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Introduction

Jacobi’s bound, probably formulated by Jacobi around 1840 [2] is an upper bound
on the order of a system of n differential equations fi in n variables x j , which is
expressed as the tropical determinant of the order matrix A := (ai , j := ordx j fi ),
with the convention ordx j fi :=−∞ when fi is free from x j and its derivatives :

max
σ∈Sn

n∑
i=1

ai ,σ(i )

The result is known to hold for quasi-regular systems [3], but remains con-
jectural in the general case, i.e. for any prime component of an arbitrary sys-
tem. Cohn was the first to relate it to the dimensional conjecture [1], which
claims that the differential codimension of a component defined by a system of
r equations is at most r , showing that Jacobi’s bound implies the dimensional
conjecture. During my talk at DART III, I proposed a scheme of proof for the
bound, using first a proof of the dimensional conjecture, trying to generalize
Ritt’s proof for codimension 1 [6], which is based on Puiseux series compu-
tations. Then, some kind of reduction process was to be used, mostly based
of Jacobi’s reduction methods. The dimension properties was crucial there to
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withdraw components defined by two few equations, or equations satisfying
relations. Working to complete this proof, I had trouble with the computation
of Puiseux series that required to introduce some change of variables. . . allow-
ing to get both results at the same time, thanks to the same reduction process.
The result we prove is in fact a little more general. We define here the order of
a component of positive codimension s as the order of its intersection with s
generic hyperplanes [4]. Working with a system of r equations is not easy. In
fact, it is better to consider a prime algebraic ideal of codimension r .

THEOREM 1. — Let fi , 1 ≤ i ≤ r be a characteristic set of an algebraic ideal I of
codimension r in F {x1, . . . , xn}, where F is a differential field of chatacteristic 0.
Let us denote by Sr,n the set of injections from [1,r ] to [1,n].

If P be a prime component of {I }, then :
i) the differential codimension s of P is at most r ;
ii) if the differential codimension of P is equal to r , the order of P is at most the
strong Jacobi number

O := max
σ∈Sr,n

s∑
i=1

ai ,σ(i ).

If the fi are just arbitrary equations, we easilly reduce to the hypotheses of the
theorem by considering the prime components of

√
[ f ].

Main ideas of the proof

The most concise way of presenting the proof is to replace the recursive re-
duction process by a reductio ab absurdum. Let us assume that i) or ii) is false.
There exist counter-examples such that n−r is minimal, and among them counter-
examples with minimal Jacobi number. We will work out a contradiction.

Let B := (λi +ai , j ) be a minimal canon [2, 4] for the order matrix, meaning
that (λi ) is the smallest vector of integers such that B has elements maximal in
their columns and located in all different lines and columns. We define Λ :=
maxi λi , αi :=Λ−λi and β j := maxi ai , j −αi . We say that some ordering ≺ on

derivatives is a Jacobi ordering if k1 −β j1 < k2 −β j2 implies x(k1)
j1

≺ x(k2)
j2

k −β j is

the Jacobi order of x(k)
j

We may assume that the fi are ordered by increasing αi ; let $ be the small-
est integer such that:
A) f1, . . . , fn−$ is a characteristic set of a prime differential ideal Q, for a Jacobi
ordering ;
B) J1 :=Q∩F [x(k)

j |1 ≤ j ≤ n;0 ≤ k ≤β j+αn−$] ⊂P .
Now, we may assume further that the system f has been chosen with mini-

mal $, among those with minimal n − r and Jacobi number.
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Lemma 2. — Under the above hypotheses, if $ is equal to 0, then Q 6⊂ P ; if
$> 0, then $< n and J2 :=Q∩F [x(k)

j |1 ≤ j ≤ n;0 ≤ k ≤β j+αn−$+1 ] 6⊂P .

PROOF. — As f1 is a prime polynomial, it must be the char. set of a prime
differential ideal, so $< n.

Assume that $> 0 and that J2 ⊂P . Let G be a Gröbner basis of J1, for the
lexicographic ordering on monomials, considering a Jacobi ordering on deriva-
tives, for which the main derivatives of f (α1−αn−$)

1 , . . . , fn−$ are the smallest with
the same Jacobi orderαn−$. Then, the reduction of J2 by G must be a non triv-
ial ideal (if not, n − r would not be minimal) of which nonzero polynomials are
of Jacobi order at least that fn−$+1 (if not, the Jacobi number of f would not
be minimal). There exists a factor g2 of such a polynomial g , modulo J1, that
holds P . Replacing fn−$+1 by g2, we find a new system defining P , with the
same n − r and Jacobi number, but smaller $.

Assume now that $ is equal to 0. If Q ⊂P , the prime component P would
be equal to Q, of which f is a characteristic set for a Jacobi ordering. This would
imply that i) the order of P is O and ii) its dimension equal to n−r . So, Q 6⊂P .
ä

We have shown that possible couter-examples are related to singular com-
ponents of the system I , i.e. components for which H f = 0.

The singular case

The idea used to achieve the proof in the singular case is to reduce to the regular
one by a suitable change of variables. It may be illustrated by the most simple
example of equation f (x) = x ′2 − 4x = 0. We introduce a change of variables
defined by y = x ′. The new system x−y2 = 0, y(y ′−1) = 0 is equivalent to f (x) =
0, but the main and singular components of this system are now respectively
associated to the factors y ′−1 = 0 and y = 0.

As P is a component that does not contain Q, we may find a minimal n-
uple of integers µi such that [ f (ν)|1 ≤ i ≤ n−$,0 ≤ ν≤µi ] : H∞ (Where H is the
product of initials and separants of f1, ..., fn−$) contains a polynomial that does
not belong to P .

We may now assume that the system has been chosen among those with
minimal n − r , then minimal Jacobi number, then minimal $, in such a way
that γ := maxr

i=1µi is minimal. Obviously, it must be greater than 0. We may

assume that µ1 > 0 for 1 ≤ i ≤ s and that the leading derivatives of fi is x(αi+βi )
i .

We increase the ground field with s arbitrary function ζi : the new ground field
is F 〈ζi 〉, which does not change the number, orders and dimensions of the
components. We introduce new variables yi = x ′

i +ζi xi .
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We start with the prime ideal I + [yi − x ′
i −ζi xi ] for which fi , 1 ≤ i ≤ n and

yi −x ′
i −ζi xi , 1 ≤ i ≤ r is a characteristic set.

The first step is to rewrite the equation defining the new variables as x ′
i = yi −

ζi xi , to differentiate them, so that each derivatives x ′
i , . . . , x(Λ+βi )

i is expressed as

a linear combination of the yi , . . . , y (Λ+βi−1)
i and the xi , that may be substituted

in the elements of I to get a new ideal I1, with a standard basis f̃i , obtained by
sustitution from the fi .
The next step is to eliminate the x ′

i , 1 ≤ i ≤ s in x ′
i − yi + ζi xi . Thanks to the

arbitrary function ζi ,∆ := |∂ f̃i /∂x j ;1 ≤ i , j ≤ s| ∉P . We get new equations gi by
pseudo reduction and (gi ,I1) :∆∞ generates the same perfect ideal as before.

This ideal need not be prime. If γ> 1, then we just need to keep some com-
ponent that is included in P . The values of n − r , the Jacobi number and $ are
preserved, but it is easilly seen that new value of γ is γ−1, by construction.

If γ= 1, then the components of
√

(gi ,I1) :∆∞ that are included in P have
the same n − r , but strictly smaller Jacobi number, as they correspond to the
former singular components, where H did vanish: a final contradiction that
completes the proof. ä
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