
DOI: 10.1007/s00453-002-1006-1

Algorithmica (2003) 36: 59–73 Algorithmica
© 2003 Springer-Verlag New York Inc.

Maintenance of a Piercing Set for
Intervals with Applications

Matthew J. Katz,1 Frank Nielsen,2 and Michael Segal3

Abstract. We show how to maintain efficiently a minimum piercing set for a set S of intervals on the line,
under insertions and deletions to/from S. A linear-size dynamic data structure is presented, which enables
us to compute a new minimum piercing set following an insertion or deletion in time O(c(S) log|S|), where
c(S) is the size of the new minimum piercing set. We also show how to maintain a piercing set for S of size
at most (1+ ε)c(S), for 0 < ε ≤ 1, in Ō((log|S|)/ε) amortized time per update. We then apply these results
to obtain efficient solutions to the following three problems: (i) the shooter location problem, (ii) computing a
minimum piercing set for arcs on a circle, and (iii) dynamically maintaining a box cover for a d-dimensional
point set.

Key Words. Geometric optimization, Piercing set, Dynamic algorithms.

1. Introduction. Let S = {s1 = [l1, r1], . . . , sn = [ln, rn]} be a set of n intervals on
the real line. An independent subset of S is a set of pairwise non-intersecting intervals
of S. Let b(S) be the maximum size of an independent subset of S. A piercing set for S
is a set P of points on the real line, such that, for each interval si ∈ S, si ∩ P
= ∅. Let
c(S), the piercing number of S, be the size of a minimum piercing set for S. (In graph
theory terminology, we are dealing with the interval graph defined by S that is obtained
by associating a node with each of the intervals in S, and by drawing edges between
nodes whose corresponding intervals intersect, see, e.g., [5]. The number b(S) is also
called the packing number of S, a piercing set is also called a cut set, and the number
c(S) is also called the transversal number of S.)

Clearly c(S) ≥ b(S), since b(S) piercing points are needed in order to pierce all
intervals in a maximum independent subset of S. It is not difficult to see though that b(S)

piercing points are also sufficient in order to pierce all intervals in S, thus c(S) = b(S),
and a minimum piercing set for S can be found in time O(n log c(S)) (see [12]).

In this paper we deal with the problem where the set of intervals S is dynamic (i.e.,
from time to time a new interval is inserted into S or an interval is deleted from S),
and we wish to maintain a minimum (or nearly minimum) piercing set for S efficiently.
Assuming the size of S never exceeds n, we present two solutions: an exact solution and

1 Department of Computer Science, Ben-Gurion University, Beer-Sheva 84105, Israel. matya@cs.bgu.ac.il.
Supported by the Israel Science Foundation founded by the Israel Academy of Sciences and Humanities, and
by an Intel research grant.
2 SONY Computer Science Laboratories Inc., FRL, 3-14-13 Higashi Gotanda, Shinagawa-Ku, Tokyo 141-
0022, Japan. nielsen@csl.sony.co.jp.
3 Department of Communication Systems Engineering, Ben-Gurion University, Beer-Sheva 84105, Israel.
segal@cse.bgu.ac.il. Supported by the Pacific Institute for Mathematical Studies and by an NSERC research
grant.

Received February 10, 2000; revised January 23, 2002. Communicated by D. T. Lee.
Online publication January 30, 2003.

60 M. J. Katz, F. Nielsen, and M. Segal

an approximate solution (which is based on the exact solution). In the exact solution,
a new minimum piercing set for S is computed from the current minimum piercing
set, following an insertion/deletion of an interval to/from S. The computation time is
O(c log n), where c is the size of the new minimum piercing set (which differs from
the size of the current set by at most one). More precisely, a linear-size data structure,
representing the current set of intervals and its minimum piercing set, is used to compute
the new minimum piercing set, following an insertion/deletion of an interval. The data
structure is updated during the computation.

In the approximate solution, a piercing set for S of size at most (1 + ε)c(S) is
maintained, for a given approximation factor ε, 0 < ε ≤ 1. The amortized cost of
an update (for any sequence of updates following a preprocessing stage that requires
O(n log n) time) is Ō((log n)/ε). (Notice that the update cost varies from O(log n),
for ε = 1 (i.e., a 2-approximation), to O(c(S) log n), for ε < 1/c(S) (i.e., an exact
solution).) Both the exact and approximate solutions are presented in Section 2. In
Section 3 we apply the above exact and approximate solutions to obtain efficient solutions
to the problems below.

THE SHOOTER LOCATION PROBLEM. Given a set of n disjoint segments in the plane,
find a location p in the plane, for which the number of shots needed to hit all segments
is minimal, where a shot is a ray emanating from p. This problem was first introduced
by Nandy et al. [11], who observed that solving the problem for a given location p is
equivalent to finding a minimum piercing set for a set of n arcs on a circle. The latter
problem can be solved in time O(n log n), see below. They also presented an O(n3)-time
algorithm for the case where the shooter is allowed to move along a given line, and left
open the general problem. Wang and Zhu [16] obtained an O(n5 log n)-time solution
for the general problem. They also gave an O(n5)-time algorithm for computing a 2-
approximation, that is, a location for which the number of required shots is at most twice
the optimal number of shots. Recently, Chaudhuri and Nandy [1] presented an improved
solution for the general problem; its worst-case running time is O(n5), but it is expected
to perform better in practice. Actually, the general problem can be solved by applying
the solution for a shooter on a line to the O(n2) lines defined by the endpoints of the
segments, thus obtaining an alternative O(n5)-time solution.

Here we obtain an O((1/ε)n4 log n)-time algorithm for computing a (1+ ε)-approx-
imation for the general problem (with possibly one extra shot), significantly improving
the O(n5) 2-approximation of [16]. We can also find a location for which the num-
ber of shots is at most r∗ + 1, where r∗ is the optimal number of shots, in (output-
sensitive) O(n4r∗ log n) time. Finally, we describe another, more complicated, method
for computing a (1+ε)-approximation. This method uses cuttings to compute a (1+ε)-
approximation in O((1/ε3)((n4 log n)/r∗)) time, thus breaking the O(n4) barrier for
most values of r∗, assuming ε is a constant.

A MINIMUM PIERCING SET FOR ARCS ON A CIRCLE. Let A = {a1, . . . , an} be a set of
n arcs on the unit circle centered at the origin. As for intervals on the line, a set P of
points on the circle is a piercing set for A, if for each arc ai ∈ A, ai ∩ P
= ∅. We wish
to compute a minimum piercing set for A. (In graph theory terminology, we are dealing
with the circular-arc graph for A that is obtained by associating a node with each of the

Maintenance of a Piercing Set for Intervals with Applications 61

circular arcs in A, and by drawing edges between nodes whose corresponding circular
arcs intersect. We denote this graph by G(A).)

Observe that now, unlike in the case of intervals on the line, the packing number
b(A) and the piercing number c(A) may differ. (Assume, for example, that A consists
of three arcs, each of length 2π/3, that together cover the circle, then b(A) = 1 while
c(A) = 2.) However, it is easy to see (Claim 8) that in this case either c(A) = b(A) or
c(A) = b(A)+ 1.

A point p on the unit circle induces a clique {ai ∈ A | p ∈ ai } of the graph
G(A). Notice that G(A) might also have cliques whose arcs do not share a point (as
in the example above). Cliques of the former type are called linear cliques. Assume
we wish to find a minimum number of cliques of G(A) whose union is A (the clique
covering problem). Hsu and Tsai [8] and Rao and Rangan [13] showed that if A it-
self is not a clique, then it suffices to consider only linear cliques. Thus, if A is not
a clique, the problem of finding a minimum piercing set for A is essentially equiva-
lent to the problem of finding a minimum number of cliques of G(A) whose union
is A.

Golumbic and Hammer [6], Hsu and Tsai [8], Lee et al. [9], and Masuda and Naka-
jima [10] gave O(n log n)-time algorithms for computing a maximum independent set
of a circular-arc graph with n arcs. Gupta et al. [7] gave an 	(n log n) lower bound
for this problem (actually, for the simpler problem of computing a maximum inde-
pendent set of an interval graph with n intervals). Lee et al. [9] gave an O(n log n)-
time algorithm for the minimum cut set (i.e., piercing set) problem together with an
application to a facility location problem, and Hsu and Tsai [8] gave an O(n log n)-
time algorithm for the minimum number of cliques problem. More recently, Tsai and
Lee [15] investigated the problem of finding k best cuts (i.e., k cuts for which the num-
ber of different arcs that are cut is maximal). They showed how this problem is related
to a facility location problem. Daniels and Milenkovic [3] use piercing sets (which
they call hitting sets) in connection with generating layouts for the cloth manufacturing
industry.

We provide yet another optimal
(n log n)-time algorithm for computing a minimum
piercing set for A. We believe that our algorithm is (at least conceptually) simpler than
the previous algorithms. Moreover, we can maintain a piercing set for A of size at most
(1+ ε)c(A)+ 1 in amortized update time Ō((log n)/ε).

MAINTENANCE OF A BOX COVER. Let Q be a set of n points in R
d . A cover for Q is a

set of (axis-parallel) unit hypercubes whose union containsQ. The problem of computing
a minimum cover is known to be NP-complete [4], and is dual to the following piercing
problem. Given a set B of n unit hypercubes in R

d , compute a minimum piercing
set for B. We present several efficient algorithms for dynamically maintaining a small
piercing set for a set of arbitrary (axis-parallel) boxes in R

d . We obtain an O(c∗ logd n)

update-time algorithm for maintaining a piercing set of size c for arbitrary boxes, where
c ≤ (1+ log2 n)d−1c∗ and c∗ denotes the optimal size, and an O(2d−1c∗ log n) update-
time algorithm for maintaining a piercing set of size c for congruent boxes, where
c ≤ 2d−1c∗. We can also obtain (in both cases) a tradeoff between the update time and
the approximation factor. These algorithms are based both on our dynamic data structures
for intervals on the line, and on ideas from [12].

62 M. J. Katz, F. Nielsen, and M. Segal

2. Maintenance of a Piercing Set for Intervals

2.1. Exact Maintenance. Let S be a set of m ≤ n intervals on the line. We assume
that from time to time a new interval is added to S or an existing interval is removed
from S. However, we require that at any moment |S| ≤ n. We show how to maintain
a minimum piercing set for S under insertions and deletions in O(c log n) time, where
c is the size of the new piercing set. We actually maintain a certain minimum piercing
set which we call the right-to-left piercing set and which is defined as follows. Find the
rightmost among the left endpoints of the intervals in S. Let s ∈ S be the interval to
which this endpoint belongs. Clearly the best location for a piercing point p in s is at
its left endpoint. Remove all intervals that are pierced by p and reiterate. In this way
we obtain a minimum piercing set for S. The right-to-left piercing set can be computed
easily in O(n log n) time. (Actually it can be computed in O(n log c(S)) time, see [12].)
Initially, we compute the right-to-left piercing set P of S.

We now construct a data structure of size O(n) that will allow us to update the right-
to-left piercing set within the claimed bound. For each piercing point p ∈ P , letSp be the
subset of intervals of S that were pierced by p during the right-to-left piercing process.
These subsets are computed during the computation of P . Notice that an interval s ∈ S
is associated with the rightmost piercing point of P that lies in it. Construct a balanced
binary search tree T on the piercing points in P . For each node v in T representing a
piercing point p, construct a balanced binary search tree Tp on the right endpoints of
the intervals in Sp, and let v point to the root of Tp. With each node w in Tp we store
the point lw which is the rightmost among the left endpoints corresponding to the right
endpoints in the subtree rooted at w. Notice that lroot = p. The overall construction
time is O(n log n), and the resulting data structure is of size O(n). We now describe the
updating procedures for insertion and deletion of an interval.

2.1.1. Insertion. Let s = [sl , sr] be a new interval to be added to S. We first check,
using the tree T , whether s is already pierced by the current piercing set P . If it is, then
P is also the right-to-left piercing set of S ∪ {s}. We insert s into the tree Tp, where p is
the rightmost point in P that lies in s, and update the values lw in the relevant nodes of
Tp. All these operations can be done in O(log n) time.

Assume now that s∩P = ∅. Notice that all the piercing points ofP that lie to the right
of s are also present in the right-to-left piercing set of S ∪ {s} and their corresponding
trees do not change. We first insert sl as a new piercing point to the main tree T . Next we
need to create its corresponding tree Tsl . Tsl should consist of the new interval s together
with all intervals in S that are pierced by sl , but not by any other piercing point to the
right of sl . All these intervals, however, must belong to Sp, where p is the rightmost
piercing point to the left of sl . So we locate p in O(log n) time using T , and search in
Tp in O(log n) time for the leftmost right endpoint e that lies to the right of sl . All the
intervals in Tp whose right endpoint is to the right of e, including e, should be removed
from Tp and added to Tsl . We must also update the values lw in the relevant nodes of
both trees. Below, we describe how to perform this transfer and update in a more general
setting.

It is possible that the interval defining the point p has been transfered to Tsl . Let p′

be the value that is currently stored in the root of Tp, i.e., lroot = p′. (If p′ does not exist,

Maintenance of a Piercing Set for Intervals with Applications 63

Fig. 1. Three different cases that may occur during the insertion process. The dashed interval is the one being
inserted.

i.e., if Tp is empty, we simply delete p from T and stop.) If p′ = p, then we are done,
otherwise the interval defining p has been transfered and we replace the piercing point
p by p′ (see Figure 1).

We now have to check whether there is a piercing point (perhaps several of them) in
T that lies to the right of p′ and to the left of sl . If the answer is positive, we consider
the rightmost piercing point r in T that lies between p′ and sl . All right endpoints of
the intervals that are currently stored in Tr are to the left of all right endpoints of the
intervals currently stored in Tp′ . Thus, we can remove the point p′ from T and transfer
the intervals in the tree Tp′ to the tree Tr , by applying the join operation described
below. We update the values lw in Tr and stop. Otherwise, if the answer is negative, we
need to locate the piercing point q that lies immediately to the left of p′, and transfer
the intervals of Tq that are pierced by p′ to Tp′ . As before we search in Tq for the
leftmost right endpoint e that lies to the right of p′. We need to transfer the intervals
in Tq whose right endpoint is to the right of e, including e, to Tp′ . Observe that if
s ′ is an interval in Tq whose right endpoint e′ is to the right of e, including e, then
e′ lies to the left of all right endpoints in Tp′ , since otherwise p ∈ s ′ and s ′ should
already be in Tp′ (which was obtained from Tp). This property allows us to apply the
standard split and join operations, see below, for first removing the intervals whose right
endpoint e′ is to the right of e, including e, from Tq (split) and then adding them to
Tp′ (join) in O(log n) time. We update the values lw in both trees (see Figure 2). We
continue in this way until we either reach a step in which the piercing point does not
change (Figure 1(a)), or the case of Figure 1(b) occurs, or there are no more piercing
points to the left of the piercing point. Clearly the whole insertion process takes only
O(c log n) time, i.e., O(log n)-time for the at most c cascading steps. A more careful
analysis yields O(c log(n/c)). (We apply Hölder’s inequality to

∑c
i=1 log ni , where∑

i ni = n.)

2.1.2. Deletion. Let s = [sl , sr] be an interval to be deleted from S. We locate the
rightmost piercing point p of P that lies in s. We distinguish between two cases. If
p
= sl , then we remove s from Tp, update the necessary lw values and stop. This can
be done in O(log n) time. The more difficult case is when p = sl . In this case, we first
remove s from Tp and update the necessary lw values. We then replace p (in T) by the
value p′ that is stored in the root of Tp, which now becomes Tp′ . (If p′ does not exist, we
simply delete p from T and stop.) We proceed as described in the insertion procedure,
that is, we either locate the rightmost piercing point r which lies to the right of p′ and to
the left of sl (if such a point exists) and transfer the intervals of Tp′ to Tr thus removing

64 M. J. Katz, F. Nielsen, and M. Segal

Fig. 2. Inserting a new interval. (a) The initial interval set together with the new interval [f1, f2]; the initial
piercing set is P = {e1, c1, g1}. (b) The initial data structure. (c) [f1, f2] ∩ P = ∅ and therefore f1 is added
to T and T f1 is created. (d) c1 is replaced by a1, the value at the root of Tc1 (which now becomes Ta1); finally
g1 is removed from T since Tg1 is empty; the new piercing set is {e1, f1, a1}.

p′, or we locate the piercing point q that lies immediately to the left of p′, and transfer
the intervals of Tq that are pierced by p′ to Tp′ , and so on. The overall time spent on a
deletion operation is thus O(c log n).

THEOREM 1. Let S be a set of intervals on a line, and assume that the size of S never
exceeds n. It is possible to construct, in time O(n log n), a data structure of size O(n),
that enables us to maintain a minimum piercing set for S, under insertions and deletions
of intervals to/fromS, in time O(c log(n/c)) per update, where c is the size of the current
minimum piercing set for S.

Notice that we can use the data-structure above to maintain a maximum independent
subset ofS. (The subset of intervals corresponding to the points of the minimum piercing
set, i.e., the intervals whose left endpoint is a piercing point, is such a subset.)

Maintenance of a Piercing Set for Intervals with Applications 65

COROLLARY 2. Let S be a set of intervals on a line, and assume that the size of S
never exceeds n. It is possible to construct, in time O(n log n), a data structure of size
O(n), that enables us to maintain a maximum independent set of S, under insertions
and deletions of intervals to/from S, in time O(b log(n/b)) per update, where b is the
size of the current maximum independent set of S.

2.1.3. Joining and Splitting Trees. We now describe how to implement the split and
join operations that are used by the algorithms for insertion and deletion above.

JOINING TREES. Let A1 and A2 be two sets of keys, such that all the keys in A1 are
smaller than i , and all the keys in A2 are greater than i , for some key i . Let TA1 and TA2

be the balanced binary search (red–black) trees for the sets A1 and A2, respectively. The
join operation join(A1, i, A2), described by Tarjan [14], takes TA1 , the key i , and TA2 ,
and returns the balanced binary search tree T(A1∪{i}∪A2) for the set A1 ∪ {i} ∪ A2. In our
case, i stands for the smallest value in the tree Tp′ . The cost of Tarjan’s join operation is
O(log n). Moreover, within the same time bound we can update the values lw wherever
needed.

SPLITTING TREES. Let A be a set of keys, i some key that belongs to A, and TA a
balanced binary search (red–black) tree for A. The split operation split(A, i), described
in [14], takes TA and i and returns two balanced binary search trees: TA1 for all members
of A that are smaller than i , and TA2 for all members of A that are greater than i . In our
case, i stands for the right endpoint e in the description of the algorithms for insertion
and deletion. The cost of Tarjan’s split operation is O(log n). Moreover, within the same
time bound we can update the values lw wherever needed.

2.2. Approximate Maintenance. We now show how to maintain a piercing setP ′ for S,
whereS is as above, such that |P ′| ≤ (1+ε)c(S), for any fixed 0 < ε ≤ 1. The amortized
cost per update is Ō((log n)/ε), for any sequence of insertions and deletions, which
begins immediately after a preprocessing stage in which the right-to-left (minimum)
piercing set P , |P| = c0, for S is computed and some additional work, that does not
affect the time bound for this stage, is done. (Of course, we continue to assume that at
any time |S| ≤ n.)

The key idea is to avoid long cascades by fixing stopping points, which are points
in P ′, such that a cascade cannot continue beyond a stopping point. Initially, we set
P ′ = P = (p1, . . . , pc0), and p1, p1+�2/ε�, p1+2�2/ε�, . . . are the stopping points. The
stopping points partition the sequence of piercing points into at most �(ε/2)c0� groups,
each of size at most �2/ε�. (The first group begins with pc0 and ends with the first
stopping point from the right, the second group begins with the point immediately to the
left of this stopping point and ends with the second stopping point from the right, and so
on.) Roughly, at any time, each of the groups consists of the right-to-left piercing set for
the subset of intervals associated with the points in the group. An insertion or a deletion
of an interval can only affect a single group, which now has to adapt to the change in the
subset of intervals associated with its points.

A stopping point is never deleted (in between clean-up stages, see below), even if
it is not needed as a piercing point any more. One can think of a stopping point as a

66 M. J. Katz, F. Nielsen, and M. Segal

degenerate (dummy) interval. However, whenever the size of a group reaches twice its
initial size, i.e., 2�2/ε�, it is split into two, by making the point in position �2/ε� in the
group a new stopping point. This guarantees an update cost of Ō((log n)/ε) time.

In this way, we can ensure for a while that P ′ is a (1+ ε)-approximation. However,
after performing a sequence of (ε/4)c0 insertions and deletions, we need to perform a
clean-up stage (see below), in which we reset P ′ to the current right-to-left piercing set
of S. This stage requires O(c0 log n) time, which is divided among the updates in the
sequence. Below, we describe the insertion and deletion operations and then analyze our
approximation scheme.

2.2.1. Insertion. Let s = [sl , sr] be a new interval to be added to S. We check in
O(log n) time whether s is already pierced by a point in P ′. If yes, we insert s in
O(log n) time, associating it with the rightmost point in P ′ that lies in it, as in the exact
scheme. If not, we add sl as a new piercing point to P ′, and begin the iterative process
(which we call a cascade) that was described in Section 2.1.1. This process can either end
naturally, before the group’s stopping point is encountered, or artificially, upon reaching
this stopping point. The number of points in the group may increase by one, and if it has
reached 2�2/ε�, we split it into two equal size groups by making the point in position
�2/ε� in the group a new stopping point. The length of the cascade is thus less than
2�2/ε�, and therefore the cost of an insertion is O((log n)/ε).

2.2.2. Deletion. Let s = [sl , sr] be an interval to be deleted from S, and let p be the
rightmost point in P ′ that lies in s. If p
= sl , we simply remove the interval s in O(log n)

time from p’s tree, as in the exact scheme. If, however, p = sl , we begin the iterative
process described in Section 2.1.2, which either stops naturally, or when the group’s
stopping point is encountered. The cost of a deletion is thus O((log n)/ε). In both cases,
if p is a stopping point, we simply remove s without replacing or deleting p, even if p’s
tree is empty.

2.2.3. The clean-up stage. In order to ensure that we remain with a (1+ε)-approxima-
tion after each update, we need to perform a clean-up stage following a sequence of
(ε/4)c0 updates. The clean-up stage brings us back to the initial state, where P ′ is the
right-to-left piercing set for S, and the stopping points are the points of P ′ in position
1, 1 + �2/ε�, 1 + 2�2/ε�, . . . The clean-up requires only O(c0 log n) time (unlike the
initial preprocessing stage which requires O(n log n) time), so if we divide it over the
last sequence of updates, we obtain the claimed Ō((log n)/ε) amortized cost per update.

The situation just before the clean-up is that each interval is stored with the rightmost
point in P ′ that lies in it. However, there may be piercing points (among the stoppers)
whose corresponding set of intervals is empty, and there may be piercing points (among
the stoppers) for which the value lroot at the root of their tree is different from the piercing
point itself.

In the clean-up stage we perform a right-to-left traversal, beginning at the rightmost
stopper in P ′. During the traversal the various cases which are described in Section 2.1.1
occur, and we handle them accordingly.

If p is of the first type above, then we delete it, and jump to the next stopper q.
Otherwise, let p′ be the value stored at the root of p’s tree. If p′ = p, then we jump to q,
and if p′
= p, then we proceed as follows. If p′ is to the left of r , the point immediately

Maintenance of a Piercing Set for Intervals with Applications 67

to the left of p, then we transfer the intervals in p’s tree to r ’s tree, delete p, and jump
to q . Otherwise, we replace p with p′, and start a cascade as in Section 2.1.1. We then
jump to the first stopper following the cascade.

At the end of this process P ′ is again the right-to-left minimum piercing set for S and
we update the value of c0. The whole process requires only O(c0 log n) time.

2.2.4. The analysis. We have to show that P ′ is a (1 + ε)-approximation after each
update. At time t (i.e., after the t th update), the size ct of the minimum piercing set and
the size c′t of P ′ are surely in between c0 − (ε/4)c0 and c0 + (ε/4)c0. Thus, even in
the worst case, where ct is equal to the minimum value and c′t is equal to the maximum
value, we have

c′t =
(

1+ ε

4

)
c0 ≤

(
1+ 3ε

4
− ε2

4

)
c0 = (1+ ε)ct ,

so P ′ is indeed a (1+ ε)-approximation.
We obtain the following theorem:

THEOREM 3. For any 0 < ε ≤ 1, we can maintain a (1 + ε)-approximation of a
minimum piercing set for S in amortized update time Ō((log n)/ε).

As a corollary, we obtain the following theorem concerning the size b(S) of a maxi-
mum independent subset of S.

COROLLARY 4. For any 0 < ε ≤ 1, we can maintain a (1 + ε)-approximation of the
size b(S) of a maximum independent subset of S in amortized update time Ō((log n)/ε).
(That is, at time t , c′t/(1+ ε) ≤ b(S) ≤ c′t .)

3. Applications. In this section we present the three applications that were mentioned
in Section 1. See Section 1 for a survey of related previous results.

3.1. Shooter Location Problem. In the Shooter Location Problem (SLP for short), we
are given a set S = {s1, . . . , sn} of n disjoint segments in the plane, and we seek a point
p from which the number of shots needed to hit all segments in S is minimal, where a
shot is a ray emanating from p.

A (1+ ε)-APPROXIMATION. Let L be the set of O(n2) lines defined by the endpoints
of the segments in S. Consider any cell f of the arrangement A(L), and let p be a point
in the interior of f . The number of shots from p needed to hit all segments in S is equal
to the size of a minimum piercing set for the set of circular arcs obtained by projecting
each of the segments in S on a circle enclosing all the segments in S and centered at p.
See Figure 3. For any other point p′ in the interior of f , the number of shots from p′ is
equal to the number of shots from p, since the circular-arc graphs for p and for p′ are
identical. Moving from one cell of A(L) to an adjacent cell corresponds to a swap in the
locations of two adjacent arc endpoints.

68 M. J. Katz, F. Nielsen, and M. Segal

Fig. 3. Left: The arrangement defined by the segments s1, s2, s3. Right: The number of shots from p needed
to hit the three segments is equal to the size of a minimum piercing set for the corresponding arcs a1, a2, a3.

We traverse the arrangement A(L), dynamically maintaining an approximation of
the minimum number of rays required to intersect all the segments from a point in the
current cell. At each cell of A(L), we shoot a vertical ray directed upwards, allowing us
to deal with the interval graph obtained by unrolling the cell’s circular-arc graph (after
removing the arcs that are intersected by the vertical ray). We use the data structure of
Section 2.2 to maintain in amortized time Ō((log n)/ε) a (1+ ε)-approximation of the
size of the minimum piercing set for this interval graph. At the end, we choose the cell
for which the number computed is the smallest. (Actually, this scheme will also work
for segments that are not necessarily disjoint.)

THEOREM 5. For any fixed 0 < ε ≤ 1, a (1 + ε)-approximation (with possibly one
extra shot) for the shooter location problem can be found in O((1/ε)n4 log n) time.

TOWARDS AN EXACT SOLUTION. We showed how to obtain a (1 + ε)-approximation,
that is, how to find a number r such that r∗ ≤ r ≤ (1+ ε)r∗ + 1, where r∗ is the optimal
number of shots. Therefore, if εr∗ < 1, we obtain a location for which the number of
rays is either optimal or optimal plus one. Since we need to choose ε < 1/r∗ without
knowing r∗, we first run the algorithm with, say, ε = 1, and obtain a number of rays
r∗ ≤ r ′ ≤ 2r∗ + 1. Then we choose ε = 1/r ′ < 1/r∗ and run the algorithm to obtain
the optimal, or optimal with one extra shot, solution in O(n4r∗ log n) output-sensitive
time.

THEOREM 6. The optimal number of shots r∗ (with possibly one extra shot) can be
computed in O(n4r∗ log n) time.

AVOIDING THE COMPLETE ARRANGEMENT TRAVERSAL. We now describe another
method for obtaining a (1 + ε)-approximation, which is often more efficient than the

Maintenance of a Piercing Set for Intervals with Applications 69

method described above. Let L′ be a (1/c)-cutting of L (see [2]). That is, L′ is a set of
O(c) lines, and each cell of the (vertical decomposition of the) arrangement A(L′) is cut
by at most |L|/c ≤ 2n2/c lines of L. For each of these lines l, we dynamically compute a
(1+ δ)-approximation for a shooter moving along l (in the original environment S). The
total computation time is O(n2c((log n)/δ)). Let rmin be the best score obtained during
the computation. We have r∗ ≤ rmin ≤ (1+ δ)(r∗ + 2n2/c). (The right inequality holds
since if C ∈ A(L) is the cell from which only r∗ shots are needed, then there exists a cell
C ′ ∈ A(L) that is supported by a line inL′, such that C can be reached from C ′ by passing
through at most 2n2/c cells of A(L).) By setting c = 2n2/(γ r∗), for some 0 < γ < 1,
we obtain r∗ ≤ rmin ≤ (1+ δ)(1+γ)r∗ in O((1/(δγ))((n4 log n)/r∗)) time. We choose
δ = γ = ε/3 to ensure a (1 + ε)-approximation scheme in O((1/ε2)((n4 log n)/r∗))
time.

However, we do not know r∗, the size of the optimal solution, beforehand. We are
going to approximate it by r ′ as follows. We first demonstrate the method for the special
case where a 4-approximation is desired, and then present it for the general case.

For a 4-approximation, assume δ = γ = 1/4, and set r ′ ← n/2. Let c = 2n2/(γ r ′) =
16n, and, as above, first compute a (1/c)-cutting of L and then, for each of the O(c)
lines in the cutting, compute a (1 + δ)-approximation for a shooter moving along the
line. The total computation time is O(n3 log n). By taking the minimum score rmin

along the lines of the cutting, we have r∗ ≤ rmin ≤ (1 + 1/4)(r∗ + n/8). Therefore,
if rmin ≥ n/2, then r∗ ≥ 11n/40 ≥ n/4 and we return rmin and stop. This gives
rmin/r∗ ≤ n/(n/4) = 4. Otherwise, we set r ′ ← r ′/2 and repeat. We continue halving
r ′ until at some stage rmin ≥ r ′ (and rmin < 2r ′). At this stage we have r∗ ≥ 11r ′/20 ≥
r ′/2 and rmin/r∗ ≤ 2r ′/(r ′/2) = 4. The overall cost of this algorithm is bounded
by O(n4 log n)

∑
r ′(1/r ′) with r ′ = n/2i for i ≤ log(n/r∗). Thus we end up with a

4-approximation in O((n4 log n)/r∗) time.
For the general case, where a (1 + ε)-approximation is desired, we set r ′ = βn, for

an appropriate 0 < β < 1, as our current estimate of r∗, and let c = 2n2/(γ r ′) =
2n2/(γβn). After computing a (1/c)-cutting and rmin as before, we have

r∗ ≤ rmin ≤ (1+ δ)

(
r∗ + 2n2

c

)
= (1+ δ)(r∗ + γβn).

Now, if rmin ≥ r ′ (i.e., if rmin ≥ βn), then (1+ δ)(r∗ + γβn) ≥ βn, which implies that

r∗ ≥ βn(1− (1+ δ)γ)

1+ δ
.

Thus,
rmin

r∗
≤ 1+ δ

β(1− (1+ δ)γ)
,(∗)

since rmin ≤ n.
If, however, rmin < r ′, we set r ′ ← βr ′, and repeat until at some stage rmin ≥ r ′. At

this stage we have β i n ≤ rmin < β i−1n, for some i ≥ 2, and the ratio between rmin and
r∗ is as in the first stage (∗), this time using rmin < β i−1n.

Therefore, we must pick δ, γ , and β such that

1+ δ

β(1− (1+ δ)γ)
≤ 1+ ε.(∗∗)

70 M. J. Katz, F. Nielsen, and M. Segal

The running time is

n4 log n

γ δ

∑
i

1

β i n
,

with i ranging from 1 to log1/β(n/r∗). That is,

n3 log n

γ δ

log1/β (n/r∗)∑
i=1

(
1

β

)i

.

However,
∑log1/β (n/r∗)

i=1 (1/β)i is less than n/((1− β)r∗). Therefore the running time for
a (1 + ε)-approximation is O((n4 log n)/(δγ (1 − β)r∗)). It is easy to verify that by
picking γ = δ = ε/5 and β = 1− ε/5, (∗∗) is satisfied (assuming ε ≤ 1), and thus the
running time becomes O((1/ε3)((n4 log n)/r∗)).

Comparing this method with the first method, we see that this method is more efficient
than the first method whenever r∗ ≥ 1/ε2.

THEOREM 7. A (1 + ε)-approximation for the shooter location problem can be found
in O((1/ε3)((n4 log n)/r∗)) time.

3.2. Minimum Piercing Set for Circular Arcs. Let A = {a1, . . . , an} be a set of n arcs
on the unit circle C centered at the origin. Our goal is to compute a minimum piercing
set P ⊆ C for A.

Let c denote the size of a minimum piercing set for A, and let b denote the maximum
size of an independent subset ofA, that is, a subset ofA whose arcs are pairwise disjoint.
Clearly c ≥ b, since we need b piercing points in order to pierce all arcs in a maximum
independent subset of A. For a set S of intervals on a line, it is easy to see [12] that
b(S) piercing points are also sufficient in order to pierce all intervals in S. In our case,
however, b piercing points may not be enough. For example, if A consists of three arcs
obtained by cutting the circle C into three parts, then b = 1 while c = 2. It is easy to
see though that the difference between b and c can never exceed one. Place a piercing
point p anywhere on the circle C and remove all arcs that are pierced by p. We can think
of the remaining arcs as intervals on a line. The size of a maximum independent subset
of these intervals is either b or b − 1. Thus, in view of the remark above concerning
intervals on a line, either c = b + 1, or c = b. Therefore, we have:

CLAIM 8. b ≤ c ≤ b+1, and there exists sets of arcs that require b+1 piercing points.

For an arc a ∈ A, let f (a) be the number of arc endpoints that lie in a, including a’s
two endpoints. Let a∗ be an arc in A such that f (a∗) ≤ f (a) for any other arc a ∈ A.
Clearly f (a∗) ≤ �2n/b�, by the pigeonhole principle. We can find a∗ in O(n log n)

time: after sorting the endpoints by their polar angle, one can determine the number of
endpoints lying in an arc a in O(log n) time.

The endpoints that lie in the interior of a∗ together with a∗’s two endpoints divide a∗

into O(n/b) subarcs. Since a∗ must be pierced, we traverse a∗ from end to end moving
from one subarc to an adjacent subarc. For each of these subarcs, we place in it a piercing

Maintenance of a Piercing Set for Intervals with Applications 71

point p, and compute a minimum piercing set for the remaining set of arcs that are not
pierced by p (which can be viewed as a set of intervals on a line). The subarc whose
corresponding minimum piercing set is the smallest, is then chosen as the subarc in which
p is eventually placed, and the final piercing set is composed of p and the piercing set
that was computed for this subarc. (Of course, if there exists a point of C that is not
covered by A, then we can simply treat the set A as a set of intervals on the line.)

During the traversal, when moving from one subarc to an adjacent subarc we either
enter or leave an arc of A. We can therefore use our data structure for maintaining a
minimum piercing set for a set S of intervals on a line (see Section 2.1). Initially S is
obtained from the arcs in A that are not pierced by a point lying in the first subarc of
a∗. We construct our data structure for S in O(n log n) time. When moving from one
subarc to an adjacent subarc, an interval is either inserted or deleted to/from S. For any
subarc of a∗, the number of intervals in S is at most n − 1, the size of the minimum
piercing set that is computed is at most b+ 1 (by Claim 8), and the computation time is
O(b log n). Since there are O(n/b) subarcs, we conclude that the total running time of
our algorithm (for computing a minimum piercing set for A) is O(n log n).

THEOREM 9. Let A be a set of n arcs on a circle. It is possible to compute a minimum
piercing set for S in O(n log n) time.

REMARK. We can apply the approximation scheme of Section 2.2 in order to maintain
a small piercing set for A, under insertions and deletions of arcs to/from A. Let p0 be
any point on the circle C . We maintain a (1 + ε) approximation for the set of intervals
corresponding to the arcs in A that are not pierced by p0. Thus, if c(A) is the piercing
number of A, then we can maintain a piercing set for A of size at most (1+ ε)c(A)+ 1
in amortized Ō((log n)/ε) time per update.

3.3. Maintenance of a Box Cover. Let Q be a set of n points in d-space. We wish to
compute a minimum cover for Q, consisting of unit (axis-parallel) hypercubes. Dually,
we wish to compute a minimum piercing set for a set Q∗ of n d-dimensional unit
hypercubes. These problems are referred to in the literature as the BOX COVERING and
BOX PIERCING problems. For d ≥ 2, these problems were shown to be NP-complete by
Fowler et al. [4]. We consider the BOX PIERCING problem for arbitrary (axis-parallel)
boxes and in a dynamic setting, where from time to time boxes are inserted and deleted
from Q∗. We begin with a simple observation, and then dynamize an approximation
scheme presented in [12].

Let S = {B1, . . . , Bn} be a set of n boxes (i.e., hyperrectangles) in d-space, where
each box is represented as the ordered Cartesian product Bi =

∏d
j=1[xi

j , Xi
j]. Let P∗j

denote a minimum piercing set for the interval set Sj = {(xi
j , Xi

j) | i ∈ [1..n]}. Clearly

P = ∏d
j=1 P∗j is a piercing set for S. Let c∗ be the size of a minimum piercing set for

S. Since |P∗j | ≤ c∗, for j = 1, . . . , d, we conclude that |P| ≤ (c∗)d . Therefore, by
dynamically maintaining a piercing set for each of the sets Sj independently, we can
maintain a piercing set for S of size at most (c∗)d . The cost of an update is O(dc∗ log n).
Alternatively, we can maintain in Ō(d((log n)/ε)) amortized time per update a piercing
set for S of size at most (1+ ε)d(c∗)d .

72 M. J. Katz, F. Nielsen, and M. Segal

A divide-and-conquer scheme proposed in [12] consists of finding the median x
of the endpoints of the intervals in S1, and partitioning the set S into three subsets:
(1)S ′ = {S∩(x1 = x)}, i.e., the set of (d−1)-dimensional boxes obtained from the boxes
in S that are cut by the hyperplane x1 = x , (2) Sl , the boxes in S that are fully contained
in the half-space x1 < x , and (3) Sr , the boxes in S that are fully contained in the half-
space x1 > x . Now, a piercing set P for S is obtained by recursively computing piercing
sets Pl ,Pr ,P ′ for the sets Sl ,Sr ,S ′, respectively, and by setting P = Pl ∪Pr ∪P ′ (after
converting the points in P ′ to d-dimensional points by adding a coordinate at the front
whose value is x). (The one-dimensional case is solved exactly in
(n log n)-time.) It
can be shown that |P| ≤ (1 + log2 n)d−1c∗ for arbitrary boxes, and |P| ≤ 2d−1c∗ for
congruent boxes; see [12] for proof and other bounds/tradeoffs.

The above scheme can be dynamized in a straightforward way, using our exact and
approximate solutions for intervals. Indeed, whenever a box is inserted or deleted from
S, the median might change, but only locally (i.e., the new median is either the current
median, or the endpoint immediately to the left/right of the current median), and thus the
sets Sl ,Sr , and S ′ can be easily maintained by adding and removing a constant number
of boxes. Now, if S ′ consists of one-dimensional boxes (i.e., intervals), we update the
appropriate (exact or approximate) dynamic data structure, and proceed to handle the
sets Sl and Sr recursively. Otherwise, we handle all three sets recursively.

We can view the whole process as a d-dimensional binary tree. At the root of the
main tree we store the d-dimensional set S, and the median x of the endpoints of the
intervals in S1. The left child of the root stores the set Sl , and the right child stores Sr .
In addition, the root points to the (d − 1)-dimensional binary tree whose root stores
the set S ′. For each of the one-dimensional sets, we construct our exact (alternatively,
approximate) dynamic piercing data structure for intervals. We observe that the depth
of the main tree is O(log n), that the sets stored in the nodes of its kth level are pairwise
separable, and, therefore, the sum of the sizes of all minimum (alternatively, nearly
minimum) piercing sets computed by their descendant piercing structures is at most c∗

(alternatively, (1+ ε)c∗).
Insertions and deletions are handled similarly. We start at the root of the main tree,

with the original update instruction (i.e., insert/delete some d-dimensional box B). At
the current node v storing a k-dimensional set: If k > 1, we first update the set and
median that are stored with v, according to the update instruction. Next, for each of
the children of v and for the root of v’s (k − 1)-dimensional substructure, we issue an
appropriate update instruction and treat each of them recursively. If k = 1, we update
the piercing data structure associated with v, according to the update instruction.

Using the exact interval piercing data structure, we obtain:

THEOREM 10. We can maintain a piercing set of size c for a set S, |S| ≤ n, of arbitrary
(axis-parallel) d-dimensional boxes in O(c log n)-time per update, where c ≤ (1 +
log2 n)d−1c∗. For cubes we have c ≤ 2d−1c∗.

As a corollary, we can maintain an approximation of the size b(S) of a maximum
independent subset of S (that is, a maximum subset of S consisting of pairwise disjoint
boxes), since c/(1+ log n)d−1 ≤ b(S) ≤ c.

Maintenance of a Piercing Set for Intervals with Applications 73

4. Conclusion. We developed a data structure for maintaining a minimum (or nearly
minimum) piercing set for a set of intervals on a line. The efficiency of our maintenance
schemes was demonstrated in the improved (approximate) solutions that were obtained
to the shooter location problem. We also applied these maintenance schemes to obtain
(conceptually) simpler algorithms for computing a minimum (or nearly minimum) pierc-
ing set for a set of arcs on a circle, and for maintaining a small piercing set for a set of
d-dimensional boxes. A natural question is whether or not it is possible to maintain a
minimum piercing set for intervals in O(log n) time (rather than O(c log n) time) per
update. It would also be nice to be able to maintain in O(c log n) time per update a
minimum (rather than minimum plus possibly one) piercing set for arcs on a circle.

References

[1] J. Chaudhuri and S. C. Nandy, Generalized shooter location problem, in T. Asano, H. Imai, D. T. Lee,
S. Nakano, and T. Tokuyama (eds.), 5th Annual International Conference, COCOON ’99, Tokyo, Japan,
July 1999. Proceedings, Lecture Notes in Computer Science 1627, pp. 389–399, Springer-Verlag, Berlin,
1999.

[2] B. Chazelle, Cutting hyperplanes for divide-and-conquer, Discrete Comput. Geom., 9 (1993), 145–158.
[3] K. Daniels and V. Milenkovic, Limited gaps, in Proc. 6th Canad. Conf. Comput. Geom., pp. 225–231,

1994.
[4] R. J. Fowler, M. S. Paterson, and S. L. Tanimoto, Optimal packing and covering in the plane are

NP-complete, Inform. Process. Lett., 12(3) (1981), 133–137.
[5] M. C. Golumbic, Algorithmic Graph Theory and Perfect Graphs, Academic Press, New York, 1980.
[6] M. C. Golumbic and P. L. Hammer, Stability in circular arc graphs, J. Algorithms, 9 (1988), 314–320.
[7] U. Gupta, D. T. Lee, and Y.-T. Leung, Efficient algorithms for interval graphs and circular-arc graphs,

Networks, 12 (1982), 459–467.
[8] W.-L. Hsu and K.-H. Tsai, Linear time algorithms on circular-arc graphs, Inform. Process. Lett., 40

(1991), 123–129.
[9] D. T. Lee, M. Sarrafzadeh, and Y. F. Wu, Minimum cuts for circular-arc graphs, SIAM J. Comput., 19(6)

(1990), 1041–1050.
[10] S. Masuda and K. Nakajima, An optimal algorithm for finding a maximum independent set of a circular-

arc graph, SIAM J. Comput., 17(1) (1988), 41–52.
[11] S. C. Nandy, K. Mukhopadhyaya, and B. B. Bhattacharya, Shooter location problem, in Proc. 8th

Canad. Conf. Comput. Geom., pp. 93–98, 1996.
[12] F. Nielsen, Fast stabbing of boxes in high dimensions, Theoret. Comput. Sci., 246 (2000), 53–72.
[13] A. S. Rao and C. P. Rangan, Optimal parallel algorithms on circular-arc graphs, Inform. Process. Lett.,

33 (1989), 147–156.
[14] R. E. Tarjan, Data Structures and Network Algorithms, Regional Conference Series in Applied Mathe-

matics 44, SIAM, Philadelphia, PA, 1983.
[15] K. H. Tsai and D. T. Lee, k-Best cuts for circular-arc graphs, Algorithmica, 18(2) (1997), 198–216.
[16] C. A. Wang and B. Zhu, Shooter location problems revisited, in Proc. 9th Canad. Conf. Comput. Geom.,

pp. 223–228, 1997.

