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Abstract

We give an algorithm which represents the radical
J of a finitely generated differential ideal as an in-
tersection of radical differential ideals. The com-
puted representation provides an algorithm for test-
ing membership in J. This algorithm works over ei-
ther an ordinary or a partial differential polynomial
ring of characteristic zero. It has been programmed.
We also give a method to obtain a characteristic set
of J, if the ideal is prime.

Keywords. Differential Algebra. Radical differen-
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1 Introduction

Let ¥ be a finite subset of a differential polynomial
ring! K{y1,...,yn}, where K denotes a differential
field, ordinary or with partial derivatives, of char-
acteristic zero. Let R be a ranking of the set of
derivatives of these ;.

We present an algorithm, called Rosenfeld—Grob-
ner, which represents the least radical differential
ideal containing ¥ as a finite intersection of radical

differential ideals J;:
{Z}=Jn---nJs.
FEach radical differential ideal J; is described by a

differential system of polynomial equations and in-
equations €; and a (non-differential) Grdbner basis
B satisfying:

1) Q; and B; provide an algorithm for testing
membership in J;, through simple reductions,
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2) B; depends only on the differential ideal J;
and the ranking R.

Thus, the set of tuples (€2;, B;) allows to decide
the membership in the differential ideal {X} by sim-
ple reductions.

The intersection computed may not be minimal.
Unfortunately, we do not know how to test redun-
dancy, which is a problem close to the open problem
related in [Ko], page 166. However, when we know
that the differential ideal {Z} is prime, the formula
mentioned above may be simplified to:

{Z} =T,

and we give a method for calculating, starting with
the Grobner basis Bi, a characteristic set of the dif-
ferential ideal {Z}, in the sense of Ritt, relative to
the ranking R.

The Rosenfeld—Grobner algorithm relies essen-
tially on three theorems:

1) the theorem of zeros of Hilbert, which states
that a polynomial p belongs to the radical of an ideal
given by a finite family of generators ¥ if and only if
the system of equations and inequations ¥ =0, p #
0 has no solutions; we use this theorem, in the alge-
braic case, and in the differential case.

2) a lemma of Rosenfeld [Ro], which gives a
sufficient condition so that a system of polynomial
equations and inequation admits a differential solu-
tion if and only if it admits a purely algebraic so-
lution; the systems €; described above satisfy the
condition of Rosenfeld,

3) alemma of D. Lazard, which establishes in
particular that the ideals J; described above are rad-
ical.

The algorithm which we describe utilizes only
the operations and equality test with zero in the
base field K: we refer to the reduction algorithm of
Ritt, the computations of Grobner bases, and split-
tings similar to those in the elimination methods of
Seidenberg [Sel]. Tt does not need any factorization.
An implementation of Rosenfeld—Grobner has been
realized [Bo], in the language C. Tt makes calls to
the big number library of PARI and the software
GB [FGLM] for the calculus of Grobner bases.

In order to place the interest of this algorithm,



let us describe in a few words the principals of ex-
isting methods.

Ritt gave [Ri] a method to decompose the radi-
cal of a differential ideal as an intersection of prime
differential ideals, providing a characteristic set for
each of these ideals. That algorithm is inconvenient
because it is only partially effective: it proceeds by
factorization over a tower of algebraic field exten-
sions of the field of coefficients. To our knowledge,
it has not been implemented.

Ollivier [Ol] and Carra—Ferro [Ca] have indepen-
dently tried to generalize to differential algebra the
Grobner bases invented by Buchberger [Bu] for the
study of polynomial ideals in commutative algebra.
These differential Grobner bases are in general how-
ever infinite.

Another attempt to define differential Grobner
bases has been done by E. Mansfield [Ma]. The algo-
rithm DIFFGBASIS, implemented in MAPLE, uti-
lizes Ritt’s algorithm of reduction and then always
terminates. In general however, it cannot guarantee
its output to be a differential Grobner basis.

We may remark that the membership problem in
an arbitrary differential ideal is undecidable [GMO],
and the membership problem of a finitely generated
differential ideal is still open.

The elimination algorithms of Seidenberg [Sel]
are more general. Rosenfeld—Grobner borrows from
them the idea to combine Hilbert’s theorem of zeros
and Ritt’s algorithm of reduction. They decide the
membership problem in the radical {X} of a finitely
generated differential ideal by successively eliminat-
ing all the unknowns appearing in the polynomials
of £. They use only the operations of the base field
K, but present two inconveniences: first, the de-
scription of the differential ideal {Z} they give is
not usable to test the membership in the ideal after-
wards; second, their behavior is a lot more explosive
in practice than that of Rosenfeld—Grobner, because
they are restricted to the elimination rankings. This
phenomenon is particularly striking in the case of
systems with partial derivatives.

2 Preliminaries

Differential algebra. In this paper, K denotes a
differential field of characteristic zero endowed with
a certain number of derivations denoted 61,..., 8.
Let u be an element of K. We denote by 6 the
derivation operators (8 = §7*--- 5™, a; € N) and
by fu the element of K obtained by differentiating
u ap times by 61, ..., am times by 6,,. The sum of
the exponents a; is called the order of the operator
§. The identity operator is of order 0. The other
operators are said to be proper.

Let S be a subset of a differential ring R which
contains K. We denote respectively by K[S] and
K{S} the smallest subring and the smallest differ-
ential subring of R containing K and S (denoting by
OS5 the smallest subset of R containing S and stable
under differentiation, we have K[0S] = K{S}).

Let S be a subset of a differential ring R. We
denote by (S) and [S] the smallest ideal and the
smallest differential ideal of R which contains S (we

have (©.5) = [S]). The smallest radical differential

ideal containing .S, denoted by {S}, coincides with
the radical of [S].

Let I be an ideal and T be a multiplicatively
stable family of R. We denote I:7T the ideal of all
the elements p of R such that, for some ¢t € T, the
element tp belongs to I. If the ideal [ is differential
or radical, then sois I:7T. If T' C R is any set, then
T°° denotes the smallest multiplicative family of R
which contains 7T

We work with differential polynomials in the ring
K{y1,...,yn}. We call the y; letters and the y;
derivatives.

An order R over the set of the derivatives (8y;)
is said to be a ranking ([Ko], page 75) if it is total
and if it is compatible with the differentiations over
the alphabet:

1) é&:0y; > By; (for all derivation §&;, all opera-
tor 6 and all letter y;)

2)  b1yi > bay; = 8.01y; > 6,02y, (for all deriva-
tions &, all operators 81, 6> and all letters y;, y;).

Let p be a polynomial® of K{y1,...,yn} and R
a ranking on the 8y;. The leader u of p is the largest
derivative with respect to the ranking R which ap-
pears in p. The two conditions mentioned above
imply that the leader of 8p is fu for all derivation
operators §. Let d be the degree of u in p. The
initial I, of p is the coefficient of u? in p. The sep-
arant S, of p is the initial of all the proper deriva-
tives of p (S, = dp/du). The rank of a polynomial
p=1I- ut 4 R, 1s the polynomial u?. The rank of
a set F is the set of ranks of the elements of F.

Let p and ¢ be two polynomials and let u? be the
rank of p. The polynomial ¢ is said to be partially
reduced with respect to p if no proper derivative of u
appears in ¢. The polynomial ¢ is said to be reduced
with respect to pif ¢ is partially reduced with respect
to p and its degree in u is less than d.

A set of polynomials A is said to be triangularif
its elements have different leaders. A set of polyno-
mials A is said to be autoreduced if each element of
A is reduced with respect to every other element of
the set. Every autoreduced set is triangular. Every
autoreduced set is finite ([Ko], page 77).

Let A be an autoreduced set. We denote H 4 the
set of all the initials and the separants of A. Hence
HS denotes the set of all the products of powers of
the initials and separants of the elements of A.

Let p be a polynomial and A = pi,...,ps be
an autoreduced set. There exists ([Ko], page 77)
an algorithm, called Ritt’s algorithm of reduction,
which rewrites p as a polynomial r = p rem A, re-
duced with respect to A (i.e. with respect to all
the elements of A), satisfying the relation: r =
I Jgs Slbl -.-S%p  (mod [A]), for some integers
a; and b; (Where I, and S, denote respectively the
initial and the separant of p;).

The algorithm begins by producing a partial re-
mainder ¢ = p partial-rem A. The polynomial ¢
is partially reduced with respect to A and satis-
fies for some integers bi,...,bs the relation: ¢ =

51b1 ---S8%p  (mod [A]). The algorithm then calcu-

2The definitions which we give are only valid for polyno-
mials p ¢ K. In this paper, we don’t need to bother with
the exceptions p € K.



lates r = p rem A by applying to ¢ a simple algebraic
reduction.

If p € [A]: HY then (p rem A) € [A]: HY.

Many such algorithms exist. We fix one of them.

An autoreduced subset C' of a set F of polynomi-
als is called a characteristic set® of E if E does not
contain any non-zero element reduced with respect
to C. All the characteristic sets of £ have the same
rank. A characteristic set C of an ideal J reduces
to zero all elements of J. If the ideal is prime, C
reduces to zero only the elements of J and we have
J =[C]: HZ ([Ko], lemma 2, page 167).

Let p; and p; be two polynomials in an autore-
duced subset A of K{y1,...,yn}, whose leaders §,y,
and 6,y are derivatives of some same letter y, (this
can only happen for partial differential systems). We
denote 8 the operator of minimal order and ¢; and
¢; the two derivation operators such that ¢;0; =
¢;0; = 0. We define the A—polynomial between p;
and p; as the polynomial A;; = Sy dipi — Sp,d;p;-
Its leader is strictly less than fy,.

Denote A—polynomial (A) the set of all possible
A-polynomials which can be formed between any
two elements of A. The set A is said to be coher-
ent* if it reduces to zero all its A—polynomials: A—

polynomial (A) rem A = {0} (or = 0).

Grobner Bases. We shall have to calculate (non-
differential) Grébner bases of (non-differential) ide-
als of K{y1,...,yn}. Let A be a finite subset of
K{y1,...,yn} and let Rq be a ranking of the deriva-
tives fy;. We order following Rq the derivatives
wy; < --- < w: which appear in the elements of
A. The order R1 induces an order of elimination
R> on the monomials of the ring K[wi,...,w;]. Let
mi = wfl -o-wyt and mo = wfl ca wft. The order
R 1s defined by: m1 < mo if for the largest index 2
such that a; and b; are different, we have a; < b;.

The largest monomial for the order R2 which ap-
pears in a polynomial p is called the head monomial
of p. Also, if u? is the rank of a polynomial p for the
order R1, then u? appears as a factor in the head
monomial of p.

If Ais asubset of K[w1,...,w:] C K{y1,...,yn},
then the non-differential ideal generated by A in the
ring K[wi,...,w:] coincides with the intersection
between the non-differential ideal generated by A in

K{y1,...,yn} and the polynomial ring K[w1, ..., w:].

Thus for the non-differential ideal (A), the property
to be prime of radical is independent of the polyno-
mial ring.

3 Theorems Used

3.1 The theorem of zeros

Let ¥ be a polynomial system of equations and in-
equations. A model of ¥ is a solution of ¥ in a

®This definition corresponds to Ritt’s one (see [Ri],
page 5) and coincides with Kolchin’s when E is a differen-
tial ideal. Kolchin only defined characteristic sets for ideals
(see [Ko], page 81 and 124).

4This definition is stronger than that of Rosenfeld [Ro]
or Kolchin [Ko], page 136. Any autoreduced set which is
coherent in our sense is also coherent in the classical sense
(so theorems still apply). We adopt it because it corresponds
to an algorithmic test.

field extension of the base field of the system. More
formally,

Definition 1 Let ¥ be a differential polynomial sys-
tem of equations and inequations of K{y1,...,yn}.
A differential model of ¥ is a morphism of differ-
ential K -algebras K{y1,...,yn} — L into a differ-
ential field I that annuls the equations but not the
inequations of 2.

Let wq, ..., w: denote the derivatives which ap-
pear in the equations and inequations of ¥. An al-
gebraic model of ¥ is a morphism of K—algebras
Klwi,...,w:] — L into a field I which annuls the
equations but not the inequations of 3.

Every differential model provides an algebraic
model, but the converse is not true. Take the ex-
ample of a partial differential system of Q{u, v},
equipped with two derivations é, and 6, which we
denote by subscripts:

Uy =0, uy = v, vy # 0.

The system does not admit a differential model since
the equation §,u; — 85 (uy —v) = v, = 0 contradicts
the inequation. It admits however an obvious alge-
braic model: uy; = uy = v =0 and v, = 1.

Theorem 1 (theorem of zeros, Hilbert). Let &
be a differential polynomial system of equations and
inequations: p1 = 0,...,pm = 0; ¢ # 0 in the ring
[({yla ey yﬂ}

The system ¥ has no differential model if and
only if some power of q belongs to the differential
ideal [p1, ..., pm].

The system 2 has no algebraic model if and only
if some power of q belongs to the ideal (p1,...,pm)-

Proof. See [Se2], page 178. We give the proof in
the differential case. The proof in the algebraic case
is similar.

The implication from left to right. The radical
of a differential ideal is a radical differential ideal
and every radical differential ideal is an intersection
of prime differential ideals. Suppose that ¢ does not
belong to the radical of the ideal [p1, ..., pm]. There
exists then a prime differential ideal P which con-
tains [p1,...,pm] but not ¢. This ideal provides a
differential model: the canonical morphism of the
ring K{y1,...,yn} into the field of quotients of the
ring K{y1,...,yn}/P.

The reverse implication is immediate. O

3.2 Regular systems

A rapid computation shows that * € [z3] but that
i® ¢ (z3). More generally, if A denotes a finite
set of polynomials, the set of the elements of [A]
partially reduced w.r.t. A may also contain poly-
nomials which are not in (A). This phenomenon
demonstrates well the importance of the following
lemma.

Lemma 1 (Rosenfeld). If A is an autoreduced

and coherent subset of the ring K{y1,...,yn} then

every differential polynomial which belongs to [A]: HY
and which is partially reduced with respect to A be-

longs also to (A): HY.



Proof. See [Ro], page 397 or [Ko], lemma 5, page
135. 0

The regular systems are differential polynomial
systems of equations and inequations for which Rosen-
feld’s lemma applies.

Definition 2 A system of differential equations and
inequations is said to be regular with respect to a
ranking R1, if the set of its equations is autoreduced
and coherent, the initial and separant of each equa-
tion appear among the inequations and if its other
inequations are partially reduced with respect to the
equations:

pn = 0
A=p1,...,ps is autoreduced
ps = 0 and coherent
QL I # 0
: the initial and separant of each p;
Se # 0
g # 0 gq ispartially reduced w.r.t. A

Notation. We use the letter Q to denote regular
systems (for instance: Q, Q. etc ...). We use the
letter A to denote the set of the equations of © (for
instance, A; and A, stand for the set of the equa-
tions of 27 and QS). We use HZ® to denote the set
of all the power products of the inequations of © (for
instance, Hﬁol and Hﬁos correspond to €27 and QS).

We have HY C HS.

Theorem 2 (Rosenfeld). A regular system Q ad-
mits a differential model if and only if it admits an
algebraic model.

Proof. See [Ro], page 398. Suppose that €2 does not

admit a differential model and we show that it then

does not admit an algebraic model. By the theorem

of zeros, 1 € [A]: HS®. By Rosenfeld’s lemma, 1 €

(A): HS, and € does not admit an algebraic model.
The other implication is immediate. O

The lemma 1 and the theorem 2 are extensions
of two results of Seidenberg ([Sel], theorems 6 and 7
pages 51 and 52) which provide his elimination al-
gorithm for partial differential systems.

3.3 Regular ideals

We establish in this section some important proper-
ties of the ideals [A]: HS® and (A): HS. In partic-
ular, we show that they are always radical and that
there exists an algorithm which decides if a given
polynomial belongs to them.

The following lemma is interesting by itself. In
particular, it generalizes a result of Kolchin (see [Ko],
lemma 13, page 36).

The total ring of fractions of a ring R is obtained
by making invertible all the elements of R which do
not divide zero. We denote it Q(R).

Lemma 2 (Lazard). Let A = p1,...,ps be a tri-
angular set of a polynomial ring K[wn,...,w:], for
the ranking w1 < --- < w¢. Let up < --- < us be the

leaders of the elements of A and Sa denote the set
of the separants of the elements of A. If the ideal
(A): ST is non trivial, then the total ring of frac-
tions Q of the ring K[w1,...,w]/(A): ST verifies
the two following properties:

(P1) it is isomorphic to a product of fields.

(P2) denoting w; the image of w;, we have: w;
satisfies an algebraic relation over Q(K[w1, . .., w;—1])
if and only if w; is some u;.

Moreover, the properties above remain true if S
18 replaced by any multiplicative family S which con-
tains it, provided that the ideal (A): S is non trivial.

The following small lemmas are used in the proof.
a. Let R be a ring. Let I be an ideal and S
be a multiplicative family of R. Let X be‘ an inde-

terminate. The ring homomorphisms R % SR,

R R/I and R — R[X] commute together. More-
over, if S and S’ are two multiplicative families, the
morphisms 2: and 7., commute also. If I C J, then
RJT = (R/T)/p(]).

b. We retain the notations of (a). Since I:5 =
-is_l(-is(f)) and the image of S in R/I:S contains
no zero divisor, by (a), we have the isomorphisms
QUR/I:5) ~ Q(S— R/S~ ) = Q(p(S)~ (R/T)).

c. Let R be aring. If a € R is nilpotent, then
a™' R is the zero ring. R/(1) is also the zero ring.

d. If R= Ry x---x Ry, is aproduct of rings and
if a =(a1,...,an) is one of its elements, we have:

R/(a) = Ri/(ar) x -+ x Rn/(an),
a'R= al_lRl X oo X ap R,
R[X]= Ri[X] x --- X Rp[X].

e. Tet RL Sbea ring homomorphism. Let
p € R[X] be a polynomial and S, be its separant.
Then f(Sp) = Sgp)-

f. TLet p € K[X] be a polynomial over a field.
Let pi* ---pa» be the decomposition of p into irre-
ducible factors. Since the separant .S, of p contains
as factors the multiple factors (a; > 1) of p, the ideal
(p): Sp° is generated by the product of the simple
factors of p. The ring K[X]/(p):Sy° is hence either
the zero ring (by (c), if p has no simple factors),
either a product of fields, according to the Chinese
Remainders theorem.

Proof. We define a sequence of rings as follows:

Ry =K,

Rit1 = Q(Ri[wit1]) if wip1 # uj for each uy,

Rip1 = Ri[u;]/(p;) : 57 if wiyr = uy.
where p; and S; denote the images of p; and S; in
the ring R;[u;].

To prove the lemma 2 we are going to establish,
first that R, verifies (P1) and (P2), second that R,
is isomorphic to Q. Last, we consider the case of
multiplicative families which contain S¢ .

1. We show by induction on : that R: verifies
(P1) and (P2). Clearly, Ry satisfies them. Assume
that R; ~ K7 x---x K, verifies these two properties
and let us show that R;y1 verifies (P1) and (P2) also.

If w; is not a leader uj, using (d), R;41 is isomor-
phic to Hz;l Ky (wiy1). Tt verifies (P1) and (P2).

Now, let us consider the case w; = u;. Let p; =
(Ps15---,Pym) and S; = (Sj1,...,Sjm). By (d) we
have, Ri[u;]/(p;): S ~ [, Kilus]1/(pjx): 553

Let 1 <k <m.



If pjx € K, then Sjk = 0 and the k™ factor of
the product above is the zero ring, by (e) and (c).

If pjx ¢ K&, then by (f), Kyp[us]/(Pjx): S5y is ei-
ther the zero ring, either isomorphic to some product
of algebraic field extensions of K.

Thus R;4; verifies (P1) and (P2).

2. We show by induction on 2 that R; ~ Q.
The main point to check is that the inversion of the
non zero divisors commute with the other ring ho-
momorphisms. Let us denote
Ti = K[wl,...,wi]/(pl,...,p]_l):(Sl,...,S]_l)oo,
where u;—1 < w; < u;. We have Q@ = Q(Ty).
Clearly, Ro ~ Q(Tp). Assume that R; ~ Q(T;) and
let us prove that Riy1 ~ Q(Ti41).

If wit1 # uj then Rip1 = Q(Ri[wit1]). Every
non zero divisor in 7; is still a non zero divisor in
Ti[wi+1], SO Ri+1 ~ Q(Ti[wi+1]) and by (a), Ri+1 ~
Q(Tiyr). }

Hfwiy1 = uy then Ripq = Ri[u;]/(p;): 5577, Since
Ri41 verifies (P2), every non zero divisor in T; is still
a non zero divisor in T;[u;]/(p;):S;°. Since Riys
verifies (P1) we have Riy1 ~ Q(Ti[u;]/(p;):55°).
Then by (a) and (b) Rit1 ~ Q(Ti41)-

3. By (c) and (d), the inversion of an element
p of a product of fields only suppresses the fields of
the product for which p has a zero component. O

Definition 3 A differential ideal J is said to be
regular if there exists a regular system 0 such that
J = [A]l: HS®. An algebraic ideal J is said to be
regular if there exists a regular system Q0 such that

J=(A):HS.
Theorem 3 Fvery regular ideal is radical.

Proof. Let Q2 be a regular system. Let p be a poly-
nomial for which a power p” belongs to (A): HS .
The image of p” in K[wn,...,w:]/(A): HY is zero.
That ring has no nilpotent element, since its total
ring of fractions is a product of fields, according to
the lemma 2. Hence the image of p is zero, p belongs
to (A): HY and that ideal is radical.

Let us show that the regular differential ideal
[A]: HS is also radical. Let p be a polynomial for
which a power p” belongs to [A]: HS®. The polyno-
mial p = p rem A is equivalent to some S} ---S¢p
modulo [A]: HYY. By Rosenfeld’s lemma and the
first part of the proof, p € (A): HS whence p is in
[A]: HE®. This ideal is thus radical. O

The following lemma is a consequence of lemma 2
(property (P2)), the proof of which is left to the
reader. It is used in the proof of the lemma 5 and
shows that we may read the transcendance degree
of a system without calculating the Grobner basis
of (A): HY, except the condition to ascertain that
the ideal is non trivial.

Lemma 3 Let Q be a regular system for a ranking
Ri. Letur < --- < us be the leaders of the equations
of the system. Let B be a Grébner basis of (A): HY
for the order R2 induced by R1.

If (A): HS is not the unit ideal, then the leaders
of the polynomials of B are the derivativesuy, ..., us.

Let © be a regular system and A be the set of its
equations. We give in section 4 a method to calcu-

late a Grébmer basis B of (A): HSY, and in section 6
an example of a regular system without models.
The following lemma shows how to decide the
membership problem in a regular differential ideal.
Its proof is an easy consequence of Rosenfeld’s lemma.

Lemma 4 Let ) be a reqular system, A be the set of
its equations, and B be a Grébner basis of (A): HY .
For each polynomial p of K{y1,...,yn} we have:

p € [A]l: HY <= (p partial-tem A) € (B).

We would like to clarify the correspondance be-
tween systems of regular algebraic ideals and regular
differential ideals. An example suffices to show that
two different regular systems may define the same
regular ideals:

r+1=0, and
(z+1)(z+2)° =0, (z4+2)(3z +4) #0.

Question: Is the correspondance between regular al-
gebraic ideals and regular differential ideals bijec-
tive 7 In other words, do two regular differential
systems define the same regular algebraic ideal if
and only if they define the same regular differential
ideal ? The following lemma, which shows the im-
plication from right to left, is a step in the proof
of theorem 6. The converse implication, which we
have not established, seems to be in keeping with the
open problem: to decide the inclusion of two prime
differential ideals each given by a characteristic set
(see [Ko], page 166).

Lemma 5 Two regular systems which define the same
regular differential ideal define also the same regular
algebraic ideal.

Proof. Let Q and Q' be two regular systems defin-
ing the same regular differential ideal [A]: HS® =
[A"]: HSS. Tet B and B’ be the Grobner bases re-
spectively of the ideals (A): HY and (A’): HSS for
the order R> induced by R1. We suppose B is dif-
ferent from B’ and we seek a contradiction.

We order the polynomials of B = bg,b1,...,bm
and of B’ = by,b1,...,bl., by increasing order. Let
1 be the least index such that the head monomials of
the polynomials b; and b. are different and suppose
b, < b;,. Since b, belongs to the differential ideal
[A]: HE, by lemma 4 (b! partial-rem A) € (B).

Let u; and u} be the leaders of the polynomials
in the basis B and B’ and let ug be the leader of b;.
We have uq = ul,...,uj_1 = ug_l.

By the lemma 3, each polynomial of the basis
B (respectively B’) is partially reduced w.r.t. each
other. Since w1 = uj,...,u;1 = ug_l and since
b, < b;, the partial reduction of b, by A does not
modify b; and we have b € (B). In view of the
hypothesis made on ¢, the head monomial of b, can
not be reduced by any rule from B.

This contradiction proves the lemma. O

While the basis B is “canonical”, it does not per-
mit easy computation in K{y1,...,yn}/[A]: HS. In
fact, the partial reduction algorithm does not trans-
form a polynomial into a polynomial which is equiv-
alent modulo the ideal:

p Z (p partial-rem A) (mod [A]: HT).



4 The Rosenfeld—Grébner Algorithm

The program Rosenfeld—Grobner gathers at entry
a differential system of equations and inequations
3 and a ranking Ri. It produces by splittings a
finite family (€2;) of consistent (with models) regular
systems whose differential models form a partition
of the differential models of 3.

The Greek letters A, ©, T';, denote systems of
equations and inequations. Aeq and A;, stand re-
spectively for the set of the equations and for the
set of the inequations of the system A.

The function obviouslylnconsistent returns true
if a non-zero element of K appears among the equa-
tions, or if 0 appears among the inequations of the
system.

program Rosenfeld—Grobner (A, R1)
begin
if not obviouslyInconsistent (A) then
A := a characteristic set of the finite set Aeq
Let {h1,...,hr} denote the set of the initials
and of the separants of the elements of A
such that h; ¢ K.
R := (Aeq \ AU A—pols(A)) rem A
if R=0 or R = {0} then
Qeq = A
Qin = (Ajy partial-rem A) U
(b #0,....hy # 0}
B := a Grébner basis of (4): HY’
if B # {1} then
produce on output  and B
endif
else
F-r+1,eq = AUR
1_‘-r-l-l,in = Ain u {hl # 07~ . ~7h-r # 0}
Rosenfeld—Grobner (I'y 41, R1)
endif
for ¢ := » downto 1 do
Tieq :=Aeq U {h; =0}
Tiin == Ajpu {hi—1 #0,...,h1 # 0}
Rosenfeld—Grébner (I';, R1)
end
endif
end

Some other ways exist to do the splitting of A
into the T'; (see [Bo]). This one was used by Seiden-
berg in [Sel].

The Grébner basis B of the ideal (A): HS is
computed by the method below. Tt is classical [Tr].
It detects regular systems without models: those
with basis {1}.

1. The system € is transformed into a system
of equations: the algorithm introduces a new un-
known z; for each inequation h; # 0 of the system
and rewrites h; # 0 as h;z; = 1.

2. A basis Bp is computed following any elim-
ination order R satisfying: fy; < z; (for all deriva-
tives 8y; and all unknowns z]),

3. The desired basis B is obtained by truncat-
ing By. Only those polynomials of By which do not
involve z; are retained.

4.1 Proofs
Lemma 6 The Rosenfeld—Grobner algorithm stops.

Proof. The set of the equations of each system T';

not obviously inconsistent, produced from A, con-
tains A and at least one polynomial p ¢ K reduced
w.r.t. A.

Thus, the characteristic sets of the sets of the
equations of the systems I'; not obviously inconsis-
tent are lower than A, for the usual ranking over
autoreduced sets ([Ko], page 81).

This ranking is a well ordering ([Ko], proposition
3, page 81). Since the algorithm discards obviously
inconsistent systems, Rosenfeld—Grobner stops. O

The two lemmas below deal with the correction
of the algorithm. Since € corresponds to a particular
case of I'y41, we do not distinguish it from T'441, in
order to simplify the statements.

Lemma 7 ¢ is a differential model of A if and only
if ¢ is a differential model of some T'; (1 < i < r+41).
Moreover, the differential models of the systems T';
are disjoint.

We only give the main argument of the proof.

Let ¢ be a differential model of some system A =
0,h1 #0,...,h, # 0. Let p be any polynomial and
let p = p rem A. According to the definition of the
models and to the specifications of Ritt’s algorithm
of reduction, we have ¢(p) =0 < ¢(p) = 0.

We need the notations below for the lemma 8,
which is used for the calculus of characteristic sets
in section 5.

Let ¥ be a system of equations and inequations,
{Zeq} be the radical differential ideal generated by
the equations of the system, and Hs® be the multi-
plicative family generated by its inequations. We de-

note J(X) the radical differential ideal {Xeq}: Hs.

Lemma 8 If J(A) is prime and if £ is the greatest
index such that T'y has a differential model, then

TN = T(Te).

Proof. According to the lemma 7 above and to the
theorem of zeros,

T(A) = T(Prsn) -0 T (D),

so the index £ exists. We consider thus two cases.

1. No polynomial h; (1 < i < ) belongs to
J(A). We prove that J(T'r41) C J(A) and the
equality follows from the formula above (¢ =r+1).

We have Tri1eq C [Aeq] C J(A). Since the
ideal is prime and since no polynomial h; belongs to
it, we have Hlixi_'_l N J(A) = 0. Now, assume that
p € J(T'r41) i.e. that for some h € foi_'_l, we have
hp € {Trq1,eq} C J(A). Since h ¢ J(A) and that
ideal is prime, we have p € J(A).

2. Let t < r be the smallest index such that
he € J(A). We prove that all the ideals J(T;) (¢t <
1 < 1+ 1) are trivial and that J(T';) C J(A). The
equality follows from the formula above (£ = t).

By the formula above, for ¢t <1 < r 4+ 1 we have
he € J(A) C J(T;) but, according to the way the
I'; are computed, we have also h: € Hlixl’ . These
ideals J (I‘i) are hence trivial and the corresponding
systems €2; are not produced on the output of the
program.



According to the hypothesis T'y eq C J(A). Since
this ideal is prime and no polynomial h; (1 <1 < t)
belongs to it, we have Hlixt’ N J(A) =0 whence as in
1. above, J(T:) = J(A). O

4.2 Properties of the computed representation

A basis in the sense of Ritt and Raudenbush of a rad-
ical differential ideal J is any finite family ¥ such
that J = {Z}. Ritt and Raudenbush established
[Ri], page 10 that every radical differential ideal ad-
mitted a basis.

The Rosenfeld—Grobner algorithm decomposes
a differential ideal {X} given by a finite basis as
an intersection of regular differential ideals each de-
scribed by a regular system. This decomposition is
also an algorithm for membership testing in {X}.

Consider a system ¥ : p1 = 0, ..., pm = 0 of
differential polynomial equations of K{y1,...,yn}.
Let Q4,...,Q, be the successive regular systems pro-

duced by the Rosenfeld—Grobner algorithm applied
to ¥ for some ranking Ri.

For each system €;, we denote A; the set of its
equations and Hg' the multiplicative family gener-
ated by its inequations.

Theorem 4 With notations as above, we have:

1) ¢ is a differential model of ¥ if and only if
¢ is a differential model of some €; (1 <1 < s3).
Moreover, the differential models of the regular sys-
tems €; are disjoint.

2)  the radical differential ideal {X} is the inter-
section of the regular differential ideals [A;]: HS.

{£}=
Proof.

1) Tt is an easy consequence of the lemma 7.

2) By 1) and the theorem of zeros, a polynomial
p belongs to {X} if and only if, for each 7 € [1, s], the
system obtained by adjoining the inequation p # 0
to €; has no differential models. By the theorem
of zeros and the theorem 3, these systems have no
differential models if and only if p € [A;]: Hg . O

The description of the ideal {£} computed by
Rosenfeld—Grobner allows us to decide the member-
ship problem in {X}, using a few reductions. This
is expressed in the following theorem, whose proof
is an immediate consequence of the theorem 4 and
the lemma 4.

D] =[A]: HE NN [A: HE .

Theorem 5 With notations as above, we have:

p€{X} & Vie[l,s], (ppartial-rtem A;) € (B;).

5 Computation of characteristic sets

We give a method to compute the characteristic set
of a prime differential ideal given by a basis in the
sense of Ritt and Raudenbush. We generalize here
the result [Ol], page 89, of Ollivier.

We retain the notations of the preceding section.

Lemma 9 If the differential ideal {¥} is prime then
12} = [A: S

Proof. The inclusion from left to right comes from
the theorem 4. The other one is a consequence of
the lemma 8. O

To our knowledge, there does not exist any algo-
rithm which decides if a differential ideal given by a
basis (either in the classical sense or in the sense of
Ritt and Raudenbush) is prime.

The coherent and autoreduced set A; satisfies a
property of characteristic sets of the ideal: if C' is
a characteristic set of a prime differential ideal {X},
then we have {} = [C]: HZ. However, A; is not
necessarily a characteristic set of the ideal. Consider
the (algebraic) example below:

Ar:(z+1)(z+2)=0, (z+ Dy +2=0.

A1 is autoreduced with respect to the order z < y,
the ideal (A1): HY is prime but its characteristic
set is

C:z2+2=0,y—2=0.

The basis B of (A1): H,, computed with respect
to the order Rz induced by R; is almost a charac-
teristic set of {}, but not quite. We give in the
following section an example which shows that this
is not necessarily the case.

The theorem below indicates how to compute C'

from B.

Theorem 6 Let {Z} be a prime differential ideal
and  be a regular system with respect to a ranking
R1 such that {X} = [A]: HY®. Let B be a Grébner
basis of (A): HS® computed with respect to the order
Ro induced by R1.

The following algorithm calculates a characteris-
tic set C of the ideal {}, with respect to the ranking
R1, from the basis B.

begin
Assume that the elements of B=151 < -+- < bm
are arranged in increasing order.
C = {bl}
for 7 := 2,...,m do
let u; and w;—q be the leaders of b; and b;_1
if u; # u;—1 then
C = C U {b; rem C}
endif
end
end

Proof. We are going to successively establish the
following points:

1. To determine C' amounts to determining a
characteristic set of the prime ideal (C): HZ®, with
respect to the order R;.

2. B s a Grobner basis of (C): HZ.

3. Let p=1,- u® 4 R, be a polynomial of
(B) = (C): HZ, whose initial I, is not in the ideal.
There exists then in B a polynomial b = I5- u® + Ry
with d, < d, and there exists in €' a polynomial
c=1.-u% + R, with d. < d,.

Since neither Iy, nor I, appearin (B) = (C): HZ,
and since B and C are two subsets of the ideal, the
algorithm described in the theorem extracts from
B a set of polynomials of the same rank as C, but
which is not necessarily autoreduced in the sense of
Ritt. The proof of the theorem is completed by:



4. The reductions carried out by the algorithm
may not reduce the rank of the polynomials ex-
tracted from the basis. O

Proof of 1. See [Ro]. The characteristic set of a dif-
ferential ideal, autoreduced by definition, is coherent
since it reduces to zero every polynomial (in partic-
ular the A—polynomials) of the ideal. We apply the
lemma of Rosenfeld. (C):HE is the intersection
of the prime differential ideal [C]: HZ and the ring
of partially reduced polynomials with respect to C.
The ideal (C): HZ is then prime.

To say that a coherent and autoreduced set C
is not a characteristic set of [C]: HZ, is to say that
there exists in that ideal a non-zero polynomial p,
reduced with respect to C'. By the lemma of Rosen-
feld, this is to say that p belongs to (C): HZ and
hence C is not a characteristic set of (C'): HZ. O

Proof of 2. Since {¥} = [C]: HZ (see [Ko], lemma
2, page 167) and {X} = [A]: A, by lemma 5, we
have (B) = (C): HZ. O

Proof of 3. Let p=1, - u® 4 R, be a polynomial
of (B) = (C): HZ, whose initial I, is not in the
ideal. Suppose the head monomial m; of I, under
normal form modulo B. Since p is reduced to zero
by B, there exists a polynomial b of B whose head
monomial divides the head monomial m, = m; - ur
of p, but does not divide m;. The rank of b is then
u® with 0 < dp < d,.

Since (B) = (C): HZ is prime and since I, does
not belong to the ideal, C' does not reduce I, to
zero. There exists then in the characteristic set a
polynomial ¢ = 1. - u% + R, with 0 < d. <d,. O

Proof of 4. This is immediate since the initials
of the polynomials of B do not belong to (B) =
(C): HZ, the ideal is prime and the characteristic
set of a prime ideal reduces to zero only the elements
of the ideal. O

6 Examples

The algorithms described in the preceding sections
have been programmed (see [Bo], VI) in the lan-
guage C. The manipulations of big numbers are ef-
fected by the library of PARI. The Grobner bases
computations are by the software GB (see [FGLM]).
The computations are done on the IBM RS/6000
station cosme.polytechnique.fr. The timing of com-
putation are given by the UNIX command ¢ime.

6.1 Membership testing

We first give a very simple example to illustrate
splittings and to show how to test membership in
radical differential ideals. We deal with
S 28 +1)y+y=0
2+ =0.
For the ranking §z < ¢y (for all derivation op-

erators § and @), the first equation may be reduced
by the second one. Its remainder is zy. ¥ is thus

split into two systems:

Ty=0 (28 +1)y4+y=0
T, 4+ r=0 and T, P2 +r=0
T#0 7z =0.

The system T's gives immediately a regular sys-
tem Qo = I';. The Grobner basis computation only
simplifies the factor z in the first equation: Bz =
{y, #*4+x}. The system T'; leads with no splittings to
the regular system below. The Grobner basis com-
putation is useless.

91{ y+y=0

z=0

Now, we may verify that (2& + 1) ¢ {Z}. We
apply the theorem 5: (2% + 1) is reduced to zero by
(z'2 + z) in ©1, but reduced to 1 in Q5.

We may also verify that (2% + 1), which is the
first derivative of (#° 4 z), belongs to {}. This
polynomial is reduced to zero by both systems Q5

and €.

6.2 Hidden algebraic contradictions

The following example does not have any physical
significance. It shows the necessity to assure that
the regular systems have models.

Consider the following system in Q{u, v} equiped
with three derivations 6, é, and é.. The derivation
operators are denoted by subscripts.

2.2 _ .
Uyty = 2Uyly — 1, Uzy =V, Vp = UzVs,

y
— 3 _
Vy = UyVz, U, = Uplly.

The ranking R1 used for the calculations is the
following:

1) fu > ¢v for all derivation operators 8, ¢,

2) Bu> ¢uif 6 > ¢ for the lexicographic order
given by &, > 6, > §. (same choice for v).

The Rosenfeld—Grobner algorithm computes two
regular systems in a little more than 6 seconds:

VrVyz — Vz20y = 0,

(vZoyvyy + (—v2s + ’U’Uz)vi)vf — vivyy
—|—(v§vzz — vvi)vi =0,

ul—1=0, vsuy—vy=0,

(V2vyvyy + (—v2z + v02)0) Jua — v3vyy
F(v:022 — vvi)vi =0,

V2 F 0, V0V — Vavys + vV £ 0, vy, #0

u, # 0, vivx —v2uy, #0,

vivyvyy + (—vzz + vvz)vi #£0

v=20

w—1=0

Uyy = 0

Uytty — 1 =10

u, #0

uy # 0

The first is inconsistent. Remark that it is not

detected before the Grobner bases computation, al-
though our implementation of the splitting process
looks for simple contradictions: the final algebraic



treatment is necessary. Here is the Grobner basis
associated with the second system:

v, U, —1, Uyy, Uzly—1.

6.3 Computing a characteristic set

The example below, which has no physical signifi-
cance, shows the necessity to proceed with the de-
scribed reductions in theorem 6 to obtain a charac-
teristic set of a differential ideal that (we know) is
prime.

Let ¥ be the following system of ordinary differ-
ential equations:

i=yi+y+1
y = 2yr + 2zyr + y + 2z
z=y

The differential ideal [X] is prime, since the sys-
tem is orthonomic (HY = {1}) and autoreduced®
with the ranking:

1) 8z > ¢y and 8z > ¢z for all derivation op-
erators 8, ¢ and 7,

2) ¢y > ¥z if the order of ¢ is larger or equal
to that of 2,

3) 1z > ¢y if the order of ¥ is strictly larger
than that of ¢.

We now apply the Rosenfeld—Grobner algorithm
to ¥ with the elimination order:
1) 8z > ¢y > vz for all operators §, ¢ and 9.

We obtain (in a bit more than 3 seconds) a unique
regular system 1. The Grobner basis B; that is as-
sociated to it is:

p1=((G— 32+ )™ — 2™ 4 (335 + 2042 — &
—22)0®) — 2i° 4 (=62 — 2)2 — 1)i2 + ((2=
+2)3° + 32 4 (=20 — 2)a +2)F — i + 1)

po=((i — 22+ 1)y — 2 + (& + 22)7 — &)

pa = ((z(g’) — 23 + 28)y — =2 4 (—22 + ‘Zz)z(g)
+2i% 4 (227 + (62 +2)i — 1) — 2¢% — 1)

P = (2 —y).

If we extract a characteristic set from B;, without
effecting the described reduction in theorem 6, we
obtain an autoreduced set A = pi1, p2, which is not
a characteristic set of the ideal [X] (the polynomial
ps 1n fact does not leave since it is not reduced with
respect to p2). Apply the theorem 6 by reducing ps
by p2. We obtain then a characteristic set C' of [Z]:

P, poy ((F— 22+ 1)z — 3 4 (i + 22)F — 2).

Remark. In practice, we may often do without
Rosenfeld—Grobner for generating the system €2q:
the majority of the time, we know that an ideal
[X] is prime by showing a ranking R for which &
is orthonomic, autoreduced and coherent (cf. the
example above). The ranking R furnishes a charac-
teristic set, hence a membership testing algorithm of
the ideal [X], which permits avoiding the splittings.

5Tt is necessarily coherent, since it only involves ordinary
differential equations.

7 Conclusion

Although the models of the regular systems pro-
duced by the Rosenfeld-Grobner algorithm are dis-
joint, the regular differential ideals which are defined
by them may be redundant. In particular, the algo-
rithm may produce many systems, even when the
differential ideal {X} is prime.

We do not know how to decide the inclusion of
two regular differential ideals. It is a problem very
close to the problem of Ritt: to decide the inclusion
of two prime differential ideals each given by a char-
acteristic set, which “seems very far from solution”
([Ko], page 166). Its solution would allow us to de-
cide if a differential ideal given by a finite family of
generators is prime.

References

[Bo] F. Boulier.— Etude et implantation de quelques
algorithmes en algébre différentielle (These de
I’Université des Sciences et Technologies de Lille,
(1994))

[Bu] B. Buchberger.— An Algorithm for Finding a Basis
for the Residue Class Ring of a Zero—Dimensional
Polynomial Ideal (German) (Ph. D. Thesis. Math.
Inst. Univ. of Innsbruck, Austria 1965, and Aequa-
tiones Math. 4/3 (1970), 374-383)

[Ca] G. Carra-Ferro.— Grébner bases and differential
ideals (notes de AAECC5, Menorca, Spain, Springer
Verlag (1987), 129-140)

[F] M. Fliess.— Automatique et corps différentiels (Fo-
rum Math. I, 227-238)

[FGLM] J. C. Faugere, P. Gianni, D. Lazard, T. Mora.—
FEfficient computation of Grébner bases by change
of orderings (Journal of Symb. Comp. 16 (1993),
329-344)

[GMO] G. Gallo, B. Mishra, F. Ollivier.— Some Con-
structions 1n Rings of Differential Polynomials
(Lecture Notes in C. Sc. Vol. 539 (AAECC-9), 171-
182)

[Ko] E. R. Kolchin.— Differential Algebra and Algebraic
Groups (Academic Press, New York (1973))

[Ma] E. Mansfield.— Differential Grébner bases (PhD
thesis, University of Sydney, (1991))

[O1] F. Ollivier.— Le probléme de Uidentifiabilité struc-
turelle globale : approche théorigue, méthodes effec-
tives et bornes de complerité (These de doctorat,

Ecole Polytechnique (1990))

[Ri] J. F. Ritt.— Differential Algebra (Amer. Math. Soc,
New York (1950))

[Ro] A. Rosenfeld.— Specializations in differential alge-
bra (Trans. Amer. Math. Soc. 90 (1959), 394-407)

[Sel] A. Seidenberg.— An elimination theory for differ-
ential algebra (Univ. California Publ. Math. (N.S.)
(1956), 31-38)

[Se2] A. Seidenberg.— Some basic theorems in differ-
ential algebra (characteristic p arbitrary) (Trans.
Amer. Math. Soc. 73 (1952), 174-190)

[Tr] W. L. Trinks.— Uber B. Buchbergers Verfahren Sys-
teme algebraischer Gleichungen zu lGsen (J. Num-
ber Theory 10 (1978), 475-488)



