
Extending Flat Motion Planning to
Non-flat Systems.

Experiments on Aircraft Models Using
Maple

François Ollivier

LIX, UMR CNRS 7161

École polytechnique
91128 Palaiseau cedex

France
francois.ollivier@lix.polytechnique.fr

May, 12
th

2022

Abstract. Aircraft models may be considered as flat if one neglects some terms
associated to aerodynamics. Computational experiments in Maple show that in
some cases a suitably designed feed-back allows to follow such trajectories, when
applied to the non-flat model. However some maneuvers may be hard or even
impossible to achieve with this flat approximation. In this paper, we propose
an iterated process to compute a more achievable trajectory, starting from the
flat reference trajectory. More precisely, the unknown neglected terms in the flat
model are iteratively re-evaluated using the values obtained at the previous step.
This process may be interpreted as a new trajectory parametrization, using an
infinite number of derivatives, a property that may be called generalized flatness.
We illustrate the pertinence of this approach in flight conditions of increasing
difficulties, from single engine flight, to aileron roll.
Keywords : flat systems, motion planning, aircraft control, Newton operator,
symbolic-numeric computation, generalized flatness.



Résumé. Des modèles d’avions peuvent être considérés comme plats si on né-
glige certains termes associés à l’aérodynamique. Des expériences de calcul en
Maple montrent que dans certain cas, un bouclage convenable permet de suivre
de telles trajectoires, en utilisant le modèle non plat. Certaines manœuvres peuvent
néanmoins être difficiles, voire impossible à réaliser avec cette approximation
plate. Dans cet article, nous proposons un processus itératif pour calculer une
trajectoire plus aisée à suivre, en commençant par l’approximation plate de réfé-
rence. Plus précisément, les termes inconnus négligés dans le modèle plat, sont
itérativement réévalués, en utilisant les valeurs obtenues à l’étape précédente. Ce
processus peut être interprété comme un nouveau paramétrage utilisant une in-
finité de dérivées, une propriété qui peut être appelée platitude généralisée. Nous
illustrons la pertinence de cette approche dans des conditions de vol de difficulté
croissante, incluant un vol avec un seul moteur, une descente en vol plané avec
glissade et une manœuvre de voltige.
Mots-clés : systèmes plats, planification de trajectoire, contrôle de vol, opérateur
de Newton, calcul symbolique-numérique, platitude généralisée.



Introduction

We illustrate the use of computer algebra for experimental investiga-
tions relying on numerical simulations in the field of automatic control.
We consider here the notion of flat systems and some possible general-
izations in order to solve motion planning problems for aircrafts models.

The solutions of flat systems [2, 3, 10] can be parametrized by a set
of functions, called flat outputs, and a finite number of their derivatives.
This property is particularly useful for motion planning of non-linear
systems, i.e. the design of a control law able to generate a trajectory
joining a given starting point to a given end point. Though flatness is
not a generic property, flat systems are ubiquitous in practice. There
is no known complete algorithm to decide flatness (see e.g. Lévine [11]
for necessary and sufficient conditions), but the flat outputs have often
simple expressions that may be guessed by physical considerations.

This work takes place in a systematic study of apparent singularities of
flat systems, i.e. points where the parametrization provided by given flat
outputs ceases to be defined [6, 7]. In practice, such situations are more
likely to appear when a failure modifies the symmetries of the system
or involves the loss of some controls, thus requiring an alternative flat
output.

Among the classical examples of flat systems are cars, trucks with
trailers, cranes, aircrafts, etc. Note that aircraft models have been studied
since long in [14, 15]. Although aerodynamics models are complex and
may involve many parameters, they turn out to be flat if one neglects
the thrust created by control surfaces (rudder, elevator and ailerons) or
associated to angular speeds, a legitimate approximation in many cases.

In practice, we aim at designing a suitable feed-back able to compen-
sate both perturbations and modelling errors. In order to investigate its
robustness in the context of maneuvers and failures of increasing dif-
ficulties, we have designed a package in Maple. Its implementation is
presented and we illustrate its use by a few numerical simulations of tra-
jectory tracking. More details will be given in a forthcoming papers with
Y.J. Kaminski.

We focus here on a notion of generalized flatness, suggested by com-
putational experiments, trying to improve trajectory tracking when the
design of a suitable feed-back becomes hard. We first noticed that, con-
sidering trajectories with constant controls and attitude angles, these con-

3



trols and angles may be computed by solving an algebraic system, i.e. a
non-differential one. The real model is in this case more complicated, but
of the same nature as the simplified one. We sometimes needed to use an
alternative simplified model, where control values are not set to 0 but to
constant values provided by ad hoc calibration functions.

We tried then to go further and to improve the parametrization pro-
vided by the simplified model. We have needed to neglect some terms,
depending on the controls U. As the flat parametrization provides a first
evaluation U[0] for the controls, we can use this value in the perturba-
tion terms of the full model, instead of setting them to 0. We get so a
second evaluation U[1] for the controls that may be used to improve the
evaluation of the perturbation terms, providing a third evaluation U[2]. . .
This process can be iterated ad libitum. In our experiments, this simple
change provides, using only 4 iterations, a precise motion planning for
the full aerodynamic model, which suggests the introduction of a notion
of generalized flatness for such systems. “Precise” means here that the
trajectories remain close to the values of the flat outputs, without using
any feed-back. See simulations in sec. 6. As each iteration implies more
derivatives of the flat outputs, such a generalized flat parametrization po-
tentially involves an infinite number of derivatives of the flat outputs of
the unperturbed flat system.

Flat systems and their singularities are introduced in sec. 1. Detailed
aircraft models, for which this motion planning algorithm has been tay-
lored, are presented in sec. 2 and their approximate flatness and singular-
ities are studied in sec. 3. Then, their motion planning, tracking feed-back
and the associated Maple package are presented in sec. 4, the implemen-
tation of generalized flatness in section 5, followed by examples of flight
maneuvers with increasing difficulties in section 6. A last section 7, pro-
vides preliminary elements for a theoretical interpretation.

4



1 Flat systems and their singularities

The first definition of flatness was given in the framework of differen-
tial algebra [19]. We prefer here to use a more flexible definition, relying
on Vinogradov’s notion of diffieties [8, 23], that do not restrict to algebraic
systems and algebraic flat outputs. The main difference in our approach,
is that diffieties are defined by fixing a derivation, which corresponds to
flatness and not just the distribution generated by the associated vector
field, which corresponds to orbital flatness when time scaling is allowed.
See [3].

1.1 Definition

Définition 1. — A diffiety V is an open 1 subset of RI , where I is a denu-
merable set, equipped with a derivation δ. All functions on a diffiety are C∞ and
only depend on a finite number of coordinates. We denote their set by O(V).

In the sequel, we will be concerned with diffieties associated to a sys-
tem of finitely many ordinary differential equations

x′i = fi(x, u, t), (1)

where x = (x1, . . . , xn) is the state vector, u = (u1, . . . , um) the controls and
t is the time, implicitly satisfying t′ = 1. To such a system, we associate
R × Rn ×

(
RN)m, the first copy of R is for t, then Rn for x and the last

term corresponds to the controls and their derivatives. So the derivation
δ, that we denote by dt is

dt := ∂t +
n

∑
i=1

fi(x, u, t)∂xi +
m

∑
j=1

∑
k∈N

u(k+1)
j ∂

u(k)
j

, (2)

denoting ∂/∂xi by ∂xi for simplicity. We may obviously restrict to an open
subset, according to physical limitations.

Among such diffieties, is the trivial diffiety, which is R× (RN)m, equipped
with

dt := ∂t +
m

∑
j=1

∑
k∈N

z(k+1)
j ∂

z(k)j
,

1. Using the coarsest topology that makes the ith projection map πi continuous, for
all i ∈ I.

5



which is in fact the jet space J∞(R, Rm). We are now able to define flat-
ness.

Définition 2. — A diffiety morphism ϕ : Uδ1 7→ Vδ2 is such that ϕ∗O(V) ⊂
O(U) and, for any function g on V, ϕ∗δ2g = δ1ϕ∗g, meaning that the mapping
g is compatible with the derivations.

The flatness domain, is the set all flat points, i.e. points admitting a
neighborhood isomorphic to an open subset of the trivial diffiety.

Let ϕ be such an isomorphism defined by zj := Zj(x, u, t), the functions Zj
are called flat outputs.

Thus, ϕ−1 is locally defined and provides a flat parametrization, defined by
xi = Xi

(
z, . . . , z(r)

)
and u(k)

j = Uj,k

(
z, . . . , z(r+k+1)

)
.

In many cases, the state space is not affine and can be a sphere, a cir-
cle. . . as we will see soon. In such cases, different charts need to be used
to cover it. And flatness can impose to use more charts, each associated
to a suitable flat output, in order to cover the whole flatness domain.

1.2 Singularities of flat systems

In the above definition, flat outputs are only defined on open spaces.
Points where flat outputs are not defined, or the inverse mapping, are
apparent singularities for these outputs. Flat singularities are the points
where no flat parametrization can be defined.

The lack of a general algorithmic criterion to decide flatness makes
difficult to characterize flat singularities. In a first stage of a collaboration
in progress with Y.J. Kaminski and J. Lévine, we have focused on driftless
systems [6] and affine systems [7] with n − 1 controls, for which the fol-
lowing necessary condition, which amounts to the controllability of the
linearized system, turns out to cover all the cases when the action of the
control functions remain independent.

The most precise expression of this criterion requires using power se-
ries. At a given point η of a diffiety, we associate to any function F the
power series: jη F := ∑k∈N dk

t F(η)tk/k! and consider at each point η the
differential operator

dη F :=
n

∑
k=1

jη(∂xk fi)dxk +
m

∑
j=1

∑
k∈N

jη(∂u(k)
j

fi)du(k)
j . (3)

6



Theorem 3. — If a diffiety defined by a differential system (1) is flat at point η,
then the R[[t]][dt]-module defined the linearized system at η dη(x′i − fi(x, u, t),
that is the quotient R[[t]][dt]-module (dηx, dηu)/(dη(x′i − fi(x, u, t))), is a free
module.
Proof. — If Z is a flat output, then dηZ is a basis of this module.
Indeed, xi = Xi(Z), for 1 ≤ i ≤ n and uj = Uj(Z), for 1 ≤ j ≤ n, so that
dηxi = dηXi(Z) and dηuj = dηUj(Z).

It seems that we are lacking a good reference for testing freeness of
a D-module with coefficient in a power series ring. But things are easy
when coefficients are constants.

2 Aerodynamic models of aircrafts

We have used the model described by Martin [14, 15] that basically
follows most textbooks. We avoid reproducing all lengthy equations to
focus on their structure.

It is classical to model aircrafts using the following 12 state variables:
(x, y, z, V, γ, χ, α, β, µ, p, q, r). We try to describe briefly their rough mean-
ing. A precise understanding is not mandatory for what follows. First,
(x, y, z) correspond to the coordinates of the gravity center of the aircraft,
V to its speed, the flight path angle γ and the azimuth angle χ are Euler
angles describing the speed vector, µ is the bank angle, corresponding to
roll. Those three Euler angles define the wind frame, and the sideslip angle
β together with the angle of attack α describe respectively the rotations
with respect to the z-axis (yaw) and then y-axis (pitch) in order to go from
the wind referential to the aircraft frame, according to the following figure.

Then, (p, q, r) is the expression of the rotation vector in the Galilean
referential tangent to the aircraft referential at each time.

The controls are the following, the thrust of both engines (F1, F2),
that we prefer to model using their sum F = F1 + F2 and a parameter
η := (F1 − F2)/(F1 + F2), and then the virtual angles δℓ, δm and δn, that
respectively express the positions of the ailerons, elevators and rudder.
When the rudder is damaged, it is possible to some extent to use differ-
ential thrust η as a control instead of δn (see, e.g. [13]).

7



Thanks to Wikipedia

Angle µ corresponds to roll, β to yaw and α to pitch.

Figure 1 – Aircraft rotation axes

2.1 The shape of the equations

We can now describe the shape of the equations, dividing the state
variables in 4 subsets: Ξ1 := {x, y, z}, Ξ2 := {V, γ, χ}, Ξ3 := {α, β, µ} and
Ξ4 := {p, q, r}. We have:

(x′, y′, z′) = G1(V, γ, χ); (4a)

(V′, γ′, χ′) = G2(V, γ, α, β, µ, F, [p, q, r, δℓ, δl , δn]); (4b)

(α′, β′, µ′) = G3(V, γ, α, β, µ, p, q, r); (4c)

(p′, q′, r′) = G4(V, γ, α, β, µ, p, q, r, δℓ, δl , δn). (4d)

The equation (4b) actually depends on p, q, r, δℓ, δl , δn, but this depen-
dence is often neglected. With this simplification, setting Ξ5 := {δℓ, δl , δn},
at stage i, we can generically express the value of Ξi+1, using the deriva-
tives Ξ′

i. At stage 2, i.e. for i = 2, we need to choose one variable ζ in the
set Ξ3 = {α, β, µ, F} to form a flat output. Then, generically, x, y, z, ζ and
their derivatives allow to compute the values of the state space and con-
trols. The classical choice is ζ = β. We now briefly investigate apparent
singularities that may appear at each level of derivation, the second one
being left for further investigations.

8



2.1.1 Stage 1

d
dt

x(t) = V(t) cos (χ(t)) cos (γ(t)); (5a)

d
dt

y(t) = V(t) sin (χ(t)) cos (γ(t)); (5b)

d
dt

z(t) = −V(t) sin (γ(t)). (5c)

It is easily seen that the values of V, χ and γ, modulo π, can be
computed, provided that V cos(γ) ̸= 0, which seems granted in most
situations. The vanishing of V may occur with aircrafts equipped with
vectorial thrust, which means a larger set of controls, that we won’t con-
sider here. This means that we assume V > 0, so that a single value for
(cos(χ), sin(χ)) can be determined on the unit circle. The vanishing of
cos(γ) can occur with loopings etc. and would require the choice of a
second chart with another set of Euler angles. This issue was not investi-
gated here.

2.1.2 Stage 3

We postpone the study of stage 2, that contains the main difficulties, to
the next section. The shape of the third level equations imposes cos(β) ̸=
0. They are linear in (p, q, r), with a non vanishing determinant and so
easily solved.

2.1.3 Stage 4

The case of variables (p, q, r) is easy too.
The dynamics of the angular speed matrix (p, q, r) is given by: d

dt p(t)
d
dt q(t)
d
dt r(t)

 = I−1

 (Iyy − Izz)qr + Ixz pq + L
(Izz − Ixx)pr + Ixz(r2 − p2) + M
(Ixx − Iyy)pq − Ixzrq + N

 , (6)

where I is the inertia matrix of the aircraft, assumed to be symmetric
with respect to the xz-plane, and (L, M, N) the torque, that can obviously
be computed using these equations. In general, one expects L to depend

9



mostly of δℓ, M on δm, etc. and to be monotonous in the range of admissi-
ble values. Using the GNA model, they are linear in those controls, with
invertible matrices.

2.2 The GNA model

The aircraft model equations involve the forces (X, Y, Z) and the torques
(L, M, N) acting on the aircraft, that are given by these formulas:

X = F(t) cos(α + ϵ) cos(β(t))− ρ

2
SV(t)2Cx − gm sin (γ(t)); (7a)

Y = −F(t) cos(α + ϵ) sin(β(t)) + ρ
2 SV(t)2Cy

+gm cos(γ(t)) sin(µ(t));
(7b)

Z = −F sin(α + ϵ)− ρ

2
SV(t)2Cz − gm cos(γ(t)) cos(µ(t)); (7c)

L = −yp sin(ϵ)(F1(t)− F2(t)) +
ρ

2
SV(t)2aCl ; (7d)

M =
ρ

2
SV(t)2bCm; (7e)

N = yp cos(ϵ)(F1(t)− F2(t)) +
ρ

2
SV(t)2aCn. (7f)

The angle ϵ is a small angle related to the lack of parallelism of the
reactors with respect to the xy-plane of the aircraft and ρ is the air density,
a and b lengths related to the aircraft characteristics.

The aerodynamic coefficients Cx, Cy, Cz, Cl , Cm, Cn depend on α and β
and also on the angular speeds p, q, r as well as the controls δl, δm and
δn. To make the system flat, we need to consider that Cx, Cy and Cz only
depend on α and β. In the literature, the available expressions are often
partial or limited to linear approximations, as in McLean [16]. We used
here the Generic Nonlinear Aerodynamic (GNA) subsonic models, given
by Grauer and Morelli [4], that cover a wider range of values.

We will provide simulations with 2 aircrafts among the 8 in their
database: STOL utility aircraft DHC-6 Twin Otter and the sub-scale model
of a transport aircraft GTM (see [5]). Data for the F4 and F16C fight-
ers are also available in our implementation. The GNA model for the
aerodynamics functions C appearing in formulas (7a–7f) depends on 45

10



aerodynamic coefficients, in formulas such as:

CD = θ1 + θ2α + θ3αq̃ + θ4αδm + θ5α2 + θ6α2q̃ + θ7δm + θ8α3

+θ9α3q̃ + θ10α4,
Cy = θ11β + θ12 p̃ + θ13r̃ + θ14δl + θ15δn,
CL = θ16 + θ17α + θ18q̃ + θ19δn + θ20αq̃ + θ21α2 + θ22α3 + θ23α4,

(8)

where p̃ = ap, r̃ = ar, q̃ = bq, a and b being constants related to the
aircraft geometry, CD and CL correspond to the lift and drag coefficients.
The coefficients Cx and Cz in the wind frame are then given by the for-
mulas:

Cx = cos(α)CD + sin(α)CL,
Cz = cos(α)CL − sin(α)CD. (9)

Grauer and Morelli also provide all the needed physical constants,
but no precise data for landing conditions, flaps. . . To simulate landing,
empirical changes were made. The starting point of this work was to be
able to handle the full model, considering changes of flat outputs when
singularities are met, and to question the validity of the motion planning
provided by a flat simplified model, when trying to control the full model.

3 Flat outputs and their singularities

We now investigate the singularities related to the various choices of
flat output, at stage two.

3.1 Classical flat outputs
Martin [14] has used the set of flat outputs: x, y, z, β. We need to

explicit under which condition such a flat output is non singular. The
differential equations involved at stage two are the following.

d
dt

V(t) =
X
m

; (10a)

d
dt

γ(t) = −Y sin(µ(t)) + Z cos(µ(t))
mV(t)

; (10b)

d
dt

χ(t) =
Y cos(µ(t))− Z sin(µ(t))

cos(γ(t))mV(t)
. (10c)

11



The first one (10a) provides the value of X. From its expression, we
can express the value of F by (7a), as α + ϵ is assumed to be small. We see
that the two last equations depend on cos(µ)Y − sin(µ)Z and sin(µ)Y +
cos(µ)Z. We get new expressions Ŷ and Ẑ by substituting in them the
value of F provided by (7a). We can compute locally α and µ, provided
that ∣∣∣∣∣ ∂X̂

∂α
∂X̂
∂µ

∂Ŷ
∂α

∂Ŷ
∂µ

∣∣∣∣∣ ̸= 0. (11)

This condition implies that Y and Z do not both vanish, which excludes
0-g flight for space training or some aerobatics maneuvers, but which
stands in most usual flight conditions. The main interest of this choice is
to be able to impose β = 0, which is almost always required.

3.2 The bank angle choice

Considering the flat output {x, y, z, µ}, we see that we can compute
the values of X, Y and Z. Again, X provides an expression of F, that
may be susbsituted in Y and Z to get new expressions Ỹ and Z̃. The flat
output is regular when ∣∣∣∣∣ ∂Z̃

∂α
∂Z̃
∂β

∂Ỹ
∂α

∂Ỹ
∂β

∣∣∣∣∣ ̸= 0. (12)

The vanishing of this determinant may be interpreted as some kind of
stalling condition. Indeed, when β = 0, it is equal by symmetry to
∂Z̃/∂α∂Ỹ/∂β. For most aircrafts, ∂Ỹ/∂β ̸= 0 seems reasonable, although
it may be very small or even negative for some fighter like the F16XL
with a delta wing, according to data in [4]. Then, ∂Z̃/∂α means that
the lift is extremal, which may be taken as a rough mathematical defini-
tion of stalling. Of course, we are here working with a simplified model
that cannot reflect the irreversible changes in air flow that occurs in real
stalling, but only mimics it as a maximum of the lift. In such a situation,
the control δm that acts on α, and so on the lift, may be considered as
lost. And indeed, for a straight line trajectory with constant speed equal
to the stalling speed, i.e. with α maximal, the aircraft model is not flat
according to th. 3. This means that such a flight output always works for
most aircrafts, except in situations that obviously need to be avoided for
safety reasons.

12



3.3 The thrust choice

The choice of thrust F has one main interest: to set F = 0 and consider
the case of an aircraft having lost all its engines. See subsection 6.2. In
the case of the GNA model, Cy is linear in β. If cos(µ)θ11 ̸= 0 (see (8)),
we may express β depending on α, µ, X1, X2 and the aircraft parameters,
using equation (10c), and then replace it by this evaluation in X and Z
to get new expressions X̄ and Ȳ. The flat outputs including F are non
singular iff ∣∣∣∣∣ ∂X̄

∂α
∂X̄
∂µ

∂Z̄
∂α

∂Z̄
∂µ

∣∣∣∣∣ ̸= 0. (13)

By symmetry, both ∂X̄/∂µ and ∂Z̄/∂µ vanish when β = µ = 0, so that
this choice of linearizing outputs requires non zero side-slip angle and
bank angle for trajectories included in a vertical plane.

3.4 Other sets of flat outputs

Among the other possible choices for completing the set Ξ1 in order
to get flat outputs, α could work in theory but does not seem to have
much specific interest. One may also consider time varying expressions,
e.g. linear combinations of β and µ, to smoothly go from one choice to
another, which has been implemented but did not lead to a convincing
use in simulations.

4 Maple package

We describe here an experimental implementation, only designed at
this stage for our own use and lacking of documentation and comments.
However, the source code is made available for curious readers:
http://www.lix.polytechnique.fr/{~}ollivier/GFLAT/. The goal was
to get reliable results by minimizing the needed total amount of time,
that is the time requested by numerous simulations and the time of im-
plementation.

Four Maple packages were written. The package GNA implements data
from Grauer and Morelli, the package Flat_Plane_G2 implements the
flat motion planning and its generalization. A package Newton contains a

13

http://www.lix.polytechnique.fr/{~}ollivier/GFLAT/


multivariable Newton method and a package Display_plane deals with
numerical simulations and drawing the curves that illustrate this paper.

Another important point is to be able to control long computations in
order to stop them if something goes wrong. The functions were mostly
used in verbose mode, displaying the index i of each new time step or
intermediate numerical results during motion planning or numerical in-
tegration.

This proved important for debugging but also during the repeated
trial and error sequences required to guess working parameters for the
feed-back.

The general spirit was to limit ourselves to basic Maple functions:
manipulation of lists, substitutions, computation with polynomials and
classical functions, power series, the solve function for linear systems,
and the dsolve numerical integrator.

4.1 Physical models. GNA

There is not much to say about this package. Our choice was to use
global variables to store all the requested parameters. It has many draw-
backs, including some possible protest from Maple numerical integrator,
that we were able to overcome. The main advantage is to alleviate the
number of arguments in functions that already require a great number of
them and to make all the requested intermediate results available for the
function used at next step without mistakes and omissions. There is a
function for each model of aircraft that store the physical constants, with
names such as TO, GTM or F16C. Its arguments are of the form x = fct(t),

y = fct(t). . . a sequence that is stored in a global list to provide the time
functions associated to the flat outputs.

We have already said that any combination ζ of β and µ can be used
as a flat output. For this, the syntax

zeta=(f1(t)*betta+f2(t)*mu=fct(t))

is recognized. One may notice that beta and gamma are already used by
Maple. An ugly but fast solution was to write bbeta and gama to avoid
conflicts. In case of rudder failure, one can use relative thrust as control.
A generic name for this control is u_4 and one may write e.g. deltan=u_4,
eta=0 or deltan=10*deg, eta=u_4. If a non zero value is given to δn, it

14



will be used at the stage 2 (see 2.1), for better precision, instead of setting
it to 0 in order to define the simplified model. Options provide models
for ground effect or an expression of air density, depending on altitude.
For this, the notation _z is used instead of z to avoid too early evaluation.
One may also assign to eta a function of the time, e.g. to model an engine
failure. We need then to denote the time by _t, again to prevent too early
evaluation.

4.2 Newton operator with series

The main task of the Flat-plane model is to achieve motion planning.
Following the ideas developed in section 3, this is in principle easy. We
encounter two difficulties. First, computing successive derivatives of the
flat outputs may lead to formulas of great size and slow computations,
mostly when trying to model complicated maneuvers and long flight se-
quences. Second, we cannot rely at stage 2 (see 2.1) on closed form for-
mulas for solving the equations, so that numerical approximations need
to be computed.

Our choice was to compute at a given time a power series expansion
of the flat outputs (x, y, z) with all terms up to t5. At stage 2, a classical
Newton method is used to compute constant terms of the series corre-
sponding to α, β, µ or F. Then, we use a Newton method for series (see
e.g. [1, th. 3.12 p. 70]) to compute their power series expansion modulo t2

and then t4, which is enough to get δℓ, δm and δn as affine functions of t.
Higher orders may also be computed and will be needed in sec. 5.

Unless physical considerations makes it difficult or impossible (e.g.
near stalling conditions), the use of Newton method is in general easy,
when initiated with 0 values, as most angles are small. This is no longer
the case with flat outputs x, y, z and F, that require higher values of β.
Then, some calibration functions (see 5.1) are used to provide suitable val-
ues to initiate the computation. Our Newton function is a memory one,
so that it starts at step i + 1 with the values of step i for better efficiency.
During experiments, warning messages from the Newton function that
fails to provide solution up to 10−3 after 20 iterations are the symptoms
of a choice of trajectory that is too close to a singularity of the flat output.

15



4.3 Motion planning

The function Motion_Planning takes among its arguments a begin-
ning time, an ending time and the number of time intervals. Its many
outputs are not returned as outputs but stored in global variables. The
most important is the table TTG. At each step time ti, the power series
expansions si of the controls and state variables are stored; e.g. for α
in TTG[α, i, 0, 0]. So, they can be used by functions with names such as
falpha, . . . that will compute the value of α at t1 ≤ t ≤ ti+1 using the
formula: [(ti+1 − t)si(t − ti) + (t − ti)si+1(t − ti+1)]/(ti+1 − ti) for better
precision.

An option calls Maple numerical solver to build numerical integrators
for the full model (stored in resudsolve), using just the control functions
computed with the simplified model, or completing them with feed-back
functions (stored in resudsolveB), that are described in the next subsec-
tion. Then, the function bouclage that computes the feedback is also
called.

An extensive use of the subs Maple function allows to perform rewrit-
ing tasks, replacing in the equations parameters by their values, as well as
already computed state variables. A basic function serpol (and avatars
that apply to both terms of an equality, list of equalities etc.) computes
a power series expansion and convert it to a polynomial, that is easier to
handle for further computations.

4.4 Design of the feed-back

The function bouclage that computes the feedback takes a single argu-
ment that is the fourth linearizing output: β, µ or F. It return no values,
the computed results being stored in global variables.

To design the feed-back, we consider the linearized system around the
trajectory planned using dx, dy, dz as flat outputs of this linear system,
completed with dβ or dµ, according to the case, or nothing with the F
output. The state functions are replaced at each step i by its power series
expansion at ti. The main idea is to achieve an exponential decrease of
δx, δy, . . . that is the difference between values x, y, . . . computed by
numerical integration using the full model and the planned values x̃, ỹ,
. . . using the flat parametrization. To be able to correct model errors, we

16



also need to use the integrals

I1 =
∫ t

t0
cos(χ(τ))δx(τ) + sin(χ(τ))δy(τ)dτ;

I2 =
∫ t

t0
− sin(χ(τ))δx(τ) + cos(χ(τ))δy(τ)dτ;

I3 =
∫ t

t0
δz(τ)dτ;

I4 =
∫ t

t0
δζ(τ)dτ,

(14)

where t0 is the initial time of the simulation and ζ is β or µ according to
our choice of flat outputs.

The algebraic design of the feed-back relies on computations in the
differential module defined by the linearized system at each step time ti,
using the analogy between the assumed “small variations” δξ = ξ − ξ̃
and dξ for any state variable ξ. Each equation P of the system is replaced
by its differential ∑ξ ∂P/∂ξdξ and one substitutes to the ξ’s their power
series estimation ξ̃.

Lists of positive real values λi,j having been given, the feed-back δF =

c1,I1 + ∑ξ∈Ξ1∪Ξ2∪Ξ3
c1,ξδξ is set so that ∏3

k=1(d/dt − λ1,k)I1 is equal to 0.
In the same way, the feed-backs δδℓ = ∑ξ∈Ξ̂ c2,ξδξ , δδm = ∑ξ∈Ξ̂ c3,ξδξ and
δu4 = ∑ξ∈Ξ̂ c4,ξδξ , where Ξ̂ = {I1, . . . , I4} ∪

⋃4
p=1 Ξp, are computed, so

that ∏5
k=1(d/dt − λ2,k)I2, ∏5

k=1(d/dt − λ3,k)I3 and ∏3
k=1(d/dt − λ4,k)I4

are all equal to 0.
We proceed just as for the motion planning. At each step time ti,

an the expressions for δF, δδℓ, . . . are computed and stored in the global
array TtF[i], Ttdeltal[i], . . . so that these results can be used by numerical
functions ftF, ftdeltal, . . . that achieve fast numerical computation of
the feed-back during the integration.

Under good hypotheses, the Ip, 1 ≤ p ≤ 4 tend to a constant value,
or a slowly varying value, so that their derivatives are 0, or small, just
as the δx, δy, δz and δζ. Troubles appear with fast maneuvers and also
with aircrafts like the Twin Otter with generous controls surfaces, gener-
ating greater thrusts. Too big values for the λi,j can create instabilities,
two small values do not manage to keep close to the planned trajectory.
Choices where made with trial and errors, that sometimes required many
interrupted simulations.

The choice of F as a flat output just requires minor changes. We
only need to use I1, I2 and I3 and compute the feed-backs δδℓ . . . so
that ∏5

k=1(d/dt − λp,k)Ip, for 1 ≤ p ≤ 3.

17



5 Generalized flatness

5.1 Calibration functions

When the torsion and the curvature of the trajectory are constants,
the values of the controls F, δl, δm and δm are constant too. It is then
possible to compute them, just knowing V, γ, χ′ and β, even for the full
model. They are solutions of a non-linear system, that may be solved
using Newton method. Indeed, looking at the set of equations (4c), (4d)
and the equations (10a) and (10b), we see that for such trajectories, the
derivatives in the left members are equal to 0. On may add equation
(10c), for which the left member χ′ is a constant. We have then 9 equations
between the 13 unknowns in {V, γ, χ′, F} ∪ Ξ3 ∪ Ξ4 ∪ Ξ5. Generically, we
need to fix 4 values to have local expressions of the 13 others. We have
implemented such functions to compute the angle of attack α, depending
of V, or to compute stalling speed. They most of the time only depend of
2 arguments, instead of 4, when assuming γ = χ′ = 0, or just one, when
assuming also β = 0.

5.2 From calibration to time varying controls

When the control functions are not constant, it remains possible to
evaluate their values with the full system. The basic idea is to recompute
the trajectory planned with the simplified system, using the values ob-
tained for p, q, r, δℓ, δm, δn, instead of 0. The process can then be iterated,
and we can describe it in the general setting of an almost chained system,
such as

(Z′
h, X′

h) = Gh(Z1, . . . Zh+1, X1, . . . , Xh+1)
+Hh(Xh+2, . . . , Xh+ℓh

), 1 ≤ h ≤ r, (15)

with the ℓh ≥ 1, 1 ≤ h ≤ r. By convention, ℓh = 1 means that Hh = 0. The
Xh form a partition of X, the Zh a partition of Z and X ∪ Z is the set of
both state variables and controls, the distinction being more physical than
mathematical. We assume that ♯Xh + ♯Zh = ♯Xh+1, ♯Z = m, the number
of controls and ♯X1 = 0, where ♯Xp denotes the cardinal of Xp.

If one neglects H, or replace in H its arguments by any known value
X̂, the variables in Z are assumed to be flat outputs for the system. This
assumption means that setting Zh,i = ζh,i(t), one can at time t0 replace Zh,i
in the equations (15) by a power series development of ζh,i at order κ −

18



h+ 1 and compute power series solutions X̃h at order κ − h+ 1. This is as-
sumed to be implemented in a function FlatParametrization(t0, κ, ζ , X̂).
Using any guessed value X̂[−1], with X[−1]

h known at order κ − h + ℓh, we
can compute an approximation of the state and control

X̂[0] := FlatParametrization(t0, κ0, ζ , X̂[−1]),

where each set X̂h is computed at order κ0 − h + 1.
This may be iterated J times, using X[0], X[1], . . . instead of the guessed

value X[−1], as described by the following process, where the input v
denotes the guessed initial value, ζ any vector of m functions, J a non-
negative integer and e the wanted order for the output. The order of the
output decreases of L := maxr

h=1 ℓh − 1 at each iteration.
GeneralizedFlatParametrization(v, ζ, J, e)
X̂[−1] := v (Guessed values);
L := maxr

h=1 ℓh − 1;
κ0 := e + r + JL;
for j from 0 to J do

X̂[j] := FlatParametrization(t0, κj, ζ , X̂[j−1]),
κi+1 := κi − L;

od;
return X̂[J];

Returning to the plane model, we have ♯X1 = 0, ♯X2 = ♯X3 = 3 and
♯X4 = ♯X5 = 4, adding F(p−3) to Ξp, for p = 4, 5, for consistency with
(15). Furthermore, we have Z1 = {x, y, z} and Z3 = {ξ} ∈ {α, β, µ, F},
with X3 = {α, β, µ, F} \ {ξ}.

The only term H is H2, that depends of the state variables p, q, r in X4
and the controls δl, δm and δn in X5. So, L = 2 in our case. This means
that with J iterations, we need to start computations with series of order
5 + 2J in oder to get the controls δ in X5 at order 1.

All the unavoidable accessory tinkerings in the real implementation
would be tedious to detail, but basically, implementing generalized flat
parametrization is an easy task, as we just have to increase the orders
of a known integer and to implement a loop that iterates the core of the
Motion_Planning function. At iteration j, the series corresponding, e.g.,
to α is stored in TTG[α, i, j, 0].

We do not investigate more deeply here the question of the conver-
gence of this process, beyond the fact that the Hh are assumed to be

19



“small” and that a limited number of iterations provide good results in
the following examples, all computed with J = 4.

6 Examples

Designing a trajectory that matches actual practice and aircrafts pos-
sibilities by looking at flight instructions books and pilots forums sure
helps. We did not try to use tricks to reduce computation time in order
to get better precision.

6.1 Single engine

We model here a Twin Otter that loses an engine, whose power grad-
ually decreases. We go from equal thrust to total extinction of starboard
engine, setting the value of η = (F1 − F2)/(F1 + F2), as in equation (16)
below. The distance of the engines to the plane of symmetry of the aircraft
has been evaluated to 9.2ft.

The rudder must compensate the torque created by a dissymmetric
thrust. With the full model, the rudder also creates a thrust, that must be
compensated by a variation of β or µ. With β = 0 or µ = 0, the trajectory
planned by the simplified model is the same. Using here the feed-back
for β, µ will change.

x = 140ktst; y = 0; z = 0; µ = 0;

η = .5 + arctan t−30.
5.

π

(16)

The Twin Otter has generous control surfaces, making it highly manoeu-
vrable, but meaning a higher contribution of the δl, δm, δn to Cx, Cy and
Cz. We borrow with some adaptations the values of the λi,j suggested by
Martin [14]: λ1,1 = 1., λ1,2 = 2., λ1,3 = 3., λ2,1 = 1., λ2,2 = 1., λ2,3 = 1.,
λ2,4 = 2., λ2,5 = 3., λ3,1 = 1.5, λ3,2 = 1.5, λ3,3 = 1.5, λ3,4 = 3., λ4,5 = 4.,
λ4,1 = 1., λ4,2 = 2., λ4,3 = 3.

The variations of µ remains little, in accordance with the reported
ability of the T-O to fly with a single engine (Lecarme [9]).

We see that the integrated curves converge to the curves planned by
generalized flatness, after initial oscillations, which already shows that
this prediction is meaningful. The total computation time for the flat and

20



Figure 2 – Twin Otter loosing one engine, with β = 0.

The flatness planned curve is in red, the integration with feed-back in darkblue
and the generalized flatness curve in green.

generalized parametrization is 1279sec. The numerical simulation takes
76sec.

6.2 Forward slip

This maneuver may be used for emergency landing, when an aircraft
that has lost all engines comes near the landing strip too high or too fast.
A way to decrease speed and altitude is to increase β and µ in opposite
ways, creating deceleration when aerobrakes are unusable. It is in general
used for small aircrafts, but there is a successful example of an emergency
landing with an airliner, at the former air force basis of Gimli, Manitoba,
in 1983 [12]. Here we used a calibration function to guess initial values
and non zero values for the controls, close to the mean speed and flight
path angle of our trajectory.

The following table shows constant values for straight line trajectories,
depending on α and β, for both the real and the simplified models with
(p, q, r, δl , δm, δn) = (0, 0, 0, 0, 0, 0).

Model α β γ µ V δl δm δn
Simple 0.15 0. −0.1187 0. 29.8996 0. 0. 0.
Real 0.15 0. −0.1190 0. 30.3053 0. −0.0490 0.
Simple 0.15 0.2 −0.1650 0.2409 29.3672 0. 0. 0.
Real 0.15 0.2 −0.1470 0.1345 30.1114 −0.1880 −0.0490 0.3305
Simple 0.15 0.35 −0.2508 0.3899 28.4019 0. 0. 0.
Real 0.15 0.35 −0.2027 .2250 29.7171 −0.3316 −0.0490 0.5690

21



For our simulation, we have chosen α = 0.15 and β = 0.35 as refer-
ence values to set the controls. To fix ideas, the speed values for such
a 0.055 scale model must be divided by 0.0550.5 to get full scale values,
which means 456.1709km/h for the total speed. Here are the flat output
trajectories and feed-back parameters.

x = 29.10852587t + 50 sin(t/60.);
y = 60 cos(t/100. + 2.);
z = −1000 + 5.983293200t + 70 sin(t/70.));
λi,j = 0.5

(17)

Figure 3 – Forward slip with the GTM

The flatness planned curve is in red, the integration with feed-back in dark blue
and the generalized flatness curves in green. The curve in cyan is the integration
with the generalized flatness planned controls and without feed-back.

Again, the feed-back allows the integrated value to converge to the
curve planned by generalized flatness with good precision, after initial
oscillations. The curves δl and δm actually show δm + δδm and δn + δδn,

22



including feed-back. We have included here the integration of the gen-
eral system, with we initial values and control coming from generalized
flatness. The coincidence is so good that the generalized flatness planned
curves in green are covered by the curve in cyan provided by the integra-
tion.

6.3 Aileron roll and parabolic flight

Here, we investigate a limit case with rapid changes. The trajectory is
parabolic with acceleration g, so the flat outputs with β is unusable. We
use µ, setting µ = π/2t. A fighter would have been more credible, but
we could only make the feed-back work with the GTM. The horizontal
speed is 100km/h.

Figure 4 – Aileron roll and parabolic flight with the GTM.

The flatness planned curve is in red, the integration with feed-back in dark blue
and the generalized flatness curve in green. The curve in cyan is the integration
with the generalized flatness planned controls and without feed-back.

23



We see that the feed-back permits to follow the generalized flatness
planned curve, but things are moving too fast to keep always the two
curves close. The integration in cyan with the generalized flatness planned
control, without feed-back, remains very close to the prediction, which
confirms that the generalized flatness parametrization is a good approxi-
mation of a solution of the real system. E.g., a small discrepancy of about
0.5cm, is observed for y at t = 5., one of the only state function for which
the curve in green appears bellow the cyan one. The computation time is
647sec for the motion planning and 402sec for the simulation.

To better appreaciate the convergence of the generalized flatness loop,
we have computed the values for the controls F, δl, δm and δn at t = −1.9
a time for which the differences with the plain flatness values are much
appreciable. They are given in the table bellow.

J = 0 J = 1 J = 2 J = 3 J = 4 J = 5 J = 6 J = 7
F −2.36 8.40 8.56 8.610 8.624 8.628 8.6304 8.6309
δl −0.44 −0.45 −0.462 −0.4642 −0.4647 −0.4648 −0.46493 −0.464918
δm 0.04 0.04 0.039 0.0389 0.0387 0.03872 0.038730 0.038731
δn 0.05 0.07 0.085 0.0871 0.087 0.08800 0.087997 0.0880978

The theoretical study of convergence is of course of a great interest,
but it is known that such a property is not mandatory for applications.
E.g., some divergent series, using smallest term trunctation, can provide
accurate and fast computations. See [18].

7 Generalized flatness from the theoretical stand-
point

The flat parametrization only involves a finite number of derivatives,
which is the basis of all known necessary conditions of flatness (see [22,
21, 17]). We have seen that our motion planning is a limit that potentially
involves an infinite number of derivatives, as the evaluation for the con-
trols δ at step j+ 1 depends on the second derivative of their evaluation at
step j. This gives some credibility to a folkloric conjecture, claiming that
all controllable systems are flat if functions of an infinite number of derivatives
are allowed. We propose some elements of interpretation in the linear case.

We may indeed consider the simple system x′ = y + ϵy′. When ϵ is
0, x is a flat output. For ϵ > 0, we may choose ζϵ := x − ϵy. However,

24



we can keep x as a generalized flat output. Indeed, one may write y =
∑i∈N(−1)iϵi(d/dt)ix. This series will converge if x is analytic with a
convergence radius greater that 1/ϵ. Moreover, if there exists a linear
operator L in R[d/dt] such that Lx = 0 and 1 + ϵd/dt, as well as d/dt,
are not a factors of L, then there exists M and N such that ML + N(1 +
ϵd/dt) = 1, so that y = Nx′. Taking for L the sequence (d/dt)i, the sum
that gives the value of y becomes trivially finite. This situation is close
to our considerations about calibration in subsec. 5.1. But this can work
also with any operator ∏k

i=1(d/dt − λi)
i, such as those that we met for

designing feed-backs in subsec. 4.4.

25



Conclusion

We have seen how computer algebra may help to investigate the valid-
ity of some simplifications required to reduce to a flat model. Although
we could rely on very classical algorithmic tools, some investment have
been required to work out for our experiments an implementation with
acceptable computation times. One also need a joint use of symbolic and
numeric computations.

A slight modification of the code used with the simplified flat model
have made possible the direct computation of an accurate motion plan-
ning for the original non flat system, an observation that cannot be a mere
artefact and so requires a theoretical explanation.

One cannot predict if this notion of generalized flatness will have ac-
tual applications. The theoretical difficulties are also unkown, but the
unanswered problems related to flatness show that limited theoretical
knowledge is not an obstacle to applicability, as long as computations are
fast and results reliable. The complexity of the model used here could jus-
tify some optimism for computational success with much simpler exam-
ples, such as the car with two deported trailers, known not to be flat [20].

Those investigations include an algorithmic aspect. E.g., one may ask
whether is it possible to compute the generalized parametrization in a
faster way, using some kind of Newton method, which could also help
to investigate the convergence of the process. So, even if the applicability
should be limited, computational issues may remain of some interest.

Thanks To Yirmeyahu J. Kaminski, Jean Lévine and anonymous referees
for their patience, rereading and suggestions.

References

[1] Alin Bostan, Frédéric Chyzak, Marc Giusti, Romain Lebreton, Gré-
goire Lecerf, Bruno Salvy, and Éric Schost, Algorithmes efficaces en cal-
cul formel, Frédéric Chyzak (auto-édit.), Palaiseau, September 2017

(french), 686 pages. Printed by CreateSpace. Also available in elec-
tronic version.

26



[2] M. Fliess, J. Lévine, Ph. Martin, and P. Rouchon, Flatness and defect
of non-linear systems: introduction theory and examples, Int. Journal of
Control 61 (1995), no. 6, 1327–1361.

[3] , A Lie-Bäcklund approach to equivalence and flatness of nonlinear
systems, IEEE Trans. Automatic Control 44 (1999), no. 5, 922–937.

[4] Jared A. Grauer and Eugene A. Morelli, A generic nonlinear aerody-
namic model for aircraft, AIAA Atmospheric Flight Mechanics Confer-
ence, AIAA, 2014.

[5] Richard M. Hueschen, Development of the transport class model (tcm)
aircraft simulation from a sub-scale generic transport model (gtm) simula-
tion, Tech. Report NASA/TM–2011-217169, NASA, 2011.

[6] Y. Kaminski, J. Lévine, and F. Ollivier, Intrinsic and apparent singulari-
ties in differentially flat systems, and application to global motion planning,
Systems & Control Letters 113 (2018), 117–124.

[7] , On singularities of flat affine systems with n states and n − 1
controls, International Journal of Robust and Nonlinear Control 30
(2020), no. 9, 3547–3565.

[8] V.V. Krasil’shchik, V.V. Lychagin, and A.M. Vinogradov, Geometry
of jet spaces and nonlinear partial differential equations, Gordon and
Breach, New York, 1986.

[9] J. Lecarme, Lignes de vol, le de havilland dhc-6 twin otter, Aviation Mag-
azine (1966), no. 449.

[10] J. Lévine, Analysis and control of nonlinear systems: A flatness-based ap-
proach, Mathematical Engineering, Springer, Dordrecht, Heidelberg,
London, New-York, 2009.

[11] , On necessary and sufficient conditions for differential flatness,
Applicable Algebra in Engineering, Communication and Computing
22 (2011), no. 1, 47–90.

[12] George H. Lockwood, Final report of the board of inquiry into air canada
boeing 767 c-gaun accident — gimli, manitoba, july 23, 1983, Tech. re-
port, Minister of Supply and Services Canada, 1985.

[13] Long K. Lu and Kamran Turkoglu, Adaptive differential thrust method-
ology for lateral/directional stability of an aircraft with a completely dam-
aged vertical stabilizer, International Journal of Aerospace Engineering
218 (2018).

27



[14] P. Martin, Contribution à l’étude des systèmes différentiellement plats,
Ph.D. thesis, Ecole Nationale Supérieure des Mines de Paris, Paris,
France, 1992.

[15] Philippe Martin, Aircraft control using flatness, CESA’96 - Sympo-
sium on Control, Optimization and Supervision (Lille, France),
IMACS/IEEE-SMC Multiconference, 1996, pp. 194–1999.

[16] Donald McLean, Automated flight control systems, Prentice Hall, New
York, 1990.

[17] François Ollivier, Une réponse négative au problème de lüroth différentiel
en dimension 2, C. R. Acad. Sci. Paris 327 (1998), no. 10, 881–886.

[18] J.P. Ramis, Séries divergentes et théories asymptotiques, Société Mathé-
matique de France, Marseille, 1993.

[19] J.F. Ritt, Differential algebra, American Mathematical Society, Provi-
dence, Rhodes Island, 1950.

[20] P. Rouchon, M. Fliess, J. Levine, and P. Martin, Flatness, motion plan-
ning and trailer systems, Proceedings of 32nd IEEE Conference on De-
cision and Control, IEEE, 1993, pp. 2700–2705 vol.3.

[21] Pierre Rouchon, Necessary condition and genericity of dynamic feedback
linearization, Journal of Mathematical Systems Estimation and Con-
trol 4 (1994), no. 2, 1–14.

[22] Willem M. Sluis, A necessary condition for dynamic feedback linearization,
Systems & Control Letters 21 (1993), 277–283.

[23] Victor V. Zharinov, Geometrical aspects of partial differential equations,
Series on Soviet and East European Mathematics, World Scientific,
Singapore, 1992.

28


	Flat systems and their singularities
	Definition
	Singularities of flat systems

	Aerodynamic models of aircrafts
	The shape of the equations
	Stage 1
	Stage 3
	Stage 4

	The GNA model

	Flat outputs and their singularities
	Classical flat outputs
	The bank angle choice
	The thrust choice
	Other sets of flat outputs

	Maple package
	Physical models. GNA
	Newton operator with series
	Motion planning
	Design of the feed-back

	Generalized flatness
	Calibration functions
	From calibration to time varying controls

	Examples
	Single engine
	Forward slip
	Aileron roll and parabolic flight

	Generalized flatness from the theoretical standpoint

