A simple and constructive proof to a generalization of Lüroth's theorem

François Ollivier

LIX, UMR CNRS 7161 École polytechnique 91128 Palaiseau CEDEX France

francois.ollivier@lix.polytechnique.fr

Brahim Sadik

Département de Mathématiques Faculté des Sciences Semlalia B.P. 2390, 40000 Marrakech Maroc

sadik@ucam.ac.ma

March 2022

Abstract. A generalization of Lüroth's theorem expresses that every transcendence degree 1 subfield of the rational function field is a simple extension. In this note we show that a classical proof of this theorem also holds to prove this generalization.

Keywords: Lüroth's theorem, transcendence degree 1, simple extension.

Résumé. Une généralisation du théorème de Lüroth affirme que tout souscorps de degré de transcendance 1 d'un corps de fractions rationnelles est une extension simple. Dans cette note, nous montrons qu'une preuve classique permet également de prouver cette généralisation.

Mots-clés : Th. de Lüroth, degré de transcendance 1, extension simple.

Authors' extended version of : Ollivier (François) and Sadik (Brahim), "A simple and constructive proof to a generalization of Lüroth's theorem", *Turkish Journal of Mathematics*, on line, waiting for inclusion in an issue, 2022. DOI: 10.3906/mat-2110-11

Introduction

Lüroth's theorem ([2]) plays an important role in the theory of rational curves. A generalization of this theorem to transcendence degree 1 subfields of rational functions field was proven by Igusa in [1]. A purely field theoretic proof of this generalization was given by Samuel in [6]. In this note we give a simple and constructive proof of this result, based on a classical proof [7, 10.2 p.218].

Let k be a field and k(x) be the rational functions field in n variables x_1, \ldots, x_n . Let \mathcal{K} be a field extension of k that is a subfield of k(x). To the subfield \mathcal{K} we associate the prime ideal $\Delta(\mathcal{K})$ which consists of all polynomials of $\mathcal{K}[y_1, \ldots, y_n]$ that vanish for $y_1 = x_1, \ldots, y_n = x_n$. When the subfield \mathcal{K} has transcendence degree 1 over k, the associated ideal is principal. The idea of our proof relies on a simple relation between coefficients of a generator of the associated ideal $\Delta(\mathcal{K})$ and a generator of the subfield \mathcal{K} . When \mathcal{K} is finitely generated, we can compute a rational fraction v in k(x) such that $\mathcal{K} = k(v)$. For this, we use some methods developed by the first author in [3] to get a generator of $\Delta(\mathcal{K})$ by computing a Gröbner basis or a characteristic set.

Main result

Let k be a field and $x_1, \ldots, x_n, y_1, \ldots, y_n$ be 2n indeterminates over k. We use the notations x for x_1, \ldots, x_n and y for y_1, \ldots, y_n . If \mathcal{K} is a field extension of k in k(x) we define the ideal $\Delta(\mathcal{K})$ to be the prime ideal of all polynomials in $\mathcal{K}[y]$ that vanish for $y_1 = x_1, \ldots, y_n = x_n$.

$$\Delta(\mathcal{K}) = \{ P \in \mathcal{K}[y] : P(x_1, \dots, x_n) = 0 \}.$$

Lemma 1. — Let K be a field extension of k in k(x) with transcendence degree 1 over k.

- i) The ideal $\Delta(K)$ is principal in K[y].
- ii) If $K_1 \subset K_2$ and $\Delta(K_i) = K_i[y]G$, for i = 1, 2, then $K_1 = K_2$.
- iii) $\Delta(\mathcal{K}) = \tilde{\Delta}(\mathcal{K}) := (p(y) p(x)/q(x)q(y)|p/q \in \mathcal{K}).$
- iv) The ideal $\hat{\Delta}(\mathcal{K}) := k[x]\Delta(\mathcal{K}) \cap k[x,y]$ is a radical ideal, which is equal to $(q(x)p(y) p(x)q(y)|p/q \in \mathcal{K})$.

- v) Let G be such that $\Delta(K) = (G)$, with $G = \sum_{j=0}^{d} p_j(x)/q_j(x)y^j$ and $GCD(p_j,q_j) = 1$, for $0 \le j \le d$. Let $Q := PPCM(q_j \mid 0 \le j \le d)$, then $\hat{G} := QG$ is such that G(y,x) = -G(x,y) and $\deg_x \hat{G} = \deg_y \hat{G} = d$.
- PROOF. i) In the unique factorization domain $\mathcal{K}[y]$, the prime ideal $\Delta(\mathcal{K})$ has codimension 1. Hence, it is principal.
- ii) Assume that $\mathcal{K}_1 \neq \mathcal{K}_2$. There exists $p(x)/q(x) \in \mathcal{K}_2$ a reduced fraction, with $p(x)/q(x) \notin \mathcal{K}_1$. The set $\{1, p(x)/q(x)\}$ may be completed to form a basis $\{e_1 = 1, e_2 = p/q, \ldots, e_s\}$ of \mathcal{K}_2 as a \mathcal{K}_1 -vector space. Then, e is also a basis of $\mathcal{K}_2[y] = \mathcal{K}_2\mathcal{K}_1[y]$ as a $\mathcal{K}_1[y]$ -module and Ge is a basis of $\Delta(\mathcal{K}_2) = \mathcal{K}_2\Delta(\mathcal{K}_1)$ as a $\mathcal{K}_1[y]$ -module. So, $p(y) p(x)/q(x)q(y) \in \Delta(\mathcal{K}_2)$ is equal to $p(y)e_1 q(y)e_2$, which implies that G divides p and q, a contradiction.
- iii) We remark that $\tilde{\Delta}(\mathcal{K})$ does not define any prime component containing polynomials k[y], so that $\tilde{\Delta}(\mathcal{K}): k[y] = \tilde{\Delta}(\mathcal{K})$. The inclusion \supset is immediate. Let $P \in \Delta(\mathcal{K})$ with $P(x,y) = \sum_{j=0}^s p_j(x)/q_j(x)y^j$. We have P(x,x) = 0 and by symmetry P(y,y) = 0, so $P = P(x,y) P(y,y) = \sum_{j=0}^s (p_j(x)/q_j(x) p_j(y)/q_j(y))y^j$. So, throwing away denominators in k[y], $\prod_{j=1}^s q_i(y)P \in \tilde{\Delta}(\mathcal{K})$, so that $P \in \tilde{\Delta}(\mathcal{K}): k[y] = \tilde{\Delta}(\mathcal{K})$, hence the result.
- iv) The ideal $\Delta(\mathcal{K})$ is prime, so that $k(x)\Delta(\mathcal{K})$ and $\hat{\Delta}(\mathcal{K})$ are radical. We remark that $\hat{\Delta}(\mathcal{K})$ does not define any prime component containing polynomials k[x] or in k[y], so that $\hat{\Delta}(\mathcal{K}): (k[x]k[y]) = \hat{\Delta}(\mathcal{K})$. The inclusion \supset is immediate. Using the generators p(y) p(x)/q(x)q(y), $p/q \in \mathcal{K}$, a finite set of fractions Σ is enough by Noetherianity, so that $\prod_{p/q \in \Sigma} q(x)\delta(\mathcal{K}) \subset (p(y) p(x)/q(x)q(y)|p/q \in \mathcal{K})$, which provides the reverse inclusion, using the previous remark.
- v) By construction, \hat{G} is a generator of $\hat{\Delta}(\mathcal{K})$. All the generators of $\hat{\Delta}(\mathcal{K})$ in iv) being antisymmetric, \hat{G} is antysymmetric, which also implies that $\deg_x \hat{G} = \deg_y \hat{G} = d$.
- Theorem 2. Let K be a field extension of k in k(x) with transcendence degree 1 over k. Then, there exists v in k(x) such that K = k(v).
- PROOF. By lem. 1 i), the prime ideal $\Delta(\mathcal{K})$ of $\mathcal{K}[y]$ is principal. Let G be a monic polynomial such that $\Delta(\mathcal{K}) = (G)$ in $\mathcal{K}[y]$. Let $c_0(x), \ldots, c_r(x)$ be the coefficients of F as a polynomial in $\mathcal{K}[y]$. Since x_1, \ldots, x_n are transcendental over k there must be a coefficient $v := c_i$ that lies in $\mathcal{K} \setminus k$.

Write $v = \frac{f(x)}{g(x)}$ where f and g are relatively prime in k[x]. By lem. 1 v), $\max(\deg_x f, \deg_x g) \leq d := \deg_x G$. As g(x)f(y) - f(x)g(y) is a multiple of \hat{G} , $\max(\deg_x f, \deg_x g) = d$. Let D := f(y) - vg(y). As $D \in \Delta(\mathcal{K})$, the remainder of the Euclidean division of G by D is also in $\Delta(\mathcal{K})$ and of degree less than the degree of G. It must then be 0. Therefore D is a generator of $\Delta(k(v))$ and of $\Delta(\mathcal{K})$, with $k(v) \subset \mathcal{K}$, and by lem. 1 ii), we need have $\Delta(\mathcal{K}) = \Delta(k(v))$ and $\mathcal{K} = k(v)$.

The following result, given by the first author in [3, prop. 4 p. 35] and [4, th. 1] in a differential setting that includes the algebraic case, permits to compute a basis for the ideal $\Delta(\mathcal{K})$.

PROPOSITION 3. — Let $K = k(f_1, ..., f_r)$ where the $f_i = \frac{P_i}{Q_i}$ are elements of k(x). Let u be a new indeterminate and consider the ideal

$$\mathcal{J} = \left(P_1(y) - f_1 Q_1(y), \dots, P_r(y) - f_r Q_r(y), u\left(\prod_{i=1}^r Q_i(y) - 1\right)\right)$$

in K[y, u]. Then

$$\Delta(\mathcal{K}) = \mathcal{J} \cap \mathcal{K}[y].$$

Conclusion

A generalization of Lüroth's theorem to differential algebra has been proven by J. Ritt in [5]. One can use the theory of characteristic sets to compute a generator of a finitely generated differential subfield of the differential field $\mathcal{F}\langle y\rangle$ where \mathcal{F} is an ordinary differential field and y is a differential indeterminate. In a forthcoming work we will show that Lüroth's theorem can be generalized to one differential transcendence degree subfields of the differential field $\mathcal{F}\langle y_1,\ldots,y_n\rangle$.

References

[1] IGUSA (Jun-ichi), "On a theorem of Lueroth", Memoirs of the College of Science, Univ. of Kyoto, Series A, vol. 26, Math. no 3, 251–253, 1951.

- [2] Lüroth (Jacob), "Beweis eines Satzes über rationale Curven", Mathematische Annalen 9, 163–165, 1875.
- [3] Ollivier (François), *Le problème d'identifiabilité structurelle globale : approche théorique, méthodes effectives et bornes de complexité*, Thèse de doctorat en science, École polytechnique, 1991.
- [4] Ollivier (François), "Standard bases of differential ideals", proceedings of AAECC 1990, Lecture Notes in Computer Science, vol. 508, Springer, Berlin, Heidelberg, 304–321, 1990.
- [5] RITT (Joseph Fels), *Differential Algebra*, Amer. Math. Soc. Colloquium Publication, vol. 33, Providence, 1950.
- [6] SAMUEL (Pierre), "Some Remarks on Lüroth's Theorem", Memoirs of the College of Science, Univ. of Kyoto, Series A, vol. 27, Math. no 3, 223–224, 1953.
- [7] VAN DER WAERDEN (Bartel Leendert), *Algebra*, vol. 1, Frederick Ungar Publishing Company, New York, 1970, reprint by Springer 1991.