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Introduction

Jacobi’'s bound, probably formulated by Jacobi
around 1840 [2] is an upper bound on the order of
a system of n ditferential equations f; in n variables
x;, which is expressed as the tropical determinant of
the order matrix A := (a; ; := ordy, f;), with the con-
vention ord,, f; := —oo when f; is free from x; and its
derivatives :
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The result is known to hold for quasi-regular sys-
tems [3], but remains conjectural in the general case,
i.e. for any prime component of an arbitrary system.
Cohn was the first to relate it to the dimensional con-
jecture [1], which claims that the ditferential codi-
mension of a component defined by a system of r
equations is at most r, showing that Jacobi’s bound
implies the dimensional conjecture. During my talk
at DART III, I proposed a scheme of proof for the
bound, using first a proof of the dimensional conjec-
ture, trying to generalize Ritt’s proot for codimension
1 [6], which is based on Puiseux series computations.
Then, some kind of reduction process was to be used,
mostly based of Jacobi’s reduction methods. The di-
mension properties was crucial there to withdraw
components defined by two few equations, or equa-
tions satistying relations. Working to complete this
proof, I had trouble with the computation of Puiseux
series that required to introduce some change of vari-
ables. .. allowing to get both results at the same time,
thanks to the same reduction process. The result we
prove is in fact a little more general. We define here
the order of a component of positive codimension s
as the order of its intersection with s generic hyper-
planes [4]. Working with a system of r equations is
not easy. In fact, it is better to consider a prime alge-
braic ideal of codimension r.

THEOREM 1. — Let f;, 1 < i < r be a characteris-
tic set of an algebraic ideal ¢ of codimension r in
Fi{xi1,..., X}, where & is a differential field of chatac-
teristicQ. Let us denote by S, ,, the set of injections from
11, 7] to |1, n].

Simultaneous proot of the dimensional conjecture

and of Jacobi’'s bound
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If &P be a prime component of {4}, then :
1) the differential codimension s of & is at mostr ;
ii) if the differential codimension of &2 is equal to r,
the order of &2 is at most the strong Jacobi number
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If the f; are just arbitrary equations, we easilly reduce
to the hypotheses of the theorem by considering the

prime components of /[ f].

Main ideas of the proof

The most concise way of presenting the proof is to
replace the recursive reduction process by a reduc-
tio ab absurdum. Let us assume that i) or ii) is false.
There exist counter-examples such that n — r is min-
imal, and among them counter-examples with mini-
mal Jacobi number. We will work out a contradiction.
Let B := (A;+a; ;) be aminimal canon [2, 4] for the
order matrix, meaning that (A1;) is the smallest vec-
tor of integers such that B has elements maximal in
their columns and located in all ditferent lines and
columns. We define A := max; A;, a; := A — A; and
p;:= max; a; ; — @;. We say that some ordering < on
derivatives is a Jacobi ordering it k,— [, < k,— p;, im-
plies x}’fl) < x}i@ k — p; is the Jacobi order of x;k)
We may assume that the f; are ordered by increas-
ing a;; let ® be the smallest integer such that:
A) fi,..., [n_o 1s a characteristic set of a prime differ-
ential ideal 2, for a Jacobi ordering ;
B) #,:=2 ﬂf/?[x;k)ll <Jj=nm0=k=<pjiq, |2
Now, we may assume further that the system f
has been chosen with minimal @, among those with

minimal n — r and Jacobi number.

Lemma 2. — Under the above hypotheses, it @ is
equal to 0, then & ¢ & ; if ® > 0, then ® < n and
Jr=2nFxN<j<n0<k<Pjia,, | P
PROOF. — As f; is a prime polynomial, it must be the
char. set of a prime differential ideal, so @ < n.
Assume that @ > 0 and that ¢ < &. Let G
be a Grobner basis of _¢;, for the lexicographic or-
dering on monomials, considering a Jacobi order-

ing on derivatives, for which the main derivatives of
flO%o | f._o are the smallest with the same Ja-
cobi order a,,_,. Then, the reduction of ¢, by G must
be a non trivial ideal (if not, n — r would not be min-
imal) of which nonzero polynomials are of Jacobi or-
der at least that f,_ 5.1 (if not, the Jacobi number of
f would not be minimal). There exists a factor g,
of such a polynomial g, modulo ¢, that holds £2.
Replacing f,,_5+1 by &2, we find a new system defin-
ing &2, with the same n — r and Jacobi number, but
smaller o.

Assume now that @ is equal to 0. If £ c &2, the
prime component & would be equal to £, of which
f is a characteristic set for a Jacobi ordering. This
would imply that i) the order of £2 is @ and ii) its di-
mension equalto n—r. So, £ £ &£,

We have shown that possible couter-examples are
related to singular components of the system .¥, i.e.
components for which Hy = 0.

The singular case

The idea used to achieve the proof in the singular
case is to reduce to the regular one by a suitable
change of variables. It may be illustrated by the most
simple example of equation f(x) = x'*—4x =0. We in-
troduce a change of variables defined by y = x'. The
new system x — y“ = 0, y(y' — 1) = 0 is equivalent to
f(x) = 0, but the main and singular components of
this system are now respectively associated to the fac-
tors y'—1=0and y =0.

As & is a component that does not contain £, we
may find a minimal n-uple of integers u; such that
[fY'1<i<n-m0<v<=<y:H® (Where H is the
product of initials and separants of fi,..., f,—») con-
tains a polynomial that does not belong to &2.

We may now assume that the system has been
chosen among those with minimal »n — r, then min-
imal Jacobi number, then minimal ®, in such a way
that y := max;_, y; is minimal. Obviously, it must be
greater than 0. We may assume that y; >0forl1<i <
s and that the leading derivatives of f; is xl(.“ﬁﬁ ). We
increase the ground field with s arbitrary function (; :
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the new ground field is & ((;), which does not change
the number, orders and dimensions of the compo-
nents. We introduce new variables y; = x; + {;x;.

We start with the prime ideal .# + [y; — x; — (;x;]
for which f;, 1<=i<nand y;,—x,-(;x;, 1<i<risa
characteristic set.

The first step is to rewrite the equation defining the
new variables as x; = y; — (;x;, to differentiate them,

- . A+ i) e
so that each derivatives x, ..., x§ T expressed as a

linear combination of the y;,. ..,yﬁ“ﬁ ~Y and the x;,
that may be substituted in the elements of . to get
a new ideal .#;, with a standard basis f;, obtained by
sustitution from the f;.

The next step is to eliminate the x;, 1 < i < s in
x; — ¥i +{;x;. Thanks to the arbitrary function (;,
A = Idfi/@xj; 1<1i,j<s|¢P. Weget new equations
g; by pseudo reduction and (g;, -#;) : A® generates the
same perfect ideal as before.

This ideal need not be prime. If y > 1, then we
just need to keep some component that is included
in &2. The values of n — r, the Jacobi number and @
are preserved, but it is easilly seen that new value ot
Y is y — 1, by construction.

If y = 1, then the components of \/(g;, %) : A®
that are included in £ have the same n—r, but strictly
smaller Jacobi number, as they correspond to the for-
mer singular components, where H did vanish: a fi-

nal contradiction that completes the proof.
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