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Abstract

This paper describes an algorithm to test the freeness of a module over
the ring D := k[[t]][d/dt]. The freeness of the linearized system provides
a necessary condition for local differential flatness in control theory, that
we prove to be sufficient for flat systems with 1 control but not in higher
differential dimension.

Flatness implicitely assumes regularity. We introduce a notion of D-
regularity for D-module, which is the analogue for the linearized system
and generalizes the classical notion of regular linear system. We give a
criterion, showing that D-modules without torsion elements are D-regular
and that a torsion moduleM is regular iff

⋂
r∈N trM = 0.

1 Introduction

The main motivation of this paper is to provide a necessary condition for
local differential flatness. Differential flatness was introduced by Fliess et al.
[8, 10, 19] at the beginning of the 90’s and proved to be a powerfull tool for
trajectory planning in control theory. Although flatness is not generic, flat
systems are ubiquitous in all branches of engineering, chemistry etc.

Flatness means that a system is, on a dense open set, locally isomorphic to
a controllable linear system, viz. associated to a free module. This implies two
possible difficulties. First, even if a system is flat everywhere, one may have to
use different charts when moving in its configuration space as illustrated by
a quadcopter in Chang and Eun [4]. Second, there may exist a singular place
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where the system is not flat. Specific precautions must be taken to avoid this
singular locus, or cross it when the regular set is not connected. This justifies
a systematic study of singularities of flat systems, initiated in [14].

Although there is no general algorithm to test flatness, physical intuition
often easily provides suitable changes of coordinates, defined by so-called
“flat outputs”. Proving that no such flat outputs exist is a harder task but
there is an easy necessary condition for local flatness: the linearized system
must be associated to a free module.

Testing freeness over the ring D̃ := k((t))[d/dt] reduces to computing a Ja-
cobson normal form [12, 18, 23]. But here, the local nature of our computations
implies to work in D := k[[t]][d/dt], which is harder, as then Jacobson normal
forms do not exist in the genaral case. An algorithm seems to be missing in
the literature.

Section 2 provides a few basic definitions and properties of flat systems
and their intrinsic singularities, a notion that implicitely assumes some kind
of geometric regularity of the point, such as those defined by Johnson [13].
We investigate an alternative definition he suggests, using characteristic sets.

In section 3, we prove that the linearized system of a flat point must be
free, and that this is a necessary and sufficient condition for a flat system
of differential dimension 1. We exhibit an example of a non flat point in
differential dimension 2, for which the linearized system defines nevertheless
a free module.

Section 4 is devoted to the wider class of “regular” modules. This notion
is the linear analog of the characteristic set regularity of section 2. It gener-
alizes in arbitrary differential dimension the classical notion of regular linear
system. We show that a torsion D-moduleM, i.e. a D-module of differential
dimmension 0 is regular iff

⋃
r∈N trM = 0 and that a D-module without tor-

sion elements is regular. These two properties provide a complete regularity
criterion.

The last section 5 provides a freeness algorithm for a regular system.

Notations. — We will denote the partial derivation ∂/∂x by ∂x. The total
or Cartan derivation d/dt will be τ, k[[t]][τ] will be denoted by D and k((t))[τ]
by D̃. The k-vector space generated by Σ will be 〈Σ〉, the k[[t]]-module by (Σ)
and the D or D̃-modules by [Σ] according to the context.

2 Differentially flat systems

The notion of flatness is closely related to Monge’s problem [20]. See also
Hilbert [11] or Cartan [2]. In some informal setting, flat systems are systems
of ordinary differential equations in n variable xi, such that there exist m
differentially independent functions Zj of the xi and their derivatives with the
following property: the general solution of the system is parametrized by the Zj and
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their derivatives, i.e. we have xi = Xi(Z, . . . , Z(r)). These functions Z are called
flat outputs.

Example 1. The system θ′ = (sin(θ)x′ − cos(θ)y′)/L describes a simplified model
of a car, where θ is the angle of the car axis with a reference direction and (x, y)
the coordinate of a point of the car, at distance L or the rear axis. The coordinates
of the point (z1, z2) = (x − cos(θ)L, y − sin(θ]L), which is on the rear axis are
flat outputs and we see that: θ = arctan(z′2/z′1)± kπ, so that the whole trajectory
may be reconstructed knowing (z1, z2), provided that z′1 6= 0. We may also use
θ = arccot(z′1/z′2)± kπ, provided z′2 6= 0. We see that this parametrization is only
local, and that we may have to change charts, as the car turns around a traffic circle.

Assuming we have a special car for mathematicians, with a single front wheel that
may turn in all direction, we may even deal with z′1 = z′2 = 0, provided that θ′ 6= 0.
If we take ζ1 = θ and ζ2 = sin(θ)z1 − cos(θ)z2, we have: ζ ′2 = θ′(− sin(θ)z1 +
cos(θ)z2), so that we can recompute (z1, z2) and from them (x1, x2) if θ′ 6= 0.

From a theoretical standpoint, flatness may be introduced in the two com-
plementary formalisms of differential algebra (see Ritt [24] and Kolchin [15])
and diffiety theory (see Vinogradov et al. [17] or Zharinov [26]). Diffiety
theory is usefull as flat outputs are not always algebraic, but most systems
encountered in practice are algebraic. The most confortable compromize is
to consider algebraic diffieties, i.e. denumerable subvarieties of the jet space
defined by an algebraic differential system.

We consider systems, defined by ordinary explicit differential equations.

x′i = fi(x, u, t), (1)

where the xi, 1 = 1, . . . , n are state function, the uj, j=1, . . . , n are the controls,
t stands for the time and the fi are rational or algebraic functions. In a more
general setting, one may consider implicit equations Pi(x, t) = 0, i = 1, . . . , n−
m, with some extra natural assumption, the most obvious one being that they
form a characteristic set of some prime differential ideal P for some ordering
on the derivatives. From this abstract standpoint, we associate to the system
a prime differential ideal P that defines an intrinsic differential field extension,
say F/R(t). The number of controls m is the differential transcendence degree
of the extension F/R(t) or the differential dimension of the prime differential
ideal P . The car example can be reduced to the algebraic case by replacing θ
with tan(θ/2).

Definition 2. A differential extension F/K is flat is the algebraic closure of F
is isomorphic to the algebraic closure of a differentially transcendental extension
K〈z1, . . . , zm〉. The zj are flat outputs of the flat system.

Accordingly, we may associate to the system a diffiety, that is a denumer-
able variety, equipped this the coarsest topology that makes projections on
each coordinate continuous, and a Cartan derivation acting on its ring of func-
tions, that are C∞ functions depending on a finite number of coordinates. For
example, a diffiety can be associated to the system (1) on the open set V of
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Rn+m+1 where the functions fi are defined. Assuming that the derivatives of
the control can take any values, they belong to

(
RN)m, so that the diffiety is

V ×
(
RN)m equipped with the Cartan derivation

τ := ∂t +
n

∑
i=1

fi(x, u, t)∂xi ++
m

∑
i=1

∑
k∈N

u(k+1)
j ∂

u(k)
j

. (2)

The jet space J∞(R, Rn), that we denote Jn has a natural structure of diffiety
and finite type diffieties are those that may be seen as the regular points of a
subvariety of Jn defined by a differential system. If the system is algebraic,
we speak of an algebraic diffiety. In the sequel, we will always assume our
diffieties to be of finite type and freely consider them as included in Jn. We
will also assume that the differential system defining the diffiety is algebraic
and defined by a prime differential ideal P ⊂ R[t]{x}. Using such an implicit
definition one may have to consider different charts to cover the whole diffiety.
The classical diffiety structure assumes the regularity of its points, according
to the following definition.

Definition 3. A point ξ of an algebraic diffiety V ⊂ Jn defined by a prime differ-
ential ideal P ⊂ R[t][x] is regular if there exists a diffiety V2 ⊂ Jn2 defined by a
prime differential ideal Q ⊂ R[t][y], and a local isomorphism of diffieties φ from a
neighbourhood of ξ to a neighbourhood of ζ = φ(xi), such that Q admits for some
ordering a characteristic set A with all the separants SA, A ∈ A not vanishing at the
point ζ = φ(ξ).

We see that it is possible to use the implicit function theorem at each reg-
ular point in order to define an explicit differential system. In practice, the
existence of such an explicit system may be taken for granted. But from a
theoretical standpoint, testing if a point is regular is a difficult task. In fact,
testing if a point ξ where the polynomials of a characteristic set vanish but
also some separant is a zero of P is equivalent to Ritt’s problem. Johnson
has given an alternative definition of regularity, as an intrinsic property of the
local ring (R[t]{x}/P)ξ (see [13]).

We may now provide the definition of flatness in the context of diffieties.

Definition 4. A diffiety V is flat if it contains a dense open set W such that any
point ξ ∈ W admits a neighboroud which is isomorphic to an open space of Jm. The
base function coordinates of Jm are expressed as functions Zj ∈ O(V) that are flat
outputs.

The following example shows that some algebraic diffiety may be flat even
if the associated differential extension is not. Flatness in the algebraic meaning
requires the existence of algebraic flat outputs, which is stronger.

Example 5. The system x′1 = u, x′2 = x2u is algebraic. It is flat if the framework of
diffiety theory, but not of differential algebra. Indeed, a flat output is z := ex1 x2, and
it is functionally unique: all flat outputs are functions of this z (see th. 11 below). So,
no flat output is algebraic.
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3 Local flatness criteria

We have seen with the car (example 1) that indeed some flat parametrization
related to some choice of a flat output may fail to be defined outside a non-
trivial open set. As we will see, it may be proved that actually the car is not
flat on the closed set x′ = y′ = θ′ = 0. This justify the following definition.

Definition 6. A point ξ in a flat diffiety V is singular for the flat output z if z = Z(x)
is not defined at ξ or Z(x) = z does not define a local isomorphism with Jm at ξ, i.e.
it is not locally equivalent to xi = Xi(z), for z = Z(ξ).

A point ξ is flat if it admits a neighborhood isomorphic to some open subset of Jm

and flat singular (or not flat) if not, that is to say if all flat outputs are singular at ξ.

Flat singularity does not mean that one cannot recompute the value of the
state x knowing the value of a flat output Z at x = ξ; the inverse function may
fail to be regular enough, as shown by the next example.

Example 7. Considering the car example, we can also use time-varying flat outputs
such as z1 = x − L cos(θ) − t sin(θ) and z2 = y − L sin(θ) + t cos(θ). Easy
computations whow that when (z′1)

2 + (z′2)
2 6= 1, the value of θ is not unique

(modulo kπ), but we have 2 locally unique regular solutions: θ = arctan(z′2/z′1)±
arccos(1/

√
(z′1)

2 + (z′2)
2) For (z′1)

2 + (z′2)
2 = 1, we have a unique but singular

double solution for the value θ.

We need now some technical definition in order to introduce a necessary
local flatness condition.

Definition 8. Let ξ be a point in a diffiety V, defined as a subvariety of Jn by a
prime differential ideal P ⊂ R(t){x}. By the data of ξ we mean that of the value
of successive derivatives x(k)i = ξ

(k)
i and a time value t = τ. Let P be a differential

polynomial P ∈ R[t]{x}, we denote by P[ξ] the result of substituting ∑k∈N ξ
(k)
i (t−

τ)k/k! ∈ R[[t]] to xi in P. We defineMξV as the tangent module to V at ξ defined
by the tangent linear system δξ P, P ∈ P , where:

δξ P :=
n

∑
i=1

∑
k∈N

∂P

∂x(k)i

[ξ]δx(k)i . (3)

Denoting by [Σ] the R[[t]][d/dt]-module generated in the free R[[t]][d/dt]-module
[δxi],Mξ := [δx]/[δξ P|P ∈ P ].

From now on, we will alway take τ = 0 to simplify notations.
We see that if A is a characteristic set of P such that the separants of A do

not vanish at ξ, then [δξ P|P ∈ P ] = [δξ A|A ∈ A], allowing to consider a finite
set of generators. We don’t need here any assumption of convergence on our
power series, but we will have to restrict to series that belong to an effective
k-algebra, where k ⊂ R is an effective field.
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Theorem 9. The diffiety V defined by the prime differential ideal P regular at point
ξ is such that the functions Zi, i = 1, . . . , m are flat outputs regular at ξ iffMξ is a
free ring and δZ a basis.

Proof. This condition is necessary. Indeed, if Z is a flat output then it is dif-
ferentially functionnally independent and so δξ Z is free in Mξ . Moreover,
xi = Xi(z), so that δξ xi = δξ Xi(z) and δξ Z is a basis of Mξ , which is a free
module.

Reciprocally, as ξ is regular we may assume, up to a change of variables,
that P admits a characteristic set A whose separants do not vanish at ξ. If
δξ Z is a basis of Mξ , the unique component W of the system A, Z(x) = z
(where the zi are arbitrary functions) that contains (ξ, Z(ξ)) is quasi-regular
at according the definition given in Ollivier and Sadik [21] in the diffiety case
and Kondratieva et al. [16] in the algebraic case. This means that the order
of the component W is that of the linearized system δξA, δξ Z = δξ z, hence
0: so there exist functions Xi defined on some neighborhood of ξ such that
xi = Xi(Z(x)).

Remark 10. We see that we are faced in the theorem above and its proof with at least
three different notions of “singularity” or “regularity”: regular points in some alge-
braic diffiety, including in differential dimension 0, i.e. in finite algebraic dimension,
the case of classical singularity theory for algebraic varieties; quasi-regular systems,
for which the notion characterizes the possibility to reduce the study of a component to
that of its linearized system at a point; and flat regular points which are regular points
in the first meaning in the neighborhood of which flat outputs do exist, meaning that
this neighborhood is isomorphic to an open subset of Jm.

According to th. 9, the freeness of the moduleMξ is a necessary condition
for ξ to be flat. The sections 4 and 5 will be devoted to an algorithmic test for
this property. Before foccussing on this topic, one may remark that freeness
ofMξ is a generic condition, encountered for most point of most diffieties of
positive differential dimension (see e.g. Fliess et al. [9]) even if flatness is on
the contrary non generic (see Rouchon [25]). So, one may suspect this con-
dition not to be sufficient, even for a flat system. We first prove that this is
nevertheless a sufficient condition for flatness at some point ξ in differential
dimension 1, that is for systems with 1 control. We will need a classical char-
acterization of flatness in that case, that may be traced back to Cartan [2], in a
different setting. We refer to Charlet et al. [5] for details.

Theorem 11. Let x′i = fi(x, u, t), i = 1, . . . , n be a system describing a diffiety V of
differential dimension 1, that is with one control u. Denote by τ the Cartan derivation
and ∂u := ∂/∂u. We also use the notation τ̂∂u := [τ, ∂u] and τ̂r+1∂u := [τ, τ̂r∂u].
We define the Lie algebra Lr generated by ∂u, . . . , τ̂r∂u.

i) The diffiety V is flat iff dimLr = r + 1, r ≤ n + 1 and a flat output is a
functions of the xi that is a constant for the derivations in Ln.

ii) All flat outputs are functionally dependent.
iii) A point ξ of a flat diffiety V of differential dimension 1 is flat iffMξ is a free

module.
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Proof. i) The condition means that a flat output Z does not depend on u and
its derivatives, and moreover Z, . . . , Z(n) do not depend on u. Assume that Z
depends on u(k), then by [21], the system Σ defined by the system equations
and Z(x, u) = z is quasi-regular and has order k + n at any point ξ where
∂u(k)Z 6= 0. So we cannot express the value of the x using Z and its derivatives.
Assume now that Z(x) is such that Z(r) depends on u for r < n + 1. Then Z,
. . . , Z(r−1) provide at most r− 1 independent functions of the x and the order
of Σ is at least n− r + 1 > 0, which is again impossible.

Reciprocally, one may show that there exists a non trivial (actually depend-
ing on some variable xi) function Z(x) that is a constant for the derivations
of Ln. Without loss of generality, we may assume that the derivations ∂x1 and
τ̂r∂u are independent at ξ and all point in some neighborhood W of ξ. Our
PDE system is classically solved in W using the method of characteristics. We
may impose that Z(x1, ξ2, . . . , ξn, t) = g(x1), for any function g.

For any point (x, t) ∈ W, let δ be the field such that δ ∈ Ln (depending
on t) and δj = xi − ξi, i = 2, . . . , n. We may integrate this field with initial
conditions X(t, 0) = x, then Xi(t, 1) = ξi, i = 2, . . . , n and we have Z(x, t) =
g(X1(1)). The fact that it is a flat output is a consequence of iii).

ii) The solution ZId(x, t) and the solution Zg are by construction such that
Zg = g(ZId). So that all solutions are functionally dependent.

iii) We know by th. 9 that, if ξ is flat, then Mξ is free. So, we just have to
prove the reciprocal. We may apply i) to the linear system definingM, so that
denoting by τ the derivation on M, δZ is a non trivial zero of the operators
∂δu, τ̂r∂δu, r = 0, . . . , n, which characterizes a basis of M if M is free. A
solution of this system is unique up to multiplication, so δZId /∈ M is a basis.

This means that the determinant of the Jacobian matrix of functions Z, . . . ,
Z(n+1) with respect to the xi and is non zero, so that we can locally express
the xi and u as functions of Z, . . . , Z(n+1) and ξ is flat.

We may complete this presentation with an example of flat system with 2
controls that satisfy the freeness condition at a non flat point.

Example 12. We consider the diffiety V defined by

x′1 = x1u1 + u2
2 x′2 = u2. (4)

It is trivially flat with flat output x and y, with u1 = [x′1− (x′2)
2]/x1, where x1 6= 0,

but these flat outputs are singular when x1 = 0, as well as any flat outputs of order 0
in the xi. Consider the case where one flat output Z1 is of order 0 in the xi. We may
take it as a new coordinate function and take for {i0, j0} = {1, 2}, ∂xi0

Z1(ξ) 6= 0, so
xi0 = H(Z1, xj0).

Then, by substitution, Z2 = F(xj0 , uj0 , Z1), with F of order 0 in xj0 . We cannot
compute the xi unless F does not depend on uj0 and its derivatives and ∂xj0

F 6= 0 at
ξ. This case is thus equivalent to the choice of x1 and x2, which is singular.

Let us show that V is not flat when ξ1 = 0. Assume that there are regular flat
outputs Zi(x), i = 1, 2, at some point ξ with ξ1 = 0. We have a parametrization
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xi = Xi(z1, z2), ui = Ui(z1, z2). Assume that, for some i = 1, 2, e :=
max(ordzi X1, ordzi X2). Denoting by X1(Z(ξ), z(k)i , . . . , z(e)i ) the value of Xi when

all its argument are the Z(k)
i (ξ), except the zi(`) , k ≤ ` ≤ e, i = 1, 2, we will prove by

recurrence that X1(Z(ξ), z(k)i , . . . , z(e)i ) = X1(ξ) = 0 and that ∂
z(k+1)

i
Xi is divisibble

by X1. This stands for k > e.
Assume the assertion stands for k + 1. The terms

(∂
z(k)i

Xjz
(k+1)
i )j, j = 1, 2 are the only non zero terms in (z(k+1)

i )j in X′1 − (X′2)
2 =

U1X1. For all r ∈ N
∂r

z(k+1)
i

X1(Z(ξ), z(k)i , . . . , z(e)i ) = 0 according to our hypothesis. When X1 = 0, we

have ∂r
z(k+1)

i

X1U1 = 0 and so ∂r
z(k+1)

i

(X′1 − (X′2)
2) = 0. This implies that ∂zi Xj = 0,

j = 1, 2, so that these functions are divisible by X1.
This implies ∂

z(k)i
X1 = X1H. Solving this ordinary equation with respect to z(k)i

is a classical way gives:

X1(Z(ξ), z(k)i , . . . , z(e)i ),= ξ1 exp

(∫ z(k)i )

Z(k)
i (ξ)

H(z)dz(k)i

)
= 0.

So X1 = ξ1 = 0, which is impossible.

This example shows the limitations of our freeness criterion but also the
existence of other possible methods to test local flatness, awaiting further in-
vestigations.

4 D-Regular modules

In this section and the next one, we will freely consider linear systems defining
modules as a special case of differential algebraic system and extend notions
such as the differential dimension in an obvious way.

We need to consider in this section a notion of D-regularity for modules,
that is the analog of the geometric regularity for a point of an algebraic diffi-
ety (def. 3). This notion generalizes the usual notion of regularity for linear
operators or systems. See e.g. Chen et al. [6] and the refereces therein.

We are first concerned with modulesMξ , associated to a regular point of
a diffiety V defined by a prime ideal P . In our setting, regularity is expressed
in a more trivial way in the framework of characteristic sets (def. 3). We can
translate the definition for modules in the following way. In the sequel, we
recall that we denote by D the ring of operators k[[t]][τ] and by D̃ the ring
k((t))[τ], where k is a field of constants with Q ⊂ k ⊂ R and τ is a derivation
with τt = 1. The canonical bases of Dn will be denoted by xi or yi.

To insure computability, we just need to require that k is an effective field
and that the power series coefficients in our series belong to an effective sub-
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ring of k[[t]]. E.G. this is the case for rational or algebraic series or regular
solutions of systems of ODE (see Péladan-Germa [22]).

We can rely on Gröbner bases for D-modules for testing submodule mem-
bership. On this topic, see, e.g., Castro and Granger [3] and the references
therein.

Let s(t) = ∑∞
k=r cktk with cr 6= 0 we will use the valuation vs := r. We

denote by yi the canonical basis on Dn. We will also use notations such as
∂x(e) which have an obvious meaning in the module context.

Definition 13. A finite type D-moduleM is said to be regular if there exists a free
D-module M ⊂ Dn such that M is isomorphic to Dn/M and M admits, for some
admissible ordering on the derivatives of the y, a basis G such that the leading term
of all gi ∈ G is ci(t)y

(ki)
i with invertible leading coefficients cj, that is vcj = 0. We

call this a regular basis.

Proposition 14. If an algebraic diffiety V is regular at point ξ, then the moduleMξ

is regular.

Proof. One only has to consider a regular representation of V, with a char-
acteristic set A with non vanishing separants. Using the same order for the
derivatives of xi and of yi := δxi, the set δξ A, A ∈ A gives a regular basis of
M, as the coefficient of the main derivative of δξ A has coefficient j SA, which
is invertible as SA does not vanish at ξ

Considering a differential local algebra R with maximal ideal m, Johnson
[13] proves in his setting that, if the algebra is regular, then

⋂
r∈N mr = 0. We

have then a module analog for Johnson proposition.

Theorem 15. IfM = Dn/M is a regular module, then
⋃

r∈N trM = 0.

Proof. i) Let G be a regular Gröbner basis of M as in def. 13, so with leading
term τei xi. This means that the derivatives x(k)i , for 1 ≤ i ≤ n−m, 0 ≤ k < ei
and for n−m < i ≤ n, k ∈ N form a basis of the k[[t]]-moduleM. Let any non
zero element ofM be

w :=
n−m

∑
i=1

ei−1

∑
k=0

si,k(t)x(k)i ,

where the ei, for n − m + 1 ≤ i ≤ n can take arbitrary finite values. Then
vw := minn−m

i=1 minei−1
k=0 vsi,k(t) is such that w ∈ tαM and w /∈ tα+1M. So⋃

r∈N
trM = 0.

Obviously, if M = Dn/M is a free module, then w ∈ M implies that
w/tvw ∈ M.

Lemma 16. LetM = Dn/M be a regular module, then for w ∈ M, tw = 0 implies
then w = 0.

Proof. As in the proof of th. 15, M is a free module, with a basis G such that
for all gi, vgi = 0. If tw = 0 ∈ M, then tw = ∑n−m

i=1 ∑k∈N ai,kg(k)i , with
minn−m

i=1 mink∈N vai,k > 0, so that w = ∑n−m
i=1 ∑k∈N(ai,k/t)gi = 0.
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This will prove to be usefull, as in the case where M = δξP , where P is a
prime differential ideal, we may not know a set of generators for M = [δP ] if
some separant vanish at ξ.

Definition 17. We define M : t∞ to be the set {m|∃r ∈ N trm ∈ M}.

Proposition 18. For any D-module M, M : t∞ is a D-module.

Proof. We only have to check that, if tr1 w1 ∈ M and tr2 w2 ∈ M, then:
i) tmax(r1,r2)(w1 + w2) ∈ M;
ii) trw ∈ M implies (tr+1w)′ − (r + 1)trw = tr+1w′ ∈ M.

As k((t)) is a field, the situation is easy: every submodule M of D̃ := k((t))[τ]
is free because A is an euclidean domain and all Gröbner bases of a D̃-module
are bases in the usual algebraic meaning. So, we may associate to any module
M ⊂ Dn some Gröbner basis G of the D̃-module it generates. We assume first
that we are interested in M : t∞ and will look for a set of generators of this
module. We may further assume by multiplying each gi by a suitable power
of t that gi ∈ Dn and gi /∈ tDn. In the sequel, we will assume that we have
chosen some elimination ordering y1 � y2 � · · · � yn and that the leading
derivative of gi is a derivative of the main variable yi.

Definition 19. Let w ∈ M have main variable yi0 , with w = ∑n
i=i0 ∑αi

k=0 ci,k(t)y
(k)
i

with ci,αi 6= 0. We define the slanted weight of w to be v w := max
αi0
k=0(k −

v ci0,k(t)). If vw = 0, we will denote by κ(t)w the local head

max{x(k)i |vci,k(t) = 0} and the head κw := x
αi0
i0

If w = cκ(t)w + R, the reduction of w2 by w red(w, w2) is obtained by replacing
in w2 κ(t)w by −R/c.

To define successive reduction red(S, w), we reduce in sequence by the elements
µ ∈ S, sorted according to κ(t)µ.

We define Pw(r) to be the constant coefficient of x(v w+r)
i in w(r).

Our reduction strategy can make appear higher derivatives, but with co-
efficients of strictly positive valuation. This has non consequence for the next
algorithm and is the basis of th. 23.

Obviously, Pw(r) is a polynomial in r for r ≥ 0: Pw = ∑k−vci0,k=v w ci0,k(0)(
vci0,k

r )1.
So, it admits only a finite number of zeros. We need some preparation algo-
rithm.

Algorithm 20. Input: A Gröbner basis G.
Let S : ∅; Γ := ∅.
Loop 1. Consider the gi with increasing leading vari-

able: i = n−m + 1, . . . , 1.
Let w = g.
1We borrow this idea from Denef and Lipshitz [7]. See also Barkatou et al. [1].
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Loop 2. If Pw has no non negative integer zero, then:
Γ := Γ ∪ {w};
Iterate loop 1 and consider gi−1.

Loop 3. Consider in increasing order the non neg-
ative integer zeros d` of Pw

Reduce w(d`) using S, the derivatives of Γ and
w, w′, . . . , w(d`−1) to get w2.

If vw2 > 0 then: S := S ∪ {w, w′, . . . , w(d`−1)}
Loop 4. Until vw2 = 0 repeat

w2 := w2/tvm2 ;
w2 := red[Γ, S, w, w′, . . . , w(d`−1)

Iterate loop 2 with w := w2.
Iterate loop 1 and consider gi−1.

Return Γ and S.

Example 21. Consider the module generated by m := tx′ − px. The polynomial Pm

is d − p, which vanishes for d = p. Indeed m(p) = tx(p+1), of positive valuation.
Then we take γ = x(p+1).

Theorem 22. The set Γ ∪ S generates M : t∞.

Proof. We only have to remark that S and the derivatives of Γ form a basis
of the k[[t]]-module M : t∞, as their twisted heads are all different and with
coefficient of valuation 0.

If M is defined by a set of generators Σ, proving that M is a k[[t]]-module
without torsion amounts to proving that Γ ∪ S ⊂ M, which may be done by
computing a Gröbner basis of [Σ].

Assume that M is torsion, that is of differential dimension m = 0. Then
the next theorem characterizes regular modules.

Theorem 23. Let M be a module of differential dimension m = 0 andM = Dn/M.
i) The moduleM is regular iff for all γ ∈ Γ, κ(t) γ = κγ.
ii) The moduleM is regular iff

⋃
r∈N trM = 0.

iii) Any moduleM2 ⊂M is regular.

Proof. i) Let us prove first that the condition is necessary. The proof relies on
the reduction process. Let Γ2 := {γ ∈ Γ|κγ > κ(t)γ}. We also denote by Γ∗ the
set of all the derivatives of Γ. If Γ2 6= ∅, then for γ ∈ Γ2, we may iterate the
reduction process by Γ∗ r times and get redr(Gamma∗, κ(t)γ = trRr,1 + Rr,2,
where Rr,1 6= 0 depends only of derivatives of the κ(t)γ, γ ∈ Γ2 and Rr,2 of
derivatives of the yi smaller that the κ(t)γ, γ ∈ Γ.

Let Ns be the k[[t]]-module generated by the κ(t)γ− Rr,2 for r ≥ s. Let Bs
be a Gröbner basis of the k[[t]]-module Ns, using the same order on deriva-
tives. For all s, Bs contains a element m with head κ(t)γ, so

⋂
s∈N tsDn/M ⊃⋂

s∈N Ns 6= 0.
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To prove that the condition is sufficient, we have to consider the set S
produced by algorithm 20 and build regular coordinates. For this, we consider
the derivatives of the xi lower than κγi. Let E be the set of such derivatives
that are not main derivatives of elements of S and F the set of the remaining
derivatives. We have a partition E =

⋃n
i=1 Di ∪

⋃
` E`, with E` = {x

(k)
j`
|p` ≤ k ≤

q`} such that x(p`−1)
j`

/∈ E and x(q`+1)
j`

/∈ E and Di = {x
(k)
i | p̂i ≤ k ≤ q̂i} with

x( p̂i−1)
i /∈ E and x(q̂i+1)

i = κγi. We then introduce new variables y` = x(p`)
j

and zi = x p̂i
i . Using the relations in S we can express all derivatives in F as

functions H depending on derivatives in E, and rewrite the relations γ to get
expressions of κγ as functions J of derivatives in E too. So that we have the
regular system x(q`−p`+1)

j`
= H`(y), z(q̂`− p̂`+1)

i = Ji(z, y), which is equivalent
to Γ ∪ S.

ii) We have just proved above that κ(t) γ = κγ, γ ∈ Γ is a regularity
condition and that it is also equivalent to

⋃
r∈N

trM = 0.
iii) It is a straightforward consequence of ii).

Example 24. We continue example 21. In this case, we have a new coordinate y =

x(p) and the regular system y′ = 0. We also have x(k) = k!/p!tp−ky, so that the two
systems are equivalent.

Torsion elements ofM are also torsion elements of M̃ = D̃n/D̃M, which
are easilly computed, as D̃ is an Euclidean ring. We recall that starting with
generators x′i = fi(x, u, t), these torsion elements are such that their deriva-
tives cannot depend on the “controls” u, so that they are functions T that
satisfy τ̂r∂u`

, for all ` = 1, . . . , m and r ∈ N. It is easilly seen that the di-
mension, as a k((t))-vector space, of the Lie algebra L that these derivations
generate is at most n + m, and n + m iff M̃ has no torsion elements, and so
M.

This gives a fast and easy criterion.

Now, we may consider the case whereM has no torsion elements.

Theorem 25. A moduleM without torsion elements is regular.

Proof. The D̃-module D̃M is free and admits a basis z. All generators xi of
M can then be expressed as xi = Xi(z). Let d be the maximal degree of the
numerators in the Xi and e their maximal order in the zj. Then, we may write
zj = td+e z̃, so that we have xi = X̃i(z̃i), where the denominators in t have
disapeared.

So, M is a submodule of the Dm-module [z̃]. Let G be a Gröbner basis of
M for an ordering such that tα1 z̃(k1)

i1
< tα2 z̃(k2)

i2
if i2 > i1 or i2 = i1 and k2 > k1

or i2 = i1, k1 = k2 and α2 > α1.
We order the gi ∈ G by decreasing leading term κgi and use an ordering

on their derivatives such that gi < gj if κgi < κgj or κgi = κgj and i < j.
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With such an ordering, it is known that the reduction to 0 of the S-elements
associated to all the suitable couples (gi, gj) ∈ G2 produces a Gröbner basis of

the module of relations between the gi, that will have the shape g(ki)
i − Li(g),

so that it is regular. Indeed, the S elements are of the form g(ki)
i − tαi−1 gi−1,

with g(ki)
i > tαi−1 gi−1, according to our conventions.

5 Testing freeness for regular modules

We assume here thatM = Dn/M is regular and that we dispose of an explicit
regular Gröbner basis G ⊂ Dn+m, that we may assume to have the form:

gi := x′i −
n

∑
j=1

ci,jxj +
m

∑
`=1

ci,`u`. (5)

Definition 26. We may represent an element v ofM as

n

∑
i=1

ci(t)xi +
k0

∑
k=0

m

∑
j=1

ck,j(t)u
(k)
j .

We will denote in this section by κv the non zero sum

∑m
j=1 ck0,j(t)u

(k0)
j .

We will also use orduv := k0 with orduv = −∞ if v is free of the u` and their
derivatives and denote by Cv the m-uple (ck0,1, . . . , ck0,m) ∈ k[[t]].

The following lemma plays a key role in our approach.

Lemma 27. i) With the above notations, if M is free and for ` = 1, . . . , r and
i = 1, . . . , n, ci,`(0) = 0, then u`, ` = 1, . . . , r can be completed to form a basis B
that does not depend of strict derivatives of the u` and contains at least one element
that does not depend of the u`.

Proof. First, we prove that we may find a basis with orduB ≤ 0.
If orduBi = −∞ for i = s, . . . , m, let µi be the smallest integer such that

orduB(µi)
i ≥ 0. We denote B̃i = B(µi)

i . If orduBi ≥ 0, then B̃i := Bi and µi := 0.
Assume the Bi are ordered by decreasing orduBi, and then increasing µi.

Let then B be such that the m-uple µB := (orduB1, orduBs−1,−µs, . . . ,−µm) is
minimal for the lexicographic ordering.

If B is a basis of M, then dimk((t))M/[B] = 0. Now, the m × m matrix
C with line i equal to CB̃i

has a determinant which is not identically 02, then
dimk((t))M/[B] ≤ n + ∑s−1

i=1 ordu B̃i − ∑m
i=s µi). Indeed, up to a permutation,

we may assume that all the principal minors of C do not vanish, and then
we get a basis by taking ui and its derivatives up to ordu − 1 that we may
complete with at most n−∑i µi functions of the xi.

2This is a special case of jacobi’s truncated determinant (see [21]).
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So |C| = 0. Let ∑m
i=i0 aiCB̃i

= 0 be a relation with ai0 6= 0 and i0 min-
imal. If vai0 = 0, then ai is intertible and we can replace Bi0 with Bi0 −

∑i>i0 ai/ai0 B̃
(ordu B̃i0−ordu B̃i−µi0+µi)

i . Then orduBi0 will decrease or µi0 increase,
contradicting the minimality of the m-uple µB.

Let us prove that the case vai0 > 0 is impossible. Let then G2 be the Gröb-
ner basis of the module generated by G (5), the Bi, i 6= i0 and

B̂i0 := ai0 Bi0 − ∑i>i0 ai/B̃
(ordu B̃i0−ordu B̃i−µi0+µi)

i . Now, the module of relations

between the Bi and B̂i0 is generated by B̂i0 − ai0 Bi0 +∑i>i0 ai/B̃
(ordu B̃i0−ordu B̃i−µi0+µi)

i .
This means that computing a Gröbner basis of [G, B] adding B̂i0 to G2 is re-
duced to computing a single S-expression, between tvai0 red(G, B̂i0) and some
member of G, that must be reduced to 0, so that {red(G, B̂i0)} ∪ G2 is a
Gröner basis of [G, B], which is impossible, as such a basis must be of the
form {x1, . . . , xn, u1, . . . , um}.

So, we must have orduBi = 0, i = 1, . . . , s− 1 and ∑m
i=s µi = n. We may then

reduce the Bi, i = 1, . . . , s− 1 using the Bi, i = s, . . . , m and their derivatives
up to order µi − 1, that generate (xi|1 ≤ i ≤ n), in order to reduce to the case
where the Bi, i = 1, . . . , s− 1 only depend on the uj.

We have our result if for all 1 ≤ j ≤ r, uj ∈ (Bi|1 ≤ i ≤ s). Assume
this is not the case. We may take Bi = ui, i = 1, . . . , p < r, Bp+i = ur+i,
i = 1, . . . , s − p. Then B̃i, i = s + 1, . . . , m may be reduced to depend only
of ui, for i = s − p + 1, . . . , m and i = p + 1, . . . , r. The values of the ui for
this last set of indexes cannot be expressed from B and their derivatives, as
they appear with coefficient of strictly positive valuation. This contradiction
concludes the proof.

This lemma suggests an algorithm, with successive steps of reduction of
the state dimension n. In the following algorithm, we assume that the number
r of inputs ui that appear with non invertible coefficient in maximal, in other
words the matrix (ci,`|i = 1, . . . , n, ` = r + 1, . . . , m) has full rank m− r. If not,
we can easilly reduce to this case by a change of coordinates.

Algorithm 28 (Contraction). Input: a reg. system G.
If r = m, exit: “not free”.
Reorder the ui, so that [τ, ∂ui ], i = m− k + 1, . . . , m

are independent over k((t)) with k maximal.
If k = 0, exit: “not free (torsion elements)” .
Compute a maximal basis of solutions y`, linear in the

xi of [τ, ∂ui ]Y(x, t) = 0, i = m− k + 1, . . . , m.
Complete them with some xi to get a basis of (x). Call

them vj, j = 1, . . . k.
Compute a new system G2: yi− Li(y, u1, . . . , ur+k, v).
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Compute a new set of controls w with maximal num-
ber r2 of control appearing with non invertible co-
efficient.

Return: The system G3(y, w) obtained at the last
step.

The main algorithm consist in repeated application of this process.

Algorithm 29. Input: a regular basis G.
until n = 0 repeat:

G := Contraction(G)
Return: The controls u of the last system.

The algorithm stops when the state dimension n is 0 and then returns the
controls u that form a basis. If r = m the contraction is impossible, according
to lemma 27 and one exits the process, as well as in the case where the state
dimension is strictly positive and stationary, meaning that torsion elements
exists.

Example 30. The module defined by x′ = tu is not free.

Example 31. The module defined by x′1 = tu1 + x2 and x′2 = u2 is nfree, as we can
take u1 as a flat output, completed with x1.

In the case when the module is not free, we may conclude that our control
systems is not flat in the neighbourhood of a given point. This is important
to notice, but does not mean that we cannot use some kind of non bijective
parametrization.

Example 32. We go back to the car (example 1) at a non flat point where z′1 = z′2 =
θ′ = 0 at t = 0.

We would like to use the flat outputs: ζ1 = θ and ζ2 = sin(θ)z1 − cos(θ)z2. We
may pose ζ1 = tλ′ − λ. Then, we have ζ ′1 = tλ′′ and λ′′ 6= 0 when ζ ′′1 6= 0. So,

ζ ′2/λ′′ = − sin(θ)z1 + cos(θ)z2

and the values of z1 and z2, and so the whole state of the system, can be computed at
the non flat point.

6 Conclusion

We have provided an algorithm to test the freeness of a D-module, which
produces an effective necessary condition for local differential flatness. An
example shows that this condition is not sufficient in differential dimension
greater than 1. Another example has shown that the situation at a non flat
point is not lost and that a suitable parametrization, although not bijective,
can achieve motion planning.

These remarks provide new directions for further investigations.
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