1

∂xi−1

∂ωn−1

∂xi+1
· · · ∂ωn−1

∂xn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0.

e last multiplier μ is defined by

μ
n∑

i=1

ai
∂

∂xi
=

n∑
i=1

Di
∂

∂xi
,

whi is for n = 2 the definition of Euler multiplier.

Given any system of ordinary differential equations of order 1

x′i = fi(x), 1 ≤ i ≤ n,

one may complete it with t′ = 1 and associate to it the Langrange system

dx1
f1(x)

= · · · = dxn
fn(x)

=
dt
1
.

Jacobi’s goal is explicitly exposed in 1842 [40]: having first remarked that for a
system in two variables, the computation of solutions only requires integrations,
he claims that his last multiplier method allows to generalize this result to any
system of ordinary differential equations in n variables, provided that one already
knows n − 1 first integrals. is circumstance is of course very unlikely, but in
1840 he insisted on the inportance of a remark of Poisson [42] providing amethod
to compute a sequence of new first integrals, for any conservative meanical
system, that already possesses two first integrals, independently of energy.

e definition obviously depends of the oice of the first integrals, but also
of the coordinate funions xi. e multiplier is also given by the formula:

μ = e−
∫ ∑n

i=1
∂fi
∂xi

dt
,

whi may be interpreted as a Wrońskian, expressing the variation of a volume
form along a trajeory, so that the last multiplier μ2 associated to coordinates yi
must satisfy

μ2 =

∣∣∣∣∣∂yi∂xj

∣∣∣∣∣ μ,
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a formula that appears (up to a logarithm) in manuscript [II 23 a)] [37, formula
7)].

e application of the last multiplier method thus requires the knowledge of
a normal form for a system of equations, and the result, aer order 1 reduion,
will depend on the osen normal form, whimay explain in part the interest of
Jacobi in the various normal forms a given system may possess and differential
elimination.

1.2 Isoperimetric equations

In 1844 and 1845, Jacobi published in two parts a 135 pages paper in latin, de-
scribing his lastmultiplier method for the integration of differential systems [38].
Among the examples of applications he gives, stands the isoperimetric problem.

“Let U be a given funion of the independent variable t, the dependent ones
x, y, z etc. and their derivatives x′, x′′, etc., y′, y′′, etc., z′, z′′, etc. etc. If we propose
the problem of determining the funions x, y, z in su a way that the integral∫

Udt

be maximal or minimal or more generaly that the differential of this integral
vanish, it is known that the solution of the problem depends on the integration
of the system of differential equations:

0 = ∂U
∂x −

d ∂U
∂x′
dt +

d2 ∂U
∂x′′
dt2 − etc.,

0 = ∂U
∂y −

d ∂U
∂y′

dt +
d2 ∂U

∂y′′

dt2 − etc.,

0 = ∂U
∂z −

d ∂U
∂z′
dt +

d2 ∂U
∂z′′
dt2 − etc. etc.,

I will call these in the following isoperimetric differential equations …”
[GW IV, p. 495]

For simplicity, we write x1, …, xn, instead of x, y, z, etc. and denote by Pi = 0
the ith isoperimetric equation. Jacobi noticed the difficulty of applying his last
multiplier method if he could not first reduce the system to a normal form (see
also [36, first seion]). If the highest order derivative of xi in U is x(ei)i , the or-
der of xj in the ith isoperimetric equation is at most ei + ej. If the ei are not all
equal to their maximum e, then we cannot compute a normal formwithout using
auxiliary equations obtained by differentiating the ith isoperimetric equation λi
times, and a first problem is to determine minimal suitable values for the λi. In
1845, Jacobi had clearly in mind a thorough study of normal forms computation
for he wrote: “I will expose in another paper the various ways by whi this op-
eration may be done, for this question requires many remarkable theorems that
necessitate a longer exposition.” [GW IV, p. 502]
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Jacobi’s method for computing a normal form may be sketed in the fol-
lowing way. Assume that the Hessian matrix

(
∂2U/∂x(ei)i ∂x(ej)j

)
has a non zero

determinant. We may further assume, up to a ange of indices, that the se-
quence ei is non decreasing and that the principal minors of the Hessian have
full rank.

From the first isoperimetric equation P1, as ∂P1/∂x
(2e1)
1 = ±∂2U/∂

(
x(e1)1

)2
̸=

0 one will deduce on some open set, using the implicit funion theorem, an
expression

x(2e1)1 := F1(x1, . . . , x
(2e1−1)
1 , x2, . . . , x

(e1+e2)
2 , . . . , xn, . . . , x(e1+en)

n ).

Using the first equation and its derivatives up to the order e2 − e1, together with
the second equation, onemay invoque again the implicit funion theorem, using
the fa that the Jacobian matrix of P2 and P(e2−e1)

1 , with respe to the derivatives
x(e1+e2)
1 and x(2e2)2 , is equal to the second principal minor of the Hessian ofU, whi

is assumed not to vanish. One deduces an expression

x(2e2)2 := F2(x1, . . . , x
(2e1−1)
1 , x2, . . . , x

(2e2−1)
2 , x3, . . . , x

(e2+e3)
2 , . . . , xn, . . . , x(e2+en)

n ).

Repeating the process, we get a last expression

x(2en)n := Fn(x1, . . . , x
(2e1−1)
1 , . . . , xn, . . . , x(2en−1)

n ),

that may be obtained using ea isoperimetric equation Pi = 0 and its derivatives
up to order λi := en − ei.

In this normal form, ea variable xi appears with the order 2ei, so that the
order of the system is 2

∑n
i=1 ei. is appears to be both a special case of Jacobi’s

bound (see sec. 6) and of Jacobi’s algorithm for computing normal forms (sec. 7),
using the minimal number of derivatives of the initial equation, provided that the
“system determinant” or “truncated determinant”, here equal to the Hessian of
U, does not vanish. In case of arbitrary equations Pi for whi ai,j := ordxjPi can
take any value, things become more complicated, starting with the computation
of the bound maxσ

∑n
i=1 ai,σ(i), that is the subje of our next seion. But we

easily understand how this particular simple example may have suggested the
whole theory.

In seion 2. of [36], we have restored a passage of [II/13 b), fo 2200] that
quotes the isoperimetrical equations as an example for whi all the transversal
sums have the same value.

2 Computing the bound. Jacobi’s algorithm
In algorithms, we will assume that matrices are represented by some array
structure, so that one may get or ange the value of some entry ai,j with
constant cost.
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e assigment problem has been first considered by Monge in 1781 [62], in
the special case of the transportation problem (moving things from initial places
to new places, minimizing the sum of the distances) and in a continuous set-
ting (digging excavations somewhere in order to create some enbankment some-
where else). Su kind of problems reappeared in the middle of the th Century
in the following form: n workers must be assigned to n tasks; assuming that the
worker i has a produivity ai,j when affeed at task j, how can we find an affec-
tation j = σ(i) that maximizes the sum of produivity indices?

At a meeting of the American Psyological Association in 1950, a partici-
pant described the following reaion: “[he] said that from the point of view of a
mathematician there was no problem. Since the number of permutations was finite,
one had only to try them all and chose the best. […] is is really cold confort for
the psychologist, however, when one considers that only ten men and ten jobs mean
over three and a half million of permutations.” 2 ([74] p. 8.) Jacobi did not consider
the brute force method as a solution… and he gave a polynomial time algorithm!

e assignment problem also appears as a weighted generalization of the
mariage or maximal bipartite mating problem: a graph describing couples of
compatible boys and girls is represented by a s×nmatrix of zeros and ones. e
problem of computing the maximal number of compatible couples between these
s boys and n girls amounts to computing a maximal transversal sum.

Kuhn’s [56] and Jacobi’s algorithms are quite similar. e main difference is
the following. Jacobi remarks that if the columns of the matrix admit maxima
placed in different rows, then their sum is the maximum to be found. He will
then add minimal constants λi to the rows in order to get a matrix with this
property. Kuhn considers integers αi and βj, with

∑n
i=1 αi + βi minimal, su

that ai,j ≤ αi + βj; this is called the minimal cover. He then uses Egerváry’s
theorem [23, 74]:

∑n
i=1(αi + βi) = maxσ∈Sn

∑n
i=1 ai,σ(i). He will then look for the

minimal cover αi and βj, adding constants to the rows and columns of the matrix.
On this precise topic, I cannot do beer than refeering to Kuhn’s excellent—and
moving—presentation [57].

Some of Jacobi’s results could be extended with no extra work to the case of
underdetermined systems. is is why we will expose his algorithm in the case
of a s × n matrix A, with s ≤ n. Entries are assumed to belong to an ordered
additive commutative group, i.e. a commutative group with an order su that
x > y ⇐⇒ x − y > 0. e special case of −∞ entries will be considered in
subsec. 4.1.

D 1. — Let s ≤ n be two integers, we denote by Ss,n the set of injeions
σ : [1, s] 7→ [1, n].

2From some optimistic standpoint, it may have been a way to escape ethical issues raised by
the use of psyology in management.
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Let A be a s × n matrix of elements in N ∪ {−∞}, the Jacobi number of A is
defined by the formula

max
σ∈Ss,n

s∑
i=1

ai,σ(i)

and is denoted by OA.
Without further precision, a maximum ai,j in A, is understood as being a maxi-

mal element in its column, i.e. such that ai,j ≥ ai′,j ∀1 ≤ i′ ≤ s. We call transversal
maxima a set of maxima placed in all different rows and columns. It is said to be
a maximal set of transversal maxima if there is no set of transversal maxima with
more elements in A.

Let ℓ be a veor of s integers , we denote by A+ ℓ the matrix (ai,j + ℓi). We call
a canon a matrix A + ℓ that possesses s transversal maxima and also the veor ℓ
itself.

e partial order we will use on canons is defined by ℓ ≤ ℓ′ if ∀1 ≤ i ≤ s
ℓi ≤ ℓ′i.

Remark 2. — In the case of a square matrix, if ℓ is a canon and if ai,σ(i) + ℓi is
a maximal set of transversal maxima, then

∑n
i=1 ai,σ(i) is the maximal transversal

sum we are looking for.
For s < n, one may compute O := maxσ∈Sn

∑n
i=1 ai,σ(i) by completing A with

n− s rows of zeros, whi reduces the problem to the case of a square matrix.
Applied to a reangular matrix, Jacobi’s algorithm still returns the minimal

canon λ 3, that will be used in seion 7 to compute the shortest reduion in
normal form, λi being the minimal number of times one needs to differentiate Pi
in order to compute a normal form (under some genericity hypotheses). But the
sum of the corresponding maxima, and so the order of this normal form, may fail
to be equal to O.

Example 3. — Consider the matrix(
1 0 3 4
0 1 2 0

)
.

e minimal canon corresponds to λ1 = λ2 = 0; however the sum of the cor-
responding 3 pairs of transversal maxima are 2, 4 and 5 whereas the maximal
transversal sum is 6. To find it, we may add two rows of zeros:

1 0 3 4
0 1 2 0
0 0 0 0
0 0 0 0

 .

3Its existence is shown in prop. 4 below.
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en the minimal canon corresponds to λ1 = 0, λ2 = 1, λ3 = 2 and λ4 = 2:
1 0 3 4
1 2 3 1
2 2 2 2
2 2 2 2

 .

e following proof of the unicity of the minimal (simplest) canon (assuming
canons do exist) is due to Jacobi [36, th. IV, sec. 2].

P 4. — Let A be a s× n matrix of elements inN∪ {−∞}, ℓ and ℓ′ two
canons:

i) e s-uple ℓ′′ := (min(ℓi, ℓ
′
i)) is a canon for A.

ii) ere exists a unique minimal canon for the ordering defined by ℓ ≤ ℓ′ if
ℓi ≤ ℓ′i for 1 ≤ i ≤ s.

P. — Let I := {i ∈ [1, s]|ℓi ≥ ℓ′i} and I′ := [1, s] \ I. Let σ and σ′ be the
elements of Ss,n corresponding to maximal sets of transversal elements for the
canons A+ ℓ and A+ ℓ′. We define σ′′(i) = σ(i) if i ∈ I and σ′′(i) = σ′(i) if not,
so that σ′′(i) ̸= σ′′(i′) if i ̸= i′ are both in I or both in I′. Furthermore, if i ∈ I and
i′ ∈ I′, then ai,σ(i′) + ℓi ≤ ai′,σ(i′) + ℓi′ (as ai′,σ(i′) + ℓi′ is maximal in A + ℓ) and
ai′,σ(i′) + ℓi′ < ai′,σ(i′) + ℓ′i′ (as i

′ ∈ I′), so that

ai,σ(i′) + ℓi < ai′,σ(i′) + ℓ′i′ .

By construion, ai,σ′′(i) + ℓ′′i is maximal in its column. e inequality above im-
plies then that σ′′(i) = σ(i) ̸= σ′(i′) = σ′′(i′): σ is an injeion. is aieves the
proof of i), of whi ii) is a straightforward consequence.

2.1 Jacobi’s algorithm

See [36, § 3] for Jacobi’s proof of the algorithm and [37, § 1] for a detailed example.

Input: an s× n matrix A. e case s = 1 is trivial, so we assume s ≥ 2.
Output: its minimal canon λ if it exists or “failed”.

Step 1. (Preparation process) — Increase ea row of the least integer su that
one of its elements become maximal (in its column). is step requires O(s2)
operations. It produces a new matrix A′ = A + ℓ0 su that ea row possesses
a maximal element. e number of transversal maxima in A′ is at least 2, that
corresponds to the case where all elements in row i and column j are maximal
(except perhaps the element a′i,j). If s = 2, the problem is solved.
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If s > 2, we enter step 2 with A′, ℓ0 and a set of exaly 2 transversal maxima.

Step 2. — a) For readability, we may reorder the rows and columns, so that the
transversal maxima in A′ are the elements a′i,i for 1 ≤ i ≤ r < s. Le (resp. right)
columns are columns j ≤ r (resp. j > r). Upper (resp. lower) rows are columns
j ≤ r (resp. j > r), as bellow.

We define the starred elements of A′ as being the transversal maxima a′i,i
4.

le︷ ︸︸ ︷ right︷ ︸︸ ︷
upper


lower





∗
. . .

∗


b) Assume that there is a maximal element located in a right column and a

lower row. We can add it to the set of transversal maxima. If it now contains s
elements, the process is finished. If not, we repeat step 2.

c) We say that there is a path5 from row i to row i′ if there is a starred max-
imum in row i, equal to some element of row i′ located in the same column, or
recursively if there is a path from row i to row i′′ and from row i′′ to row i′. We
also recursively define first class rows as being upper rows with at least a right
maximal element, or rows to whi there is a path from a first class row. e
construion of the set of first class rows, together with paths to them from rows
with a right maximalterm may be done in O(sn) operations, using an array F
of booleans with F.i = true if row i belongs to the first class (we cannot afford
looking into a list).

d) If there is no lower row of the first class, we go to step e).

Assume that there is a lower row of the first class, then there is a path to it
from an upper row i0 containing a right maximal element ai0,β. Let it be a path of
lenght p, consisting of rows i0 to ip, so that for all 0 ≤ α < p the element aiα+1,iα is
equal to the starred element aiα,iα . We can then constru a set of p+1 transversal

4Jacobi defined also the maximal elements in right columns as “starred”; we prefer to reserve
this denomination to le transversal maxima to underline the specific roles played by these two
sets of maxima in the algorithm.

5is notion is closely related to that of increasing path, as defined in [32], whi explains the
oice of that word in the translation of transitum datur in [36].
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maxima by replacing aiα,iα by aiα+1,iα , for 0 ≤ i ≤ p, and adding ai0,β to the list,
as illustrated in the figure below, where the new increased set of transversal
elements is wrien in bold letters.

a∗i0,i0 · · ·

=

aaai1,i0 · · · a∗i1,i1

=

aaai2,i1 · ·
...
· · a∗ip−1,ip−1

aaai0,β

=

aaaip,ip−1


If p+1 = n, we have finished, if not, we repeat step 2 a), c) and d) untill no lower
row of the first class is found.

e next lemma is given by Jacobi in [36, sec. 3].

Lemma 5. — e maximal number of transversal maxima in A′ is r iff there is no
lower right maximum, nor lower row of the first class.

P. — e algorithm above proves that the given condition is necessary.
Let us assume that there is no lower right maximum, nor lower row of the first
class, but that there exists a set T of r′ > r transversal maxima aμi,νi . Some of these
must belong to le columns and the others to upper rows. As there are only r
le columns, h ≥ r′ − r of them, say aμi,νi 1 ≤ i ≤ r′, are upper right maxima.
From their first class rows, one can build paths as above, starting from rows μi,
1 ≤ i ≤ h, and considering only maximal elements aμi,μi and aμi,νi , 1 ≤ i ≤ r′. e
sets of rows in su paths are disjoints, for T is a set of transversal maxima. As
there is no lower first class rows, these h paths must end with some element aj,j,
su that there is no νi = j, i.e. no maximum in T located in the same column. So
that there are in T h right elements and at most r−h le elements, a contradiion.

D 6. — We define the rows of the third class as being the lower rows and
all the rows from which there is a path to a lower row. e rows not in the first or
third class form the second class.
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We increase the third class rows by the smallest integer μ su that one of
their elements become equal to a right maximum or a starred element located in
some first class of second class row. ismay be done in atmostO(sn) operations.

We then iterate step 2 with a new matrix A′ = A+ ℓ and a new veor ℓ.

If this element belongs to a second class row, this rowwill go to the third class
and the cardinal of the second class will decrease. If it belongs to the first class,
then at the next step there will be a lower right maximal element (if it is in a right
column) or a first class lower row (if it belongs to a le one), so that the number
of transversal elements will increase. Let p be the number of starred elements,
there are at most p − 2 second class rows, at least 1 first class and 1 upper third
class row, so that we need at most p− 1 iterations to exaust the second class and
increase the number of transversal maxima, whi can occur at most s− 2 times.
So step 2 is iterated at most

∑s−1
p=2(p − 1) = (s − 1)(s − 2)/2 times before the

algorithm returns the requested result.
If the integer inlement of A are bounded by C, then ea integer operation

requires O(lnC) bit operations.

is leads for s = n to a O(n4) complexity, whi corresponds to that of
Kuhn’s original Hungarian algorithm [7, Ch. 4.1 p. 77].

T 7. — e above algorithm returns the minimal canon, if it exists, in at
most O(s3n) elementary operations. Assuming that the elements in the matrix are
integers of size C, it requires at most O(s3n logC) bit operations.

P. — e termination and complexity of the algorithm have already
been proved. We only have to show that the obtained canon is the smallest.

e proof, that follows Jacobi’s, relies on the following lemma.

Lemma 8. — Let λ be the minimal canon for A′, assume that ai,i 1 ≤ i ≤ r form the
set of transversal maxima in A′ + ℓ′, ℓ′ < λ, with respe to which the classes are
defined at step e) of the algorithm and that there is no lower right maxima nor first
class lower row. en there is no unanged row of the third class in A′ + ℓ′, i.e. a
third class row of index i0 with λi0 = ℓ′i0 .
P   . — We assume ai,i 1 ≤ i ≤ r to be a maximal set of
transversal maxima in A′ + ℓ′. Let ai,σ(i) + λi, 1 ≤ i ≤ s be a maximal set of
transversal maxima in A′ + λ.

If row i is an unanged row of the third class, the element ai,σ(i) is maximal
(in its column) in A′+λ, and so it is also maximal in A′+ℓ′. It cannot be an upper
right element, for then the row iwould be of the first class, and it cannot be lower
right, for third class rows are considered only if no lower right maximum is found
a step 2. b). So, 1 ≤ σ(i) ≤ r.

Let H denote the set of integers 1 ≤ i ≤ r su that row i is an unanged
row of the third class. For i ∈ H the elements ai,σ(i) + ℓ′i and aσ(i),σ(i) + ℓ′σ(i) are
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both maximal elements of the column σ(i). So, the row σ(i) must be unanged
in A′ + λ and, as there is a path from it to row i, it belongs to the third class:
σ : H 7→ H is a bijeion. Hence, there is no unanged lower row i′ of the third
class, for we would have σ(i′) ∈ H and i′ /∈ H.

Let the row i0 be and unanged row of the third class. Due to the third class
definition, we can find a sequence of third class rows iα, 0 ≤ α ≤ p, su that:
i) aiα+1,iα = aiα,iα ;
ii) rows iα, 1 ≤ α < p are upper rows;
iii) row ip is lower.
e row i0 is unanged. Using i), we prove by recurrence that all rows iα, 0 ≤
α ≤ p are unanged. As row ip is lower, we arrive to a final contradiion, that
concludes the proof of the lemma

Ea row of a canon must contain a maximal element. So λ ≥ ℓ, where ℓ
is the veor produced by the preparation process. As there is no unanged
row of the third class, and as, during step 2) e) we increase third class rows by
the minimal integer requested to ange the class partition, the canon returned
by the algorithm must be the minimal canon λ. is concludes the proof of the
theorem.

Remarks. — 9) Let the n× n integer matrix A be defined by ai,j = (n− 1)2 − (i−
1)(j− 1), one shall apply step 2 precisely (n− 1)(n− 2)/2 times. E.g. for n = 4,
the matrix is:

I
III
III
III


9 999 9 9
999 8 7 6
9 7 5 3
9 6 3 0

 ,

where we have indicated the classes of the rows on he le, the starred maxima
being in bold. Step 2 shall be applied 3 times and here is the sequence of matrices
it produces, with the increment of ea rows, the last being the canon.
I
II
III
III


9 9 999 9
10 999 8 7
111000 8 6 4
10 7 4 1


0
1
1
1

,

I
III
III
III


9 9 999 9
10 999 8 7
111111 9 7 5
11 8 5 2


0
1
2
2

,


9 9 9 999
11 10 999 8
12 111000 8 6
111222 9 6 3


0
2
3
3

10) Jacobi gave the criterion of lemma 5 as a way to help finding a maximal set
of transversal maxima, but seemed to assume that, most of the time, one will find
them by inspeion, as he does for the 10× 10 matrix provided as an example in
[37]. So, our presentation is a modern reinterpretation that does not fully refle
the spirit of a method intented for hand computation.

In his analysis of Jacobi’s contribution [57], Kuhn made a distinion in the
algorithm between a Kőnig step, i.e. finding the maximal number of transversal
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maxima, and an Egerváry step, i.e. increasing the number of transversal maxima.
is underlines the deep similarity with the Hungarian method and is coherent
with Jacobi’s presentation.

Jacobi completed his work with a few more algorithms, allowing to compute
the minimal canon, knowing an arbitrary canon or a maximal set of s transversal
maxima ([53], lemma 3), whi he did not use in his study of differential systems
that will be exposed in the next seion 3, together with some complements about
algorithms and complexity. We will conclude this paragraph with the case of the
maximal mating problem, followed by some properties of covers that will be
needed in seions 6 and 7.

2.2 Maximal mating

Egerváry’s results were influenced by the following theorem of Kőnig [54, 55,
73] (see also [53, lemma 2]), whi was in turn inspired by previous works of
Frobenius [25, 26] (one may refer to Srijver [74] for historical details. It is
an easy consequence of Jacobi’s criterion for araerizing maximal transversal
families of maxima (lemma 5).

T 11. — Let A be a s × n matrix of zeros and ones, with s ≤ n, m be the
smallest integer such that the ones are all located in the union of p rows and m− p,
then m is the maximal diagonal sum O in A.

P. — It si easily seen that O ≤ m: in any diagonal sum, at most p “ones”
belong to these p rows,m−p to thesem−p columns, and the sum ism−p+p−q,
where q is the number of ones that belong both to these rows and these columns.

To prove O ≥ m, one may use Jacobi’s construion. Assume that we have
r = O diagonal starred ones, that we may assume to be a1,1, …, ar,r. We can
use lemma 5 with the following ange : the ones are the maximal elements, the
zeros the non-maximal elements. According to the lemma, there are no lower
right ones. Let p be the number of first class rows, that we may assume to be
rows 1 to p. Rows p+1 to r do not belong to the first class and so they contain no
ones located in columns 1 to p nor r+ 1 to n. Rows r+ 1 to s belong to the third
class and, in the same way cannot contain ones in columns 1 to p nor r + 1 to
n, whi would contradi the minimality of r. So, all the ones belong to p rows
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and r− p columns, as illustrated by the figure below.

r︷ ︸︸ ︷

∗
. . .

∗
∗

. . .
∗

0 0



 p

︸ ︷︷ ︸
r− p

is concludes the proof.

2.2.1 A naïve algorithm

A 12. Input data: A s× n matrix of zeros and ones.
Output: A maximal transversal sum in A.

Classes of rows will be construed here, not with respe to maximal ele-
ments, but with respe to “ones”.

To solve the problem, we only have to constru the set of first order rows,
with a cost of O(sn) operation, and to apply lemma 5, whimay only occur μ−1
times, where μ is the size of the mating; hence a total cost of O(s2n) operations
for the whole algorithm. is is the complexity of an improved version of Jacobi
algorithm (see below 3.2).

But it is posible to lower the complexity with a slight modification, due to
Hopcro and Karp[32]. See below 3.1.1.

2.3 Covers

If not stated overvise, we consider in this seion only square matrices A. Covers
do not appear in Jacobi’s paper and it is interesting to investigate their relations
with canons.
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D 13. — We call a cover for A the data of two veors of integers
(μ1, . . . , μn) and (ν1, . . . , νn), such that ai,j ≤ μi + νj. A cover μ, ν is a minimal
cover if the sum

∑n
i=1 μi + νi is minimal.

Let μ, ν and μ′, ν′ be two covers for A, then we say that they are equivalent if
there exists some integer γ such that μ′i = μi + γ and ν′j = νj − γ.

P 14. — i)=⇒A cover μ, ν ofA is minimal iff there exists a permutation
σ such that ai,σ(i) = μi + νσ(i).

⇐= Let us assume that there is no such permutation σ. en, the entries ai,j with
ai,j = μi+νj belong to p rows andm−p columns, withm < n, that we may suppose
to be rows 1, . . . , p and columns 1, . . . ,m− p. Let e := minn

i=p minn
j=m−p(μi + νj −

ai,j), we define μ′i := μi if i ≤ i ≤ p and μ′i := μi − e if p < j ≤ n, ν′j := νj + e if
1 ≤ j ≤ m− p and ν′j = νj if m− p < j ≤ n: μ′, ν′ is a cover, with

∑
i=1(μ′i + ν′i) =∑n

i=1(μi + νi)− (n−m)e.
ii) Let ℓ be a canon for A. We will denote by L := maxsi=1 ℓi, μi = L − ℓi and

νj = maxsi=1 ai,j − μi. e veors μ, ν form a minimal cover for A, that we define
as the cover associated to the canon ℓ.

iii) Let μ, ν be a cover for A, the integers ℓi := maxk μk − μi form a canon for A,
that will be called the canon associated to the cover μ, ν.

P. — i) We have, by hypothesis,
∑n

i=1 μi + νi =
∑n

i=1 ai,σ(i) and, by
definition of a cover,

∑
i μi + νi ≥

∑
i ai,σ(i), hence the minimality of the cover μ,

ν.
ii) By construion, μi + νj ≥ ai,j, so that α, β is a cover. Minimality is a

consequence of i), remarking that if ai,σ(i) + ℓi form a maximal transversal sum
in A+ ℓ, then ai,σ(i) = μi + νi.

iii) By i) there exists a permutation σ su that ai,σ(i) = μi + νσ(i), so that
ai,σ(i) + ℓi = νσ(i) + L ≥ ai′,σ(i) + ℓi′ for all 1 ≤ i′ ≤ n, so that ℓ is a canon.

D 15. — e minimal cover associated to the minimal canon will the
called the Jacobi cover or the canonical cover.

Remarks. — 16) Knowing the minimal canon, we may obviously compute the
Jacobi cover in O(sn) operations.
17) If A is a matrix of non negative integers, then any cover is equivalent to a
cover of non negative integers. It is easilly seen thatmini μi+minj νj ≥ mini,j ai,j,
so that one just has to define μ′i′ := μi′ −mini μi and ν′j′ := νj′ −mini μi to be sure
that μ′i ≥ 0 and ν′j ≥ 0.

18) In our definition, covers are veors of integers and not non negative integers
as assumed by Egerváry [23]. It is easily seen that any matrix of non negative
integers admits a minimal cover of non negative integers, but we cannot restri
to this case, even if differentiation orders are non negative, because we will need
to consider in sec. 4.1 −∞ entries.
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e matrix (
0 2
−1 1

)
admits no minimal cover of non negative integers: μ1 + ν1 = 0 would imply
μ1 = 0, so that ν2 ≥ 2, whi contradis μ2 + ν2 = 1.

To try to get an equivalent cover of non negative integers, we may addminj νj
to all the μi and substra it from all the νj; doing so, one gets a new cover μ′,
ν′ with minj ν′j = νj00 and mini μ′i minimal. If some μ′i0 remains negative, no
equivalent cover of non negative integers exists, but then ai0,j0 ≤ μ′i0 + ν′i0 < 0.

19) For any integer matrix A of zeros and ones, all minimal covers are equivalent
to minimal covers that are veors of zeros and ones, as well as their associated
canon.

20) In the Jacobi cover, some αi0 = 0 must be 0.
If α, β is the Jacobi cover of A, β, α is not in general the canonical cover of

At, and the canonical cover of A is not even in all cases equivalent to β, α. For A
su that ai,j = αi + βj, the canonical covers of A (resp. At) will be equivalent to
α, β (resp. β, α) and they will even be equal if some αi0 = 0 (resp. some βj0 = 0).

But the canonical cover of the matrix

A :=


1 1 1 111 1
1 1 111 1 1
1 111 0 0 0
111 0 0 0 0
1 0 0 0 000


is (1, 1, 1, 0, 0), (1, 0, 0, 0, 0), that of At is (1, 1, 0, 0, 0), (1, 1, 0, 0, 0) and the two
covers have no obvious relation.

21) Assume that ai,i form a maximal transversal sum in the matrix A. For any
cover μ, ν of A, there is an elementary path from line i0 to line i1 of the canon of
A (sec. 2.1 step 2 c) iff ai1,i0 = μi1 + νi0 .
22) If A is a canon, then At is not necessarily a canon, but we can easily compute
the associated cover μi, νj forA, then νj, μi will be a cover forAt and the associated
canon ℓi := maxk μk − μi will be easily computed, viz. in O(n2) operations.

23) Let A be a matrix. We may compute its simplest canon B and the simplest
canon C of Bt. e matrix Ct is the simplest matrix D that is a canon for A and
su that Dt is a canon for At, meaning that minimal quantities are added to the
rows and columns of A to obtain D.
24) Let A be a matrix of zeros and ones, and μ, ν a cover of A. e non zero
elements of A are located in the rows i with μi ̸= 0 and columns j with νj ̸= 0.
We recover Kőnig’s theorem. Reciprocally, if R and C are two sets of rows and
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columns containing all the ones appearing inA, with ♯R+♯Cminimal, then μi = 1
if i ∈ R and νj = 1 if j ∈ C defines a minimal cover for A.

So, in this case, a cover is exaly equivalent to the associated minimal sets
of rows and columns.

25) Let A be a matrix of non negative integers and ai,σ(i) be transversal maxima
for A, then this matrix has at most

n∏
i=1

(ai,σ(i) + 1)

covers of non negative integers and this number is reaed if all elements of A
except these transversal values are 0 or less. Assume that the ai,j belong to some
ordered group Gwhere there is no infinite strily decreasing sequence, then any
square matrix admits a finite number of covers, up to equivalence.

On the other hand, if there are an infinite number of values c ∈ G su that
minj̸=σ(i0) ai0,j < c < ai0,σ(i0), there are an infinite number of non equivalent covers
μ′i0 := c, μi ̸=i0 := μi; ν

′
σ(i0) := ai0,σ(i0) − c, ν′j̸=σ(i0) := νj.

e next proposition will help to clarify the situation and to compute, in case
of need, non Jacobi covers and their canons.

P 26. — Let A be a matrix, we assume without loss of generality, that
ai,i form a maximal transversal sum. Let μ, ν be a minimal cover for A. Using
remark 21, we will use the reflexive transitive closure of the path relation≺, defined
on rows of the associated canon of A and the transposed relation ≺t defined on the
rows of the associated canon of At, i.e. the columns of A. Rows and colums will be
denoted by their indexes. For convenience, we repeat the rules:
i) i1 ≺ i2 if ai2,i1 = μi2 + νi1 ;
ii) i1 ≺t i2 if ai1,i2 = μi1 + νi2 .

i) For any integer i0, the rules:

μ′i := μi + e and ν′i := νi − e if i0 ≺ i

and
μ′i := μi and ν′i := νi if not,

where
e ≤ min

i0 ≺ i
i0 ̸≺ i′

(μi′ + νi − ai′,i) , (3)

define a minimal cover for A.
i ′) For any integer i0, the rules

μ′′i := μi − e and ν′′i := νi + e if i0 ≺t i
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and
μ′′i := μi and ν′′i := νi if not,

where
e ≤ min

i0 ≺t i
i0 ̸≺t i′

(μi + νi′ − ai,i′) ,

define a minimal cover for A.
ii) ere exists no minimal cover μ′, ν′ forA such that μ′i0 > μi0 , μ

′
i < μi+μ′i0−μi0

and i0 ≺ i.
ii ′)ere exists nominimal cover μ′, ν′ forA such that μ′i0 < μi0 , μ

′
i > μi−μ′i0+μi0

and i0 ≺t i.
P. — i) As the transversal sum is unanged, the minimality is granted.

We only have to prove that we obtain a cover. If i0 ≺ i and and i0 ≺ j or i0 ̸≺ i
and i0 ̸≺ j, then ai,j ≤ μ′i + ν′i = μi + νj. If i0 ≺ i and i0 ̸≺ j, ai,j ≤ μi + νj ≤
μ′i + ν′i = μi + νi + e. If i0 ̸≺ i and i0 ≺ j, ai,j ≤ μ′i + ν′j = μi + νj − e by (3).

e proof of i ′) is similar.
ii) We may ose i with a shortest path from i0 to i. Let ir be the penultimate

row of the path. en ai,ir = μi + νir by the path definition, μ′ir ≥ μir + μ′i0 − μi0
by the path minimality hypothesis and ai,ir ≤ μ′i + ν′ir by the cover definition. As
the cover is minimal, we need to have for all k μ′k + ν′k = μk + νk. So

μ′i ≥ ai,ir − ν′ir = μi + νir − ν′ir = μi + μ′ir − νir .

A contradiion. e proof of ii ′) is exaly similar.
e following examples are easy illustrations of the use of this theorem.

Examples. — 27) A matrix A with ai,j = μi + νj, admits a single class of minimal
covers: that of μ, ν.

28) A triangular matrix of ones

1 1 · · · 1 1
0 1

0 0
. . .

...
...

. . . 1 1
0 0 · · · 0 1


has exaly n+ 1 minimal covers of non negative integers indexed by 0 ≤ k ≤ n,
defined by

αi = 1 if i ≤ k and αi = 0 if i > k
βj = 0 if j ≤ k and βj = 1 if j > k.

ey belong to n classes, as the covers obtained for k = 0 and k = n are obviously
equivalent and correspond to the minimal canon.
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Remark 29. —We could have defined covers for reangular matrices, but if s < n,
we need to impose some lower bound for the νj in order to ensure the existence
of a minimal cover: if not the covers μi + c and νj − c will be equivalent, but

s∑
i=1

(μi + c) +
∑
j=1

(νj − c) =

 s∑
i=1

μi +
n∑

j=1

νj

− (n− s)c!

If we impose νj ≥ 0, for any matrix A of non negative elements (viz. ai,j ≥ 0),
the minimum cover μ, ν is su that

s∑
i=1

μi +
n∑

j=1

νj = O.

so that Jacobi’s bound (see def. 1) could also be handled using covers in a dire
way, without adding n − s lines of 0. But this tri is more general, as it works
without any restriion on the entries in A.

Minimal covers in this seing are araerized, as one may easily e, by
the fa that there exists an injeion σ ∈ Ss,n su that μi + νσ(i) = ai,σ(i) and
νj = 0 for all j that do not belong the the image of σ.

3 Related algorithms and deeper complexity
analysis

Discussing the complexity of Jacobi’s algorithm is an interesting subje, but we
need to keep in mind that it is anaronical to do it in the seing of modern
computation models, when Jacobi’s concern was to spare the work of useless
lines rewriting, in a time when paper and pen remained the main computation
tools. We will now provide some improvements that lead to a beer complexity,
in our contemporary formalism.

3.1 Finding a maximal set of transversal maxima. e
Bipartite mating problem

We have encountered with Jacobi’s algorithm the following special problem of
finding a maximal set of transversal maxima. is amounts to solving the assign-
ment problem with a matrix of zeros and ones, using jacobi’s araerization
(see lemma 5). In what follows, as all maximal values will be 1, we will speak
of transversal ones, starred ones instead of transversal or starred maxima. is is
known as the maximal bipartite mating, or mariage problem.
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We could ange the data struure and use the graph of the relation ai,j = 1,
smaller that the full matrix, as initial data, but for the sake of clarity, we will stay
here in the dense seing.

3.1.1 Hopcro and Karp’s algorithm in Jacobi’s setting.

First, we may repeatedly look for lower right ones. is may be done in se-
quence, until no one is found with a total cost O(sn). On may notice that Kőnig’s
theorem 11 implies that this first step already produces ⌈O/2⌉ transversal ones.

e elementary relation “there is a path from row i to row j” can be con-
strued with cost O(sn) and its graph has size at most s2. e main idea is to
build a maximal set (in the sense that it is not strily included in another su
set) of disjoints paths of minimal length leading to a lower first class row, before
building a new path relation. So the main step of the algorithm is not to produce
a single augmenting path, but, at ea stage k, a maximal set of disjoint paths of
the same length βk.

A 30. Length. — Input data: a matrix A and a transversal set of “ones”,
given by an injeion σ : [1, r] 7→ [1, s] × [1, n], and that we assume here for
convenience to be ai,i, 1 ≤ i ≤ r.
Outputs: the list of sets of rows Li, 0 ≤ i ≤ k, that may be reaed from a first
class rowwith a right “one” with paths of length at least i, and the minimal length
k of a path from L0 to a lower row, or “failed” if no su row exists.

We start with the upper lines with right “ones”, that form the set L0. Let
M := L0

6.
At step 1, we define L1 to be the set of elements not in M su that there is a

path to them from some element of L0. We increase M with L1. We then define
L2 to be the set of elements not in M to whi there is a path from an element of
L1, etc.

We stop this process as soon as Lk is empty—and we return then “failed”—
or contains a lower line, that will be by construion a first class lower line. e
integer k will be the minimal length of a path leading to a lower first class row,
that we return.

is process is achieved in O(s2) operations.

To find a maximal set of disjoint paths we may use for brevity the follow-
ing recursive process (see [32] for a different more detailled presentation). e
maximal number of disjoint paths is bounded by the cardinal of L0 and these el-
ements are the possible starting points of any of them. We define first a set F

6We assume it is possible to know with constant time if some integer belongs to any su
subsets of [1, s], by storing boolean values in some array.
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of available rows, whi is initialized with the set of rows not in L0. We define
first the following funion, assuming that the length k has been computed as in
algo. 30.

A 31. Path. Input data: an integer j and a row i in Lj.
Output: some list of rows iα /∈ F that forms a path of length k − j leading from
row i to a lower first class row, or “failed” if no su path exists.
Global variable: F, a set of elements to be used for building paths during the
process.

Step 1) Let C be the set of elements of Lj+1 ∩ F su that there is a path from
i to them.
If j = k− 1 and C ̸= ∅, let c ∈ C, remove c from F and return c.
If j < k− 1, remove from F the elements of C and go to step 2).

Step 2) For c ∈ C, if Path(c) = L is a path, then we put ba in F the elements
of C to whi “Path” has not be applied and we return the list [c, L].

is process clearly returns a path of length k to a lower first class row. e
elements in that path are removed from F, as well as the elements of Li fromwhi
no su path of length k− i has been found. So repeated call to that funion will
produce disjoint paths and the funion Path can be applied only once to a given
row.

is implies that we can apply in sequence Path to the elements of L0 to get a
maximal set of disjoint paths of minimal length k in O(s2) operations.

A 32. Increase. — Input data: a list T of transversal maxima, and an
“increasing” path [j1, . . . , jk] from a row with a right maxima to a lower first class
row.
Output: an increased list of transversal maxima. We proceed as in 2.1 step 2) d)
p. 12.

A 33. Hopcro–Karp. — Input data: a matrix A of zeros and ones.
Output: the elements of a maximal transversal sum of A and a minimal cover.

Step 1) As stated above, we repeatedly look for lower right ones, producing
first at least ⌈O/2⌉ transversal ones aσ(i), 1 ≤ i ≤ r.

Step 2) Let k :=Length(A, σ, τ). Ifk =“failed”, then return σ.
If not, for i ∈ L0 do:

— J := Path(k, i).
— If J ̸=“failed” then σ :=Increase(σ, J).
— Repeat Step 2).
e total cost of steps 1) or 2) is O(sn), so the key point in bounding the com-

plexity is to evaluate how many times step 2) is performed, which is the goal of the
next two lemmata 34 and 39.
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Lemma 34. — Let βk be the length of the paths used at stage k, then the sequence βk
is strily increasing.

P. — Assume it is not the case and βk ≤ βk−1. We may assume that k
is minimal with that property. We call a anged line, a line that has been used
in some path at stage k− 1. In any path used at stage k, there must be a anged
line. If not, whever βk = βk−1 and this contradis the fa that algorithm 31
produces a maximal set of disjoint paths of length βk−1, whever βk < βk−1 and
this contradis the minimality of the length of paths produced by algorithm 30.

An injeive funion φ : [1, s] 7→ [1, s] defines a unique set of disjoint paths
and loops, the union of whi is equal to the union of its image and its definition
domain. If ∃r φr(i) = i, then i belongs to a loop, if not let r0 := max{r|φ−r(i) is
defined} and r1 := max{r|φr(i)is defined}, then i belongs to the path φ−r0(i), …,
φr1(i).

Let φ be the funion defined by the τ paths of stage k − 1 and i0, …, iβk
be a path of stage k: it must have some rows in common with the paths of
stage k − 1. Let them be ih1 , …, ihr , r ≥ 1. If φ−1(ihκ) is defined, we replace
in the graph of φ (φ−1(ihκ), ihκ) with (φ−1(ihκ), ihκ+1). We then add to the graph
of φ the couples (iζ , iζ+1), 0 ≤ ζ < r, ζ /∈ ℑ(h) and the couples (ihκ , φ(ihκ)),
1 ≤ κ ≤ r, φ(ihκ). is construion is illustrated by the following figure.

Elementary path relations

at stage k−1 are indicated by ...
and at stage k by |; aer rear-
rangement by [.

e starred ones of stage
k− 1 by 1 and those of stage k
by 1.





1 · · · · · · · · · row φ−1(ihk)
...
... 1 · · · row ihk−1

...

[
|

1 · · · 1 · · · 1 · · · row ihk
|

[
...

| 1 · · · · · · row ihk+1
|
1 · · · · · · · · · row φ(ihk)


is defines an injeion to whi is associated a new set of paths and (possibly)
loops.

en, the sum of their lengths is at most τβk−1 + βk − r (and strily smaller
iff loops do exists). So, as βk ≤ βk−1 one path must be of length strily smaller
that βk−1. is contradis the minimality of βk−1.

Remark 35. — Our paths of length r correspond to paths of length 2r+1 following
the conventions of Hopcro and Karp [32]. is is due to the fa that they define
the path relations, not between rows but between the “ones” involved in the path
relation. In their seing, starred elements appear with а minus sign and the
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others with a plus sign. So the process of reconstruion reduces to computing
the sum of the two paths. E.g. denoting by 1i,j a one placed in row i and column
j we have:

(+11,1 − 1∗1,3 + 12,3 − 1∗2,4 + 14,4) + (+12,2 − 1∗2,3 + 13,3)
= (+11,1 − 1∗1,3 + 13,3) + (+12,2 − 1∗2,4 + 14,4).

e element 12,3 that appeared two times has vanished and the two paths of
lengths 5 and 3 are replaced by two paths of lengths 3 and 3.

Examples. — 36) In the following example, the stared ones
of the first stage (k− 1 in lemma lemma-decreasing) are itali-
cized and those of the second stage (k in the lemma) bold. e
first—increasing—path includes rows 1, 2 and 3. e second
rows 3, 2, 1 and 4. Using Hopcro and Karp’s convention we


0 1 1 0
1 1 0 0
1 0 0 1
0 0 1 0


have (11,3− 11,2+ 12,2− 12,1+ 13,1) + (13,4− 13,1+ 12,1− 12,2+ 11,2− 11,3+ 14,3) =
13,4 + 14,3. is means that we have, in Jacobi’s seing, two paths of length zero,
viz. lower right ones.

37) Using the same conventions as above, the first path in-
cludes rows 1, 2 and 3, the second rows 3 and 4. In Hopcro
and Karp’s convention: (11,3 − 11,2 + 12,2 − 12,1 + 13,1) +
(13,4 − 13,1 + 14,1) = (11,3 − 11,2 + 12,2 − 12,1 + 14,1) + 13,4.
In Jacobi’s seing: one path of length 2, formed of rows 1, 2
and 4, and one of length 0, viz. a lower right “one”: 13,4.


0 1 1 0
1 1 0 0
1 0 0 1
1 0 0 0



38) e first path includes rows 1, 2 and 3, the second rows 3,
1 and 4. In H & K’s convention: (11,3 − 11,2 + 12,2 − 12,1 + 13,1)
+ (13,4 − 13,1 + 11,1 − 11,3 + 14,3) = (11,1 − 11,2 + 12,2 − 12,1) +
13,4 + 14,3. Jacobi’s: one loop, formed of rows 1 and 2, and two
lower right “ones”: 13,4 and 14,3.


1 1 1 0
1 1 0 0
1 0 0 1
0 0 1 0


Lemma 39. — Let (ai,j)(i,j)∈G1 and (ai,j)(i,j)∈G2 , where G1, G2 are the graphs of two
funions [1, s] 7→ [1, n], be two families of r1 := ♯G1 and r2 := ♯G2 transversal
ones of A. We assume r2 > r1. Lower right “ones” in the family (ai,j)(i,j)∈G2 , i.e.
elements that are not placed in the same rows or columns as the elements of G1, will
be considered to be paths of length 0.

en, using only the starred “ones” in (ai,j)(i,j)∈G1 and the “ones” in (ai,j)(i,j)∈G2

placed in the same columns, we define a path relation such that there exists a path
of length at most ⌊r1/(r2 − r1)⌋.

P. — If lower right “ones” exist in (ai,j)(i,j)∈G2 , then the result stands
according to our convention. We obtain possibly loops (if G1 and G2 have a
element (i, j) in common, then we consider it as a loop from row i to itsel) and
at least r2−r1 open paths, as there are as many elements from G1 and G2 in loops.
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As a path of lengthm involvesm starred ones in G1, the sum of the lengths of all
paths is at most r1 and there exists a path of length at most ⌊r1/(r2 − r1)⌋.

T 40. — Assume that the maximal number of transversal “ones” in A is s0,
then the algorithm requests at most

√
s0 steps. Its complexity is O(s1/20 sn).

P. — Let k := ⌊s0 −
√
s0⌋ and ℓ be the number of steps. Let G1 be set of

starred ones at step m ≤ ℓ − k and G2 the maximal set of starred ones at step ℓ.
Using lemma 39, the length of a path at stepm is a most s0/

√
s0, so that there are

at most ⌊√s0⌋ steps before step ℓ− ⌊s0 −
√
s0⌋ and ℓ ≤ ⌊√s0⌋.

is problemwas first considered by Frobenius [25] in order to decide a priori
if a matrix where non zero element can appear at known places has an identi-
cally vanishing determinant. It is a desappointing that the complexity of solv-
ing this problem is for the moment bigger than that of computing a numerical
determinant. We can only aieve the exponent of matrix multiplication with
probabilistic algorithms using random numerical values! See Ibarra and Moran
[35]. One may notice that this method, when it succeeds, only gives a cover, but
no maximal mating and its seems uneasy to compute it faster that the Hopcro
and karp method, even if a cover is a priori known.

3.2 A O(s2n) version of Jacobi’s algorithm

In order to improve the complexity of Jacobi’s algorithm, we only have to remark
that it is useless to reconstru the whole path relation in order to reduce the
number of second class rows or make some lower first class row appear, as the
starred maxima will remain unanged.

At step 2 c) p. 12, we also have to define the set CI,II of first and second class
rows. For ea i ∈ CI,II, we compute the minimal distance di between its starred
maximum ai,i and some third class row element in the same column, or between
some upper right maxima of a first class row i and some third class row in the
same column.

All this is done with a cost at most O(sn).
c′) We will then increase all third class row by di0 := mini∈CI,II

di. If this
creates a lower first row, step c) is finished. If not, we remove i0 from the set
CI,II, and add it to the third class. We redefine di to be the minimum of di and the
distance between its starred maximum ai,i and ai0,i, or between some upper right
maxima ai,j and ai0,j. We iterate step c′) with these new values.

e substep c′) is performed with a total cost O(n) and will be interated at
most s− 2 times, until 2) is completed and we don’t need step e) any more.

T 41. — Using substep 2. c′), the complexity of Jacobi’s algorithm is bounded
by O(s2n).
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is improved complexity O(n3) was first obtained for square matrices by
Dinic and Kronrod [20] in 1969, rediscovered independently by Tomizawa [77]
in 1971 and then by Edmonds and Karp [22] in 1972.

Remark 42. — As we have already seen (see rem. 9), we cannot escape, in some
cases, to repeat at least s − 2 times step 2 of Jacobi’s algorithm. It could be pos-
sible to speed up the construion of elementary step relation, as in most cases
they are unanged or reversed. But it seems unavoidable to escape a O(s2) com-
plexity when building the class partition. In this situation, we don’t know how
to constru in a single step a large set of augmenting paths, as we have been
able to do for the maximal mating problem (see 2.2).

One may notice that pionnering aspes of Jacobi’s work include reaability
issues and computing the transitive closure of a direed graph. But this problem
is not formalized and its solution is implicitely assumed to be aieved in some
naïve way for small size data. However, some of his algorithms solve problems
equivalent to some instances of the shortest path problem.

3.3 A canon being given, to find the minimal one

In order to solve this problem, Jacobi proposes ([36] VII) first to compute a maxi-
mal set of transversal maxima, whi may be done using the method developped
in 3.1 with complexity O(n5/2) for a square matrix A. Knowing transversal max-
ima, we may use then the following method.

A 43. Data: a square matrix A of size n and a maximal system of
transversal maxima for a canon of A, that we assume for simplicity to be ai,i+ ℓi.

Step 1. We decrease all the ℓi by minn
i=1 ℓi, so that, at least one ℓi is 0.

Step 2. We build the path relation. en, we establish the list L1 of rows with
ℓi = 0, or to whi there is a path from a row with ℓi = 0, and the list L2 of the
remaining rows.

Lemma 44. — If there is a path from all rows to a row i with ℓi = 0, then the canon
is minimal.

P. — Assume it is possible to decrease some ℓi0 to a new value ℓ′i. We
may oose ℓi0 so that there is a path of minimal length from row i0 to a row i
with ℓi = 0. It means that there is a path from row i0 to some row i1 with ℓi1
unanged, meaning that ai0,i0 + ℓ′i0 < ai1,i0 + ℓi1 , a contradiion.

By lemma 44, if L2 = ∅, we have finished. If not, we compute

b := min(min
i∈L2

ℓi,min
i∈L1

min
i′∈L2

ai,i − ai′,i),
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that is the minimal distance between some starred element in L1 and the elements
in the same column in some row of L2. Step 2) may be aieved with complexity
O(n2).

Step 3. We decrease all the ℓi, i ∈ L2 by b. In this way, some rows will go from
L1 to L2. We then repeat step 2).

A naïve complexity analysis gives a O(n3) complexity for the whole process.
It is possible to turn it to O(n2 ln(n)), using “balanced trees” or “AVL trees, from
the name of their inventors Adelson-Velsky and Landis [1]. See also Knuth [50,
6.2.3 p. 451]. is tree struure allows to maintain dynamically an ordered list
of p elements, allowing to insert, delete, sear the order of an element or an
element of a given order in O(ln p) operations.

A 45. We use the same input and data and convention as above (alg. 43).
Step 1) a) Decrease all the ℓi by minn

i=1 ℓi. Create a list L1 of the rows i with
ℓi = 0 and a list L2 of the remaining elements.

b) For i ∈ L1, create a balanced tree Ti, containing for all the the rows i′ of
L2 the pairs (min(ℓi, ai′,i− ai,i), i′) of L2, sorted by reversed lexicographical order.
is may be aieved with total cost O(n2 ln n).

Step 2) Compute the smallest pair (min(ℓi0 , ai′0,i0 − ai0,i0), i
′
0) in the trees T.

Decrease the ℓi of the valuemin(ℓi0 , ai′0,i0 − ai0,i0). For all i ∈ L1, suppress the pair
(min(ℓ′i0 , ai′0,i − ai,i), i′0 from Ti. Add row i′0 to L1 and suppress it from L2. Create
a balance tree Ti′0 as above.

All this may be done with total cost O(n ln n).
If L2 is empty, we have finished, if not we iterate step 2), whi will be per-

formed at most n times, providing a total cost O(n2 ln n).

T 46. — Knowing a canon for a square matrix of size n × n and a set of
transversal maximal elements in this canon, one may compute the minimal canon
with cost O(n2 ln n).

P 47. — Let Bi,j be a square matrix at least a transversal set of maxima,
that we may assume to be: bi,i. en, the reflexive transitive closure of the path
relation does not depend on the choice of this transversal set.

P. — Assume that bi,i and bi,σ(i) be two transversal sets of maxima. We
denote by ≺1 (resp. ≺2) the path relation defined using the first family (resp.
the second). Assume that there is a elementary path i ≺1 j. Consider the cycle
i0 = i and ip+1 = σ(ip). Let ir = i. According to the path definition, there is an
elementary path ip ≺1 ip+1 and ip+1 ≺2 ip. Using the cycle, we have

i ≺2 ir−1 ≺2 · · · ≺2 i1 = σ(i) ≺2 j,

so that the reflexive transitive closure of ≺1 and ≺2 are the same.



30 Jacobi’s Bound

D 48. — We will denote by πA the path relation associated with the min-
imal canon A+ λ of A.

Remarks. — 49) Generically, i.e. if quantities ai,j−ai,i are all different, πA defines a
forest of rooted trees with n labeled vertices, where the roots correspond to rows
with λi = 0. By a variant of Cayley’s formula there are (n+1)n−1 possibilies, and
as mu formulas for the values of the minimal canon ℓi. If there is an elementary
path from row i0 to row i1, then to row i2 …up to row ir with λir = 0, then

λi0 =
r∑

k=1

aik,ik−1 − aik−1,ik−1 .

If a given row i0 may be conneed to two different “roots” (i.e. rows iwith λi = 0,
it is enough to consider one to fix the value of λi0 . is may be visualized using
some meanical construion (see below subseion 3.8).

50) In the case of a reangular matrix, we cannot use this method. E.g. consid-
ering the matrix (

222 2 1
1 111 2

)
,

with a canon ℓ = (0, 1)t and the transversal elements in bold, we cannot decrease
the canon without anging these transversal element. However, the minimal
canon is 0 with the transversal elements in italics.

51) Assume we have computed Jacobi’s boundO for some s×nmatrix by adding
n− s lines of 0 and that O =

∑s
i=1 ai,i. en, for any canon ℓ, the value of ℓi0 for

s < i0 ≤ n is maxnj=s+1 maxsi=1 ai,j + ℓi. is means that,if one needs to compute
the minimal canon for su a matrix, one just has to compute the minimal canon
of the square matrix (ai,j)1≤i,j≤s inO(s ln s) operation, and then the common value
of the ℓi, s < i ≤ n in O(s(n− s)) operations.

Assume now that we want to compute the minimal canon for a matrix Awith
n − s columns of 0. We may assume that the transversal maximal elements are
ai,i, 1 ≤ i ≤ s. en, it is easily seen that for i′ > s, the minimal canon λ is su
that λi′ = maxsi=1 λi.

Before leaving this subje, we will emphasize the special case of matrices of
zeros and ones, associated to maximum mating problems. For this, the algo-
rithm 43 will run inO(n2)steps, as we only need to apply step 2) one time. It is so
efficient enough and will allow us to maximize the number of rows (or columns)
in Kőnig’s theorem 11.

P 52. — Let A be some s × n matrix of zeros and ones (possibly hori-
zontally or vertically reangular), A′ the max(s, n) × max(s, n) matrix obtained
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by adding |n − s| columns or rows of 0 to A. Let λ be the minimal canon of A′, μ
and ν the associated canonical cover and O the maximal transversal sum of A′.

i) If some λi is not 0 (or equivalently some μi = 1 − λi is not 1), then for any
sets R of rows and C of columns containing all the 1 in A, i0 ∈ R implies λi0 = 0.

ii) In Kőnig’s theorem, there exists a unique couple of sets of rows R and columns
C with R maximal for inclusion (resp. with C maximal for inclusion).

P. — e assertion i) is a straightforward consequence of theminimality
of λ.

ii) e result is straightforward if the Jacobi number O of A is s. en R =
{1, . . . , s} is the maximal set of rows.

If some λi = 1, then the result is a dire consequence of i).
If all the λi are 0 and O < s, one just has to consider the (max(s, n) + 1) ×

(max(s, n)+1)matrixA′′ obtained by adding toA′ a row ofmax(s, n)+1 ones and
a column of max(s, n) zeros. We get a maximal transversal sum of value O for
A′′ by completing one for A′ with the 1 in column and line of indexmax(s, n)+1.
As there must be some zero in any maximal transversal sum, some λi must be 1
in the minimal canon of A′′, so that we can now apply i).

e statement for columns is obtained by considering the transpose matrix
At.

D 53. — We call this cover the row maximal (resp. column maximal)
minimal cover.

A 54. A s×nmatrix A of zeros and ones being given, together with the
elements of a maximal transversal sum of elements of A the following algorithm
computes a row maximal minimal cover.

Step 1. Compute the Jacobi number O of A. If O = s, then the s rows of A
form the row maximal cover.

Step 2. Make a square matrix A′ by adding to A |n− s| rows or columns and
add a row of max(s, n) + 1 ones and a column of max(s, n) zeros to define a
(max(s, n) + 1) × (max(s, n) + 1) matrix A′′ as in the proof of prop. 52. en
compute the minimal cover of A′′ using algorithm 43; the rows 1 ≤ i ≤ s with
ℓi = 0 form the row maximal minimal cover of A.

3.4 Transversal maximas being given, to find the minimal
canon

If we don’t have a canon but just know the place of transversal maxima in the
matrix A, then we can proceed in the following way.

A 55. We assume that the transversal family is ai,i. For 1 ≤ i ≤ n,
increase row i by maxnk=1 ak,i − ai,i. is may be done in O(n2) operations.
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Repeat the process untill all rows remain unanged.

P 56. — is algorithm produces the minimal canon in O(n3) opera-
tions.

P. — e process in the algorithm will be repeated at most n times, the
exa number being, in the generic case the maximal distance from any row to a
row with λi = 0, according to the path relation of def. 48.

Remarks. — 57) is algorithm may be easily modified to compute the path
relation forest. Given any transversal family ai,σ(i), it may be used to test if it cor-
responds to transversal maxima, the stoping of the algorithm aer n step beeing
a necessary and sufficient condition.

If the algorithm does not stop, it means that the path relation contains a loop
τ (whi may be tested before step n), so that

∑
ai,σ(i) <

∑
ai,τ◦σ(i).

58) e last example of [36, § 3] is the transpose of a canon. en, this transpose
is not a canon, but the terms of a maximal transversal sum are known and we
can apply the above method. We may also compute a cover and deduce of it a
canon (see rem. 22), allowing to use the more efficient method of 3.3. In Jacobi’s
informal seing, the two methods have comparable complexities.

3.5 Tropical geometry

We will denote by M ⊙ N the tropical matrix multiplication. One may wonder
why the analogy with the determinant cannot be used in a straightforward way.
One may remark first that the analogy suffers important limitations: the analog
of addition is “max” that has no inverse and the tropical determinant of a tropical
produ of matrices is not in general the sum of their tropical determinants. Su
a property stands only in special situations, e.g. |A ⊙ B|T = |A|T ⊙ |B|T if B is
a canon and A the transpose of a canon. Moreover, the tropical determinant is
also the tropical permanent…

Assume that ai,i is a transversal family with a maximal sum. en, reducing
row i by ai,i we get a newmatrix Bwith bi,i = 0, the result of the last algorithm 55
is the tropical matrix produ: (a1,1, . . . , an,n) ⊙ Bn. A O(nα) algorithm for the
tropical multiplication would produce a O(nα ln(n)) algorithm for the problem of
finding a minimal canon, knowing the elements of a maximal transversal sum.

3.6 Minimal canons subje to inequalities

P 59. — Let A be a square n × n matrix, and ci, 1 ≤ i ≤ n positive
integers. en there exists a unique minimal canon subje to the condition ℓi ≥ ci.
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P. — Consider the new matrix A′ := A + c. en, ℓ is a canon of A,
subje to ℓi ≥ ci iff ℓ− c is a canon of A′, so that the unique minimal canon λ of
A′ is su that λ + c is the unique minimal canon of A, subje to ℓi ≥ ci.

is proof obviously provides an easy algorithm to compute su minimal
canons, that we will be used in seions 9 and 10 to bound the order of derivation
of initial equations or normal foms necessary to perform ange of orderings or
resolvents.

3.7 Minimal canons and shortest paths

LetA+ℓ be a canon forA; assume that ai,i form amaximal transversal sum. en,
we define a weighted direed graph G on the set {0, 1, . . . , n}, by associating the
weight wj,i := ai,i+ ℓi− aj,i− ℓj ≥ 0 to the ordered pair (j, i), and w0,i := ℓi to the
ordered pair (0, i).

Reciprocally, wemay associate to any sudireed graphwith positiveweight
a square matrix A and a canon A + ℓ, defined by ai,i = C, for C ≥ 2maxi,j wi,j,
ℓi = w0,i and ai,j := C− wj,i + ℓi − ℓj.

P 60. — e veor of integers λ is the minimal canon of A iff there
exists in G a shortest path of length ℓi − λi from vertex 0 to vertex i.

P. — It is enough to remark that there exists su a shortest path from
vertex 0 to vertex i in G iff there exists a path, in the meaning of lemma 44, from
row i to a row i0 with λi0 = 0. So, according to this lemma, A+ λi is the minimal
canon of A.

In the same way, let A be a n× n square matrix. Define an oriented weighted
graph on the set of vertices {0, 1, . . . , n} by seing w0,i := 0 on edge (0, i) and
wj,i := ai,i − aj,i on edge (j, i). Reciprocally, define for any su weighted graph a
matrix A with ai,i := C = max(0,maxi,j wi,j) and ai,j := C− wj,i.

P 61. — i) e entries ai,i of A form a maximal transversal sum iff G
admits no negative cycle.

ii) Assuming the ai,i to form a maximal transversal sum, the veor λ is the
minimal canon of A iff there is a shortest path of length−λi from vertex 0 to vertex
i in G.

P. — i) ere is a cycle in G, with negative value γ iff there exists a
permutation σ : [1, n] 7→ [1, n], so that

∑n
i=1 ai,σ(i) = −γ +

∑n
i=1 ai,i, so that the

ai,i do no form a maximal sum.
ii) To see that λ is a canon, it is enough to remark that if ai,i + λi < aj,i + λj,

then there is a path from 0 to i of length−λj +wj,i = −λj + ai,i − aj,i < −λi.

is means that the problems considered in seions 3.3 and 3.4 are equiva-
lent to computing a shortest path, respeively for a direed graph with positive
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weights and a direed graph with arbitrary weights but no negative cycle. Al-
though this contribution is non explicit, it seems that Jacobi deserves some men-
tion of his pionnering contribution to graph theory. e complexity of Jacobi’s
original algorithm is O(n3), similar to that of Bellman [3] that computes minimal
paths between all couples of vertices. See Srijver’s very interesting article for
more details and references on the history of the shortest path problem [75].

3.8 Physical analogies

It is always a greatest help for mathematical intuition to rest on physical models;
one may easily design devices computing minimal covers.

3.8.1 Meanical computation of a minimal cover

E.g., one may consider a meanical system consisting of 2n horizontal rods, n
standing for the rows and n standing for the columns, crossing at right angles.
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At ea crossing of two rods i and j, a cable passing to
a pulley is aaed to both of them, so that if the relative
height μi and νj of the two rods, as well as the height ai,j
of the pulley is defined to be 0 at rest, when the ai,j are
increased to take new positive values, one has:

μi + νj
2

≥ ai,j, that becomes μi + νj ≥ ai,j,

by osing a half scale for the pulley height. Under grav-
ity, the total energy of the system, whi for rods of equal
masses is proportional to

n∑
i=1

μi + νi,

will be minimal, so that this device will produce a minimal cover. Assuming that
the weight of a rod is M, adding a lile extra weight to those standing for the
rows, say 0 < ε < M/n, the equilibrium point will be unique and will correspond
to minimal values for the μi, whi corresponds to the minimal canon, provided
that we impose μi ≥ 0, using some wedge.

Using su a device, −∞7 entries can be modeled by suppressing the cable
and pulley at some crossing. One can also allow rods to move down, so that
negative values for the νj can be aieved too. If O is −∞, then some rods will
fall down… untill they are stopped by the finite length of the cables.

3.8.2 Materialization of the path relation

A second meanical device may help visualize the graph of the path relation
πA (see def. 48) and rem. 49. Some vertical paterns reproduce the profile of ea
row of the matrix, e.g. below on the le row 3 of some 7× 7 matrix. At the top
of the part of ea patern i correponding to ai,i, an orthogonal rod is fixed. e
paterns are assumed to be able to move vertically, so that if some aj,i is greater
than ai,i, the rod of patern i will rest on patern j. e lowest paterns rest on the
floor corresponding to ℓi = 0. e drawing below on the right corresponds to
the minimal canon of

A =

 333 4 2
1 333 4
1 1 333

 , whi is: A+

 0
1
2

 =

 333 4 2
2 444 5
3 3 555

 .

7See subsec. 4.1.
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If we use some wedges to impose minimal values ci for the height of some
profiles, one will obtain the minimal canon subje to the condition ℓi ≥ ci.

3.8.3 Elerical computation of a minimal cover

We finish with an eleric circuit that may be used to compute a minimal cover.
e voltmeters placed in the rows and columns of the circuit will mesure quan-
tities corresponding to the covers μi and νj. Some adjustable voltage generators
are conneed at ea crossing, providing a tension corresponding to ai,j. e
presence of a diode realizes the inequality: μi + νj ≥ ai,j. So, μ, ν is a cover. We
cannnot with this device model entries ai,j < 0; the absence of conneion or a
generator with a negative voltage are equivalent. If all the internal resistances
of the voltmeters are equal to some value R, we need have

∑
i μi =

∑
j νj, as the

intensity in and out of the circuit must be equal.

If we assume that the ai,j are 0, except for a1,j := 1, 1 < j ≤ n and ai,1 := 1,
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1 < i ≤ n, one finds the solution μ1 = ν1 = (n− 1)/n and that μi = νj = 1/n for
1 < i, j ≤ n, whi is not a minimal cover.

We need some extra assumption: let |a| := maxi,j ai,j (assuming |a| > 0) it
is then enough to replace the ai,j with bi,j := ai,j + (n − 1)|a| to have a working
device.

Let indeed bi,j = μi + νi for r rows and s columns, with r + s minimal. For
simplicity, let these r rows be rows 1 to r and these s columns be columns 1 to s.
Let I1 be the elerical intensity from the first r rows to the last n− s columns, I2
from the last n − r rows to the first s columns and J from the first r rows to the
first s comlumns; by hypothesis, the intensity from the last n− r rows to the last
n − s columns is 0. For 1 ≤ i ≤ r, the minimal value of μi is at most R(I1 + J)/r
and the minimal value of νj for 1 ≤ j ≤ s is R(I2 + J)/s. In the same way, the
minimal values μi0 of μi for r < i ≤ n and the minimal value νi0 of νj for s < j ≤ n
are resp. at most RI1/(n− s) and RI2/(n− r).

As μi0+νj1 = bi0,j1 for s < j ≤ n, we need have R((I1+J)/r+I1/(n−s)) ≤ n|a|,
so that

I1 ≤
r(n− s)
n− s+ r

n|a|
R

.

In the same way, we have

I2 ≤
s(n− r)
n− r+ s

n|a|
R

.

is implies that μi0 is at most sn|a|/(n− r+ s) and νi0 is at most rn|a|/(n− s+ r).
Wewill show that r+s = n, so that μ, ν is a minimal cover. If not, r+s ≤ n−1,

μi0 ≤ snA/(2s+ 1) and νi0 ≤ rnA/(2r+ 1) so that

μi0 + νi0 ≤
( s
n− r+ s

+
r

n− s− r

)
n|a| ≤ (n− 1)|a| ≤ bi0,j0 ,

and we need have μi0 + νi0 = bi0,j0 . Equality is aived for some “lower right”
element bi0,j0 , whi contradis minimality of r+ s.

Precise computations of the values μi and νj would exceed the ambition of
this example and are le to the reader. e conception of a beer analog device
for computing the tropical determinant may have some praical interest.

3.9 Conclusion of seion 3

e best complexity bounds for the assigment problem rely on “scaling” meth-
ods, that is recursively replacing in A ai,i by ⌊ai,i/2⌋ to obtain an approximate
maximum, as in Gabow and Tarjan [27], where a O

(
n5/2 ln(nC)

)
complexity is

aieved (with ai,j ≤ C). See Srijver [74] or Burkard et al. [7] for more details.
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e basic idea is to use Hopcro and Karp algorithm, whi is faster, to improve
the approximation at ea of the lnC steps; some extra ln n steps are required to
e the last approximation and deduce from it the exa value.

We have seen that Jacobi’s work contained the germs of important notions
in combinatorial optimization and graph theory. e efficiency considerations
in Jacobi’s papers refle his computational tools: pen and paper, but his algo-
rithm for the assignment problem may be easily adapted to express improved
complexity bounds obtained in the early seventies.

4 A differential parenthesis. Various forms of the
bound.

4.1 Ritt’s strong and weak bound

Jacobi did not mention what should be done if some variable xj and its derivatives
do not appear in some polynomial Pi. e easiest answer is to define it as 0, but
a beer oice in su a case is the convention introduced by Ri [70] ordxjPi =
−∞. Lando [59] defined the firstoice as theweak bound, and the second as the
strong bound. Our definition also includes some minor modifications in order to
extend the bound to underdetermined systems.

D 62. — By convention, ordxjPi = −∞ if xj and its derivatives do not
appear in Pi. Let ai,j := ordxjPi, we define Ss,n to be the set of injeions [1, s] 7→ [1, n].
We define Jacobi’s number as OP := OA = maxσ∈Ss,n

∑n
i=1 ai,σ(i).

Remark 63. — An easy consequence of remark 49 is that, assuming that A is
a matrix of non negative integers and −∞ elements, with maxi,j ai,j = C and
OA ∈ N, then, assuming that for the minimal canon λ, the sequence λi is non
decreasing, 0 ≤ λi ≤ (i− 1)C, and the associated minimal cover α, β is su that
0 ≤ αi ≤ (n− i)C, and −(n− 1)C ≤ βj ≤ C.

So, if A is a n × n matrix of integers and −∞ values, we may use also any
value smaller that −nmaxi,j ai,j instead of −∞ to define a new matrix A′ su
that O(A′) < 0 ⇐⇒ O(A) = −∞.

If s < n we can also complete the matrix ai,j of orders with n − s rows of
zeros, in order to get a square matrix A′. Jacobi’s bound is then also equal to
maxσ∈Sn

∑n
i=1 a

′
i,σ(i), this equivalent definition allows to compute the bound, using

Jacobi’s algorithm.
Of course, we described this algorithm for matrices with coefficients in an

ordered abelian group, and Z∪{−∞}with the convention Z−∞ = {−∞} has
not su a struure. So it is best to use the group {a∞ + b, (a, b) ∈ Z2} with
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(a1∞+ b1)+ (a2∞+ b2) = (a1+ a2)∞+(b1+ b2) and (a1∞+ b1) < (a2∞+ b2)
⇐⇒ a1 < a2 or a1 = a2 and b1 < b2.

Jacobi also introduces a determinant ∇, the non vanishing of whi is a nec-
essary and sufficient condition for the bound to be reaed. In order to define it,
he considers the matrix (∂Pi/∂x

(ai,j)
j ) and forms its determinant. en, he only

keeps the produs ±∏n
i=1 ∂Pi/∂x

(ai,σ(i))
σ(i) su that

∑n
i=1 ai,σ(i) = O. this is why he

calls this expression the truncated determinant8 of the system. We may equiva-
lently use the following definition.

D 64. — Let A′ be the order matrix of the system P, completed with n− s
rows of zeros and λ′ be the minimal canon of A′. e minimal cover α′, β′ is defined
as in definition 13: Λ′ := maxsi=1 λ

′
i, α

′
i = Λ′ − λ′i and β′j = maxsi=1 a

′
i,j − α′i. We

pose furthermore B′ := maxnj=1 β
′
j and μ′j := B′ − β′j.

Let Q ∈ k[x], we define ordJ
xjQ := ordxjQ+ μ′j and ord

JQ = maxnj=1 ord
J
xjQ.

D 65. — We denote by JP the matrix (∂Pi/∂x
αi+βj
j ). If s = n, we call the

system determinant and denote by∇ the determinant of JP. If s < n,∇ will denote
the set determinant of all s× s submatrices of JP.

It is straightforward that this definition of ∇ is equivalent to Jacobi’s one,
whi is to keep in the Jacobiaan determinant only the terms corresponding to
maximal sums in the order matrix. Partial derivatives ∂Pi/∂x

αi+βj
j are in fa non

zero iff ordJxai,jj = ordJPi. Moreover, this result stands for any cover, not only
Jacobi’s cover.

P 66. — Let μi, νj be any cover for the matrix A := (ordxjPi), ∇ =

|∂Pi/∂x
(μi+νj)
j |.

4.2 Reduion to order 1

We conclude with the well known reduion to first-order equations. Lando [59]
did prove Jacobi’s bound for order one systems, also considering underdeter-
mined systems, but only with the weak bound. She remarks that the weak bound
for the first order reduion may be greater than that of the original system, but
that the strong bound remains the same. We can even prove that the truncated
determinant is unanged, up to sign.

We introduce new variables uj,k for 1 ≤ i ≤ n and 0 ≤ k < rj := maxsi=1ordxjPi
and replace in the equations Pi x

(k)
j by uj,k for 0 ≤ k < rj and by u′j,rj−1 for k = rj,

obtaining a new equation Qi. We complete the new system with the equations
Wj,k := u′j,k−1 − uj,k for 1 ≤ k < rj.

8Determinans mancum, or Determinans mutilatum.
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Lemma 67. — Let P be a system of n differential polynomials in F{x}, and Q,W the
system of n+

∑n
i=1 ri equations in F{y} obtained by reduion to the first order, as

defined above, the Pi and the then OP = OQ,W, ∇P = ±∇Q and in the canon ℓ for
the order matrix B for the system Q,W the integers ℓi, 1 ≤ i ≤ s are the same than
the λi in the canon λ for the order matrix A of P.

P. — We oose to put first in the system the Pi, in the same order, and
then the Wj,k and use on the uj,k the order uj,k < uj′,k′ ⇐⇒ j < j′ or j = j′ and
k > k′. To build the order matrix AQ, we take first u1,r1−1, …, un,rn−1 and then the
Wj,k in the same order as the uj,k. We will show that ∇P = ±∇Q; it is clear that
the oice of a different ordering can only ange the sign of ∇Q.

e order matrix B of Q has the following shape: (L1 · · · Ln) with Lj :=

[
1,j
rj−1

] . . . [
1,j
k

] . . . [
1,j
0 ]

.

.

.
.
.
.

.

.

.

[
i,j
rj−1

] . . . [
iii,jjj
kkk
] . . . [

i,j
0 ]

.

.

.
.
.
.

.

.

.

[
n,j
rj−1

] . . . [
n,j
k ] . . . [

n,j
0 ]

· · ·
∑

ȷ̂<j
rȷ̂ rows · · ·

000 1

000 1

. . .
. . .

000 1

0 111

0 111

. . .
. . .

0 111

· · ·
∑

ȷ̂>j
rȷ̂ rows · · ·



.

For more readability, only terms possibly different from −∞ are displayed. e
terms [i,jrj−1] are 1 if ordxjPi = rj, 0 if ordxjPi = rj−1 and−∞ otherwise. e terms

[i,jk ] for 0 ≤ k < rj − 1 are 0 if x(k)j appear in Pi and −∞ otherwise. It is easily
seen that n transversal non elements in the first n rows may be completed in a
maximal set of transversal non −∞ elements in one and only one way. Indeed,
once an element [iii,jjjkkk ] is osen in Lj there is a unique oice of integer tranversal
element in Lj, represented in bold above. And among them there are exaly k 111,
so that their sum is equal to k. ese elements appear in bold in the figure above.
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Hence, there is a one to one correspondence between maximal transversal
sums in A and B, so that both matrices have the same tropical determinant.

e struure of the system determinant∇(Q) is similar and an easy compu-
tation relying on the number of inversions shows that

∇(Q) = (−1)
∑n

j=1
(n−j+1)rj∇(P).

Indeed, for any term in a determinant that corresponds to the permutation σ,
we may define an inversion as the case when i > i′ and σ(i) < σ(i′). So the
number of inversions is

∑
i ιi with ιi :=

∑
i>i′, σ(i)<σ(i′) 1. en, the signature e(σ)

of a permutation being determined by the number ρ of transpositions τj in any
decomposition σ = τ1 ◦ · · · τρ, e(σ) =

∑
i ιi.

We have shown that for any permutation σ for A is associated to a single
permutation in B. First, one sees that the inversion numbers ιi for the first n lines
are the same for A and B. en, one only has to consider the remaining lines that
are decomposes in blos

Mj :=



· · · ∑
ȷ̂<j rȷ̂ rows · · ·

111 −1
111 −1

. . . . . .

111 −1
1 −111

1 −111
. . . . . .

1 −111

· · · ∑
ȷ̂>j rȷ̂ rows · · ·



.

e presence of the −1 terms compensates the extra inversions, so that we may
reduce to the diagonal of 1, for whi the total inversion number in blo Mj is
n− j+ 1 for ea term and that produces a total of (n− j+ 1)rj.

In order to show that ℓi = λi 1 ≤ i ≤ s, we first remark that if λ is a canon for
B and

∑
j aσ(j),j a maximal transversal sum, then the rows of B corresponding to
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equations Wj,w, w ≥ aσ(j),j must be respeively increased by maxi|ai,j>aσ(j),j(ai,j −
w+λi−1, provided that this quantity is positive. On the over hand, forw < aσ(j),j,
the rows must be increased by maxi mink≤w|ai,k ̸=−∞ λi + k− w.

e definition of a canon for the column of uj,w implies that we must have
maxi ai,j + λj ≤ aσ(j),j + λσ(j)). en, the λi of the minimal canon for B are the
minimal integers with this property, whi also araerizes the canon of A, so
that λi = ℓi, 1 ≤ i ≤ n.

Remark 68. — It may be difficult to model −∞ entries for a matrix in some
computer algebra system. An easy tri is to replace them by some suitable
negative value, say D := −(nC + 1) if A is matrix of non negative integers
and −∞ elements with maxi,j ai,j = C. en, the tropical determinant of A
is O(A) = −a∞ + b iff that of the new matrix A′ is O(A′) = aD + b with
−(a)D ≤ O(A′) < −(a− 1)D.

4.3 Blo decomposition

If the integer elements in the order matrix admit a minimal cover of a rows and
b columns with 0 < a, b < n, then the system P admits a non trivial triangular
blo decomposition. In the case where s = n and a + b = n, one may look for
su a blo decomposition using the reflexive transitive closure of the elemen-
tary path relation, as defined in subsubseion 3.3. One gets so a partial preorder
that defines equivalence classes of rows i, j with i ≺ j and j ≺ i. Sorting the vari-
ables and equations according to this preorder produces a blo decomposition,
the blo corresponding to these equivalence classes, that do not depend on the
oice of a maximal transversal family by prop. 47.

In the same spirit, considering the reflexive, transitive and symmetric closure
provides a diagonal blo decomposition. We will not develop these easy results,
but they can be very helpfull to clarify the struure of a system before any at-
tempt to solve it, whenever its size makes difficult to find the requested form by
simple inspeion.

5 An algebraic parenthesis. asi-regularity and
“Lazard’s lemma”

Jacobi considers funions without any precision about their nature. One may
present his results in the framework of diffiety theory, provided that the equa-
tions are defined by C∞ funions, satisfying some natural regularity hypotheses
(see [66]). We use here the formalism of Ri’s differential algebra, that allows
effeive computations. Here araeristics set will be used instead of Jacobi’s
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“normal forms”, and Lazard’s lemma will take the place of the implicit funion
theorem.

5.1 asi-regularity

Aswewill see, quasi-regularity, although it remains an implicit hypothesis, plays
a central role in Jacobi’s proof of the bound. e informal meaning of this notion
is that a differential system Pi(x) = 0, “behaves like” the linearized system dPi =
0, viz.

∑s
j=1
∑∞

k=0 ∂Pi/∂x
(k)
i dx(k)1 = 0, in the neighborood of a generic point of

some component of {P}.
is idea was formalized by Johnson [45, 46, 47] who used it to prove Janet’s

conjeure [48]. It is also the key of the first complete proof of Jacob’s bound in
the non linear case, given by Kondratieva et al. [53]. Ri was able to prove the
bound for general components, that is without the quasi-regularity hypothesis,
but only for s = n = 2 [71, Chap. VII 6. p. 136].

We will provide here a more general definition than the one used in [53, 66],
in order to underline that the property used is wider than the “independence” of
Kähler differentials dPi of whi it is a consequence, in the spirit of the “regular”
differential ideals, as defined by Johnson [47]. asi-regular was osen because
this property is shared by some components of a differential equations, that the
classical theory considers as “singular” (See Houtain [33] or Hubert [34]).

5.1.1 Notations and definitions

In the following, F will denote a differential field of araeristic 0. We refer
to Ri [71] and Kolin [51] for more details about diffferential algebra, and to
Boulier [5] for araeristic sets. It is natural here to state the definition for an
arbitrary differential field FΔ, with a finite set Δ := {δ1, . . . , δm} of commuting
derivations, possibly empty.

D 69. — Let G/F denote the differential field extension defined by P ⊂
F{x1, . . . , xn}, Δ denote the set of derivations of the differential fields F and G. We
denote by D := G[Δ] the non commutative ring of differential operators and by M

the module G⊗F{x} ΩF{x}/F;M is aD free module generated by dxi, 1 ≤ i ≤ n. For
any Q ∈ F{x}, dQ ∈ M denotes the differential of Q.

Let Pi 1 ≤ i ≤ s be differential polynomials inF{x1, . . . , xn}, and {P} = ∩r
j=1Pj,

where the Pj are prime differential ideals such that Pi ⊂ Pj implies i = j. e
prime ideals Pj are called the components of {P}. We say that Pj is a quasi-regular
component of the system P = {P1, . . . , Ps} if dP = ⟨dP⟩M.

In the ordinary differential case, we say that Pj is strongly regular if the family
(δkdPi), k ∈ N, 1 ≤ i ≤ s, is linearly independent. Obviously, strong regularity,
that corresponds to the usual definition, implies regularity.
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is property is very usefull, mostly combined with the following properties
of dP.

Lemma 70. — Let P be a quasi-regular component of P.
i) A charaeristic set A exists for P for some ordering ≺ on derivatives with

main derivatives υi, 1 ≤ i ≤ n iff a standard basis exists for the D-module dP, for
the ordering induced by≺ on differentials dΥ (where Υ denotes the set of dedivative
of the xi), with main derivatives dυi, 1 ≤ i ≤ .

i′) e main component P = [A] : H∞
A

9 of a system A that is a charaeristic
set of some prime differential ideal P is regular and strongly regular in the ordinary
case.

ii) Let Y ⊂ {x1, . . . , xn}, P ∩ F{Y} ≠ (0) iff (dP) ∩ (dY) ̸= (0).
iii) e component P is strongly regular iff it is regular and of codimension s.

P. — i)=⇒. Assume thatA is a araeristic set of P for some ordering
≺. en any Q ∈ P is reducible by A so that dQ is also reducible by dA. It is
easilly eed that (A1,A2) is reducible byA implies that (dA1, dA2) is reducible
by dA, so that dA is a standard basis for the D-module dP and for the ordering
induced by ≺.

⇐=. If G is a standard basis of dP for some ordering, consider a araer-
istic set A of P for the corresponding ordering. By what preceeds, dA is also a
standard basis for the same ordering and G and dA have the same leading terms,
hence the result.

i′) It is a straightforward consequence of i).
ii) Using i), it is enough to consider an ordering ≺ that eliminates leers not

in Y.
iii) e component P is of codimension s iff there is no non trivial relations

between the dPi and their derivatives.

In the “algebraic” case, that is when Δ = ∅, Lazard’s lemma provides a simple
criterion for quasi-regularity.

5.2 Lazard’s lemma

Many proofs of this folkloric result are already available in the differential al-
gebra literature (see e.g. Morrison [61] or Boulier et al.[5]). e interest of the
following one is to make a link with the implicit funion theorem by using New-
ton’s method.

T 71. — Let P1, . . . , Ps be polynomials in k[x1, . . . , xn] with s ≤ n and
J := (∂Pi/∂xj|1 ≤ i, j ≤ s). If Q := (P) : |J|∞ ̸= (1), then

9We denote by HA the produ of initials and separants of polynomials in A.
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i) Any component P of Q is a quasi-regular component of the system P and of
codimension s;

ii) Q ∩ k[xs+1, . . . , xn] = (0);
iii) Q is radical.
P. — i) We notice that dPi =

∑n
j=1 ∂Pi/∂xjdxj, so that the differentials

dPi, 1 ≤ i ≤ s, are linearly independent. is means that the codimension of P is
at least s. By the dimension theorem, it is at most s, so that it is s, a araeristic
set of P as s elements and dP = ⟨dP⟩.

ii) is a straightforward consequence of i) and lemma 70 ii).
iii) We will denote here by D the ringF{x}/Q[Δ] and by M the module

F{x}/Q⊗F{x} ΩF{x}/F; dQ will denote the differential of Q in M using this defi-
nition. Let G be a standard basis of

√
Q, we will show that G ⊂ Q. Let J̃ denote

the adjugate matrix of J, then for any Q ∈ G,

|J|Q = (∂Q/∂x1, . . . , ∂Q/∂xs)J̃(P1, . . . , Ps)T[
√
Q

2
],

as dQ2 = 0. Assume that ∀Q ∈ G, JαQ = Qp ∈ Q[
√
Q

2p
], then the elements of

Q2p are linear combinations of monomials depending on the Q ∈ G. Applying

this result recursively, we find Jα
2p+αQ = Qp+1 ∈ Q[

√
Q

2p+1

]. For p great enough,
√
Q

2p ⊂ Q, hence the result.

C 72. — Assume that Ps0+1, . . . , Ps belong to k[xs0+1, . . . , xn].
i) For any prime component P of (P) : |J|∞, P∩ k[xs0+1, . . . , xn] is a prime com-

ponent of (Ps0+1, . . . , Ps) : |J0|∞, where J0 is the jacobian matrix of the polynomials
Ps0+1, . . . , Ps with respe to the variables xs0 + 1, . . . , xs.

P. — i) LetA be aaraeristic set ofP for the ordering x1 > · · · > xn. If
A1 > · · · > As, the set {As0+1, . . . ,As} is a araeristic set of P∩k[xs0+1, . . . , xn]
([71] § 17–19 p. 88–90). is ideal must be included in a prime component of
(Ps0+1, . . . , Ps) : |J0|∞, whi, according to the theorem, has the same codimen-
sion s− s0, so that it must be equal to P ∩ k[xs0+1, . . . , xn].

6 Jacobi’s proof of the bound

In manuscript [II-13 b)] (cf. [36, prop. 1 p. 16 and pro. 2 p. 17], Jacobi gives two
different versions of this result. In the first, hewrites that the order isH, but in the
second, he claims that the order is H iff the truncated determinant vanishes. A
modern reader may be surprised by this way of giving in a first theorem a generic
result, and then describing more precisely, in a second theorem, the possible
exceptions to the first one. However, su a style of presentation is, as we have
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seen, quite common in the set of manuscripts we consider here. Jacobi’s proof
also contains paradoxical arguments that led Ri to conclude it was whimsical.

It seems however possible to save the proof and get the second version of
Jacobi’s theorem, more precise than that of Kondratieva et al. [53].

We first prove the theorem in its original form, assuming s = n.

T 73. — Let O denote Jacobi’s bound for the system Pi, 1 ≤ i ≤ n of differ-
ential polynonials in k[x1, . . . , xn] and P be a strongly quasi-regular component of
P.

i) e order of Pj is at most O.
ii) e order of Pj is equal to O iff∇ /∈ P.
P. —
Before considering Jacobi’s arguments, we need first the following lemma.

Lemma 74. — If P is a strongly quasi-regular component of P, it is of differential
dimension 0 and O ∈ N10.

P. — e first part of the claim is lemma 70 iii). e variant of of
Kőnig’s theorem (see above th. 11), that is also stated by Cohn [13], shows that,
if O = −∞, then one may find a rows and b columns in A′, containing all the
elements in N, with a + b < n. So that n − b > a equations in dP must depend
of a differentials dxj, whi contradi strong quasi-regularity.

Remark 75. — Generalizing this lemma to an arbitrary components is related to
a difficult conjeure: the dimensional conjeure. Cohn has shown that it would
be implied by Jacobi’s bound (even week) for arbitrary systems [13].

a) First argument Linearization. — Jacobi first claims that one may reduce
the problem to the case of a linear system. is, of course, cannot stand in all
cases: we needed the strong quasi-regularity hypothesis. We can assume that
su assumptionswere implicit in the physical situations that were considered by
Jacobi: for proving that the order of P corresponds to the dimension of the space
of solutions of dP, Jacobi used the fa that, if the set of solutions of P depends of
parameters γi, then ∂P/∂γi is a solution of the linearized system dP = 0.

e order of the differential field extension G/F is the dimension of the quo-
tient module ΩG/F = M/(dP)M by lemma 70 i).

b) Second argument Stationnary systems — Jacobi claims then that one can
assume the linearized system dP to have constant coefficients. is affirmation
seems really paradoxical, but it is dubious that he could have wrien it with-
out a precise idea in mind. One may also notice that Cohn and Borardt made
no remark on that point. We have only the following indication, the start of an

10In the linear case the result has been proved by Ri [70].
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argument that have been ruled out by Jacobi: In explogrando ordine systematis
cum tantum altissima differentialia respiciuntur, in æquationibus differentialibus
linearibus, ad quas proposita revocata sunt, supponere licet Coëfficientes esse con-
stantes. Nam æquationibus 3) iteratis vicibus differentiatis, ut novæ obtinentur
æquationes […] 11.

We propose the following argument, inspired by the theory of standard bases
of D-module (cf Catro-Jiménez [8], whi agrees with Jacobi’s idea of looking
at highest derivatives in the linearized system dP.

D 76. — We denote by K the field G equipped with the derivation δ0 with
δ0c = 0 ∀c ∈ K, and by M0 the free K[δ0]-module generated by the dxi.

Let m ∈ M or m ∈ M0, m =
∑

υ∈Υ cυυ, where Υ denotes the set of derivatives
of the xi. We extend the definition of ordJ to M and M0 and define the head of m
to be κ m :=

∑
ordJυ=ordJm cυυ, the sum of terms of greatest order.

Lemma 77. — If ∇ ∈ P, then P is a strongly quasi-regular component of {P} and
κ (dP)M = κ (κ dP)M and κ (dP)M0 = κ (κ dP)M0 .

P. — If∇ /∈ P, the matrix J = (∂Pi/∂x
(αi+βj)
j is invertible in G, so that the

families κdPi =
∑n

j=1 ∂Pi/∂x
(αi+βj)
j and dP generate respeively free submodules

of M0 and M, with κ(dP) = κ(κdP).

So, if ∇ /∈ P, it is indeed enough to prove the bound for some constant
coefficient linear system. Assume that ∇ ∈ P, then let i0 be the smallest integer
su that the first i0 lines of J are dependent. Wemay find some ci ∈ G, 1 ≤ i ≤ i0
with ci0 ̸= 0 su that

∑i0
i=1 ciδ

λi
0 κ dPi = 0. So, (dP) is generated by the family

dP1, …, dPi0−1,
∑i0

i=1 ciδ
λidPi = 0, dPi0+1, …, dPn. We may compute Jacobi’s bound

for this new linear system, that will be strily smaller than O.
We may iterate the process until we find a free linear system mi, 1 ≤ i ≤ n,

generating (dP), with a non vanishing system determinant∇. is must happen,
for O ≥ 0 and if O = 0, as m generates (dP), whi is of differential dimension
0, ∇ cannot vanish.

iii) ird argument Determinant degree. Assume that we have a linear system
with constant coefficient mi = 0, 1 ≤ i ≤ n. We may represent it as a matrix of
differential operators M(δ0) with mi,j =

∑ai,j
p=0 ci,j,pδ

p
0: M(δ0)(dx1, . . . , dxn)T = 0.

e number of independent solutions of su a system is the number of roots ξ
of |M(y)| = 0. Jacobi did only consider the simple case of all different roots. e
general situation was later investigated by Chrystal [11].

11Looking for the order of the system, as one only considers the highest derivatives in the
linear equations to whi the proposed ones are reduced, one may assume [their] coefficients to
be constants. For differentiating the equations 3) iterated times in order to obtain new equations
[…]
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is equation has degree at most Om := maxσ∈Sn
∑n

i=1 ai,j, and the coefficient
of yOm is equal to ∇m = |ci,j,ai,j |, so that the order of the system is exaly O if
∇ /∈ P. is concludes the proof of the theorem.

It is now easy to extend Jacobi’s bound to underdetermined systems. We
need first to define the order of su a system, by analogy with the degree of an
algebraic system, as done in [66].

D 78. — Let P be a prime differential ideal of F{x} of differential di-
mension m. e order of P is the maximal order of quasi-regular components of
differential dimension 0 of the ideals P+[L1, . . . , Lm], where the Li are linear equa-
tions of order 0, with coefficients in F.

C 79. — For any strongly quasi-regular component P of P, the order of
P is at most O.

e order is equal to O iff the matrix JP12 has full rank in G.

P. — We have seen thatO is obtained by completing matrix Awith n−s
lines of zeros that corespond to the orders of generic linear equations Li. So, the
theorem, applied to the system P, L implies that the order of P is bounded by O.

We may find coefficients for the Li su that ∇P,L does not vanish iff JP has
full rank. So, using theorem again, the order is equal to O iff JP has full rank.

7 Shortest normal form reduion

We consider here one of Jacobi’s results that may have the greatest consequences
for improving the resolution of differential systems inmost praical cases. Jacobi
describes the method that, generically, i.e. when his system determinant ∇ does
not vanish, allows to compute a normal form or a araeristic set, using as few
derivatives as possible of the system equations: more precisely, it is enough to
differentiate Pi up to order λi, where λ is the minimal canon and, generically, it is
impossible to compute a normal form by differentiating one of the Pi a smallest
number of times.

In fa, except for minimality, Jacobi’s results stand for any canon. One may
guess that Jacobi was aware of this fa although he did not state it explicitly. In
[37, § 3], he claims indeed that, if a normal form can be computed using the equa-
tions P1, …, Pn and a minimal (for inclusion) set of derivatives of these equations,
then there exist a permutation σ su that the highest derivative of xj appearing
in these equations, appear in in the highest derivative of Pσ(j). Su a property
is not general, but is valid if the truncated determinant does not vanish and the

12See def. 65 p. 39.
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normal form is associated to a canon and what we have called Egerváry ordering
on the derivatives.

is method may be suggested as a default strategy in computer algebra sys-
tems, when it is requested to compute a araeristic set without specifying a
precise ordering. It may also be used as a first step in methods using a ange of
orderings, su as Pardi !, designed by Boulier et al. [4].

Shaleninov [72] and Pryce [68] proposed strategies for the integration of im-
plicit DAE that turn to be equivalent to Jacobi’s shortest reduion. It seems that
in many praical situations ∇ aually does not vanish, so that this method can
be efficiently used.

Jacobi only considers the case when there are as many equations as variables.
e generalization to underdetermined systems is easy.

D 80. — Let I and J be two ideals of some ring, we denote by I : J∞ the
ring {a|∀b ∈ J ∃n ∈ N abn ∈ I}.

It is well known, using a folkloric version of Rabinovi tri [69], that, if
I, J ⊂ k[x] and Qi 1 ≤ i ≤ s generate J, then I : J∞ = (I;

∑s
i=1 uiQi− 1)∩ k[x]. e

following proposition is easily established.

P 81. — If I, J ⊂ k[x] and J = (Qi|1 ≤ i ≤ q),
√
I : J∞ = ∩q

i=1

√
I : Q∞

i .

D 82. — Let A be an order matrix for a differential system, α, β a cover
for A, we say that an ordering≺ on derivatives is an Egerváry ordering, if k− βj <

k′ − βj′ implies that x(k)j ≺ x(k
′)

j′ .
An Egerváry ordering is the Jacobi ordering if α, β is the canonical cover (as

defined in prop. 14).

Remark 83. — Considering these more general Egerváry ordering may prove to
be usefull even if they require a greater number of derivation. E.g. if one needs a
araeristic set that is byance of this kind, then it should be easier to compute
it direly than computing first aaraeristic set for a Jacobi ordering and then a
paage su as Pardi. is of course requires experimentations. However, there
is no extra work to expose this more general case.

T 84. — i) e ideal Q := [P] : (∇)∞ is radical.
ii) Let λ be a canon for the order matrix of P, μ, ν the associated cover and

≺ the corresponding Egerváry ordering on derivatives, as defined in def. 82. Let
I := (P(k)i |1 ≤ i ≤ s, 0 ≤ k ≤ λi) : (∇)∞, we may find a decomposition I = ∩q

i=1Ji
such that Ji is a radical ideal that admits an algebraic charaeristic set Bi for ≺
with Ji = (Bi) : H∞

Bi
. Let Ai be the minimal autoreduced set contained in Bi, there

exists a decompositionQ = ∩q
i=1Di, where theDi are radical differential ideals with

charaeristic set Ai for ≺ and Di = Ai : H∞
Ai
.

iii) Assume that the polynomials Ai inAh are indexed by increasing order, then
ordJAi = μi.
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iv) Assume that the n matrices obtained by suppressing the row i0 in JP and the
column j, 1 ≤ j ≤ n, have all full rank in some prime component P of Q. Take
integers ℓi, 1 ≤ i ≤ s such that ℓi0 < λi0 , where λ is the minimal canon. Let A be
any charaeristic set for any ranking of P, there exists some element A in A that
is not a zero divisor modulo (P(k)i |1 ≤ i ≤ s, 0 ≤ k ≤ ℓi) : (∇)∞.

P. — i) Let P be a prime component of Q. We assume that the equations
Pi are ordered according to the ordering induced by≺ on derivatives. Let x(μ1+νj1 )

j1

be the greatest derivative according to≺ su that ∂P1/∂x
(μ1+νj1 )
j1 /∈ P. We recur-

sively define x(μi+νji )
ji to be the greatest derivative su that the determinant Δi of

the minor of JP contained in the first i rows and the columns j1, …, ji does not
belong to P.

For r ∈ N, we consider the algebraic system P[r] defined by the derivatives
P(k)i , 1 ≤ i ≤ s, 0 ≤ k ≤ λi+ r. Its Jacobian matrix with respe to the derivatives
appearing in it contain a maximal minor corresponding to the derivatives x(k)ji ,
1 ≤ i ≤ s μi + νji ≤ k ≤ μ0 + νji + r, the determinant of whi is Δ[r] :=

Δr+1
s
∏s−1

i=1 Δ
λi−λi+1
i —with the convention λ0 = 0! So, its determinant is not in P

and we can apply Lazard’s lemma to the ideal (P[r]) : Δ∞
[r] and conclude that it is

a non trivial radical ideal.
e ideal QP := ∪r∈N(P[r]) : Δ∞

[r] is thus a radical differential ideal, contained
in Q and containing P. is proves that Q is equal to the interseion of radical
ideals ∩PQP, and so is radical. is aieves the proof of i).

ii) We may find a decomposition of (P[Λ]) : Δ∞
[Λ] as an interseion of radical

differential ideals Ii, with araeristic sets Bi for ≺ su that Ii = (Bi) : H∞
Bi

(see [5]). By Lazard’s lemma, the Ii contain no polynomial that do not depend
of the derivatives x(k)ji , 1 ≤ i ≤ s μi + νji ≤ k ≤ μ0 + νji + r, so that these are
precisely the leading derivatives of the polynomials inBi. As Δs does not vanish
on Ii, any generic zero of a component of Ii may be completed into a generic zero
of (P[r]) : Δ∞

[r] for any r > Λ. So, (P[r]) : Δ∞
[r]∩F{x}[Λ] = (P[Λ]) : Δ∞

[Λ], whi implies
that [Bi] : H∞

Bi
∩ F{x}[Λ] = (Bi) : H∞

Bi
. We may now extra from Bi a minimal

autoreduced set Ai. All the elements of [Bi] : H∞
Bi

are reduced to 0 by Ai, and
[Ai] : H∞

Ai
⊂ [Bi] : H∞

Bi
, so that Ai is a araeristic set of [Ai] : H∞

Ai
= [Bi] : H∞

Bi
.

We conclude the proof by considering the union of all su decompositions,
associated to all the possible sequences Δ[r], construed as in the proof of i), that
do not vanish on some component P of Q.

iii) As the main derivatives of the polynomials in Bh are the x(k)ji , 1 ≤ i ≤ s
μi + νji ≤ k ≤ μ0 + νji + r, the main derivatives of the polynomials in Ah must

be x
(μi+νij )
ji , so that ordJAi = μi.
iv) Here α, β denotes the canonical cover. Assume thatA = {A1, . . . ,As} and
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that all the Ai are zero divisors modulo (P(k)i |1 ≤ i ≤ s, 0 ≤ k ≤ ℓi) : (∇)∞.
en, using prop. 81, there exists Δ ∈ ∇ su that A may be completed to form
a araeristic set B of a prime component of the radical of the algebraic ideal
(P(k)i |1 ≤ i ≤ s, 0 ≤ k ≤ ℓi) : (Δ)∞, for some ordering.

For all 1 ≤ p ≤ s, there exists a polynomial Sp and an integer np su that
ApSΔnp =

∑s
i=1
∑ℓi

k=0 Np,i,kP
(k)
i . Without loss of generality, we may assume that

the ℓi are the minimal integers su that expressions of that kind exist, so that
some elements ofA aually depend of the P(ℓq)q , su that the ℓq−λq are maximal,
equal to r0. Let A1, …, As0 be these elements.

e leading derivatives of these Ai must be some x
(Λ+r0+βj)
j . First, we may

show that some of these derivatives do appear in them. If not, we could ose
B according to an ordering on the derivatives13 su that these derivatives are
greater than those present in A. Cor. 72 implies that elements of A appear in a
araeristic set of a component of (P(k)i |1 ≤ i ≤ s, 0 ≤ k ≤ ℓ′i) : (Δ)∞, with
ℓ′μ − λμ < r, whi contradis the minimality of ℓ. Assume now that the leading

derivatives of A1, …, As0 are not among the x
(Λ+r0+βj)
j . en, these derivatives

must be stri derivatives of the derivatives of the remaining elementsAs0+1, …As,
so that they cannot appear in A1, …, As0 . A contradiion.

We may now assume than the leading derivative υ = x
(Λ+r0+βj0 )
j0 of A1 is

smaller than those of A2, …, As0 . So, υ must be the only derivative among the

x
(Λ+r0+βj)
j that do appear in A1. But this is impossible, as the matrix obtained by

suppressing row i0 and column j0 in JP must have full rank modulo P.

With more work, one should be able to prove when s = n a similar result by
only assuming that the square submatrices of JP that possess non zero diagonal
elements have a non zero determinant.

Examples. — 85) Consider the system x(5)1 + x′′2 + x′′′3 = 0, x′2 = 0, x′′′1 − x′3 = 0.
We have λ = (0, 1, 2), α = (2, 1, 0) and β = (3, 0, 1). We have two possible
classes of araeristic sets that may be computed using the shortest reduion,
viz. by derivating the second equation 1 time and the second 2 times: A1 :=

{x(5)1 , x′′2 , x
′′′
1 − x′3} and A1 := {x′′′3 , x′′2 , x′′′1 − x′3}.

86) e system x(5)1 + x′′2 + x′′′3 = 0, x′2 + x′′3 = 0, x′3 = 0 admits a single class of
araeristic sets for the shortest reduion: A := {x(5)1 , x′′2 , x

′
3}. However, if we

suppress the row 3 and the column 1 in J, we get a matrix that is not of full rank,
so that the condition of the theorem iv) is not satisfied. It is easily seen that, in
order to compute A, it is enough to differentiate the last equation 1 < λ3 = 2
time.

13is ordering does not need to be compatible with the derivation, as we consider here an
algebraic ideal.
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87) e system x(5)1 + x′′2 + x′′′3 = 0, x′′3 = 0, x′2 + x′3 = 0 admits a single class
of ar. set for Jacobi orderings, that may be computed using the shortest reduc-
tion, viz. by differentiating the second and the third equations only 1 time. It is
represented by A := {x(5)1 , x′′3 , x

′
2 + x′3}. However, with the same derivatives, we

may also compute the following araeristic set, that does not correspond to a
Jacobi ordering, but to an Egerváry ordering: B := {x(5)1 , x′′2 , x

′
3+ x′2}. By ance,

it may be computed with fewer derivatives than predied by the bound.

Remark 88. — Jacobi [37, end of § 3 p. 58] claims that the number of possible
normal forms of a system that one may find by the shortest reduion, is equal
to the number of monomials in the truncated determinant, or equivalently to the
number of transversal maximal sums in the order matrix. e last example has
already produced a contradiion.

Restriing ourselves to normal forms, or classes of araeristic sets, associ-
ated to Jacobi orderings does not solve the problem. It is also easily seen that the
number of normal forms may be smaller than n! for systems su as x+y+z = 0,
x′+y′+2z′ = 0, x′′−y′′+z′′ = 0, for whi all 6 possible monomials appear in∇,
only has 4 different normal forms: x = −y− z, z′ = 0, y′′ = 0; y = −x− z, z′ =
0, x′′ = 0; z = −x − y, x′ = −y′, y′′ = 0 and z = −x − y, y′ = −x′, x′′ = 0.
Furthermore, a system su as x + y = 0, x′ = 0 has only a single monomial in
∇ but two normal forms: x = y, y′ = 0, y = x, x′ = 0, for the Egerváry ordering
associated to the canon λ1 = 1, λ2 = 0

e best bound I could find on the possible number of normal forms for Jacobi
orderings is the following. But first, we need a new definition.

D 89. — Let A = {Ai|i ≤ i ≤ p be a charaeristic set of a prime
differential ideal in F{x}. We assume that a reduion process using A has been
chosen and recursively denote by Ã(k)

i the reduion of A(k)
i by the Ã(k′)

i′ with i′ ̸= i
or k′ < k.

Any finite subset B of {Ã(k)
i |1 ≤ i ≤ p, k ∈ N} is the chaeristic set of the

prime algebraic ideal (cB) : H∞
B .

P 90. — With the notations of the theorem, let P be a prime component
of Q. Assume that the polynomial Pi are listed by decreasing ℓi. For any injeion
σ : [1, s] 7→ [1, n], the three following propositions are equivalent:

i) there exists a charaeristic setA = {Ai|1 ≤ i ≤ s} ofP, such that the leading
derivative of Ai is x

(αi+βσ(i))
σ(i) ;

ii) there exists a charaeristic setA = {Ai|1 ≤ i ≤ s} of P, such that, denoting
by (ih)0≤h≤p the increasing sequence such that i0 = 0, ip = s and the remaining ih
are the integers satisfying ℓih < ℓih+1, the set {Ã(k)

i |1 ≤ i ≤ ih, 0 ≤ k ≤ ℓi−ℓih} is a
charaeristic set of a prime component of the algebraic ideal (P(k)i |1 ≤ i ≤ ih, 0 ≤
k ≤ ℓi − ℓih) : (∇)∞;



Jacobi’s results translated in Kőnig’s, Egerváry’s and Ri’s mathematical languages 53

iii) for all 1 ≤ i ≤ s, the determinant of the minor contained in the rows 1 to i
and columns σ(1), …, σ(i) of JP is non zero modulo P.

P. — i)⇒ii). Up to a ange of ordering, we may assume A to be su

that Ai does not contain the derivatives x
(αi′+βσ(i′))
σ(i′) for i′ > i. With this assump-

tion, we shall prove, by induion on h, that the set A of i) also satisfies ii). e
property is straightforward for h = 0.

Assume the result is true for h′ < h. e system P[h] := {P(k)i |1 ≤ i ≤
ih, 0 ≤ k ≤ ℓi − ℓih} must be reduced to 0 by A. If we reduce a element of
P[h] using only the set B[h] := {tA(k)

i |1 ≤ i ≤ ih, 0 ≤ k ≤ ℓi − ℓih}, we find a
rest R. If R is not zero, the induion hypothesis implies that the reduion by
{tA(k)

i |1 ≤ i ≤ ih−1, 0 ≤ k ≤ ℓi − ℓi0} does not depend of derivatives of ea

xj greater than x
(αih+βj)
j . e reduion by {Ai|ih−1 < i ≤ ih} cannot introduce

derivatives of the xσ(i), i > ih being not less than αi + βσ(ih), according to our
assumption on A. So, R is irreducible by A, whi is impossible.

By [71] § 17–19 p. 88–90, B[h] is a araeristic set of a prime ideal that
contains P[h]. As P is a prime component of Q, B[h] must be the araeristic set
of a prime component of (P[h]) : (∇)∞, and so exaly of codimension equal to
♯ P[h] = ♯B[h]. So,B[h] must be thear. set of a prime component of (P[h]) : (∇)∞.

ii)⇒iii). As {dAk|1 ≤ k ≤ i} and {dPk|1 ≤ k ≤ i} generate the same
differential veor space, the determinant of one of these minor does not vanish
modulo P if the corresponding minor of JA does not, whi is straightforward.

iii)⇒i). It is a consequence of the theorem.

From a combinatorial standpoint, it means that the maximal number of su
araeristic sets is, for a generic system, at most the number of permutations σ
su that for all 1 ≤ i ≤ s, the minor matrix contained in the i first lines and the
rows σ(1), …, σ(i) of AP + ℓ possesses a set of i transversal maxima—but the set
for i need not be included in that for i+ 1!

e first difficulty in computing araeristic sets for non linear differential
systems is to differentiate the equations. Using a classical representation of data,
the sizes of the successive derivatives are exponential in the order and it is well
possible to saturate the available memory before starting any aual elimination.

As this method reduces the number of requested differentiations to the min-
imum, it suggests many computational applications and easily implemented im-
provement of existing sowares su as Diffalg[4, 5].
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8 e various normal forms of a system
Jacobi considers in [II/13 b)] [36, p. 9–14] and [II/23 a) fo 2217 seq.] (cf. [37,
p. 37–43] the various normal forms that a given system may possess. Systems in
normal form include those of the form:

x(αii = fi(x), 1 ≤ i ≤ n,

with ordxjfi < αj forall1 ≤ i, j ≤ n, whi he calls explicit normal form. But Jacobi
also includes in this category systems Ai(x) = 0, with ordxjAi = αi and su that

|∂Ai/∂x
(αj)
j | ̸= 0, su as our araeristic sets enter in this category.

Jacobi claims that, if one cannot reduce a system to an equivalent one, with
fewer equations than variables, that is, in our language, if the differential dimen-
sion is zero, then one can eliminate all dependent variables, except one, and get
an equation of whi the order is the order of the system. is is only generically
true, and Jacobi was aware of it, for in [II/23 a), fo 2217, note], he introduces the
order in some different way, claiming that the reduion to a simple equation
was sometimes impossible, e.g. if ea equation Ai depends only of xi.

e order does not depend of the osen explicit normal form and is equal to∑n
i=1 αi. If we associate to the system a prime differential ideal P, the order is the

algebraic transcendence degree of the associated differential field extension G/F.
At the time of Jacobi it was refered to as the number of arbitrary constants ap-
pearing in a complete integration, constants that could be, e.g., initial conditions.
Jacobi claims that, in the generic case, the orders of the leading derivatives in a
normal form may be arbitrarilly osen, provided that their sum is equal to the
order of the system.

en, he considers systems possessing fewer possible normal forms, starting
with the example of two equations in two variables.

Lemma 91. — Let {A1,A2} be a charaeristic set of a prime differential ideal
P ∈ F{x1, x2}, such that the main derivative of Ai is xi and ai,j := ordxjAi.

i) If x1 appears in A2,
a) there exists a new charaeristic set B of P with ordx1B1 = a2,1, and ordx2B2 =
a2,2 + a1,1 − a2,1;
b) there is no charaeristic set B of P with a1,1 > ordx1B1 > a2,1.

ii) If x1 (resp. x2) does not appear in A2 (resp. A1), then there exists no charac-
teristic set B of P with β1 < α1 (resp. β2 < α2).

P. — In this proof, one may consider by lemma 70 i′) that the system
A = 0 is linear.

i) a) Consider a new order ≺ su that x(a2,1)1 ≻ x(a2,2)2 and x(a2,1−1)
1 ≺ x(a2,2)2 .

en we may take B1 = A2 and for B2 the reduion of A1 by A2, whi depends
on A(a1,1−a2,1)

2 , so that it has order a2,2 + a1,1 − a2,1 in x2.
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b) In su a case, B1 is irreducible by A1, we may reduce it using derivatives of A2

of order at most ordx2B1 − ordx2A2 < ordx1A1 − ordx1B1 < ordx1A1 − ordx1A2. So,
the order of the rest in x1 is less than ordx1A1: the rest is unreducible and must be
0. is implies that B1 depends only on A2 and stri derivatives of A2, so that A2

cannot be expressed as a linear combinnation of B1 and B2, whi is impossible.
ii) e proof is similar to i) b).

Jacobi comes then to the case of an arbitrary number of variables and consid-
ers the problem of increasing the order ofm variables x1, …, xm in a normal form,
when decreasing the order of variables xm+1, …, x2m, the orders of the remaining
variables staying unanged. He gives then the following result.

Lemma 92. — Let A = {A1, . . . ,An} be a charaeristic set of a prime differential
ideal P ⊂ F{x1, . . . , xn}, let x(αi)i be the leading derivative of Ai. Let x

(βi)
i be the

highest derivative of xi appearing in the equations Am+1, …, A2m.
If |∂Am+i/∂x

(βj)
j ; 1 ≤ i, j ≤ m| /∈ P, then there exists a charaeristic set B of P

such that
i) for 1 ≤ j ≤ m, ordxjB = βj < αj;
ii) for m < j ≤ 2m, ordxjB > αj;
iii) for 2m < j ≤ n, ordxjB = αj;

P. — It is enough toose an ordering≺ on derivatives, su that x
(βj)
j ≻

x(αi)i , 1 ≤ j ≤ m, m < i ≤ 2m; x
(βj−1)
j ≺ x(αi)i , 1 ≤ j ≤ m, m < i ≤ n; x(αj)j ≻ x(αi)j

and x(αj−1)
j ≺ x(αi)j , 2m < j ≤ n, 1 ≤ i ≤ 2m.

What happens if |∂Am+i/∂x
(βj)
j ; 1 ≤ i, j ≤ m| /∈ P? Jacobi concludes with

these words: “Such questions require then a deeper investigation, that I will expose
in some other occasion”. One may guess that Jacobi was thinking of applying his
method for computing normal forms. So, we will return to this problem in the
next seion 9.

It must be noticed that the requested transformation may be performed, even
in the case when {Am+1, . . . ,A2m}, considered as a system in x1, …, xm alone, does
not generate a differential ideal of dimension 0, as in the following example:

Examples. — 93) Consider the explicit normal system of 4 equations in 4 variables

x′′′1 = x′′2 , x
′′′
2 = 0, x′3 = x′′1 , x4 = x′′1 .

If one wishes to decrease the orders of x1 and x2 and to increase that of x3 and
x4, we cannot use the preceding lemma, nor any generalization of it, for the 2
last equations do not depend of x2. However, we can aieve our goal with the
following normal form:

x′1 = x4, x′′2 = x′4, x
′′
3 = 0, x′4 = x′3.



56 Jacobi’s Bound

e next example shows that one can decrease the order of 2 variables, when
increasing the order of a single one.

94) Consider the system:

x′′1 = x2, x′2 = 0, x3 = x′1,

it is possible to decrease the order of x1 and x2 in the following normal form:

x′1 = x3, x2 = x′3, x
′′
3 = 0.

Testing the existence of a araeristic set B with leading derivatives x
(βj)
j ,

for given βj, somearaeristic setA being known will be the subje of the next
seion.

We denote by ordersA the n-uple (α1, αn), where αj = ordxjAj, assuming
that the main derivative of Aj is a derivative of xj. Let P be a prime ideal, we
denote by ordersP the set {ordersA|A a ar. set of P}. We will conclude our
investigations with a description of the possible values of ordersP, for a prime
differential ideal P of diff. dim. 0 and order e. In two variables, it can take any
value compatible with the order, as shows the next proposition.

P 95. — Let I ⊂ [0, e], there exists a prime differential ideal P such that
ordersP = {(a, e− a)|a ∈ I}.

P. — Let α1 < α2 < · · · < αr be the elements of I. Define recursively

A1
1 1

= x(α
1)

1 , A1
1 2

= 0

Ai+1
1 1

= Ai
1 2

+ Ai (αi+1−αi)
1 1

, Ai+1
1 2

= Ai
1 1

,

Ar
2 2

= x(e−αr)
2 , Ar

2 1
= 0

Ai−1
2 2

= Ai
2 1

− Ai (αi−αi−1)

2 2
, Ai−1

2 1
= Ai

2 2
.

Let then for j = 1, 2 Ai
j
= Ar

1 j
+ Ar

2 j
and Ai = { Ai

2
, Ai

2
}. By construion, for

1 ≤ i ≤ r, theAi are araeristic sets of the same prime differential ideal P and
by lemma 91, ordersP = {(a, e− a)|a ∈ I}.

For a greater number of variables, the situation is more complicated…Tam
quaestiones altioris indaginis poscuntur.

If one try to visualize the set of possible araeristic set for a given system
in 3 variables, it is convenient to use triangular coordinates, as the sum of the 3
maximal orders in the 3 variables is constant.

Examples. — 96) If one considers the system

x′1 = x′′2 ,
x′′′2 = x′2,
x′3 = x′′2 ,
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easy computations show that it admits 6 normal forms.

97) For the system x′1 − x′2 = 0, x′′′2 = 0, x′3 − x′2 = 0, only 3 normal forms exist.

x′′′1 = 0,
x′2 = x′1,
x′3 = x′2;

x′1 = x′2,
x′′′2 = 0,
x′3 = x′2;

x′1 = x′2,
x′2 = x′3,
x′′′3 = 0.

e two examples may be illustrated by su drawings, where the points cor-
responding to existing normal forms are surrounded by a loop.

Example 96 Example 97
ose drawings look very mu like these ones, that appear on the margin of

[II 13 b), fo 2206a].

We conclude this subseion with a proposition, showing that for more than
two variables, the set ordersP cannot be arbitrary.

P 98. — Let P ⊂ F{x1, x2, x3} be a prime differential ideal and A a
charaeristic set of P. Assume that there exist α1 > β > γ such that ordersP
contains (α1, α2, α3), (β, α2 + α1 − β, α3) and (γ, α2, α3 + α1 − γ) and no element
(δ1, δ2, α1) with α1 > δ1 > β or (δ1, α2, δ3) with α1 > δ1 > γ), then ordersP
contains (γ, α2 + α1 − β, α3 + β − γ).

P. — In su a case, we have ordx1A1 = α1, ordx2A2 = α2, ordx3A3 = α3

and α1 > β := ordx1A2 > γ := ordx1A3. en, we get a araeristic set B with
ordB = (β, α2 + α1 − β, α3) by reducing A1 with A2, A3 remaining unanged.
So ordx1B3 = γ, hence the result.
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9 Change of orderings
Change of orderings on monomials for standard bases computation (FGLM) [24],
or derivatives (Pardi) [4] for araeristic set computations have been consid-
ered in the computer algebra lierature. It may be noticed that the main the-
oretical works of the th century oen restri to particular orderings, Janet
orderings (Janet), elimination orderings (Ri), but for many applications, one
need to use particular orderings, e.g. testing identifiability or observability in
control theory requires to eliminate precise sets of indeterminates. In [II/23 a)
fo 2217–2220] [37, p. 36–43], Jacobi considers, in full generality, the problem of
computing a normal form of an ordinary differential system, some normal form
being known for a different ordering. e method he gives is quite similar to the
tools of contemporary lierature and he provides moreover sharp bounds on the
requested number of of derivations, that may be used to improve the efficiency
of our algorithms.

Considering a system in explicit normal form x(ei)i = Fi(x), 1 ≤ i ≤ n, the
problem is to compute a new normal form of the system x(fi)i = Gi(x). In a first
step Jacobi divides the indeterminates in three sets. For i ∈ I1, fi > ei; for i ∈ I2,
fi < ei and for i ∈ I3, fi = ei.

Using the derivation

δ :=
n∑

j=1

(
Fi(x)

∂

∂x(ei−1)
i

+
ei−2∑
k=0

x(ek+1)
j

∂

∂x(k)i

)
,

Jacobi claims that it is possible to compute the new normal forms using the first
ones, completed with the equations x(ei+k)

i = δkFi(x), i ∈ I1, 1 ≤ k ≤ fi − ei and
that the new normal form exists iff∣∣∣∣∣∣∂δ

kFi
∂x(α)j

|i ∈ I1, 0 ≤ k ≤ fi − ei; j ∈ I2, fj ≤ α < ej

∣∣∣∣∣∣ ̸= 0.

e following theorem translates this result, in the framework of differential
algebra, using the Ã(k)

i in the place of δk
(
x(ei)i − Fi(x)

)
(see def. 89). For the sake of

simplicity, we restri here to the case of prime ideals. In more general situations,
spliing may occur that may be considered à la D5 [18]…

T 99. — Let P be a prime ideal of differential dimension 0 of F{x1, . . . , xn}
and A = {A1, . . . ,An} a charaeristic set of P for some ordering, such that the
main derivative of Ai is x

(ei)
i .

i) Assume that there exists a charaeristic set B = {B1, . . . , Bn} of P, being
such that the main derivative of Bi is x

(fi)
i and that we have fi > ei for i ∈ I1, fi < I2

for i ∈ I2 and fi = ei for i ∈ I3 = [1, n] \ I1 ∩ I2. en,
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a) B ⊂ (Ã(k)
i |i /∈ I2, 0 ≤ k ≤ fi − ei) : H∞

A , more precisely, {Bi|i ∈ I2} ⊂
(Ã(k)

i |i ∈ I1, 0 ≤ k ≤ fi − ei) : H∞
A ;

b) if for some i0 ∈ I1 ℓi0 < fi0 − ei0 , then Bi0 /∈ (Ã(k)
i |1 ≤ i ≤ s, 0 ≤ k ≤ ℓi) :

H∞
A .

ii) A charaeristic set B satisfying the hypotheses of i) does exist iff

∣∣∣∣∣∣∂Ã
(k)
i

∂x(α)j

|i ∈ I1, 0 ≤ k ≤ fi − ei; j ∈ I2, fj ≤ α < ej

∣∣∣∣∣∣ /∈ P.

P. — i) e ar. set B cannot contain polynomials involving deriva-
tives of ea xi of order higher than the fthi . If B exists, it must be included in

(Ã
(α(k))
i |1 ≤ i ≤ n, 0 ≤ k ≤ αi), a) is a consequence of 72. If for some i0 ∈ I1

ℓi0 < fi0 − ei0 , then x(f0)i0 does not appear in the generators of (Ã(k)
i |1 ≤ i ≤ s, 0 ≤

k ≤ ℓi): if Bi0 were in (Ã(k)
i |1 ≤ i ≤ s, 0 ≤ k ≤ ℓi) : H∞

A , ∂Bi0/∂x
(f0)
i0 would be in

P, whi is impossible as B is the ar. set of a prime ideal. is proves b).

ii) Using lemma 70 iv), the problem is reduced to the existence of a standard
basis for (dP)MP

with main derivatives dx(fi)i . e non vanishing of the determi-
nant implies that an autoreduced set with the requested main derivatives exists,
that must be a standard basis by invariance of the order. Assume reciprocally
that su a standard basis exists. Lemma 70 iii) implies that (dP)MP

∩ ⟨dx(k)i |0 ≤
k < max(ei, fi)⟩ = ⟨dÃ(k)

i |i ∈ I1, 0 ≤ k < fi − ei⟩. Defining the B̃(k)
i as in def. 89,

we see that for i ∈ I2 and 0 ≤ k < ei − fi, B̃
(k)
i ∈ (dP)MP

∩ ⟨dx(k)i |0 ≤ k <

max(ei, fi)⟩ = ⟨dÃ(k)
i |i ∈ I1, 0 ≤ k < fi − ei⟩, so that the determinant cannot

vanish in G.

Jacobi did not stop his investigations at this step. Claiming that it was some-
times more efficient to use derivatives of the Ai instead of the Ã(k)

i obtained by
substitutions. is strongly suggests a praical experience of computinganges
of ordering, although no explicit example is found in his manuscripts. We have
already noticed that derivation, introducing new derivatives, produces an expo-
nential growth of the equations in dense representation. e situation becames
worse if substitutions are done at the same time, for then the degree will increase
too. e best known bounds for the required eliminations imply to use Bézout’s
theorem, and the degrees will be the smallest using the Ai instead of the Ã(k)

i …
We see that Jacobi’s intuition of the complexity issues meets here again con-
temporary resear, su as D’Alfonso et al. [14, 15, 17, 16] in the spirit of the
Kroneer algorithm [28].
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is problem is considered in § 18 of [II/23 a)] [37, p. 40–43]. e end of this
manuscript seems lost, as the sentence at the end of fo 2220 remains unaieved,
but we can understand the general idea.

With the notations and hypotheses of th. 99, one needs to differentiate equa-
tion Ai fi − ei times if i ∈ I1. Let ordxjAi := ai,j, then, generically, Ai, 1 ≤ i ≤ n,
must be differentiated ℓi to compute the derivatives Ãi, i ∈ I1, with ℓi su that:
elli ≥ fi−ei for i ∈ I1 and aj,j+ℓj ≥ maxi ai,j+ℓi, so that the necessary reduions
could be performed. e minimal solution of this problem is obtained by com-
puting the minimal canon of the matrix ai,j +max(fi − ei, 0), using the methods
of subseion 3.6.

Remarks. — 100) Using explicit normal forms, we may assume that the leading
derivatives x(ei)i do not appear in the right members Fi(x). It is no longer the case
witharaeristic sets. All we know is that the leading derivative of Ai may only
appear in Aj with a strily smaller degree. But we may, without anging the
main derivatives, assume that the Ai for i ∈ I1 do not depend on the main deriva-
tives of the xj for j /∈ I1. With this assumption, the bound in the araeristic set
seing coincides with Jacobi’s one.

10 Resolvants
For a modern treatment of the question, one may refer to Cluzeau and Hubert
[10].

Assume that P is a prime regular component of [P] : ∇∞. One may define
resolvants following Ri [71, ap. II § 22].

D 101. — We call a resolvant of P the data of two differential polyno-
mials R and S together with a charaeristic set A of the prime differential ideal
[P, Sw− R] : S∞ (in F{x1, . . . , xn,w}), such that υAi = xi, 1 ≤ i ≤ n.

As P is regular, we know that its order is Jacobi’s bound O, so that υAn+1 =
w(O).

Jacobi [37, § 4] assume that a resolvent exists when oosing w = xj0 and
proposes to compute the order up to whi one needs to differentiate ea equa-
tion Pi to be able to compute the resolvent. e word resolvent was not used by
Jacobi, but he evocates the notion as something well known in the the mathemat-
ical folklore of his time: “It is usual that this type of normal forms be considered
before others by mathematicians”.

One may summarize his findings with the following theorem.

T 102. — Assume that w = xj0 and that A is a resolvent for a prime
component P := [P] : T∞ of differential dimension 0, then A ∈ [P(k)i |0 ≤ k ≤
Oi,j0 ] : T

∞, where Oi,j0 is the tropical determinant of the matrix (aı̂,ȷ̂ |̂ı ̸= i, ȷ̂ ̸= j0).
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P. — Replace xj0 in Pi by wi; we obtain a new system P̃i. en one may
fix wi for i ̸= i0 and the system P̃i, i ̸= i0 in the variables xj, j ̸= j0 has order at
most Oi,j0 . Eliminating the xj, one finds an equation of order at most Oi,j0 in wj0
that depends only of the wj. Replacing then all the wj by w, one gets a non zero
polynomial that obviously belongs to the requested algebraic ideal; if it were 0,
the equations Pi would not be independent, and P would not be of differential
dimenson 0.

Remark 103. — ] e heuristic way in whi Jacobi presents the result his in-
teresting. He claims that one should differentiate Pj0 up to order OP, and then
computes a minimal canon su that ℓj0 = OP, in the spirit of subseion 3.6. is
means that we can efficiently compute the Oi,j0 , knowing a canon for the order
matrix of P by using a shortest path algorithm, as explained in seion 3.714.

Conclusion
Wehave seen that the corpus of results contained in Jacobi’s posthumousmanus-
cripts provides a large set of applicable methods for the resolution of ordinary
differential systems. From the automatization of easy ideas, su as looking for
blo decompositions to more sophisticated tools, allowing to produce simpler
normal form reduions or beer ways to perform ange of ordering, they can
improve in many ways the existent computer algebra algorithms.

In all cases, Jacobi’s bound by itself is able to replace advantageously Ri’s
analog of the Bézout bound, in all situations where is is proved, i.e. at this time
quasi-regular components or systems of two equations [71, Ch. VII § 6 p. 136].
Its interest to produce sharper complexity bounds, upper and lower, is obvious.

Using these tools as widely as possible is a promizing task, and generalizing
them to arbitrary systems a allenging goal. Let us insist on the fa that this
paper has no claim to exhaustivity and that we encourage the reading of the
original works.
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