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Introduction

In the recent years, motivated by the success of various algorithms and techniques in
computational algebraic ring theory, the researchers in the Computer Algebra commu-
nity have turned their attention to the task of extending these ideas to differential ring.
Appropriate analogs and generalizations of standard bases, Buchberger’s completion al-
gorithm, etc. are however yet to be found. (See for example [1], [2], [16] and [19]).

The reasons for this interest are both practical and theoretical. There is, in fact,
a growing effort to use differential algebra in order to solve problems in Control the-
ory, Dynamical systems and Robotics. From the theoretical point of view, it is equally
important that we understand the precise relation between ‘old’ constructive methods
(Ritt-Seidenberg algorithm [5, 24]) and the recent Grobner bases-like approach.

A constructive study of differential algebra may also give new insight into its quite
complicated structures. For example, rings of differential polynomials are not Noetherian,
hence differential ideals can be much more complex than algebraic ideals. An example,
reported later on, shows that this difference implies that there are differential ideals that
are not recursive!

On the other hand the structure of differential ideals is not completely unruly, and
one can hope to characterize classes of differential rings and of ideals for which suitable
algorithmic techniques can be developed. The concept of H-bases for differential ideals
is introduced in the second part of this paper and it constitutes a contribution to this
direction of research.

The differential algebras considered here are commutative rings of differential poly-
nomials in several differential indeterminates over a field of constants, a particular case
of the algebras introduced by the classical works of Janet [8], Kolchin [11], Riquier [20]
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and Ritt [22]. These objects should not be confused with the rings of the differential
operators whose constructive aspects have been studied, for example, in [3] and [4].

The rest of this paper is organized as follows: The first section fixes the standard
notations and recalls some classical notions in Differential Algebra. The second section
presents an example of a nonrecursive differential ideal in the ring Z{2}. This example,
which generalizes the one due to Ritt and Kolchin, shows that the problem of deciding the
membership in a differential ideal is not in general algorithmically solvable. It however
leaves open the question whether the membership question for a recursively generated
differential ideal can be solved by a recursive procedure. The third section introduces the
concept of H-bases for differential ideal, in analogy with Macaulay’s original definition
of H-bases for algebraic ideals [13] (see also [15] and [23]).

These bases can be regarded as a special kind of standard bases (cfr. [1], [16] and
[17]). Using such bases, one can introduce a particularly simple procedure to test the
membership of a differential polynomial in a differential ideal. Unfortunately, for general
differential ideals, it is not known if there is a finite method capable of computing an
H-basis, or even a useful subset of it.

In the special case of ideals with an isobaric basis, however, H-bases can be computed
and we present an effective procedure to decide the membership in such ideals. It is still
unresolved if a finitely generated (respectively, recursively generated) differential ideal
has a finite (respectively, recursive) H-basis.

1 Preliminaries

In order to keep the following expositions reasonably self-contained, we shall introduce
in this section most of the standard notations to be used later. For those notations and
definitions that are not explicitly mentioned here, refer to [9], [11] or [22].

All our rings are assumed to be commutative and with unity.

Definition 1.1 A ring R is said to be a differential ring if there exists a differential
operator from R to R, i.e., a map d: R — R such that, for all o and 8 in R:

o d islinear, i.e. d(a+ 3) = d(a) + d(5);
o d(ap) = d(a)+ ad()

Example 1.1 Any algebraic ring R, with d defined as the trivial derivation, i.e. d(r) =10
for allr € R, is a differential ring.

Example 1.2 The ring of analytic functions over a domain of C is a differential ring.

Definition 1.2 A subset I of a differential ring R is a differential ideal if it is an alge-
braic ideal of R and moreover, it is closed under the d operator, i.e. if d(I) C I.

If S is a subset of R and I is the minimal differential ideal of R containing S, then
S s said to be a system of generators for I, or equivalently I is said to be the ideal
generated by S. If S = {f1,..., fn} then I is denoted by [f1,..., fa]

Since R 1s a particular algebraic ring one can also consider the algebraic ideal J
generated by S. This ideal is sometimes denoted by (f1,..., fn). Note that, in general,

(fr, - f) #F s fal-



Definition 1.3 A differential ring R, with derivation d, is said to be computable if it is
possible to solve algorithmically the following problems:

decide if r is an element of R;

o compute for any element r € R the element —r;

e compute for any pair (r,s) € R x R the element r + s;
e compute for any pair (r,s) € R X R the element rs;

e decide if r € R 1s equal to the zero element of R;

compute d(r) for any element r € R;

Differential rings of particular interest are the ones constructed from a differential
ring R by adjoining some differential indeterminates, as follows.

Definition 1.4 Let R be a differential ring. Consider the ring of polynomials A = R[xzo,
Zi, ..., Ty, ...] with a denumerable number of variables. A is a differential ring once the
derivation d' on R is extended to a derivation d on A:

e d(r) =d'(r) for all the elements r € R;
o d(z;) = ®iy1 fori>0.

After renaming x; as dW)g (the derivation of order 0 is assumed to be the identity
map), A can be denoted by Rlx, dz, dPx, ..., d™x, ..] or by R{z}; it is called the
ring of differential polynomials in z over R.

It is possible to iterate the definition above to adjoin more variables to R, obtaining
the differential ring R{z1,...,2,} of the differential polynomials in x4, ..., z, over R.

Remark 1.1 It can be immediately verified that if R is a computable differential ring,
then so is R{x1,...,2n}.

Remark 1.2 A differential polynomial can be written uniquely as a sum of terms. A
term is the product of an element of the ring (the coefficient) and a monomial of the
indeterminates and their derivatives.

Definition 1.5 Let M denote the set of all monomials in the ring R{z1,...,2,}. Con-
sitder the map w: M — R so defined that:

o w(z)=m; withm; >0 fori=1, ..., n;
o w(d®z;) = (k +my) for any integer k> 0 and fori=1, ..., n;

e For any monomial m € M, w(m) = >, w(f;) where f;’s range over the factors of
m containing a single indeterminate or a derivative.



The function w is called a weight of the monomials of the ring R{z1,...,z,}. The
weight of a differential polynomial is the mazimum weight of its power products.

A differential polynomial whose monomials have all the same weight, with respect to
some weight function w is called isobaric. Any polynomial can be uniquely written as
the sum of isobaric polynomials that are called its isobaric components. The isobaric
component of mazimum weight is called leading isobaric component (or head) of f; it is
denoted as h(f). Notice that the isobaric component of a polynomial are not, generally,
monomials, but tsobaric polynomials.

A differential ideal I s called isobaric if, whenever a differential polynomial f is in
1, all of its isobaric components belong to I.

Remark 1.3 [t is easy to verify that any weight function defined as above has the fol-
lowing properties:

e w(fg)=w(f)+wlg), for all f,g € R{z1,..., 2},
o w(d(f))=w(f)+1, forall f € R{zy,...,2n};

o The set Sy, of differential power products of weight k 1is finite,
for any k.

In a fashion similar to the case of homogeneous ideals of polynomial rings, it can be
shown that:

Proposition 1.1 A differential ideal I in a ring of differential polynomials with constant
coefficients is isobaric if and only if it has a system of isobaric generators. M

This proposition holds in the more general case when the ring of the coefficients is
a field, but it is not longer true if the coefficients of the polynomials are not invertible
and with non zero derivative. In fact in this case the derivative of an isobaric polynomial
may not be isobaric, as in the following example.

Example 1.3 Consider the ring R = Q(e), where d(e) = e. Then the derivative of the
differential isobaric polynomial x + ey in the ring R{z,y} is the polynomial dz + edy+ ey
whose isobaric components are dz + edy and ey. Bul ey is not in the ideal I = [z + ey].
I has an isobaric basis, but is not isobaric.

2 Nonrecursive Differential Ideals

The theory of rings of differential polynomials can be seen as a generalization of the theory
of polynomial rings. It is, hence, quite natural to try to prove for such rings results similar
to the ones known for polynomial rings. Unfortunately, many fundamental properties of
algebraic rings do not hold any more when generalized to a differential context, or their
validity can be assured only under the assumption of some restrictive hypotheses.

This section reports one of such differences and exploits it to prove the existence of
non-recursive differential ideals of the ring R{xz} even when R is a computable differential
ring.



In the constructive theory of polynomial rings, a central role is occupied by the Hilbert
basis theorem which, assures the existence of a finite system of generators for an ideal in
R[z1,...,z,], provided that the ring R is Noetherian. This theorem is useful to prove
the finiteness of several algebraic constructions. Unfortunately for rings of differential
polynomials only a weaker version of the Hilbert basis theorem can be proved: The
Ritt-Raudenbusch Basis Theorem.

Theorem 2.1 If R is a differential ring, containing the field Q as a subring and such that
every strictly ascending chain of radical ideals of R s finite, then so does the differential

ring R{z}. W

For a proof of this theorem see [22] and [9]. The Ritt-Raudenbusch theorem cannot
be improved as the following example shows (see [21] p.12-13, [10]).

Example 2.1 Consider the ring of the integers Z.. It can be considered as a differential
ring with the trivial derivation d, i.e., the derivation satisfying: d(m) =0 for any m € Z
(see Ezample 2.1). Let Z{x} be the ring of differential polynomials in one indeterminate
x over Z.

Assume that the symbol d(°) denotes the identily map over Z{z}. Define the differ-
ential polynomials f; as follows:

fi = (d@x)z i>0.

Consider the countable family of non-radical, isobaric differential ideals defined in the
following way:
Iy = [fi]
L = [fo, fi]

In - [fO:f1;~~-:fn]

Claim. The ideals I;’s form a strictly ascending infinite chain:
LehC - CliC -

It 1s immediate to verify that the inclusion relations above hold, hence to prove the
claim one needs to show only that all such inclusions are proper, i.e., that for each index
t > 0 there is a differential polynomial in I; which is not contained in I;_. The following
remarks show that the differential polynomial f; € I; is not contained in the tdeal I;_1.

Remark 2.1 The polynomials f;’s witht =10, 1, ..., and their derivatives are homoge-
neous and of degree 2. Moreover, if the weight assigned to the variable x 1s 1 the f;’s are
isobaric of weight 20 +2. Thus, Their k** derivative will be isobaric of weight 2i+ 2+ k.



Remark 2.2 Suppose that f, = (d(")£)2 tsin I,_1, t.e., there exist differential polyno-
mials oy ;s such that the following expression holds:

n—1 k;

fo= X3 asd? [ (a2)]. M

i=0 j=0

If the a; ; ’s have positive degree, their products with the f;’s and their derivatives will
contain monomials of degree higher than two. Since f, has degree two, these monomials
must cancel. The monomials of positive degree in the o; ; are, thus, redundant, i.e., the
a;; can be supposed to be in Z.

Remark 2.3 Since f, is isobaric, it is immediate to see, from the previous remark, that
at most one occurrence of d*)f; i =0,1, .., n—1, can appear in (1). Moreover, k;
must be equal to 2n — 2i. Hence if f, is in I,_1 the following equation must hold:

fo=cod®fo 4+ e1d® D 4+ f ey 1 dPf, g, (2)

where ¢; are integers.

Remark 2.4 The polynomial d*™) fy contains the monomial £d*™z. Since this mono-
mial does not appear in any other addenda of the expression (2) and does not appear in
fn it follows that ¢y must be zero.

An analogous reasoning proves that c1,cs,...,cn_1 must all be zero. This is a con-
tradiction, because f, is not zero, and the claim is proved.

Following the same argument as above, one can prove a slightly stronger proposition:

Proposition 2.1 Let S be a subset of NU{0} and Is, the differential ideal generated by
the set {f; 11 € S}. Then
f]' cls < jeSsS 1N

The proposition above leads to a family of examples of nonrecursive ideals in Z{z}.

Theorem 2.2 Let S be a nonrecursive subset of NU{0}. Then there is no algorithm to
decide if a given differential polynomial g is in the ideal Ig.

Proof. Assume to the contrary, i.e., there is an algorithm that decides if a given polyno-
mial g 1s in Ig. This is impossible, as it would lead to an algorithm that decides if a given
integer j is in the nonrecursive set S. (It suffices to test if the differential polynomial f;
isinIs.) W

The previous theorem rules out the existence of an algorithm capable of deciding
the membership problem for general differential ideals. Thus, it is natural to investigate
if there is such a decision algorithm for some restricted class of differential ideals (for
instance, a differential ideal with a recursive [or even finite] set of generators) .



3 H-bases of Differential Ideals

In 1929, Macaulay in his book Algebraic theory of modular systems [13] introduced the
concept of H-bases (the ‘H’ stands in honor of Hilbert) for ideals in the ring of polyno-
mials. He also gave, in the same place, a sketch of an algorithm to compute an H-basis
of an algebraic ideal starting from a finite set of its generators. Macaulay’s construction
has received new attention in the recent developments of computational algebra. It has
been investigated in relation with the Grobner bases construction and has been applied
to general graded structures ([15], [23]).

In this section, we propose a generalization of the H-bases to differential ideals in
rings of differential polynomials with coefficients in a computable differential field of
characteristic zero.

The concept of H-bases proposed in this paper is not, generally, an effective one. It
is not known, as a matter of fact, if finitely (respectively recursively) generated differ-
ential ideals have a finite (respectively recursive) H-basis. Moreover no effective method
is known for the computation of the finite set of all the differential polynomials with
bounded weight in an H-basis starting from a finite (recursive) set of generators of a
general differential ideal.

Consider the ring A = K{x1,...,z,} together with a weight function w defined on
it. A is isomorphic to the direct sum @52,4;, where A; is, for any integer ¢, the finite
dimensional K-vector space of the isobaric polynomials of weight i.

Definition 3.1 Let I be a differential ideal in R{z1,...,2,}. The ideal H(I), is the
algebraic ideal generated by the set of all the leading isobaric components of the differential
polynomials in I.

By definition a differential polynomial f is in H(I) iff all of its isobaric components
are in H(I).

Notice that H(I) is not in general a differential ideal, unless the field K is a field of
constants.

Let H(I); = H(I)N A;, ice., H(I); is the subspace of A; spanned by the isobaric
differential polynomials of H(I) of weight i.

The Hilbert-like function ¢r ., (i) is defined to be the dimension of H(I); as a vector
space over K.

Remark 3.1 The function ¢r ., defined above is analogous, for differential ideals, to the
Hilbert function for algebraic ideals. It is, however, not a good idea to call it by the same
name; the designation “Hilbert function,” in Differential Algebra, is usually reserved for
an unrelated concept.

It is not known if ¢r. has the same regularity properties as its algebraic analog.
The existence of something similar to a “Severi’s regularity bound” for such functions
would imply that an H-basis is a recursive set, generalizing the similar results obtained
for Grobner bases. Unfortunately, such functions seem to be extremely complicated, and
have been investigated, because of their combinatorial interest, only for few special classes

of differential ideals (see [12], [14] and [6]).

Remark 3.2 Guven a basis S for the differential ideal I, consider the algebraic ideal
H(S) generated by the leading isobaric components of the polynomials in the set S = {g:
g=d®s withs €S, ke NU{0}}.



Generally, H(S) is properly contained in H(I). Consider for ezample the ideal I = [z]
in the ring Z{x} and the basis S = {& + dx,z — dz}.

Notice again that, as above, H(S) is not in general a differential ideal, unless the field
K is a field of constants.

Imitating the algebraic case, it is then natural to introduce the following definition.
Definition 3.2 A basis S of the differential ideal I is said to be an H-basis if
H(S)=H(I).

It is clear that the property of being an H-basis depends on the weight function considered
over the ring.

Remark 3.3 The definition of H-bases given above is, in some sense, purely algebraic.
Consider an algebraic commutative ring A, a ring of algebraic polynomials with a denu-
merable number of variables x1, z2, ..., x;, .. ..

The weight function defines a graded structure on A and one can introduce in the
obvious way the concept of an algebraic H-basis for the ideals in the ring A: A basis S
is an H-basis for the ideal I if the initial forms (i.e., the leading isobaric components) of
the elements in S generate the algebraic ideal of the initial forms of the polynomials in
1.

Now in the special case, where the variable z; is assumed to mean dz, the straight-
forward restriction to differential ideals (which are particular algebraic ideals of A) results
immediately in the definition 3.2.

Remark 3.4 The point of view taken in remark 3.3 is somewhat unsatisfactory. In fact,
one may wish to exploit the differential structure to give a more ‘compact’ description of
an H-basis. But, this is complicated by the fact that, for differential ideals, the set S is
infinite.

Restating the definition of H-bases given above in terms of differential structures,
however, leads to certain peculiarities, distinguishing the case of constant coefficients
from that of nonconstant coefficients.

If K 1s afield of constants, then the operations of extracting the leading isobaric com-
ponent of a differential polynomial, and taking its derivative do commute. Thus, in this
case, the algebraic ideals generated by the leading isobaric components of the polynomi-
als in I and in S are differential ideals. Moreover, H(S) is generated, as a differential
tdeal by the leading isobaric components of the elements of S. The definition 3.2 can be
restated just in terms of differential ideals, if, indeed, the underlying field is a field of
constants.

On the other hand, if K is not a field of constants, derivation and extraction of the

leading isobaric components do not, in general, commute. Then the algebraic ideals H(I)
and H(S) may not be differential ideals.



To get a ‘differential’ description of H-bases, in this case, one may adopt the point of
view of [16] and [17]. Namely, one introduces a new derivation d. on the ring A such
that d.(K) = {0}. Otherwise d is equal to d.

Define H.(I) to be the differential ideal (with respect to this new differential structure)
generated by the leading isobaric component of the elements of I (which, under this
new derivation, is just an algebraic ideal), and define H.(S) to be the differential ideal
generated by the leading components of the elements in S.

It is easy to verify that the condition for S to be an H-basis in definition 3.2 is
equivalent to the relation H x (S) = H.(I), which is an equality between differential
tdeals.

Remark 3.5 A very immediate and naive “procedure” to compute an H-basis starting
from a finite set S of generators of I is the following: Determine for any weight k the
set H(S)y and check for any linear relations (i.e., the syzygies) among the elements of
such a set. Such relations will provide new generators (of smaller weight) which can be
added to S in an effort to “complete” S to an H-basis.

The drawback of this method is that no bound is known for the weight of the syzygies
to be computed in order to complete the set of all the polynomials of a given weight in an
H-basis. The method proposed is, thus, not effective. However, it may sometimes provide
useful informations about the ideal I.

Moreover, if I has a finite H-basis it will be eventually constructed by this procedure,
but we do not know of any algorithmic way to check when this happens.

Let S be a set of differential polynomials such that for any fixed integer k& there are
only finitely many elements in S with weight k. It is possible to introduce a variant of
“rewriting procedure” for differential polynomials using these elements of S.

Let f be an isobaric differential polynomial. Suppose that fi,..., f, are the elements
of S, each of weight w(f): Their leading isobaric components generate a subspace V
of the vector space W of all the isobaric polynomials of weight w(f). Because the
field of the coefficients is computable it is possible to find h1(f) and ha(f) such that
h(f) = hi(f) + ha(f), with ~1(f) in V and ha(f) in the orthogonal complement of V.

In particular, it is possible to compute elements a; in K such that

hi(f) = arh(fi) + -+ aph(fp).

The differential polynomial

fI:f_alf1+"'+apfp

is said to be a reduct of f modulo S. The “reduction” relation is denoted by the following
notation:
F=r
The reduction process can be generalized to an arbitrary differential polynomial g, by
simply applying it to each one of the isobaric components of g.
The symbol “—?2 ” denotes the transitive closure of the relation “—* » A simple, but
tedious, argument shows that no polynomial f can lead to an infinite chain of reductions.



The reduction process gives a canonical simplifier for differential polynomials modulo
a differential ideal I, when S is an H-basis of I. This can be proved using the well
known arguments from the theory of standard bases: The proof uses only the algebraic
properties of S (in the sense of remark 3.3).

Proposition 3.1 Let I be a differential ideal; S, an H-basis for I, and f, a differential
polynomial. Then f is in I if and only if any maximal chain of reductions with respect
to S ends with 0. N

Remark 3.6 Notice that the only elements of an H-basts involved in the process of reduc-
g a polynomuial of weight k, are the elements of weight less than or equal to k. Hence,
iof for any k, an algorithm is known to compute the subset Sy of all the polynomials with
weight less than or equal to k in an H-basis of I, then the membership in I can be effec-
tively decided. In fact, this observation about H-basis applies mutatis mutandis to any
system of differential rewriting-rules.

In the algebraic case, a homogeneous basis for an ideal I, is an H-basis; the state-
ment generalizes to differential ideals with differential isobaric bases, as the following
proposition shows.

Proposition 3.2 Let I be a differential ideal in K{z1,...,2,}. Let S be a set of isobaric
polynomials which ts also a basis of I. Then S 1s an H-basis of the ideal I. W

Combining the above proposition with our previous observations we get the following
immediate corollary:

Corollary 3.1 Let I be a differential ideal of the ring K{xz1,...,x,}, with a recursive
set of generators S of isobaric differential polynomials. Further, assume that there is an
algorithm to enumerate the set of all elements of any nonnegative integral weight n in

S.Then
o [ is a recursive subset of the ring K{z1,...,2,}.

o The function ¢(I,w) is computable. W

The corollary is not completely new (see for example [1],[16]) but the proof presented
here is very elementary and the method proposed works in the general case of ideals with
an infinite set of generators.

Remark 3.7 Since the isobaricity of differential polynomials depends on the particular
weight function considered, one may ask if it is always possible to find a weight function
and a basis of isobaric polynomials for a differential ideal I. The answer to this question
tsno. In the case of constant coefficients the existence of such basis, in fact, would imply
that the ideal I is isobaric and there are examples of differential ideals in such rings that
are not “isobarizable.”
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