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Introduction

Differential flatness [5, 6], introduced by Fliess, Lévine, Mar-
tin and Rouchon, is a mathematical notion which goes back
to Monge’s problem [12, 9, 20] and which proved to be a very
fruitfull tool for control theory. The aim of this poster is
to provide an similar definition in difference algebra and to
investigate their properties, by analogy with the differential
case. Such an approach is known to work in many cases, but
the difference case could sometimes hide subtle difficulties.

Our two main results are analogs of the criterion of
Charlet, Lévine and Marino, for difference dimension 1, and
of the necessary condition for flatness expressed by Rou-
chon’s criterion. We show however that there is no difference
analog of the Lüroth–Ritt theorem. We also show that every
controllable linear difference system is flat.

To avoid any misunderstanding, it should be noticed
that this work has no claim to direct applicability. It should
be considered as a first theoretical step for the sudy of non-
linear mixed systems of differential-difference equations.

1 Difference algebra

We refer to Cohn’s classical book [4] or to Levine [11] for an
introduction to difference algebra, a theory first introduced
by Ritt [15, 16, 17]. For computational issues, one may refer
to [10, 8] and the references therein, or to [2, 14] in the linear
case.

We will be only concerned here with ordinary inversive
difference fields, that is a field F equipped with an automor-
phism τ, with inverse τ−1; τ is call a transforming operator,
τ j a is called a transform of a. We denote by F {x1, . . . , xn} the
algebra of inversive difference polynomials, that is the alge-
bra F {τ j xi |i ∈ [1,n], j ∈ Z}, with the action of τ and τ−1 ex-
tended in an obvious way. We denote by F 〈x〉 the fraction
field of F {x}; this is the transformally transcendental exten-
sion generated by x1, . . . , xn.

By an inversive difference ideal, we mean an ideal I

such that τI = τ−1I =I . A morphism φ of difference rings
A 7→ B is a ring morphism such that τ◦φ= φ◦τ. Let F ⊂ G ,
it is said that G/F is a difference field extension if the injec-
tion of F in G is a morphism of difference rings. If X ⊂G , we
denote by F 〈X 〉 the smallest difference field extension of F

that contains X .
Let P be a prime inversive difference ideal of

F {x1, . . . , xn}, we associate to it a difference field extension
G/F , where G is the fraction field of the difference domain
F {x}/P . Difference transcendence bases and difference di-
mension are defined in an obvious way.

We refer to [8] for a precise definition of characteristic
sets for difference ideal. In the context of control theory, we
call a differential system a characteristic set of a prime differ-
ential ideal [18] and a difference system a characteristic set

of a prime difference ideal of F {x1, . . . , xn}, assuming F to be
of characteristic 0.

2 Controlable and flat difference extension

2.1 Controlability

A differential system A , defining a differential field extension
G/F , with derivations denoted by δ, is said to be control-
lable if, assuming A to be of order 1 and x1, . . . , xm to be
a trancendance basis of the extension, the Lie algebra gen-
erated by δ and the partial derivatives ∂/∂x ′

i , for 1 ≤ i ≤ m
contains all partial derivatives ∂/∂xi , for 1 ≤ i ≤ n. See [7].
The notion does not depend of the chosen coordinates, char-
acteristic set or transcendence basis. Controlability implies
that all elements of G that are differentially algebraic over F

must belong to F , but the converse is known to the false,
as shown by the example: x ′

1 = x1x ′
2. Every trajectory is

such that x1e−x2 = Cste, which contradicts controllability, but
x1e−x2 ∉G .

For difference systems, we propose the following defini-
tion.

DEFINITION 1. — Assume y1, . . . , ym to be a transformal tran-
cendance basis of the extension G/F and x1, . . . , xk to be an
algebraic transcendence basis of G over F 〈y〉. The exten-
sion is said to be controllable if the Lie algebra generated by
τ j∂/∂yiτ

− j , 1 ≤ i ≤ m, j ∈ Z contains every partial derivation
∂/∂xi , 1 ≤ i ≤ k.

PROPOSITION 2. — The extension G/F is controllable iff there
is no element in G \F which is transformally algebraic over F .

It is easilly seen that such elements form a basis of solution of
the partial differential system associated with the Lie algebra
of the definition and this is the main idea of the proof.

A straightforward consequence of this proposition is
that the definition does not depend of the chosen difference
transcendence basis. We may also express the condition of
the proposition in the following form. Assume that the dif-
ference system is reduced to order one, as we may, using a
suitable change of variables, so that y1, . . . , ym form a dif-
ference transcendance basis of G/F , and that {τ j yi |1 ≤ i ≤
m, i ∈ Z}∪ {yi |m < i ≤ n} is an algebraic transcendance basis
of G/F . Then, denoting by F 〈A〉 the algebraic closure in G ,
the condition of the proposition is equivalent to⋂

j∈Z
F 〈τ j x1, . . . ,τ j xn〉 =F .

2.2 Flat difference extension

Our definition exactly reproduces the differential one, so that
there is little ambiguity about the way one could translate
flatness in the difference case.

DEFINITION 3. — We say that a difference extension G/F is
flat if G is isomorphic to the algebraic closure of some trans-
formally transcendental extension F 〈z1, . . . , zm〉

The elements z1, . . . , zm are said to be a linearizing out-
put.

Example 4. — The system τx1 = x1 + (τx2 − x2)2 is not flat as
we will prove below. This system is an analog of the non flat
differential system x ′

1 = x ′
2

2.

Example 5. — The system (τx1 − x1)(τx2 − x2) = (τx3 − x3) is
flat. A flat output is x1, (x1−τ−1x1)x2−x3. This is an analog of
the differential flat system x ′

1x ′
2 = x ′

3 of Rouchon.

3 Analogue of the Charlet, Lévine and Marino
criterion

In the case of an extension of differential dimension one,
there is a necessary and sufficient condition of flatness due
to Charlet, Lévine and Marino [3]. We propose here a differ-
ence analog.

THEOREM 6. — Let G/F be a difference extension of differ-
ence dimension 1, using the coordinates y, as defined above,
G/F is flat iff it is controllable and

n−2⋂
j=0

F 〈τ j x1, . . . ,τ j xn〉 ̸=F .

In such a case, this intersection is equal to F 〈z〉, for some
z ∈G , which is a linearizing output.

We follow the same scheme of proof as in the differential
case. First, an easy recurrence shows that if the system is con-
trollable,

⋂k
j=0 F 〈τ j x1, . . . ,τ j xn〉 is of algebraic transcendental

dimension at most n−k over F , so if
⋂n−2

j=0 F 〈τ j x1, . . . ,τ j xn〉 ̸=
F , it must be of algebraic transcendental dimension 1 and a
transcendental element z will be a linearizing output.

If the extension is flat, it is obviously controllable and
we can chose a linearizing output that actually depends of
x1, . . . , xn. Then, it cannot depend of transforms of these el-
ements of order k non zero. If it were the case, τZ , . . . , τ j Z
would respectively depend of elements of order |k| + 1, . . . ,
|k|+ j , . . . , so that it would be impossible to express the xi as
function of transforms of z.

So z = Z (x1, . . . , xn). Now, the xi must be expressed as
functions of Z , τZ , . . . , τn−2Z . Using the same kind of argu-
ments, one shows that these transforms can only depend of
x1, . . . , xn. We easilly conclude then that z must belong to
that field intersection.

Using this criterion, it is easilly seen the the system of
example 4 is non flat.

We may notice that there is no difference analog of the
Lüroth – Ritt theorem, as shown by considering the subfield
F 〈xτx, x2〉 of F 〈x〉.

4 An analog of Rouchon’s criterion

In [19], Rouchon gave a necessary flatness condition for dif-
ferential systems. We provide here the following analog.

THEOREM 7. — Let G/F be a flat difference exten-
sion, then, using coordinates x1, . . . , xn, as defined above,
such that x1, . . . , xm is a difference transcendance basis,
there exist two derivations expressed by finite sums d1 =∑m

i=1

∑
j>0 c1,i , j (x)∂/∂τ j xi and d2 = ∑m

i=1

∑
j<0 c2,i , j (x)∂/∂τ j xi ,

where the ci (x) are algebraic transformal functions, such that
d1, τ−1 ◦d1 ◦τ, . . . , d2, and τ◦d2 ◦τ−1, . . . commute.

Assume the extension is flat and let z1, . . . , zm be a lineariz-
ing output. We proceed as in the proof given in [13] for the
differential case, and take for d1 and d2 the derivatives with
respect to the highest and lowest transforms of some zi , the
coordinate functions y1, . . . , yn actually depend on. The re-
sult is then straightforward.

We see however that deducing an effective criterion is
not as easy. The best we can do in the general case is to re-
duce to some system of differential equation and then to test
the existence of solutions by computing a characteristic set.
In some simple cases such as the example 4, they can be per-
formed by hand.

5 Linear systems

The linear theory is as easy as in the differential case.

THEOREM 8. — A linear difference system is flat iff it is con-
trollable.

To show it, we may again use coordinates x1, . . . , xn as de-
fined above. Considering a generic d1 =∑m

i=1 ci∂/∂τxi , where
the ci are constants, a basis of solutions of the equation
d1τF (y) = 0 defines a new set of n−1 coordinates ỹ1, . . . , ỹn−1.
We may iterate the process, until n = m. Then, the ỹi will
form then a linearizing output.

Conclusion. A few open problems

We have seen how the notion of flatness may be extended
in a natural way to difference systems, while keeping some
analogs of results known in the differential case. We may still
expect a possible analog of Cartan’s criterion [1].

The two main open questions related to differential flat
system may also be generalized to the difference situation:
— If G/F is flat and F ⊂ G2 ⊂ G is an intermediate field ex-
tension, is G/F flat? (Endogenous=exogenous.)
— Is there an algorithm to decide if a given system is flat?

We have also seen that some analogs of differential flat-
ness criteria such as Rouchon’s criterion may also deserve
some more study in order to become efficient in non trivial
situations.
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