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Abstract

We propose a new method for image noise detection
and reduction in complementary metal oxide semi-
conductor (CMOS) image sensors inspired from audio
noise cancelling techniques. Our algorithm is based
on computing efficiently the time-dependent pixel au-
tocorrelation function (ACF) from constant time in-
terval acquired sequences of images. We demonstrate
the effectiveness of our approach for successfully de-
tecting and reducing white noise. Further, we con-
sider an adaptive filter that exhibits significant com-
putational improvements making it highly practical.
Finally, we report on experiments displaying the high-
quality imaging systems obtained in practice.

Keywords: CMOS image sensor, white noise, au-
tocorrelation function (ACF), noise canceller.

1 Introduction

Digital still and video cameras equipped with CMOS
image sensors are well-known to be prone to noise
phenomena, especially in poor lighting dim environ-
ments [20, 7, 18, 4, 3, 9]. It is therefore of the utmost
importance to consider image processing noise reduc-
tion techniques to circumvent these sensor limitations
in order to deliver crispy and vivid artefact-free im-
ages to consumers.

Typically, the various sources of noise in a CMOS
image sensor can be classified into two disjoint groups:
Namely, the white noise (W), and the colored noise
(C). Noise sources occur either at the pixel circuitry
level or in the analog-to-digital converter (ADC) unit.

Figure 1: Source and classification of the two types
of noise in a CMOS image sensor. The ‘W’ and ‘C’
attributes respectively mean white and colored noises.

White noise sources include the reset, 1/f , dark shot,
photon shot and amplifier noise, just to name a few.
Colored noise include the offset noise, the dark noise,
and the difference of dimension, among others. Fig-
ure 1 depicts these various types of noise along with
their physical origin locations and White/Colored
type classifications.

Colored noise is a fixed pattern noise that does not
change over time as the images are read out. In other
words, colored noise is time invariant, and depend
only on the physical structural properties of the cam-
era imaging system. For example, colored noise may
originate from the threshold value or size scatter of a
transistor, or from the sensitivity scattering and open
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area ratio of a photo diode, or also from the gain scat-
tering of the amplifier units, etc. It is well-known that
such a kind of colored noise may be removed by ap-
plying the technique called correlated double sampling
(or CDS for short), as described in [15]. Thus the sys-
tem noise taking place in a camera device is colored
and originates from the architecture per se. In princi-
ple, colored noise can be analyzed and ideally removed
by subtracting to the captured image data the opti-
mal (noisy) “black” data image obtained at the same
time when no light hit the sensor. To constrast with
these system-specific colored noise sources, the second
class of noise, called white noises, have characteristics
depending on time (and therefore is different in each
acquired image). White noise sources include ther-
mal, reset, 1/f and optical noise (see Figure 1). Since
the white noise does not have a constant (colored)
signature, the simple former CDS filtering technique
cannot fully reduce it. Thus it is of the crucial impor-
tance to remove as much as possible white noises in
CMOS image sensors for high quality imaging. This
well-known problem is further observed and delicate
to tackle in dim environments.

Most of the white noise generated in CMOS im-
age sensor are thermal noise that statistically follows
a normal distribution (Gaussian distribution with the
bell shape), so that a mean filter is effective for re-
ducing its presence. However, the mean filter acts
as a band passing filter and will degrade the signals
by blurring image details such as natural edges. Al-
though by averaging several frames we can signifi-
cantly reduce noise1, its amount cannot be quantified
nor tracked using this technique.

In this paper, we introduce an adaptive filter
method for measuring and attenuating white noise
at the pixel level. That is, we perform at each
pixel a time-serie analysis based on the autocorre-
lation function (ACF) for detecting and quantifying
the amount of white noise individually. This paper is
based on seminal results that were first presented at
the 2007 International Symposum on Industrial Elec-
tronics meeting (ISIE, see [6]).

The remainder of the paper is organized as fol-
lows: Section (2) presents the autocorrelation func-
tion framework and its use for detecting white noise in
CMOS image sensors by exhibing the analogy with au-
dio noise-cancelling technique. Section (3) reports on
our experimental settings for evaluating image qual-
ity of our filter algorithm. It is followed by Section
(4) presenting our noise reduction results and the ex-
tended adaptive filter making use of prescribed thresh-
olds derived from experiments. Finally, Section (5)
concludes this paper.

1Formally proved by considering that each frame is statisti-
cally modeled as independent and identically distributed (iid.)
sets of pixels, and applying the central limit theorem on each
pixel value sequence.

(A) Cosine wave (B) White noise

Figure 2: Wave signals and corresponding auto-
correlation functions for (A) a cosine wave and (B)
a random white noise .

2 Overview of our method

2.1 ACF for image processing
2.1.1 Fourier analysis and the ACF

Consider a univariate mixed signal that consists of a
1D source signal corrupted with a white noise signal.
The mixed signal is said noisy, and the goal of signal
analysis is to recover the pure source signal from the
corrupted signal. One of the key methods of signal
processing is the autocorrelation function (ACF) that
provably works only for periodic signals, see [1, 5, 10,
13, 16, 12, 14]. ACF is used for extracting from a noisy
signal the source signal using Fourier analysis. We
recall here concisely its basic principles. The Fourier
spectrum of a function g(x) is given by

G(f) =
∫ ∞

−∞
g(x) exp(−2πixf)dx, (1)

where f denote the variable in frequency/phase do-
main (as opposed to the dual source – spatial – do-
main x), and i represents the imaginary complex num-
ber i2 = −1. The power spectrum φ(f) is obtained as
the complex modulus of G(f), that is:

φ(f) = |G(f)|2 = G(f) × G∗(f), (2)

where ∗ denotes the conjugate operator in the complex
plane C

2. The Fourier transform of Equation 1 is
purposely rewritten as

φ(τ) =
∫ ∞

−∞
φ(f) exp(−2πixfτ)df. (3)

It follows from Eq. 1 and Eq. 2 that Eq. 3 yields

φ(τ) =
∫ ∞

−∞
g(x)g(x + τ)dx. (4)

Eq. 4 is precisely the autocorrelation function of
G(f).

2.1.2 Noise cancelling

In digital audio where signals are discretized into bi-
nary strings (the time-serie audio bit streams), the
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Figure 3: The auto-correlation function (ACF) con-
siders the profile of the pixel intensity values from a
sequence of images acquired at constant time interval.

discrete equivalent of the former integral ACF is used
for noise cancelling. More precisely, we compute the
following discrete summand

R(τ) =
1
N

N−τ−1∑
t=0

x(t + τ)x(t), (5)

where N denotes the sampling size, x the normalized
signal value in [−1, 1], t the time, and τ the time shift.
The ACF value R(τ) ranges within the normalized
bounded interval [−1, 1].

2.1.3 Pixel ACF

In this work, we consider the former discrete audio
ACF framework for performing image noise reduction
by applying the ACF noise cancelling technique to
each pixel individually. Thus in our novel setting, each
pixel may be interpreted as an independent source of
1D signal (by analogy to audio signals), and N = w×h
denote the total number of pixels, t the horizontal
coordinates, τ the shifted pixel number of Eq. 5. That
is, in order to detect the white noise using the ACF, we
shift pixel horizontally2 and perform auto-correlation.
Note that in natural 2D images, correlations between
neighbor pixels abound in textural areas while they
tend to disappear at edge proximity.

As mentioned earlier, there are limitations of the
ACF technique for detecting white noise: we need
periodic signals. Indeed, Figure 2(A) displays the
ACF plots for both a cosine and a random wave.
Figure 2(A) shows the effectiveness of the ACF ap-
proach for removing white noise from a periodic sig-
nal. Consider now Figure 2(B) that plots the ACF
for a white noise source signal. In this case, the ACF
value slightly oscillates around zero (ACF � 0), and
therefore fails to detect the presence of white noise.

This intrinsic limitation motivates our study of the
time-axis ACF described next.

2Any other direction is possible. We chose arbitrarily the
horizontal direction for ease of presentation.

2.2 Time-axis ACF for white noise de-
tection

We perform the ACF for each pixel value on the time
axis for detecting white noise by reinterpreting Eq. 5
as follows:

R(τ) =
1
N

N−τ−1∑
t=0

x(t + τ)x(t), (6)

with now N denoting the sampling size, x the normal-
ized signal value, t time, and τ the time shift. That is,
we consider for each physical pixel a corresponding 1D
signal induced by an image sequence. Figure 3 graph-
ically depicts the time-axis ACF for a given pixel in
a sequence of images taken at constant interval. Such
an image burst acquisition mode is becoming com-
monplace in digital still cameras where the bottleneck
is saving the stream of pictures rather than reading
them out of the image sensors. The ACF is computed
independently for each pixel following the arrow in the
illustration of Figure 3.

For static scenes, where pixel values remain un-
changed in all acquired frames, the ACF always yield
1. However, since in practice the pixel value slightly
fluctuates at each frame by some amount of white
noise, it follows that the ACF is not perfectly 1 but
oscillates a bit around this peak. Now notice that for
a pixel imaging a dark area, the impact of white noise
becomes important and the ACF fluctuates much
more (later on described in terms of signal-to-noise
ratio).

Thus the originality of our contribution is to study
empirically the quantity of white noise estimated by
the time-dependent ACF values, and derive from that
analysis an efficient adaptive filter based upon. The
next section briefly sketches our experimental setting.
We then report on our experimental findings.

Table 1: Summary of our experimental setting.

Image sensor type : CMOS image sensor
Image resolution : 2.0 million pixels
Capture interval : 1/5 second

#captured images : 50 pictures
Exposure time : 1/20 second
White balance : Fixed

Gain : Fixed
ISO : 1600

F number : 3.5
Data format : Native 12-bit raw

Converted format : 24-bit RGB bitmap (BMP)
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(a) 3 lux (b) 40 lux

Figure 4: Acquiring a Gretag Macbeth colorplate im-
age sequence under different illumination conditions
(3 and 40 lux, respectively). Only the first image of
the sequence is shown in (a) and (b). Observe that
(a) exhibits different noise characteristics than (b).

3 Experimental setting

Table 1 summarizes the characteristics of the CMOS
camera system used for carrying the evaluation ex-
periments. The sensor image size is about 2.0 mil-
lion pixels and 50 images were acquired at regular
time interval: namely, burst mode at 1/5 second per
frame. The exposure time was set to 1/20 second and
the iris F-number controlling by the aperture size was
set to 3.5 (incoming amount of light). The sensitiv-
ity index standardized by the International Standard
Organization3 was set to 1600 ISO. We captured the
Gretag Macbeth color chart as displayed in Figure 4
both under low and normal illumination conditions,
for analysis and comparisons. The low illuminance
scene was shot at about 3 lux, and was primarily ac-
quired for studying the effect of the ACF in the case
where the white noise becomes significant compared
to the source signal. This explains why photogra-
phers avoid that situation by using flashes. All images
were saved in 12-bit native raw format and were also
later post-processed and converted into standard 8-bit
RGB bitmap images (24-bit truecolor tone-mapped
bitmaps).

4 Result analysis of the ACF fil-
ter

4.1 ACF values of pixels

Figure 5 plots the ACF value as a function of the
frame number in the image sequence for the case of
a “bright” pixel labeled A (intensity 180 on 256 pixel
value steps). This bright pixel A shows experimentally
almost constant ACF value around the maximum 1.00
(precision up to two digits, ie., 10−2). We conclude
that, in this case, that a large amount of light entered
the photo diode and therefore the signal-to-noise ratio
(SNR) is large, and as a matter of fact the impact of
white noise is not significant in such a bright environ-
ment. On the contrary, in the case of a “dark” pixel
labeled B in Figure 5, the SNR has a smaller value

3http://www.iso.org

Figure 5: Plotting the time-dependent ACF value as
a function of the frame number for two different nor-
malized intensity pixels: (A) bright pixel with inten-
sity 180/256, and (B) dark pixel with intensity value
8/256. Observe that the fluctuation amplitudes are
correlated to the SNR value.

and therefore the contribution of the white noise in
the mixted signal cannot anymore be ignored. We
observe that the amount of white noise is correlated
to the fluctuations of the time-dependent ACF, as de-
picted in the plots of Figure 5. This key observation
is at the core of our proposed filter that we described
next.

4.2 Noise reduction algorithm
In practice, since it is too time-consuming in imag-
ing systems to compute the ACF for all pixels, we
designed a filtering methodology summarized in the
flow-chart diagram of Figure 6. In order to reduce
the computational complexity, we set two threshold-
ing tests with prescribed values as follows: First, only
the pixel values that have their intensity values un-
der a prescribed threshold are extracted. We choose
Ithreshold = 10 for our current camera system, but
this threshold should be set according to the selected
image sensor and camera system. Our experimen-
tal study of the ACF depicted in Figure 5 suggests
that indeed “bright” pixel with high SNR do not suf-
fer much from white noise. For pixel intensity values
below the prescribed threshold, the time-axis ACF is
computed from the burst image sequence and a second
ACF threshold test is performed to detect whether
that value is below 0.8 or not, as indicated in the
flow-chart of Figure 6. On one hand, for pixel whose
ACF value falls below this 0.8 threshold, the filter
tags the pixel as significantly deteriorated by white
noise, and an auxiliary noise correction procedure is
called upon to recover the proper denoised pixel value.
On the other hand, for pixels ACF values above the
threshold, the amount of white noise is considered ne-
glectable and the pixel intensity values are left un-
changed, even for pixels imaging dark areas. Observe
that this filter can be run in parallel for all image pix-
els at once. Another possibility would be to extract
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Figure 6: Synopsis of our proposed two-stage filter
algorithm that reduces overall calculation cost.

(a) source (b) result

Figure 7: Asserting the ACF filter performance: (a)
source image, and (b) ACF noise-reduction filtered
image.

a bunch of low-level ACF pixels and perform the de-
noising processing on them at once.

Figure 7 shows the result of this algorithm on the
former low illumination color-chart Gretag Macbeth
picture (captured at 3 lux). We subjectively confirm
that the level of noise was significantly decreased by
this ACF adaptive filter algorithm. Note that since
the filter is not called for bright pixels (above intensity
10), the resolution of the image is preserved in those
areas while the amount of noise is minimized in dim
areas.

Table 2: Experiment setting.
Picture size : 1936× 1296

F value : 3.5
Exposure time : 1/250 second

ISO : 500
#pictures : 20

Time shift between pictures : 1/5 second

(a) Source

(b) I ≤ 100 (c) I ≤ 100

ACF ≤ 0.995

Figure 8: Filter performance: (a) source image, and
(b) and (c) noise-reduction threshold mask images.

4.3 Filter response under various
brightness conditions

In order to evaluate furthermore the performance of
the ACF filter algorithm, we carried out a serie of
experiments in an office room that exhibit both dark
and bright areas, as shown in Figure 8. The camera-
system and shooting condition setting of our exper-
iments are summarized in Table 2. Figure 8 shows
the acquired picture: Namely, the first picture of a
burt sequence of twenty shots. In Figure 8(b), only
the pixels with intensity values under 100 are shown
while the others are masked. These unmasked pixels
pixels account for 53% of the source image. After per-
forming the ACF noise reduction filter, we display in
Figure 8(c) the pixels with ACF value smaller than
0.995. These pixels represent 22% of the image.

In order to tune the threshold values required by
our ACF noise reduction filter, we further investi-
gated the computational complexity of applying the
filter as a function of the ACF threshold value for a
given natural image. Figure 10 displays a close-up of
the picture shown in Figure 8(a) of the actual pro-
cessing carried out for various ACF threshold values:
0.985, 0.995 and 1.0, respectively. This study allows
one to subjectively evaluate the image quality and per-
mits us to choose the appropriate trade-off computa-
tion time (∼ overall number of selected pixels)/image
quality. For example, a change in image quality is
hardly perceived with the ACF threshold value 0.985
of Figure 10(b) compared with the original source pic-
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Figure 9: Evaluation of the overall filter time com-
plexity as a function of the ACF value.

ture Figure 10(a). However, for the ACF value thresh-
old set to 0.995 of Figure 10(c), we notice that the
noise is removed in dark portions such as the strut
portion of the chair shown in these close-up pictures.
Figure 10(d) displays the noise-reduction technique
performed for all pixels with intensity values below
the prescribed threshold by setting the ACF thresh-
old value to its maximum value 1.0. In that case,
although the image quality is best, the problem be-
comes its computational tractability as indicated by
the exponential curve of Figure 9.

We observe from that serie of experiments that the
image quality is not degraded at the pixel boundaries
where the ACF filter response change. That is, after
careful inspection of the filtered image, we could not
find any trace of edge halation phenomena. Edge hala-
tion is characterized by the spreading of light beyond
its proper boundaries, and could have potentially be a
side-effect of our ACF filter that processes image pixel
islands. However, we confirmed in practice that this
phenomenon does not occur, and that the ACF filter
enhances drastically image quality, especially in poor
lighting environments.

5 Conclusion

In this paper, we proposed a novel approach for per-
forming noise-reduction in CMOS camera systems in-
spired by audio signal processing. Our new filter
is based on the autocorrelation function (ACF) that
finds its root in Fourier analysis. The ACF filter pro-
cesses in parallel independently all image pixels by
computing the time-axis ACF from burst image se-
quences, and by deciding from the respective ACF
values the set of pixels containing a fair amount of
white noise that need to be adjusted. Since it is
quite computationally intensive to perform that pro-
cessing operation for all pixels, we designed a two-
level indirection branching algorithm that allows to

(a) Source (b) Rthreshold = 0.985

(c) Rthreshold = 0.995 (d) Rthreshold = 1.0

Figure 10: Comparisons of image quality for vari-
ous ACF threshold values. (a) source image, and
(b), (c), and (d) filter performance when setting the
pixel value threshold at Ithreshold = 100 (see synop-
sis of Fig. 6) for various threshold values Rthreshold ∈
{0.985, 0.995, 1.0} of the ACF.

significantly reduce the number of selected pixels by
thresholding both on the pixel intensity and on the
ACF values. By carrying out a serie of experiments,
we demonstrated that our algorithm is well-suited for
high quality imaging systems as it effectively attenu-
ates the amount of white noise in images, especially
in low lighting challenging environments. A careful
inspection further shows that there were no image
quality discontinuities nor edge halation phenomena
introduced as a side-effect by this adaptive ACF fil-
ter. Our study let us conclude that the time-axis ACF
adaptive filter yields an effective solution for dealing
with detection and correction of white noise in CMOS
camera systems, and contribute to high quality imag-
ing systems.
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