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Abstract: We illustrate the use of some generalizations of standard bases in control theory by providing an algorithm to test
the identifiability of any rational algebraic parametric model given by state equations, or more generally by a characteristic set.

The first part is conceived as an introduction to standard bases and generalized standard bases, hopping it would be
comprehensible for people unfamiliar with the subject. In the same spirit, we provide some notions of differential algebra

needed to describe the algorithmic methods.

Some simple examples, computed by hand, are provided as an illustration.
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1. Introduction

The interest of control theorists in computer algebra
began more than ten years ago, due to the need of solving
mathematical problems which were out of reach of pure nu-
merical computations. Since then, they have contributed to
the development of many aspects of computer algebra, such
as the manipulation of non-commutative power series,... and
motivated further research on many interesting theoretical
problems.

Working in effective algebra, and mostly in the for-
mal resolution of systems of algebraic equations, I discovered
identifiability in the work of WALTER, LECOURTIER and
RAKsANYI and tried to develop more efficient methods to
solve the particular algebraic equations appearing in some
identifiability tests.

This very interesting subject led me to differential al-
gebra and the effective resolution of differential equations,
which are more and more used in control theory both as a
language to express rigorously formal properties of structures,
and as a tool to test them on computers (see e.g. [Fl], and
[Di]).

A classical way of testing identifiability is to compute
first an exhaustive summary of the structure and then to test
that it is almost everywhere injective. It is well known that
such summaries may be computed for linear structures, using
the Markov parameters, or the transfer matrix. Other cases
have been investigated (see for example WaAJDA in [Wa2]),
but no method were known for arbitrary rational differential
structure. In [O2 chap. V], I have developed a method to
find summaries for generic structures. Anyway, genericity is
very difficult to test, even if we can easily provide sufficient
conditions. The aim of this paper is to develop a better
version of this method which applies to all cases.

Even if I can provide a few examples which may be
tested by hand, I don’t claim this is sufficient for practical
applications. The method is somewhat intricate and clearly
deserves to be simplified before we may think of an imple-
mentation. The positive aspect is that it involves almost all
the generalizations of standard bases known for this moment,
providing a very good example to illustrate them. So, my
second aim, and perhaps the most important, is to provide a
readable introduction to standard bases, and to explain why
they could be useful in many problems of control theory.

Standard bases were first defined by HIRONAKA, before
BUCHBERGER introduced an algorithm to compute them, re-
lying on successive reduction of critical pairs. However, the
idea is so natural that it is not a surprise if some mathemati-
cal objects, previously introduced by JANET or LEVY—both
working with algebraic differential equations—have a strong
flavour of standard bases.

It is indeed surprising that the notion of standard bases
has been generalized to other structures, such as differential
ideals or subalgebras, only a few years ago. To some extend,
this may be because in most situations, generalized standard
bases are infinite, a serious drawback for effective applica-
tions! But fortunately, we will see it is still possible to use
them with a little more care.

2. Standard bases

We will denote by k a field of arbitrary characteris-
tic and by A the k-algebra of polynomials in n variables
klz1,...,zn]-

2.1. The main idea: linear algebra

A complete description of the main properties of stan-
dard bases would exceed the size of this short paper. My
goal is to give the main ideas, in order to help understand
the next sections, and to encourage the reader to study details
in more substantial papers such as [Bu]. I also recommend
[DST] as general introduction to the problems and methods
of computer algebra.

The basic problem which may be solved using standard
bases is the membership problem for ideals. Let’s consider
an ideal 7 of A generated by polynomials P;,...,P,. By
definition, 7 is the set of polynomials @) such that

£
(1) Q:ZMiPi§ M; € A.
i=1

It is well known that the solutions of the algebraic system
P;(z) = O are also solutions of each polynomial in 7. It is
often very useful to be able to test if some given polynomial
@ belongs to 7; we will see examples very soon.

Suppose we know a priori a bound d on the degree of
polynomials M;P; in formula (1). Then, we can solve our
problem by using the structure of k-vector space of A. If
@ is in Z, it should belong to the subspace generated by
polynomials of the form

(2) 1,10%1 coezomPisi=1,...,n, a1+ +an+degP; <d.

This is easily tested using classical linear algebra.

It may be shown that we can actually compute a bound
d, depending only of deg@, deg P, deg Pp; but it is really
huge in general. However, we will investigate this process a
little closer... First of all, we need to work in some basis
for our calculations. It is convenient to use the natural basis



provided by monomials of degree at most d. We also need to
chose an ordering for those monomials.

We would like that this ordering was in some way “nat-
ural” too. There are many possible choices, but if we remark
that monomials form a monoid for multiplication (i.e. a semi-
group with identity element), we want that our ordering was
compatible with this structure, meaning that

A) 1 is the smallest monomial,

B) if m1 < mg, then mamq < mama.

An immediate solution is the so-called lexicographical order-
ing, defined by comparing first partial degrees in the first
variable, then in the second, and so on. E.g., 1 zg >z I‘gﬂ’}g

We can then form a matrix M, whose columns represent
polynomials (2) generating our vector space. We can now re-
duce to a new matrix N, corresponding to a new set of poly-
nomials with leading monomials all different, by performing
only permutations and linear combinations of columns.

Example 1. — Let us consider polynomials P = x% - l’g,

P> = z1x29 and P3 = 1‘?1‘2. We want to know if Q = z‘i’ + azg
belongs to the ideal generated by P; and P>. The matrix M
corresponds to polynomials Py, P», 1 Py, 2P 1 P2, zo P>
and P3, the monomials appearing in decreasing order: I‘i’,

2 2 2 3 2
T{T2, T, T1T5, T1T2, T1, Ty, T, T2, 1.
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We easily deduce a matrix N of the wanted shape:
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The polynomials corresponding to non zero columns are I‘i) -
zlz’g, 1‘?1’2 - zg, xf, zlz’g, r1T2, z‘g, all of them belonging
to Z. To test if @ € 7 all we need do is to search for a
polynomial in our list having the same leading monomial as
@. Such a polynomial exists. If not, @ would not have been
in 7. So we may subtract it from Q. We get z1 zg + zg We
repeat the process and get 21‘%, and then 0, so that @ € 7.

We may remark that there is a full column of zeroes in
N. This is because there is a non-trivial relation between the
generating polynomials Py, ..., P, viz. 21 P> — P; = 0. It is
clear that the triangulation process also allows us to secure a
basis for relations involving polynomials of degree less than
d.

We only have to put this intuitive method in proper
form to define actual standard bases.

2.2. E-sets

Having chosen an admissible ordering, i.e. satisfying
conditions A) and B), we discovered that leading monomials

should play an important role. What about the set E of
leading monomials of all polynomials in some ideal 7. What
does it look like? We associate to any monomial ¢ the point

a of N™.

fig. 1 fig.2
The fig. 1 describes an e-set, meaning that any multiple
of a monomialin £ belongs to E£. The points of £ with circles
represent the generators of the e-set, for any element of E is
a multiple of these monomials.

DEFINITION 1 (Standard bases). — We say that a subset G
of an ideal F is a standard basis of T if the leading monomials
of polynomials in G generate the e-set E.

Suppose we know a standard basis of Z. To test whether
@ belongs to 7, we may first check if its leading monomial
is in F, i.e. if it is a multiple of the leading monomial M of
PcG SayP=cM+ R,and Q = ¢'M’M 4+ R’. Then, we
canreduce Q to Q' = Q—(c’/c)M'P. We know that Q € T iff
Q' € 7. But Q' has a leading monomial strictly smaller than
Q. We may repeat the process until we find a polynomial
which reduces to 0, or which is irreducible, meaning that its
leading monomial doesn’t belong to E.

This defines the reduction process, and it may be proved
that it actually stops, for there is no infinite and strictly de-
creasing chain of monomials, using an admissible ordering.
We can also use a stronger notion of reduction, total reduc-
tions, which removes in some polynomial all monomials of

E.

Example 2. — Q = 1’%1’% + 1’% is reduced by P = 1’% + z2 to
—z?zg + I‘g, but it is totally reduced to —z?wz — 9.

The question is now to compute standard bases. We
remember how we have used above a triangulation process.
E.g. the matrix M above, the columns 4 and 5 were associ-
ated to polynomials with the same leading monomials, viz.
zoP) and z1 P>. A step of the triangulation process was to
compute the difference z1 Po — zo ;. What does this mean
for e-sets? Consider the e-set ' generated by the leading
monomials of P, and P> in fig. 2.

The monomial 1‘%1‘2 belongs to Ey, but it is both a
multiple of the leading monomial of P; and F»; moreoverit is
the smallest monomial sharing this property. From the point
of view of reduction, this means that polynomials having this
leading monomials may be reduced in two different ways,
using P; or P,. We may reduce z1 P» using P>, then we find
0, or using P, and then we find z1 P — z2 P = zg This
polynomial is called the S-polynomial associated to P; and
P,. It is not in the e-set E’, so that it is irreducible by P;
and P,. So, we must add it as a new generator. We get then
an e-set F/q. This make appear two new S-polynomials, but
we can check that they both reduce to 0.

What does this mean? That we have reached the end of
a completion process and that P, P, and zg form a standard
basis of T = (P;, P»), or in other words that E; is the e-set
of 7.

We may sum up all our results in the following theorem.

THEOREM 3. — Let 7 be an ideal of A, G a subset of A,
then the four following propositions are equivalent:

i) G is a standard basis of T,

i1) G C T and for all P € T, P is reduced to 0 by G,



iii) P € T iff P is reduced to 0 by G,
iv) G generates T as an ideal, and all S-polynomials
between elements of G are reduced to 0 by G. =

2.3. Canonical bases

We will now consider finitely generated k-subalgebras
of A. Given a finite set of polynomials P;,..., P, of A they
generate a subalgebra B, containing polynomials @ such that

14
@ @
Q= E P ot P
i=1

It is possible to extend the definition of standard bases
to this new structure. We may remark that the basic idea
for standard bases was to use the structure of e-set of the
set of leading monomials. Now, if B is a subalgebra, the
leading monomials of polynomials in B form a submonoid of
the monoid of monomials. This produces the following formal
definition.

DEFINITION 1 (Canonical bases). — A subset C' of a k-
subalgebra B of A is said to be a canonical basis of B if the
leading monomials of polynomials in C' generate the whole
monoid of leading monomials of polynomials in B.

Example 2. — Consider the subalgebra B = k[r1,z? + z3].
Then, the leading monomials of polynomials in B are of the
form 1‘1‘11‘3’8, so that {x1,z3} is a canonical basis of B.

Using this, we may recover the nice properties of stan-
dard bases, even if new definitions are more complicated. Let
us first investigate reduction. We have seen for standard
bases of ideals that a polynomial P was reducible by a set
of polynomials S if some monomial M of P was in the e-set
generated by leading monomials of S. By analogy, we get the
following definition.

DEFINITION 3 (Reduction). — A polynomial P is said to be
reducible by a set of polynomials S if a monomial M of P is
in the monoid generated leading monomials of S.

It is here convenient to use the isomorphism between
the multiplicative monoid of monomials and the additive
monoid N” defined by the multidegree mdegw?1 ezt =
(a1,...,0n). If Q is reducible by Pi,..., Py, this means
that mdegQ = Zi a;mdeg®;. Under the assumption that
polynomials P are monic, i.e. with leading coefficient 1, Q is

reduced by the P; to Q — ¢ Hz P%i,

It is more difficult to define S-polynomials, but we will
limit ourselves to intuitive ideas. Again, a leading mono-
mial may be obtained in two different ways, e.g. (7;?)(1’%) =
(z1 1‘2)2, this means there is an S-polynomial involving poly-
nomials x% + z2, I‘g + 1 and =129 + x1, viz.

(x% + 1‘2)(1‘3 +1) = (z122 + x1)2 = —2x§7;2 + 7;3 + z3.

It may be shown that we only have a finite number of S-
polynomials to consider, corresponding to a set of relations
between leading monomials generating the ideal of relations
between those monomials. We can then reduce those S-
polynomials, and if the reduction if non zero, complete our set
of generating polynomials with them. We proceed repeating
this process until all S-polynomial reduce to zero.

Can we be sure that such a completion process stops?
Unfortunately not, but we know that it stops iff the subal-
gebra admits a finite canonical basis. The trouble is that
even finitely generated subalgebras may have infinite canon-
ical bases, as shown by RoBBIANO (see [RS]).

Example 4. — Consider polynomials =1 + =2, =122, 1‘11‘37
and the subalgebra B they generate. We have a S-polynomial
(z1 + xg)(a;lx%) — (z172)? = I‘Jl‘g, this new polynomial
being irreducible. Then, we have a new S-polynomial
(z1 + xg)(xlzg) — (1‘17;2)(7;117%) = xlxé. Indeed the pro-
cess never stops, and we have an infinite canonical basis
{z1 +1’2,x11’2,...,7;1x§,...}.

3. Differential algebra
3.1. Differential ideals

Joseph Fels R1TT, who may be considered as the creator
of differential algebra, but was clearly inspired by previous
works of Maurice JANET, introduced the notions of differen-
tial polynomials, differential ideals and in the same time in-
troduced constructive methods in his proofs, which are very
similar to some algorithms having proved their efficiency on
modern computers.

From a purely algebraic standpoint, we may regard a
differential ring to be a ring with a derivation &, i.e. an
internal mapping such that §(z + y) = §(z) + §(y), and
8(zy) = 8(z)y + x6(y). A differential field will be a field,
which is a differential algebra, e.g. Q is a differential field
with §(z) = 0 Vz € Q, and Q(z) is a differential field for the
usual derivation.

The unknowns in algebraic polynomials may be con-
sidered as abstract names for arbitrary number, in differen-
tial algebra we can regard them as standing for functions.
So, differential polynomials will be polynomials in variables
Y1,Y2,... and their formal derivatives 9:1 s ri’, .... It is con-

venient to denote zi’,z(lp) by z1 (2),71,(p)- We will denote
the set of differential polynomials over F in n variables by
F{z1,...,zn}, F standing for any differential field. The quo-
tient field of F{z}, will be denoted by F{z). It has a nat-
ural structure of differential field, using classical rule for the
derivation of fractions. We will further denote F{z1,...,zn}
by R.

To any set of algebraic differential equations X, i.e.
equations of the form P(zx) = 0 P € R, we may associate
the differential ideal they generate, being the set of polyno-
mials Q < such that

Q= ZMi(Si(Pi) P,ex, M, eR.

It is the smallest ideal 7 of R such that 67 C 7 and ¥ C T.
We denote it by [X]. We say that a differential ideal 7 is
prime if PQ € 7 implies P€ 7 or Q € 1.

3.2. Varieties

Considering a differential algebraic system ¥ C R, we
say that (71,...,7n) € G, where G denotes a differential ex-
tension of F, is a zero of ¥ if P() = 0 VP € X. This implies
that 7 is a zero of [X]. E.g., vy € Q(y) is a zero of &' — 1, it is
also a zero of € [z’ — 1].

DErFINITION 1. — We will say that a zero n of a prime
differential ideal T of F{z1,...,zm} Is generic if P(n) = 0
implies P € T.

Example 2. — The zero z € Q(z) of T = [z''] is not a generic
zero, for it is also a zero of ' ¢ 7. The function sin is not
a generic zero of [z// + z], for it is a zero of (z')? + z2 — 1,
but it is a generic zero of the prime differential ideal [z” +
z, (II)Q + I‘Q _ 1].

We may define the algebraic variety associated to an
algebraic ideal 7 in A as the set of zeroes of 7 in K™, where
K is the algebraic closure of k. Considering a differential



field F, we may associate to it a universal extension, being
such that for all differential extension 7 C G C U of F and all
differential ideal 7 # [1] of G{z1,...,Zm}, T admits a generic
zero in U™. In the following we suppose that a universal
extension U of F has been chosen once and for all.

DEFINITION 3. — The differential algebraic variety V (I)
defined by an ideal T of R is the set of zeroes of T in U™.

A d. a. variety V is irreducible if for all variety W,
W C V implies W = V.

The ideal I(V') associated to a d. a. v. V is the set of
d. polynomials P such that P(n) =0Vn € V.

It may be proved that V' is irreducible iff 7(V) is prime.
In the following, we will say simply variety for d. a. v., and
algebraic varieties for non-differential ones.

4. Generalized standard bases in dif-
ferential algebra

4.1. Standard Bases of differential ideals

Following the ideas developed above, we first need to
define suitable orderings on the set of monomials of R. We
say that such an ordering is admissible if

iym > 1,

ii) mq > mo implies mami1 > mama,

iii) §%m > m £ £ 0,

iv) mi1 > mo implies §tmy1 > §fmg £ # 0.

First of all, we will introduce admissible orderings restricted
to the set of derivatives. A simple choice is z; (jy < (1)
if 7 < 77 orj = 3 and ¢ > ¢. We call it the derivation
ordering < g.,. Next, we may define an admissible ordering
on monomials by considering e.g. the pure lexicographical
ordering with the chosen ordering for derivatives.

Examples. — 1) The monomial m = I;(S)zi(z)xz@) is
given with its derivatives in decreasing order for <g.,. Ac-
cording to the lexicographical ordering, it is bigger than
1‘37(3)1'17(2)1’;(2), and smaller than z; 3y, for z () is greater
than the leading derivative of m, and we may consider it ap-
pears in m with degree 0.

2) We can define many others admissible orderings. For
instance, if < is an admissible ordering, the ordering <geg
defined by m1 <geg m2 if degmi < degma or degm; =
degmo and m1 < mg is admissible.

In order to introduce standard bases, the next step is
to extend the derivation to the set of monomials. This may
seem impossible for e.g. (zz’)’ is equal to zz'' + (z')2, which
contains two monomials. But we can easily solve this prob-
lem, for we only need a convenient formal definition, which
may depend of the ordering. So, an ordering been chosen,
we define §(m) to be the greatest monomial appearing in the
polynomial m’.

We call then a differential e-set a set £ of monomial
such that mE C FE for all monomial m and § ¥ C F, and
denote by [Z] the differential e-set generated by a set = of
monomials. We denote by mP the leading monomial of P.
Obviously, if 7 is a differentialideal, m 7 is a differential e-set.

DEFINITION 3. — A subset G of a differential ideal T is a
standard basis if m7 = [m G].

We can reduce a polynomial Q by a set of polynomials
¥, if m@Q € [mX]. To avoid intricate details, we will describe
the completion process through examples. The reader can
refer to [Car], [O4], or [O2 chap. IV § 1]. for a complete
exposition.

Examples. — 4) Let us consider the ideal 7 = [z2 + z + 1].
The monomial 2z’ belongs to [z2], but we may get it in two
different ways: it is z’(z?) or z6(x?). This means we should

consider the S-polynomial I‘/(I‘2 +z+4+1)— %I‘(?ﬂ’}ﬂ’}‘ +z') =
%1?1?’ +z'. This polynomial is reduced to %l’l. So we consider
a new set {z2 + = + 1,z'}, and it may be proved it is now a
standard basis of 7, for all the remaining S-polynomials will
involve derivatives of greater order and we can neglect them,
because z’ € 7.

5) We now consider 7 = [z2]. This time, the first S-
polynomial to appear is z'z? — %z(z‘Q)' = 0. The second is
z"(z?)! — 2'(2?)" = —2(z')? this polynomial is irreducible
by z?, so that we must add it to the basis. Continuing this
process, we would discover that the basis contains a power
of all derivatives z(*), so that the standard basis of [¢?] is
infinite.

4.2. Characteristic sets

Characteristic set is the oldest tool to deal with alge-
braic differential systems, the first explicit notion being due
to RITT using the results of JANET. They have proved their
efficiency to prove theorems in geometry, under the impulse
of WU (see [Wu]). The main idea is to forget the set of lead-
ing monomials, and to focus on leading derivatives according
to an admissible ordering.

We define the rank of a polynomial P to be zi(ﬂ, if

x; (5) is the leading derivative of P, appearing with maximal
degree d. If P € F—we cannot say it is constant!— we take
rtkP =1if P # 0, and oo if P = 0. We define an ordering
on ranks by taking 1 (resp. oo) to be the smallest (resp.
greatest) rank, and z’ﬁ(J) < 11?//,(]’) if @ 5y < @i 5oy, or
Ti(5) = Tt (51) and d < d'.

We have seen that using standard bases we had a re-
duction process to eliminate in a polynomial @ all monomials
which are multiples of the leading monomials of a given poly-
nomial P and its derivatives. Here, we would like to eliminate
all monomialsin Q, being a multiple of rk P, rk P/, and so on.

We first remark that if tk P = zi(]), then rk P’ = Ti(541)

Consider the two polynomials Q = z' + z and P =
(#')? + 22 — 1. We remark that tkQ = rk P/, so that we
would like to make '/ disappear from @, using P’ = 2z'z" +
2zz’. We cannot rely on the reduction process of standard
bases, but there is a wider method called pseudo-reduction.
We proceed as if P’ was a polynomial in one variable z'/,
and consider the other derivatives as simple coefficients. The
leading coefficient of P’ is 2z’, we call it the initial Ip/ of
P’, and the separant Sp of P. Then, we can reduce @ to
SpQ — P = 0. In the same way, taking say Q = (z'/)?, and
P = z?(2'") -1, we may reduce Q to IpQ —z"P = z'’, which
is reduced to z? using P again.

If we cannot reduce a polynomial @ by a set of poly-
nomial ¥, using pseudo reduction, we say that Q is irre-
ducible by ¥. Polynomials P, ..., Py, appearing in strictly
increasing order, according to their rank and all mutually ir-
reducible, are said to form a chain. We remark that the length
of a chain is at most the number of variables. We can define
an preordering on chains by taking Py,..., Pr < @Q1,...,Qs
if there exists ¢ < min(r, s) such that

kP, --- rkP_, rtkP;
| | A
k@1 -+ tkQi_1 TkQ,
orif r > s and
kP, .- rkPs
| |
k@, - tkQs.

The spirit of this definition is that we want to compare
the set of rang(% which a{e not derivatives of the ranks of
polynomials P; 7} and Qij . It is smaller if the chain becomes
longer as in the second case above. We only need one more
formal definition, before things may become clearer with a
few examples.



DEFINITION 1. — Let I be a differential ideal, we say that
a chain A is a characteristic set of T if for all chain B of
polynomialsinZT A < B.

It may be proved that given a characteristic set A of a
differential ideal 7, all polynomials in 7 are reduced to 0 by
A, using pseudo-reduction. But the reciprocal is false, except
if 7 is prime.

Example 2. — Consider 7 = [P], with P = (2')? + 2 — 1,
and Q = z" 4+ z. It may be shown that P is a characteristic
set of 7. The ideal T is not prime, because z'(z" + z) € T,
but z' ¢ 7 and z'" + = ¢ 7, even if P reduces Q to 0.

Now, take J = [P, Q], P is also a characteristic set of
J, which is a prime ideal, and this is why @ is reduced to 0
by P.

We understand the special interest of characteristic sets
for prime differential ideals: they are always finite, and pro-
vide a way of solving the membership problem.

4.3. Algorithms

The next step is to build an algorithm to construct
characteristic sets. The classical way, following Ritt’s idea
requires factorization, which is impossible without suitable
hypotheses on the ground field F, and very expensive in com-
putation time. We provide a different approach, following an
idea of D. LAZARD.

We will limit ourselves to a prime ideal 7, and further
suppose we can test, using some oracle, whether a given poly-
nomial belongs to Z—we will see soon that it is no great
limitation for control theory.

The first step is to proceed by repeated reductions,
as for standard bases. Suppose 7 is generated by ¥ =
{Pi,...,Pm}. We first build a minimal chain C; among
those polynomials. We reduce all polynomials in ¥, using
C, and form a set S with all the non-zero remainders. If
S = 0, we stop. If not, we take ¥ = ¥ U S, and form a new
minimal chain C5 with polynomials of ¥5. We repeat this
process until S = .

At the end, we get a chain A, which is not in general
a characteristic set. We explain with an example how to
complete the process.

Example 1. — Consider the ideal T = [Py, Py, P5, P4], with
P = 1’3(1"2)2, Py =zhz! —1, P3 =z’ — zl/ and P, = .
We chose an ordering which respects the order of derivation
and form a minimal chain ¢4y = {P;,Ps,Ps}. Obviously
all polynomials are reduced to 0 by C;. But C; is not a
characteristic set of 7. We first check whether the initials of
those polynomials belong to Z. The answer of the oracle is
z3 € Z. So we add z3 to ¥. Repeating then the first process,
we get a chain Cy = {z3, P2}, reducing all polynomials to 0.
Then, no initial belong to Z. The next and final step is to
check that the discriminants of our polynomials do not belong
to Z. It is obvious in this case—if not just add them to X
and continue—, so we conclude that C5 is a characteristic set

of T.

Details of the algorithm are developed in [O2 chap. IV
§ 2].

Remark 2. — We can derive many information from the
knowledge of a characteristic set, for example the dimension
of the ideal. In the last example, we have 3 variables, and 2
polynomials in the characteristic set, so that the dimension
of the ideal is 3 — 2 = 1.

5. Differential algebraic parametric
models
5.1. Definition

Here comes control theory. I hope the reader won’t be
disappointed by this part after all those algebraic preliminar-

ies. We are now able to define parametric models, generaliz-
ing both models given by state equations, and input/output
behaviour.

First of all, consider a system given by state equations,
where the f; and g; are algebraic polynomials.

= fi(z,tu,b),

2l = fulztu,6),
(%)

v =g1(z,0),

Ym = 9m ($7 €)~
We complete it with initial conditions

I (0) =C1 (9),

2n(0) = cn(6).

Here ¢ denotes the time, u the input or command vector, and
# a vector of parameters.

We can remark that for any ordering on the set of
derivatives of z and y, which respects the order of deriva-
tion and such that y > z ¥ form a characteristic set of the
prime differential ideal it generates. The idea is first to check
that if P and @ are irreducible by ¥, then PQ is irreducible,
and then that P € [X] iff P is reduced to 0 by ¥. This implies
that [o] is prime. So, we have a way to solve the membership
problem for [X].

We will now consider a different ordering, such that
Ti(5) > Yk,(0) Vi,7,k,£. We can build another characteristic
set A for this new ordering:

{Pl(z17~"7‘Tn7y17~~'7ym7t7u7€)7
Pn(z17"'7zn7y17"'7ym7t7u7€)7
Pn+J(I17"'7In7y17"'7ym7t7u79)7
Pn-l-m(ylv"'vymvtvuve)}-

Using rem. 4.3.2, the dimension of [X] is 0, so that we have as
many polynomials in a characteristic set as we have variables.
Then, if the leading derivative of P is Yi (5 P cannot contain
a derivative z;/ (;1), because of the special ordering we use—
we say it is an e;imination ordering. This explains why A has
such a shape.

Example 1. — Consider the model z; = 1‘1,1’5 = -3,y =

%(1‘1 + x2), with initial conditions z1(0) = 1,z2(0) = 1.
Change the ordering. You may compute a new characteristic
set {z1 — %(y' +y),z1 — %(y’ + ),y — y}. Form the first
system, we deduce x](0) = 1,z,(0) = —1, and so new initial
conditions y(0) = 1,y’(0) = 0. We may now forget the z and
secure a pure input/output model.

This possibility of going from state equations to input
output ones by a simple change of ordering produces the fol-
lowing generalization.

DEFINITION 2. — We call an algebraic differential paramet-
ric model a system ¥ = {Q;(z,y,tu,0) ¢ =1,...,n+ m},
given by differential polynomials in F(t,u,6){z,y}, which
form a characteristic set of a prime and zero-dimensional ideal

T.



We take for the ground field F a differential field with
field of constants k, e.g. R(z) whose field of constants is
R. We consider the differential extension such that the input
vector u is generic, meaning that P(u) = 0 iff P = 0, the
time ¢ is a generic solution of ¢/ = 1, and the parameters ¢
are arbitrary constants, i.e. generic solutions of ¢’ = 0 other
F. Those definitions are often completed if & = R with the
data of an open set D € RY, of admissible parameters.

7 being zero-dimensional, we may suppose with no loss
of generality that the leading derivative of @Q; ¢ = 1,...,n
is Ti(5:) and the leading derivative of Qny; ¢ = 1,...,m
is Yi,(imagi) So, this definition can be completed with the
following.

The initial conditions of an algebraic differential model
are constants ¢; ;(6,u) i =1,...,n+m, § =0,...,j;, such
that Q;(c) = 0 and Sg,(c) #0, foralli =1,...,n+m. The
constantsc; j are taken in G(0), where G denotes a differential
extension of the ground field F.

The meaning of this construction is that we can asso-
ciate to such a model, and a vector of analytic input functions
u, a unique power series solution with coefficient in the con-

stant field of G.

Examples. — 3) Consider the model (z')? = = + u, y = 2,

with initial conditions z(0) = 1, z/(0) = 1/1 + u(0), y(0) =
1+u'(0)/(y/1+u(0)
2 b

1. We may recursively compute z”/(0) =

y'(0) = 24/1 + u(0),. ..

4) Consider the simple model z’/ = (6’% +63)z’ — 6’% fox,
(v')? = z’, with initial conditions z(0) = 2, 2'(0) = 29%,
z''(0) = 26%, and y(0) = \V2/61, y'(0) = /261 . We may take
here F = Q, and G = Q(\/i) This system is a chain for a
ordering which respects the order of derivation, and we could
check it is associated to a prime ideal. For more simplicity,
we have chosen a model with no input function.

It is easily seen that initial conditions are compatible
with the system. Of the first equation, we deduce z'"(0) =
26%,... leading to the formal solution: z = EZO (202 /i)t
We also get y/(0) = \/56’%, y'"(0) = \/5/29%,... and the
oo 2i—1 ;. ;
im0 (\/56’11 Ja)(t/2).

5.2. Generic models

formal solution y =

The notion of genericity may look like a pure algebraic
notion, with no great practical meaning. So, I will try to
explain briefly what can be the interest for control theory.

Example 1. — We go back to ex. 1.4. We have been able
to describe the behaviour of our model by power series. But
suppose we need to check whether or not x and y satisfy a
given differential equation, P(z,y) = 0. The model is given
by a characteristic set of a prime ideal 7, so we may first check
whether we can reduce Q) to 0. Of course, it is only a sufficient
condition to have P(z,y) = 0. It would be sufficient, only
if our power series solutions were generic solutions of 7. In
such a case, we would say that the model is generic.

E.g., take P(z,y) = =’ — (9%)1‘ The model is defined
by two equations. Complete them with z = P(y). It is still
a characteristic set of a prime ideal for a ordering extending
the ordering on z and y, and such that z is greater than z, y
and all their derivatives. So, we can compute a characteristic
set B for a new ordering, taking z and its derivatives to be
smaller than z and y. The c. s. B contains a polynomial
depending only of z, viz. 2z’ — ;2. We can easily compute
initial conditions for z, 2(0) = 0, and z’(0) = 0. This clearly
implies that 2z is 0. So that our model is not generic.

The model defined by =’ = 62z, y? = z/6%, with ini-
tial conditions z(0) = 2, and y(0) = \/2/6; is equivalent to

the preceding, meaning that it defines the same power series
solution, but it is this time generic.

The conclusion of this example is that, even if we can-
not test genericity, we are still able, given a model and
a polynomial P(z,y) to decide whether the model satisfies
P(z,y) = 0.

5.3. Identifiability

I think identifiability is well enough kown to avoid great
explanations, and will only provide a formal definition. The
reader may refer to [Wal], for more details.

DEFINITION 1. — Let M () be an algebraic diff. parametric
model, we associate to it its input/output behaviour C(f),
being the function which associates to an input vector u the
unique output function which satisfies the initial conditions.

If the model implies no input function, then C(6) is a
constant function.

DEFINITION 2. — We say that a model M () is globally
(resp. locally) identifiable if YT € D C(7) = C(6) (resp. if
there exist an open neighbourood O of 8 such that forall
T €O C(7)=C(0)) implies T = 6.

Example 3. — Take the model ' = §?uz, y = =, then M (6)
is locally identifiable for # = 1. It globally identifiable for
8 = 0. It would not be globally identifiable for § = 1 if the
domain of admissible parameters is D = R, but it would if

D=RT.

DEFINITION 4. — We say that a parametric model is struc-
turaly globally (resp. locally) identifiable if there exist a sub-
set E of D of measure zero, such that for all 6 € D\ E M (0)
is globally (resp. locally) identifiable.

6. Testing identifiability using stan-
dard bases

6.1. The use of exhaustive summaries

The input/output function C is very uneasy to use for
any practical test, which explains the use of exhaustive sum-
maries according to the following definition.

DEFINITION 1. — We say that a function p: D C k® — kS
is an exhaustive summary of the input/output behaviour of
a parametric model if C(§) = C(7) <= 6 = 7, for all (§,7) €
D2,

This means that we may substitute p to C in the def-
inition of identifiability above. Then, to test local identifia-
bility, we only have to check that the jacobian matrix of p is
of maximal rank r (see [Ra]). Suppose now that the field of
constants k is C. Then identifiability means that p admits
a rational left inverse. This can be tested using a standard
basis computation. For more simplicity, if f is a polynomial
map, defined by fi,..., fr, we only need to check whether
the ideal J generated by the system f;(z) — fi(y) in the ring
C(y)[z] is the ideal (z; — y;). The reader may look at [O1]
or [O2] for more details on the method.

This condition is obviously sufficient, but not necessary
except if K is algebraically closed, corresponding in practice
to the complex case which still have some interest for techni-
cal problems, even if it is not very often considered for con-
trol. But we still get useful informations from this method.
On the first hand, the standard basis will give the dimen-
sion of 7, and it may be proved that the parametric model
is locally identifiable iff dim 7 = 0. It also gives the degree
of 7, which bounds the maximal number of real, or complex
solutions.

Suppose that D, is a semi-algebraic subset of R”, i.e.
a subset defined by a finite number of polynomial equation,
inequations, or inequalities. We would be able then to use



the C.A.D. algorithm to answer our problem (see [FGM]).
Moreover, it is able to determine the set of parameters for
which the system is identifiable, which is the most we can
expect. But this is a very expensive algorithm, and even
simple models are out of reach for this moment.

6.2. How to compute an exhaustive summary

Now, we would like to compute exhaustive summaries
for the general models introduced in def. 5.1.2. In [02], I
have given a method which works only for generic structures.
I will explain here briefly how to suppress this hypothesis
which is very difficult to test. But first, I need to recall the
previous method, because the first step is the same.

The idea is to compute a characteristic set for an order-
ing which eliminates state variables. Then, we only keep the
part of the char. set corresponding to the measure variables,
and compute initial conditions for those measure functions
as we did in ex. 5.1.3 and 5.1.4. Now, we may make our
characteristic set normalized (see [O2 def. IV.2.3.1 p. 96] for
the precise definition), which implies that its elements are
unique up to multiplication by a non zero element of F. So,
having chosen a total ordering on monomials, we may make
our char. set unique by taking its polynomials to be monic,
i.e. with leading monomial appearing with coefficient 1.

Example 1. — Take the char. set {z? — 2,z1z2 + 1}. We
may substitute to it the normalized char. set {xf, 2z9 + 71},
where the leading variable of the first polynomial, z1, has
been thrown away from the initial of the second polynomial.
Now, we make those polynomials monic, so that the second
one is replaced by z2 + %1?1.

Suppose the structure is generic. Then, for any arbi-
trary input function u, the output y is generic too, which
implies that the knowledge of y implies that of 7(y). But we
precisely know a char. set of Z(y), which is unique up to the
choice of the ordering. On the other hand, if we know Z(y),
and the initial conditions, y is uniquely determined... So, we
conclude that the set of coefficients of all monomials in the
members of the char. set form an exhaustive summary.

Example 2. — Consider the system =/ = fz, y = 22, z(0) =
1. If we eliminate z, we find ¥’ = 6%y, y(0) = 1, meaning
that 62 is an exhaustive summary and the parametric model

is identifiable if we take D = R*.

We will deal with non generic parametric models using
standard bases. We have seen above that standard bases were
not unique. But we may prove that, for any ideal, there exist
a unique standard basis G, such that all polynomial P € G
is monic and reduced with respect to G \ {P}. It is called
the reduced standard basis. We define the weight wt on the
set of differential monomials, by taking Wt(l‘z‘y(]) =j+1,
so that Wt(Ii(g)$2 =3(24 1)+ 1 = 10. We choose now an

admissible ordering which respects wt. E.g. we may sort first
according to wt and use the ordering <4, of ex. 4.1.1 in case
of equality. The reason of this choice is that we need to use
an ordering such that for any given monomial there is only a
finite number of smaller monomials.

We suppose we have found a char. set A for y as in the
example above. We would like to test that the coefficients in
its polynomials form a summary, or else find new algebraic
relations for y, leading to a wider ideal and a new smaller
char. set. The trouble is that we do not know Z(y) by a set
of generators or a characteristic set, but we are still able to
test that a given polynomial belongs to it (see ex. 5.1). Let
m = maxpec wt P. We will build all the elements in the
reduced standard basis of Z(y), whose weight is not bigger
than m.

6.3. The final step

We have seen in section 2.1 how we could introduce a
primitive notion of standard bases, from th standpoint of lin-

ear algebra, and in ex. 2.1.1 how we could also find relations
between the generators. We can do the same using canonical
bases, and find then relations between the generators of the
algebra.

We need now to apply this idea to the differential al-
gebra K {y} generated by the power series solutions defined
by the initial conditions. The differential ideal of relations
between them is exactly Z(y). Two problems occur then.
The first one is that we are in a differential situation, so that
the theory of canonical bases given in section 2.3 should be
extended. But the main trouble is to deal with series. The
most immediate solution is to restrict to linear algebra, as we
did at the beginning.

For any monomial M, we can construct the series M (y)
up to an arbitrary order. We consider all monomials M of
weight smaller than m. Then, we can consider a matrix with
infinite columns, corresponding to those monomials M (y).
We take an elementary example.

Example 1. — Take the system y" 4+ 67y = 0, with initial
condition y(0) = 0,y'(0) = ;. We want to construct the
standard basis of Z(y) for some ordering which respects the
weight, up to weight 4. The monomials of this weight, or
less are 1,4,9°,v', %, vv', v, v*, (v'), yy",y"". We consider
now the matrix L, whose infinite columns correspond to the
series associated to those monomials: ¢; = (1,0,.. .)T, co =
(0,021, 6’%92253/3!, ...)T, and so on. We have 11 columns, so
we develop first those series to a reasonable order, say 20.
A triangulation, using only column permutations leads to a
matrix 21 X 11 of rank 7. There are left 4 columns of zero—up
to order 20—, which correspond to columns (y')2 + 9% y2 -1,
Y + 62y’ yy" + 62y?, and y" + y. We already now that the
three last are really columns of 0, because those polynomials
are reducible using y” + y. Concerning the first, perhaps it
would become non zero, if we develop the series far enough.
But we can easily solve this problem by the method of ex. ,
which shows that indeed (y')? + 9%1/2 —-1€I(y).

We conclude that the reduced standard basis of Z(y) is
{y"" + 62y, (v')? + 62y? — 1}, up to weight 4—it is in fact, as
we already know, the whole basis.

This means that, knowing 6’% and 63, y is uniquely de-
termined. On the other hand, if we know y, the reduced basis
of Z(y) is also uniquely determined, which implies the deter-
mination of 6’% , because of the unicity of the reduced standard
basis. It also implies the knowledge of y'(0) = 2. It other
words, we have found the wanted exhaustive summary.

7. Conclusion

I hope that this modest presentation of effective meth-
ods could be of some interest for control theorists, and that
it wouldn’t seem to involved, or too naive. I needed to skip
many formal definitions and also some purely technical diffi-
culties, so that the exposition of most methods is incomplete.

The next references should help the reader to know more
about computer algebra. It should have wide possibilities of
applications in control theory, which still need to be devel-
opped or widely used.
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