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Abstract: The aim of this paper is to introduce a new definition of standard bases of
differential ideals, allowing more general orderings than the previous one, given by Giuseppa
Carra-Ferro, and following the general definition of standard bases, given in [O3], valid for
algebraic ideals, canonical bases of subalgebras, etc.

Differential standard bases, as canonical bases, suffer a great limitation: they can be
infinite, even for ideals of finite type. Nevertheless, we can sometimes bound the order of
intermediate computations, necessary to make some elements of special interest appear in
the basis.

As an illustration, we consider a differential rational map f: A% — A7, and show
that if f is birational, then ord f=! < nord f. Partial standard bases computations provide
then two algorithms to test the existence of f~!. The first one is also able to determine
the inverse, if any. The second only determines existence, but we can provide a bound of
complexity depending only of n, ord f and the number of derivatives.

0. Introduction

The theory of standard bases introduced here is not a new variant of the stan-
dard bases of D-modules introduced by CASTRO [Cas]. We will deal with commutative
differential rings, not rings of differential operators.

Effective—or almost effective—methods for solving systems of differential algebraic
equations go back to the work of RIQUIER and JANET (cf. [Ja] 1920). Their results have
been then improved by RITT ([R1] 1932, [R2] 1950) who gets an effective method only
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if the ground field allows effective factorization. This drawback has been removed by
SEIDENBERG ([S] 1956), whose method has been recently implemented by Sette DiIOP
[D]. The original method of Ritt has also been studied by Wu, first in the algebraic
case, and then in the differential one. It is particularly interesting for automatic theorem
proving in elementary geometry (see [Ch]). Another point of view on this matter may
be found in the work of POMMARET [P2], who uses the language and results of the
formal theory of partial differential equations, initiated by SPENCER.

Nevertheless, for the best of my knowledge, no method has been developed yet to
answer the membership problem for a differential ideal. The computation of a charac-
teristic set only gives partial results: the polynomial in the ideals are reduced to 0, but
the reciprocal is false except for prime ideals. Furthermore, no general method has been
given to compute a genuine characteristic set, and not only a coherent and autoreduced
set.

We can hope that a generalization of standard bases will give a satisfactory answer.
Indeed, in [Car| (1987), Giuseppa CARRA’-FERRO introduced a definition for differential
standard bases. We provide here a more general one, allowing a wider class of orderings,
and underlying the connections with the theory of standard bases, canonical bases, etc,
following the abstract definition given in [O3]. The main trouble is that differential
standard bases are in general infinite. This was already the case for canonical bases of
subalgebras (see [KL], [RS], [02]).

We are still able to prove that a completion process converges to a standard basis,
meaning that after a finite number of steps we will get a basis up to a given order of
derivation. We have no way yet to determine the complexity of a partial computation,
nor to check it has been performed without using explicit information on the structure
of the ideal, and theoretical results of differential algebra.

Anyway, this is not so far from the algebraic situation, which may be intractable,
except for “well behaved” ideals. We provide an illustration of this point of view by
giving algorithms to test whether a differential rational map admits an inverse. We
had already proved complexity bounds for algebraic rational maps and polynomial ones
(see [O1], [O2] and [O3]), using a theorem of O. GABBER. We extend this theorem to
differential maps, proving that ord f~! < nord f, if n is the number of variables. This
work is a by-product of our interest in control theory and modeling, where the search
for effective and efficient tests for abstract properties of structures, as identifiability,
requires such theoretical investigations (see [O1] and [O3]).

1. Standard bases
We will denote by F a differential field of characteristic zero.

1.1. Preliminary results of differential algebra

We limit ourselves to the essential results and definitions needed in the following.
Details may be found in the classical books of RITT [R1] and [R2], or in KOLCHIN
[Ko], KAPLANSKY [Ka], and POMMARET [P1]. T will mostly follow the exposition and
notations of [Ko.



DEFINITION 1. A differential ring is a ring with a finite set A = {6y,...,0;,} of
differential operators, i.e. internal mappings 6 satisfying

6(ab)=6ab+adb
6la+b)=0b6a+6b,

and such that 6; 6; = 6; 0;.
A differential field is a field which is a differential ring.

DEFINITION 2. A differential ideal of a differential ring is an ideal I, such that
Voe Ao CT.

Following classical notations, we denote by (.5), the ideal generated by S, and by
[S] the differential ideal generated by S.

DEFINITION 3. A differential ideal T is said to be perfect if a™ € I implies a € T
The perfect ideal generated by ¥ is denoted by {X}.

DEFINITION 4. We will denote by © the abelian free monoid generated by A. For
any set X, we denote by © X the set of derivatives © x X. The element (6,z) will by
written x(g). There is an action of © on © X defined by 7 x(9) = (- 4).

The algebra of differential polynomials F{X} will be the algebra F[© X| with the
unique set of derivations A extending derivations on F and such that éxg) = z(s4).
F{X} is a differential algebra over F. Those derivations also extend to the field of
fractions of F{X}, denoted by F(X). We call a monomial of F{X}, a polynomial
which is a product of derivatives or 1, and a term the product of a monomial by a
non-zero element of F.

Lemma 5. If 3 is a subset of a differential ring R (resp. a differential R-algebra
A), then the differential ideal (resp. R-algebra) generated by ¥ is equal to (O X) (resp.
ROX]). =

In general, if G is a differential field extension of F, and 1 a subset of G, we denote
by F(n), the differential field extension of F generated by n. If R is a differential
ring and ¥ a subset of a R-algebra A, we denote by R{¥} the differential R-algebra
generated by Y. From now on, we will only consider differential polynomials over a
field F of characteristic zero, with finite set of variables X = {zy,...,z,}. The set of
derivatives of the field F will be A = {61,...,6m}.

THEOREM 6. If7 is a perfect differential ideal of F{X}, then there exists a finite
set ¥ of differential polynomials such that 7 = {3}.
PROOF. See [Ko]. =

This is the best we can do. The set of differential polynomials is not noetherian.

THEOREM 7. If T is a perfect ideal of F{X}, then there exists a unique set
{Zy,...,Z,} of prime ideals such that



and Z; ¢ I; v # j. Those prime ideals are said to be the components of T.

DEFINITION 8. Let I be a prime differential ideal of F{X}, (n1,...,nn) a n-uple
of elements in a differential field extension G of F. n will be said to be a generic zero of
T over F if {P € F{X}|P(n) =0} = I. The generic zeroes of [0] r[,] are called generic
elements of G over F.

An extension U of F is said to be universal if for all finite extension F C G C U,
all finite set X and all prime differential ideal T C G{X}, there exists a generic zero of
T over G inl.

All differential fields admit a universal extension (see [Ko]). This notion is in fact
the same as the universal domains of Weil, if the set of derivatives is empty. It allows
to throw away some logical difficulties in the definition of differential algebraic varieties
given by Ritt. They may be defined as the sets of zeroes of differential ideals in a
universal extension U, chosen once and for all. The variety associated to an ideal 7 is
denoted by V(Z). The differential affine space of dimension r over F, A’z is the set
of zeroes of [0] U". We refer to [Ko] for more details on differential algebraic geometry
and conclude this short introduction by a powerful result first proved by RITT in the
ordinary differential case, and latter extended by KOLCHIN.

DEFINITION 9. The orderof § = [[i_, 6{" is Y '_, a;, and the order of a derivative
0 x is the order of §. We denote by O, the set of derivation operators of order less than or
equal to r and by ordv the order of a derivative. The order of a differential polynomial
is the maximal order of its derivatives.

PROPOSITION 10. Let I be a prime ideal of F{X}, n a generic zero of Z, the
function H : N — N such that H(r) is the (algebraic) transcendance degree of F(©,n)

over F is equal to a polynomial w,r for r great enough. Furthermore

srt =3 (7).

=1

where a,, is the differential dimension of 7, i.e. the differential transcendance degree of
F(n) over F. =

The greatest ¢ such that a; # 0 will be called the differential type of I, 77, and
ar; the typical differential dimension of 7. As w, 7 does only depend of Z, we can also
denote it by wz. If V is an irreducible algebraic differential variety defined by a prime
ideal 7, we extend to it the definitions given above.

THEOREM 11. (Ritt—Kolchin) Let T = {P,,..., P.}, where the maximal order of
the P; is e, and J a component of T, whose differential type is m — 1, then the typical
differential dimension of J is less than or equal to ne.

PROOF. See [Ko chap. IV § 17 p. 199] =

1.2. Admissible orderings. Reduction

We need to define suitable orderings to allow reductions in F{X}. This implies
to strengthen the definitions valid in the pure algebraic case to take derivations into
account.



DEFINITION 1. Let < be a total ordering on the set M of monomials of F{X}.
We extend derivations to M by taking 6 M to be the maximal monomial involved in the
polynomial 6 M. By convention, 61 = 1. The order < is said to be admissible if

a) M >1M#1,

b) M > M' implies M"M > M"M',

c) M > M M # 1,

d) M > M' implies 6M > 6M'.
If < is admissible, we denote by lmP the leading monomial of P, by lcP its leading
coefficient. We call reductum of P the polynomial P —1c Plm P.

So we define 6 M in M to be lm(é M). I think no misunderstanding can result of
this notation, which will be useful later.

We now need to describe some admissible orderings. For this, we first define admis-
sible orderings, i.e. rankings in the words of Ritt, on the set of derivatives ©® X. They
are orderings which satisfy ¢) and d) in the definition above. Considering elements of
© as monomials, e.g. in Q[A], we take an admissible ordering on ©. We extend it to
O X with the following definitions.

DEFINITION 2.  The ordering on © X defined by x; gy < xy (o) if t < 1' or i =1’
and 0 < @' is said to be the lexicographical ordering extending <.
The ordering defined by x; () < x4 (gy if § < 8 or 8 = ' and i < ' is the derivation
ordering extending <.

It is easily seen that those orderings are admissible (see [Ko chap. 0 § 17 p. 50]).

REMARK 3. If < on O respects the order, then the derivation ordering < on © X
respects the order too, it is said then to be orderly.

Let < be an admissible ordering on derivatives, we can extend it to monomials
of F{X} in the following way. Consider two monomials M = [[I_, v{ and M' =
II;_, 1/;6", where the v; and v; appear in strictly decreasing order. We take M < M’
if there exists j < r,s such that v; = v; ¢ < j, a; = ;1 < j, vj < vj or vj = v; and
aj < ,3]‘.

PROPOSITION 4. The ordering < defined above is an admissible well ordering on
monomials. If < is orderly, its extension to monomials is also orderly, i.e. ord P > ord ()
implies P > Q).

PROOF. It is immediate that a) and b) are satisfied. In order to prove ¢) and d),
we only have to remark that 6 m = 6 vy 'Uf‘l_l [I;_, v If < is orderly on derivatives,
then ord P < ord @) implies that the leading derivative of P is smaller than that of @),
so that P < Q.

We now show that < is a well ordering. It is known that all admissible orderings on
variables are well orderings (see [Ko]). Consider now an infinite sequence My > My > ---
of monomials. The leading derivatives of these monomials appear in decreasing order,
so that for some integer r the chain they form will become stationary. Let v be the
leading derivative of M; for ¢« > r. The degree in v of M; ¢ > r will be decreasing too,
so that for ¢+ > s > r this degree becomes a constant integer d. Dividing M; by v¢,
for 1 > s, we secure a new strictly decreasing sequence of monomials, whose leading



derivatives are smaller than v. Repeating the argument, we build an infinite strictly
decreasing sequence of derivatives: a contradiction. =

So admissible orderings on monomials actually exist. It will be useful to consider
other orderings than those coming from the previous propositions. We may first remark
that if P is a differential polynomial of degree d, then € P is also of degree d, moreover if
P is homogeneous, 6 P is homogeneous too. We shall need some more convenient grading
on F{X}, defined by taking the weight of a monomial [];_, v equal to > '_, a; ordv;.
A polynomial whose monomials are of the same weight is called isobaric. The maximal
weight of monomials of a polyomial P is called the weight of P (wt P). The derivative
0 P of an isobaric polynomial is not in general isobaric, except if the coefficients of P lie
in the field of constants of F, but for all polynomial P ¢ F wt8 P = wt P 4 ord 0—we

only consider characteristic zero!

Lemma 5. If < is an admissible ordering on monomials, we get a new admissible
ordering < by taking M < M' if deg M < deg M' or if degM = deg M' and M < M'.
The same applies when considering the weight, or the partial degree according to some

subset of X.

If < is a well ordering, then < is also a well ordering =

REMARK 6. More generally, we can use all the admissible gradings defined in [Ko
chap 1§ 7 p. 72].

Recursive use of this lemma allows to build a wide class of orderings, for example
elimination orderings. In the following, we will suppose that such an ordering < has
been chosen once and for all.

We now come to reduction.

DEFINITION 7. We say that a polynomial P is elementarily reduced by ) to R
if there exist a monomial M and a derivation operator 6 such that Im P = M Im#6 Q)

and R=P — (IcP/lc Q)M 6 Q. We write it P % R We say that P is elementarily

reduced to R by a set of polynomials ¥ if there exists () € X such that P 2. R. P will
be said to be reduced to R by X if there exists a chain of elementary reductions

P=p = p = ... p =R
We denote it by P = R,
We say that P is totally reduced to R by X if P is reduced to R by ¥ or if the
reductum of P is totally reduced to R' by ¥ and R' = lc Plm P + R'. P is irreducible
by ¥ if there is no () such that P =, Q.

REMARK 8. If we use the fact that 6lm P = lm(6 P), for P ¢ F, with the extension
of derivations to monomials made above, it becomes obvious that the reducibility of P
by ) only depends of the leading monomials of P and ). It is then easily that, if P
is reducible by @, the weight (or degree) of the leading monomial of P is not less than

that of ). It is also obvious that P 2R implies Im R < lm P.



Lemma 9. P LN 0, iff P = Zirzl M; 6; P;, where the M, are terms, and the P;
polynomials in ¥, with Im(M; 6; P;) > 1lm(M; 0; P;)1 <j. =
We can build an effective reduction process which takes a polynomial P and a finite

list of polynomials ¥ and returns a polynomial R such that P >+, Rand R is irreducible
by 3. We begin by reduction with respect to a single polynomial. We use the syntax
of the IBM computer algebra system Scratchpad II for the algorithms.

REDUCTION ALGORITHM

reduction( P, }) == reduction(P, @, 1)

reduction(P, Q,r) ==
deglmP > deglm @ or wtlm P > wtlm @) => return P
Im Q\lm P => return reduction(P — (lc P/lc Q) (Im P/lm Q) Q, Q)
for 7 € [r,..., m] repeat

if (P2 := reduction(P, 6; Q,¢)) # P then return reduction( Pz, Q)

P

PROOF. We first prove that the process stops and returns P if it is irreducible by
Q. If we can apply the remark above, it stops on the first line. If not, the process
is recursively repeated with derivatives of P. As their weight increases by 1 at each
new step, the remark will necessarily apply after a finite number of steps. Now, if P is
reducible, its leading monomial needs to be a multiple of the leading monomial of some
6 (). A solution will to be found by trying all successive derivatives of (), whose leading
monomials have weight less or equal to the weight of P, which is done. We perform
then an elementary reduction, and repeat the process. It needs to stop, for < is a well
ordering, and so there is no infinite sequence of elementary reductions. =

It 1s now simple to get a reduction algorithm for a list of polynomials, or for total
reduction.

1.3. Definitions

DEFINITION 1. Considering the multiplicative monoid M of monomials in F{X},
with the derivations acting on it as in def. 2.1, we call a subset E a differential monoideal

if it is a monoideal—i.e. if ME C E—, and if AE C E.

REMARK 2. Obviously, the set of leading monomials of a differential ideal is a
differential monoideal. Of course the “derivations” defined on M are not real ones,
but the mere reflect of derivations acting on polynomials. Indeed, the mapping ¢;
themselves do not need to be derivations. We only need that lmé P = lmé(lm P) and
that 6(P+ Q) = 6 P+ 6@, so that we could use more general differential operators, say
d = 62 — 83 and define standard bases for d-ideals, i.e. ideals 7 such that dZ C Z, but
for this we would need a more complicated definition of reduction, and a wider class of
syzygies (see [03]).

Using derivations, we are indeed able to restrict the set of syzygies to consider, for
given a product of monomials M M’ 6(M M') equals 6 M M' or M 6 M', so that the
differential monoideal generated by a subset E of M is equal to M © E (see subsection
4. bellow).



DEFINITION 3. A subset G of a differential ideal T is said to be a standard basis
if Im G generates ln7 as a differential monoideal.

THEOREM 4. Let G be a set of polynomials, 7 a differential ideal. Then the
following propositions are equivalent:

i) G is a standard basis of Z,

i1) G C T and there is no non-zero element of I reduced with respect to G,

iii) G C T and all the elements of T are reduced to 0 by G,

iv) a differential polynomial is in T iff it is reduced to 0 by G.

PROOF. 1) = #2). If G is a standard basis of 7 it is a subset of Z. Now, the leading
monomial of any non-zero polynomial in 7 is in M ©1lm G using remark 2 above, so
that it is reducible by G.

i) = wui). AsG CI,ifP 9, Q with P € Z, then @ € 7, so that we can
perform repeated reductions using ii). As chains of reductions are finite, the result of
any reduction process is 0, which is more than iii).

i) = iv). = is immediate from iii). < Again, as G C 7, if P G, 0, P needs to
be in 7.

iv) = 1). All polynomials in G are reduced to 0 by G, so that G C Z. As all
polynomials in 7 are reduced to 0 by G, they are reducible, so that ImZ C M O1lmG.
Using the first part of the proof, we have indeed equality. =

DEFINITION 5. A standard basis G of T is said to be minimal if lm G is a minimal
set of generators of ImZ. A minimal standard basis G is called reduced if all polynomials

P € G are totally reduced by G \ {P}.

PROPOSITION 6. Any ideal admits minimal standard bases and a unique reduced
standard basis. An ideal admits a finite standard basis iff it admits a finite minimal
standard basis. In this case, all the minimal standard bases are finite. =

1.4. Characterization

We have completed the easiest part with definitions. The completion process will
rely on more tedious results.

DEFINITION 1. Let P and () be two differential polynomials, we call a syzygy
between P and Q) a 2-uple (M 6 P,M'0' Q), where M, M' € M, 8,6 € O, of polynomials
with the same leading monomials. An essential syzygy is a syzygy with M and M’
minimal and such that there is no other syzygy (N 7 P, N' 7' Q) satistfying (N 71lm P) =
MOIm P and 9(N' 7'lm Q) = M' 6 lm Q) for some O, the derivations being taken in M.

We call S-polynomial associated to the syzygy (U,V), the polynomial lcV U —
leU V. The rank of the syzygy will be the common leading monomial of U and V.

EXAMPLE 2. Consider ordinary differential polynomials in F{z}. There is only one
admissible ordering on © and © x. We choose the ordering on monomials coming from
prop. 2.4. Take T = {z?}. There is an essential syzygy (6z 2%,z 6(2?)). The syzygy
(6%z 2%, 2 6*(2?)) is not essential. The only essential syzygies different from that already
given are of the form (§" 1z §"(2?),6"x 6" (2?)) n > 1. This shows that syzygies may
involve twice the same polynomial, and that there is in general an infinite number of
essential syzygies.



DEFINITION 3. Let ¥ be a set of polynomials, P a polynomial in [¥X]. We call
rank of P with respect to ¥ the smallest monomial M such that (1) P =3"_, Q;6; P,
where the P; belong to ¥, the ); are terms and lm Q); 6; P; < M.

REMARK 4. The rank of P is greater than or equal to the leading monomial
of P. If P is reduced to 0 by ¥, it is equal to lm P. We may consider, e.g. ¥ =
{612 + b3z, 692 + 632} and P = 61630 — 62032, assuming pure lexicographical ordering
on © with 6y > 63 > 63. Then, P is of rank 6102 > Ilm P with respect to ¥. If P is the
S-polynomial associated to a syzygy between elements of ¥, then the rank of P is less
than or equal to the rank of the syzygy. We can further notice that if P is of rank M,
Q of rank N, then Q) P is of rank at most N M, and that 8 P is of rank at most € M.

THEOREM 5. G is a standard basis of the differential ideal T iff G generates T and
all the S-polynomials associated to the set of essential syzygies between elements of G
are reduced to 0 by G.

PROOF. = is obvious since S-polynomials are in 7.
The reciprocal is the consequence of the following more precise theorem. =

THEOREM 6. Let M be a monomial, 3 be set of polynomials, such that all S-
polynomials associated to the set of essential syzygies between elements of ¥ of rank
less than or equal to M are reduced to 0 by ¥.. Then, if P is of rank less than or equal
to M with respect to X3, P is reduced to 0 by .

PROOF. Suppose it is not so. Among the P of minimal rank N which do not satisfy
the conclusion, we choose one with smallest r in formula (1) of def. 3. The integer r is
greater than 1. If not, P would be reduced to 0 by P;. Now, we may decompose the
sum (1) in two parts, e.g. P = Ry + Ry with By = Q1 6, Py and Ry = Y./, Q; 6; P;.
Obviously, Ry and Rz need to be reducible, for they admit a decomposition (1) with a
sum of at most r — 1 polynomials with leading monomials at most N. This implies that
Ry and R; have the same leading monomial and opposite leading coefficients: if not P
would be reducible.

We first prove that r is greater than 2. If r = 2. the polynomial P = @, 6, P, +
Q2 05 P; is the product of a S-polynomial, by a non zero element of F. Without loss
of generality we may suppose it is a S-polynomial. If this syzygy is essential, P is
reducible: a contradiction. If not, suppose ()1 and ()2 are not minimal. They admit a
proper common factor L, and P/L is of rank smaller than N, so that it is reducible and
so is P: another contradiction.

The last case is when there exists a syzygy (U, V) between P; and P, such that
N =1lmdU = lmdIdV for  # 1. The rank of (U,V) is less than N, so that the S-
polynomial S associated to (U, V) is reduced to 0. This implies that the rank of 9.5 is
YImS, strictly less than N. Now, we may develop:

VS =aP +asum (1) of rank less than NV,

where a € F a # 0. Hence P is of rank less than N: a final contradiction to r = 2.

Using lemma 2.9, we may now decompose Ry as a sum (1) Y.;_, Q6! P! with

Im(Q; 6; P)) > 1lm(Q’; 6 P}) i < j.



Let T=Q, 6, P + Q) 6, P{, Ry and R, having opposite leading terms lm7 < N.
Furthermore r > 2 implies that 7" is reducible, so that 7" is of rank less than N. If we
write P as T+ Y ;_, Q)8! P/, we conclude that P is of rank less than N = rank P. =

The main idea is very general and follows a scheme for the proof of analogous
theorems in other generalizations of standard bases (see [O3] where the proof of prop.
2.1.13 is very similar).

1.5. Completion process

We now have enough material for investigating a completion process. The first
step is to build, or rather to enumerate a set of essential syzygies. Differential syzygies
between elements of 3 are algebraic syzygies between elements of @ ¥. So we can use
the criteria detecting unuseful syzygies valid in the algebraic case. We will mostly use
two of them, as an illustration.

CRITERION 1. If (M OP N 7(Q) is an essential syzygy such that M = lm7 @,
then the associated S-polynomial is reduced to 0 by the set {P,Q}. =

COROLLARY 1. If P and Q) are polynomials whose leading monomials are linear,
i.e. are mere derivatives 0 x; and 7 x;, then if x; # x; all syzygies between P and () are
reduced to 0 by {P,Q}. If x; = z, then we only have to consider the syzygy (7' P,6' Q),
where 7' and 0' are such that 7'6 = 6' 7 = ged(6,7). =

CRITERION 2. If P,Q,R € X, S =(U,V) is an algebraic syzygy between 6 P and
7@, Im YR divides the rank of S and the algebraic syzygies between 8 P and VR, 7Q
and JR are both reduced to 0 by X, then S is reduced to 0 by ¥. =

CRITERION 3. If some derivative 6 P is reduced to 0 by ¥, no syzygy involving a
derivative 7 8 P needs to be considered. =

This simply rephrases well known results for algebraic standard bases (see [Bu]).
More details on this mater may be found in [O3].

In the following completion process, G is the list which tends to a standard basis
as the process goes. It will be indeed a standard basis if it stops. Lj is the list of
polynomials or derivatives of polynomials already considered, and Ls is the list of newly
appeared polynomials or derivatives, which should be used to try new syzygies. L3 is
the list of polynomials coming from the reduction of S-polynomials.

We suppose that buildSyz( L, Ly) is a procedure which returns all algebraic syzygies
between two derivatives in the list Lo, or a derivative in Ly and one in Ls; it uses criteria
1 and 2 to discard useless syzygies, when possible. The procedure isRed(S) returns P if
the syzygy corresponds to the algebraic reduction of the derivative P and 0 otherwise.

We can also use cor. 1 to test if there i1s no more syzygies to consider. Except if
the ideal is [1], this is the only way I know to reduce to a finite set of syzygies—we may
imagine cases where the basis is finite and there is still an infinite number of syzygies to
consider. Indeed the main example of ideals with finite standard bases are linear ones
(see [Car cor. 5 p. 138]).

The procedure linTestY (Ly, Ly) returns true if the two following conditions are
satisfied:



a) there is no more syzygies between elements of Ly to consider, using cor. 1,

b) the leading derivatives of polynomials in L, are all strictly greater than the
derivatives appearing in the leading monomials of polynomials in L;.
Of course, we are sometimes lucky enough to build a finite standard basis and finish the
completion process even in non-linear cases (see bellow ex. 6.5).

COMPLETION PROCESS

completionProcess(X) ==
-- First suppress 0 and remove duplicate polynomials
¥ := removeDuplicates delete(0,X)
-- If there is a constant polynomial it is finished
for P € X repeat if P € F then return [1]
G:=%;L1:=%; Ly :=X%; Lz =[]
while Ly # [] repeat
-- We use cor. 1 to test if all remaining syzygies may be discarded
if linTest(L1, Ly) then return G
-- We construct new syzygies between “old” polynomials in L1 and “new” ones in Ls,
-- or two new polynomials in L
{Syz := buildSyz(L1, Ls)
for S € [Syz repeat
-- If the syzygy is the algebraic reduction of a derivative,
-- all syzygies involving this derivative may be removed
P := isRed(S); delete( P, G); delete(P, L1); delete(P, La)
if (R := reduction (sPol(S), L)) # 0 then
-- If non-zero, the reduction of the S-polynomial is kept in L3
L3 := cons(R, L3)
-- If R € F it is finished
if R € F then return [1]
G := append(G, L3)
-- Derivatives already considered are appended to L,
L, := removeDuplicates append(L1, L3)
-- New polynomials coming from the reduction of S-polynomials
-- and new derivatives are collected in Lo
L2 = append(Lg, [6 P|(6, P) € A X LQ])
L3 :=[] output(G)
G

THEOREM 2. If the process stops it returns a minimal standard basis G of X..
Otherwise, let G; denote the set of polynomials, which is returned by the process at the
end of the i** loop, then:

a) G =J;2, G; is a standard basis of I,

b) G =iz, U]Oil G; is a minimal standard basis.

PROOF. At the beginning, G = X, so G generates [X]. During the process, if a
polynomial is removed from G, then its reduction is added to G. So G still generates
[¥]. In both cases, all the S-polynomials coming from syzygies between elements of
G, which are not thrown away using the criteria are reduced to 0 by G, so that is a
standard basis using theo. 4.5.

For the same reason, U]Oil G is a standard basis for all ¢, so that G' is also a
standard basis. As a polynomial P € G' is irreducible by G' \ {P}, G' is minimal. =

REMARK 3. If we use an orderly ordering, or a ordering which respects the weight,
we can modify this process to make it stop if there is no more syzygies to compute, with
order or weight less than or equal to a given integer.



If think a few words are necessary to stress on the difference on the completion
process given there, and the approach in [Car|. G. Carra-Ferro proceeds by repeated
computations of algebraic standard bases, so that the same work may be done many
times. We only have here one process based on reduction of differential syzygies, which
do not appear in her paper.

This allows sometimes to prove we have secured a finite basis, simply because
the process stops (ex. 6.5 bellow), as she needs in all cases to rely on some a priori
mathematical knowledge. Of course, those improvements are far to solve everything.

1.6. Examples
Before considering examples, first a few remarks.

REMARK 1. The completion process only uses the operations of the ground field,
so that the polynomials in the standard basis have coefficients in the subfield generated
by the coefficients of the input polynomials.

REMARK 2. f Z =[Py, ..., P;], where the P; are homogeneous, the standard basis,
which is the limit of our construction process will be homogeneous, as well as the reduced
standard basis of Z. The same apply with isobaric polynomials, if all their coefficients
are constants. In such cases, the weight, or degree of the polynomials in any basis
cannot be less than the minimal weight or degree of the generators. So, considering a
finite set ¥ of isobaric polynomials with constant coefficients, we only have to run the
completion process up to wt P in order to test if P belongs to [X].

REMARK 3. Suppose we are given an ordinary differential ideal generated by a
system of state or pseudo state equations :

L1, (r) = Pir(T1,(r 1)y 1o T (ry—1)5 - -+ > )

T (rn) = Pr(T1 (ry—1)s -3 1o Ty () —1) 5+ - - s L)

For any orderly ordering {z;(,,, — P;} is already the reduced standard basis of the
generated ideal, and the procedure given above will stop. It it also a characteristic set.

EXAMPLE 4. We consider the ideal Z = [2%] already given in [Car], using the
same ordering as in example 4.2. RITT has shown that (u')??~! belongs to [u?], so
that for all r, I(qr) € I for some integer ¢, which is greater than 1, using remark 2

q
()
monomial x(sr) s <gq. As xfr) is the smallest monomial of weight r s, it is in the reduced

above. Furthermore, =/ . can only be reduced by a polynomial in the basis with leading

basis. So [2?] has no finite standard basis.

This shows that standard bases may be actually infinite, and even worse that it
may be indeed the general case, for this example is very simple.

EXAMPLE 5. We now consider Z = [P], where P = 2? + x + 1. The first syzygy
which appears is (2" P,z P'). The associated S-polynomial is x &' +2 &' which is reduced
to 3/2a', using P'. We add 2’ to the basis. P’ is reduced to 0 by z'. Using crit. 3,



all syzygies involving P®) s < 1 may be discarded. P and z' are mutually totally
irreducible, and using crit. 1, there is no syzygy involving only x'. Hence, the reduced
standard basis of Z is finite and equal to {z? + x + 1,z'}. In our process, P’ is deleted
from L. The only polynomial in Lq is ', and Ly = {P}. So the process stops using
linTest.

As shown by this example there also exist non-trivial ideals with finite standard
bases, which may be found in a finite number of steps by our completion process.

Standard bases are often used to perform elimination of a set of variables. If we are
lucky enough to secure a finite standard basis for a suitable ordering, this also works in
the differential case.

PROPOSITION 6. Let T be a differential ideal of F{X}, Y a subset of X. Using
lemma 2.5, we take any ordering < on monomials and build a new ordering < by
considering first the degree of polynomials in the variables Y. If G is a standard basis
of T for <, then the subset G' = {P € Glm P € F{X \Y}} is a standard basis of
INF{X\Y}.

PROOF. Due to the properties of <, all polynomials in G' are in F{X \ Y}, and
polynomials in this subring cannot be reduced by the elements of G\ G'. So a polynomial

in F{X \ Y} isin 7 iff it is reduced to 0 by G'. We conclude using th. 4.5. =

2. Application to birational mappings

2.1. A bound on the order of the inverse

We consider here a rational differential mapping f : A% — A%, defined by n
differential fractions fi,..., fn in F(z1,...,2,). We will develop algorithmic methods
to test whether f admits a rational inverse and to find it.

In the purely algebraic case, there is a theorem, that allows to bound the degree
of f~! knowing the degree of f. Its exact origin is not known, but a proof, due to
O. GABBER may be found in [Ba]. Following the definition in [Ba], the degree of f
is the maximal degree of polynomials P; and @ --- @, if f is defined by the fractions

THEOREM 1. Let k be an algebraic field of arbitrary characteristic, f : A} — A}
be a birational mapping of degree d, then deg f~' < (deg f)"~'. =

Our aim is to prove an analogous theorem for differential birational mappings. The
proof of Gabber uses Bézout’s theorem. In the differential case, we can substitute to
it th. 1.1.11, which Ritt called indeed a differential analog of Bézout’s theorem. The
analogy is in fact very strong, for despite a few more technicalities due to the differential
stuff, the proof mostly follows the algebraic one.

DEFINITION 2. The order of a rational differential mapping is the maximal order
of the fractions that define it.

This definition does obviously not depend on the choice of coordinates.



DEFINITION 3. Let P be an irreducible differential polynomial. Using some
admissible ordering on derivatives, we denote by vp the leading variable of P. The initial
of P will be the leading coefficient of P, considered as a polynomial in F[v < vp|[vp],
and the separant of P is the polynomial %.

PROPOSITION 4. Let P € F{X} be irreducible, the set {Q € F{X}|3(a,b) €
N2 Q S4T% ¢ [P]} is a prime ideal, which is a component of {P}. It is called the
general component of P.

PROOF. See [Ko]. =

Lemma 5. Let P be an irreducible polynomial of order r in F{X}, V the variety
defined by the general component of P, Hy,...,H,_1 be generic hyperplanes of A%,
i.e. varieties defined by polynomials L; = (E? € j x]) — €;,0, where the €; j are generic

over F. Then V N ﬂ?:_ll H; is an irreducible variety of differential type m — 1 and of
typical differential dimension r over F(e).

PROOF. There is a characteristic set 3 of ﬂ?:_ll H; for some orderly ordering, with

Ty >+ > xy, which is of the form {zy —aszy — b2, ..., 2, —apx; — b, }. We can reduce
P by ¥ by replacing in P z; by a;x1 + b;. The result of this reduction is an irreducible
polynomial S(z;), of the same order as P. We claim that {S, 2, — apzy — by, ..., 22 —

azxy — as} is a characteristic set of the prime ideal defining W =V N ﬂ?:_ll H;. Thisis
true, using [Ko chap. IV § 9 lemma 2 p. 167 and discussion of Problem (a) p. 169-170],
because S is irreducible in F(e) and the other polynomials are all absolutely irreducible.

From the proof of [Ko chap. II § 12 th. 6 p. 115], we deduce that wy(r) =
(T";Lm) — <r+m;1ord P). By an elementary calculation, we can see that the type of W is
m — 1 and its typical differential dimension ord P. =

Dealing with a rational mapping, we denote by fV the Zariski closure of the set
theoretical image f(V'). Any generic point in fV is obviously in the set theoretical
image.

THEOREM 6. Let F be a differential field of characteristic zero with set of deriva-
tions A = {61,...,6m}, f : A% — A% be a birational differential mapping, then
ord f~! <nord f.

PROOF. Take generic hyperplanes Ho, Hy,...,H,—1 over F in Ag. fHp is an
irreducible variety which is the general component of an irreducible polynomial P of
order ord 7. Indeed, let Hy be defined by the linear polynomial Ly as in lemma 5, and
R;/Si be the fractions defining f~!, then, dividing the numerator of L(R/S), considered
as a polynomial in the ; ;, by its content in F{X}, we secure a suitable polynomial.

So, using the lemma, f Hy N ﬂ?:_ll H; is an irreducible variety of differential type
m — 1 and typical dimension ord f~! over G. Let 1 be a generic zero of that variety.

We now consider the extension G(f~!n). It is G-isomorphic to G(n), for f is
birational. So using [Ko chap. II § 12 prop. 15 p. 117], wy/g(r —h) < wp-1,/6(r) <
wy/g(r + h), for some integer h. So those extensions have the same type and the same
typical dimension ord f—!.



Using birational equivalence, f~!'n is a generic point of the irreducible variety

V =HynN ﬂ?:_ll f~1 H;. Consider the set of polynomials

Y ={Lg,denom L;(P/Q) 1 <i<n—1},

where L; is a linear equation defining H;, and f; = P;/Q;. The set {T € F{X}|Ja €
N" T [[QF" € [X]} is the prime ideal defining V' (this is almost the situation of th.
2.1). This ideal is then a component of {¥}, which is defined by a set of equations of
maximal order ord f. We can now apply theo 1.1.11 to show that ord f~! < nord f.

2.2. Algorithms
We still denote by P; and @); the numerator and denominator of the fractions f;

THEOREM 1. Let fi,...,f, be rational differential fractions in F(X). Then, the
ideal

T =[Pi(x) = Qi) Ti 1 <i < p;Qu(a) -+ Qpl@)u =g, 11y

is prime. J N F{z,T} is the ideal defining the graph of the mapping f: A% — AL
induced by the f;. A fraction U/V is in F(X) iff there exists in J a polynomial of the
form S(T)U(x) — R(T)V (x) such that S(T) ¢ J. Furthermore, U/V = (R/S)(f).

PROOF. The proof is the same as in the algebraic case (See [SS], or [O1]). It may
be found in details in [O3]. =

By luck, some results of commutative algebra remain true, without any modifica-
tion, in the differential case!

COROLLARY 2. The mapping f is birational iff p = n and for all x; € X there
exists in J a polynomial of the form S;(T)x; — Ry(T), where S; ¢ J. In this case, the
fractions R;/S; define f~1. =

COROLLARY 3. There exists an algorithm using a standard basis computation to
test if f is birational and find its inverse.

PROOF. Using classical arguments on orderings (see [O1]), we know that polyno-
mials of the wanted form will appear during the computation of the reduced standard
basis of 7, for an ordering which eliminates u and then X.

Let 3 be the set of generators of J. Using th. 1.6, Si(T) z; — Ri(T) € F(OnorasL),
so that we have no use to consider syzygies involving polynomials of order greater
than (n + 1)ordf. We can simply compute an algebraic standard basis of the ideal
J' = (OnorafX), or use a slightly modified version of the procedure given above by
discarding derivatives of order greater than (n 4 1)ord f which makes it an algorithm.

THEOREM 4. If fi,..., f, are rational differential fractions equal to P;/(@);, then
the ideal

7 =[Qi(y)Pi(z) — Pi(y)Qi(z) 1 < i < nj ulem(Q1(x) -+ Qi) — Uz (s e

is prime. A fraction R/S € F(x) belongs to F(f) iff R(x) — %S(:ﬁ) belongs to 7.



PROOF. The proof in the differential case is exactly similar to the algebraic one,
which may be found in [O1]. A detailed proof is given in [O3] =

We need to remark that 7 is prime only as an ideal in F{f(y))[z,u]. For example
(2% — y?] F(y2)[2] 1s prime, but of course [2? — y*]7(y)[4] is noL.

COROLLARY 5. Let f: A% — A'’: be a rational differential mapping defined by
fis--., fn as above, then f is birational iff V1 <:<nz;, —y;, € L.

Moreover, the rank of x; — y; over the generating polynomials of I, with respect to
some orderly ordering, is of order less than or equal to (n+ 1)ord f.

PROOF. The first part is immediate from the theorem. The second is a consequence
of theo. 1.6. =

This result gives another algorithm to test if f is birational. Indeed, we only have
to compute the standard basis of Z up to order (n+ 1)ord f, and test if z; — y; reduces
to 0. But under this form, we have lost the expression of the inverse and still have no
control of the degree of computations, without a bound on the degree of f~1.

Denote by ¥ the set of generators of Z, by r the bound (n + 1)ord f, and by X'
the set X U {u,v} We compute a standard basis of Z; = [5; v(2; —yi) — Urryyx- f
is birational iff Z; = [1] for all 7. Still using theo. 1.6, this means that

1€ (0, ZU{v(zi —yi) = 1} xo, f(y)0, X7 -

So we only have to consider N = O ((n + 2)((n + 1)ord f)™) derivatives. Using the
effective nullstellensatz of KOLLAR, we may bound the degree of intermediate computa-
tions by d = (deg f)V. Using a classical argument, we may reduce to the triangulation
of a linear system of size at most M x (n + 2)M, where M = O ((deg f)N2> is the
maximal number of monomials. The coefficients are in F{y}, and of degree deg f at
most. The number of elementary operations in Fly| is polynomial in (n + 2)M. If we
use the method of BAREISS, the intermediate coefficients are minors of the matrix, so
that their degree may be bounded by D = Mdeg f and their size by S = O (DN).
The cost of any elementary operation in F[y| in term of elementary operations in F is
polynomial in S. We get then the following theorem.

THEOREM 6. We can test that f is birational with a complexity in elementary
operations in F polynomial in (n + 2)M S, i.e. polynomial in

9) ((n +2)(deg f)<”+2)3““+”<°fdfi”‘“”) .

Of course, we cannot use exactly the completion process described above to prove
this theorem, because we would not be able to control the size of coefficients.



3. Conclusion

By itself, the definition of differential standard bases introduced here provides puz-
zling algorithmic and combinatoric problems. For example the enumeration of essential
syzygies is non trivial, and one could ask whether there exists a more efficient way than
trying all algebraic syzygies between derivatives.

The problem remains open of finding a satisfactory method to answer the mem-
bership problem for differential ideals. A careful study of the structure of differential
ideals with finite, or infinite bases could be an inspiration to develop better and al-
ways finishing methods. But one of the main issues would be to provide an effective
differential nullstellensatz, i.e. if [Py,..., Px] = [1], ord P; < ¢, deg P; < d to secure a
bound r(n,m, k, e, d) such that (0, P) = (1), of which we would deduce many results of
complexity using differential standard bases computations.
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