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Introduction

Jacobi’s bound, probably formulated by Jacobi around 1840 [2] is an upper bound
on the order of a system of n differential equations f; in n variables x; , which is
expressed as the tropical determinant of the order matrix A:= (a;,j := ordy; f3),
with the convention ordy; f; := —oo when f; is free from x; and its derivatives :
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The result is known to hold for quasi-regular systems [3], but remains con-
jectural in the general case, i.e. for any prime component of an arbitrary sys-
tem. Cohn was the first to relate it to the dimensional conjecture [1], which
claims that the differential codimension of a component defined by a system of
r equations is at most r, showing that Jacobi’s bound implies the dimensional
conjecture. During my talk at DART III, I proposed a scheme of proof for the
bound, using first a proof of the dimensional conjecture, trying to generalize
Ritt’s proof for codimension 1 [6], which is based on Puiseux series compu-
tations. Then, some kind of reduction process was to be used, mostly based
of Jacobi’s reduction methods. The dimension properties was crucial there to
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withdraw components defined by two few equations, or equations satisfying
relations. Working to complete this proof, I had trouble with the computation
of Puiseux series that required to introduce some change of variables. .. allow-
ing to get both results at the same time, thanks to the same reduction process.
The result we prove is in fact a little more general. We define here the order of
a component of positive codimension s as the order of its intersection with s
generic hyperplanes [4]. Working with a system of r equations is not easy. In
fact, it is better to consider a prime algebraic ideal of codimension r.

THEOREM 1. — Let f;, 1 <i <r be a characteristic set of an algebraic ideal .¥ of
codimensionr in #{xy,..., x,}, Where & is a differential field of chatacteristicO.
Let us denote by S,.;, the set of injections from [1,r] to [1, n].

If 2 be a prime component of {#}, then :
i) the differential codimension s of & is at mostr ;
ii) if the differential codimension of 2 is equal to r, the order of 2 is at most the
strong Jacobi number

If the f; are just arbitrary equations, we easilly reduce to the hypotheses of the
theorem by considering the prime components of /[ f].

Main ideas of the proof

The most concise way of presenting the proof is to replace the recursive re-
duction process by a reductio ab absurdum. Let us assume that i) or ii) is false.
There exist counter-examples such that n—r is minimal, and among them counter-
examples with minimal Jacobi number. We will work out a contradiction.

Let B := (A; + a; ;) be a minimal canon [2} 4] for the order matrix, meaning
that (1;) is the smallest vector of integers such that B has elements maximal in
their columns and located in all different lines and columns. We define A :=
max; A;, @; := A—A; and f; := max; a;, j — @;. We say that some ordering < on
derivatives is a Jacobi ordering if ki — §;, < ko — B, implies x;f V< x;.?) k—pBjis
the Jacobi order of x;.k)

We may assume that the f; are ordered by increasing a;; let ® be the small-
est integer such that:

A) fi,..., [n-o is a characteristic set of a prime differential ideal 2, for a Jacobi
ordering ;
B) #1:=2nZ x|l <j<m0<kspjra, ) cP.

Now, we may assume further that the system f has been chosen with mini-

mal @, among those with minimal 7z — r and Jacobi number.



Lemma 2. — Under the above hypotheses, if ® is equal to 0, then 2 ¢ 22 ; if
®>0,then®<nand _¢ :=2 mgl‘[x;.k)ll <j=m0<k=Pjra, o] 2.

PROOF. — As fj is a prime polynomial, it must be the char. set of a prime
differential ideal, so @ < n.

Assume that @ > 0 and that _#, c &2. Let G be a Grobner basis of _#;, for the
lexicographic ordering on monomials, considering a Jacobi ordering on deriva-
tives, for which the main derivatives of fl(o‘1 _a”"”), .-+, fn-@ are the smallest with
the same Jacobi order a,_p. Then, the reduction of _#, by G must be a non triv-
ial ideal (if not, n — r would not be minimal) of which nonzero polynomials are
of Jacobi order at least that f,,_p+1 (if not, the Jacobi number of f would not
be minimal). There exists a factor g» of such a polynomial g, modulo _#, that
holds 2. Replacing f,,-o+1 by g2, we find a new system defining &2, with the
same n — r and Jacobi number, but smaller @.

Assume now that @ is equal to 0. If 2 < &2, the prime component £ would
be equal to £, of which f is a characteristic set for a Jacobi ordering. This would
imply that i) the order of &2 is 0 and ii) its dimension equal to n—r. So, 2 ¢ &.
O

We have shown that possible couter-examples are related to singular com-
ponents of the system .#, i.e. components for which Hy = 0.

The singular case

The idea used to achieve the proofin the singular case is to reduce to the regular
one by a suitable change of variables. It may be illustrated by the most simple
example of equation f(x) = x’ *_4x = 0. We introduce a change of variables
defined by y = x'. The new system x—y? =0, y(y'—1) = 0is equivalent to f(x) =
0, but the main and singular components of this system are now respectively
associated to the factors y’—1 =0and y =0.

As & is a component that does not contain £, we may find a minimal 7n-
uple of integers p; such that [fV|1 <i<n-®,0 <v < u;]: H® (Where H is the
product of initials and separants of fi, ..., f,—p) contains a polynomial that does
not belong to 2.

We may now assume that the system has been chosen among those with
minimal 7 — r, then minimal Jacobi number, then minimal @, in such a way
that y := max]_, y; is minimal. Obviously, it must be greater than 0. We may
assume that p; > 0 for 1 < i < s and that the leading derivatives of f; is xga" w8
We increase the ground field with s arbitrary function {; : the new ground field
is Z((;), which does not change the number, orders and dimensions of the
components. We introduce new variables y; = x;. +{;x;.
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We start with the prime ideal .# + [y; — x;. —;x;] for which f;, 1 <i<nand
Vi— x;. —{;x;, 1 <i<risacharacteristic set.
The first step is to rewrite the equation defining the new variables as x} = y; —

(;x;, to differentiate them, so that each derivatives x;., s x AP

i
a linear combination of the y;,..., y§A+ﬁ i~V and the x;, that may be substituted

in the elements of .# to get a new ideal .#;, with a standard basis f;, obtained by
sustitution from the f;.

The next step is to eliminate the x}, 1 < i < s in x; — y; + {;x;. Thanks to the
arbitrary function {;, A := |afi/ax]-; 1=<i,j<sl¢ 2. We get new equations g; by
pseudo reduction and (g;,-#1) : A* generates the same perfect ideal as before.

This ideal need not be prime. If y > 1, then we just need to keep some com-
ponent that is included in £2. The values of n — r, the Jacobi number and @ are
preserved, but it is easilly seen that new value of y is y — 1, by construction.

If y =1, then the components of /(g;,-#1) : A® that are included in &2 have
the same n — r, but strictly smaller Jacobi number, as they correspond to the
former singular components, where H did vanish: a final contradiction that
completes the proof. O

is expressed as
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