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Abstract

We consider the Euler-Poisson equations describing the motion of a heavy rigid body about a
fixed point with all six parameters in a complex domain. These equations always admit three
functionally independent first integrals Hi, Ha, Hs, that is respectively the area@ geometrical
and conservation of energy first integrals. In four cases (Euler, Lagrange, Kovalevskaya and
kinetic symmetry case) a fourth functionally independent first integral appears. In all these four
cases this fourth integral can be found among polynomials that do not depend on all variables.

We produce a careful study when, apart from the four cases above, the Euler-Poisson equa-
tions, restricted to the level manifolds of Hy1, Hs and H3s as well as of all their mutual intersec-
tions, admit a new first integral which does not depend on all the variables involved. In this way
we cover the well known Goryachev-Chaplygin case of partial integrability and discover in the
complex domain a new partially integrable case on level manifold {H; =0, Hs = 0}.

We provide a general method to find all these cases of partial integrability and corresponding
partial first integrals. By meticulous and detailed analysis, we show that these two cases are
unique when such an additional partial first integral exists. The use of computer algebra is
unavoidable to carry out our investigations.

As a further application of the method we used, we also cover the Sretenskii case of partial
integrability of the gyrostat equations and describe their new integrable case in the complex
domain.

The method we used is of general interest and is probably the most interesting point of this
paper. It can also be applied in many other circumstances.

Acknowledgements. We warmly thank Islam Boussaada, Daniel Bennequin, Piotr Biler and Alain
Chenciner for interesting discussions and Marie-Claude Werquin for her help in checking our
English.

2020 Mathematics Subject Classification: Primary 34C45, 34M04, 70E17; Secondary 13P10,
13P15.

Key words and phrases: Euler-Poisson equations, partial first integrals, polynomial systems,
Grobner bases, Lie bracket, Frobenius integrability theorem.

(*) In [59] ”the area first integral” is by inadvertance called ”kinetic moment first integral”.
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Hatez-vous lentement, et sans perdre courage,
Vingt fois sur le métier remettez votre ouvrage,
Polissez-le sans cesse, et le repolissez,

Ajoutez quelquefois, et souvent effacez.

Nicolas Boileau, Art poétique (1674) @

In memory of our dear friend Andrzej Nowicki
who passed away while we were finishing our work.

1. Introduction

This paper is one more contribution to the study of classical problem of Euler-Poisson
equations describing the motion of a heavy rigid body about a fixed point. It can be
considered as a natural continuation of paper [59] but it can be read completely indepen-
dently.

1.1. The problem. Let us briefly describe the content of [59] which is devoted to the
search of the so called fourth integral of Euler-Poisson equations (see below), but only
when this integral does not depend on all the variables. Let us recall some basic facts
about the Euler-Poisson equations.

The Euler-Poisson equations are given by the following system

11% = (I2 — I3)waws + Mg(c3y2 — c273),
12% = (I3 — I)wiws + Mg(c1ys — c3m),
13% = (I) — Iy)wiws + Mg(cay1 — c172),
i (1.1)
E = W32 — W23,
% = w173 — W31,
% = w271 — W12

() In classical English translation of John Dryden (1683):

Gently make haste, of Labour not afraid;

A hundred times consider what you’ve said:
Polish, repolish, every Colour lay,

And sometimes add; but oft’ner take away.

6]
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Studying the Euler-Poisson equations (1.1)) from a mechanical point of view, one
considers only the real case with Hy = 2 + 35 +~3 = 1, as well as with the inequalities

L >0,1b>0,1I3>0,11+1s> 13,1+ 13> 1, and I3+ I; > I5.

Let us note that the Euler-Poisson equations with non-zero real parameters I7, I and I3
of different signs appear in the theory of equilibria of elastic rods [33] [39].

Equations describe the motion of a heavy rigid body of mass M about a fixed
point O. We consider a body fixed frame Ozyz with origin in point O and axes coinciding
with the principal axes of inertia through O. Here I, I, I3 are the principal moments
of inertia about point O, ¢y, co, c3 the coordinates of the body mass center, g is the
acceleration of gravity, g # 0, w = (w1, ws,ws) is the angular velocity of the body and
v = (71,72,73) is the unit vector directed upwards.

It is well known that without any loss of generality one can suppose that Mg = 1
and further on we admit that it is so. Indeed, instead of system with principal
moments of inertia Iy, Is, I3, it suffices to consider such a system but with I, /(Mg),
I,/(Mg), Is/(Mg) as new principal moments of inertia. As we study the totality of the
Euler-Poisson equations , such a rescaling does not change anything. For shortness
we introduce the notation Zec = (Iy, I, I3, ¢1, ca, c3).

Like in [59], in the present paper we study these equations as a purely mathematical
problem considering the general complex case Zc € C8, without any restrictions on the
parameters except I; # 0, Iy # 0, I3 # 0 which will always be assumed.

Equations always have three functionally independent first integrals:

Hy = Liwiy1 + Thwoye + I3w37ys,
Hy ="+ +73, (1.2)
Hs = Liw? + Lwj + Iswi + 2(c171 + c272 + ¢373).

In the real case these are the area, geometrical and conservation of energy first integrals
of system .

In real case to be integrable [l Sec. 28], system needs a supplementary fourth first
integral H,4, functionally independent of Hy, Ho, Hs, called shortly a fourth integral. The
only known cases when such fourth integral exists as well in the real case as in complex
case are the following four cases: Fuler case, defined by the condition

Cl = Cy = C3 — 0, (13)

as well as the following two cases, that up to appropriate numeration of principal moments
of inertia are: Lagrange case, defined by the conditions

11112, 01162:0,63#0 (14)
and Kovalevskaya case, defined by the conditions
Il = IQ = 2[3, (61,62) 7é (0,0), C3 = 0. (15)

Let us note that in the real case, in the Kovalevskaya case we can always take co = 0
which is reached by an appropriate rotation of the frame of principal axes of inertia
around the axis z. In this case we suppose ¢; # 0. Let us stress that in the complex case
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the reduction to co = 0 by a linear change of variables is not always possible. The fourth
case is the kinetic symmetry case, defined by

L=I5=I. (1.6)

We denote sets of parameters satisfying cases (1.3) by £ and (1.4) and (1.5) (up to
appropriate numeration of principal moments of inertia) by £ and K, respectively.

The fourth integral in cases ([L.3)—(L.6) is given as follows:
Hy = Iw? 4 1302 + 2032 - when Tc € &,
Hy = w3 - when Zc € L,

2 2
<wf —ws - 61%130272> + <2w1w2 — W) - when Zc € K,

H, = ciw1 + cows + c3ws - in kinetic symmetry case.

(1.7)

H,

For Zc € K, when ¢ = 0, we recover

2 2
c c
Hy = (w% —wi — 1_171> + <2w1w2 - Ilfyg)
3 3

that is the standard form of fourth integral in the real Kovalevskaya case where co = 0
(1B, 16, [10, 12, 201, 221, 4], 36, 37, 54]).

These four cases are called classical cases of integrability of the Euler-Poisson equa-
tions.

One sees that for the above four cases the fourth integral does not depend on all
variables. So that the question whether there is another case when the fourth integral
does not depend on all variables is natural. In [59] for Zc € C5, I; # 0, I, # 0, I3 # 0,
we answered this question negatively.

Usually one cites also the so called Goryachev-Chaplygin case that up to appropriate
enumeration of principal moments of inertia is the following one. Let Iy = I, = 413,
(c1,¢2) # (0,0), c3 = 0. In this case the restriction of the Euler-Poisson equations to the
five-dimensional level manifold { H; = 0}, admits a supplementary first integral function-
ally independent of first integrals Hy and Hs. It is given by the formula:

H4 = Ig&]g(w% + w%) - (clwl + CQWQ)’)/g. (18)

Like in the above four cases, first integral depends on number of variables strictly
smaller than the dimension of manifold {H; = 0}.

The first integral like Hy in Goryachev-Chaplygin case is an example of the so called
partial first integral. More precisely, when a smooth dynamical system defined on manifold
M, restricted to an invariant submanifold N & M, admits a first integral ¢ that is not the
restriction to N of some first integral defined on M and ¢ is functionally independent of
restriction to IV of all first integrals defined on M, then ¢ is called a partial first integral.

Thus the following problems become natural. Let us consider the complex manifolds
of complex dimension five:

{H, =U1}, {Hy;=Us}, {Hs=Us},

where Uy, Uy, Us are arbitrary complex numbers. These level manifolds are always in-
variant manifolds for the Euler-Poisson equations.



The Euler-Poisson equations; partial integrability 9

Let 1 <i,j,k < 3.

a) When on the complex five-dimensional level manifold {H; = U;} there exists a
partial first integral of the Euler-Poisson equations restricted to this manifold, that
depends on at most four variables and that is functionally independent of H; and
Hi j#i k#6, j#k

b) When on the complex four-dimensional level manifold {H; = U;, H; = U;}, i #
j, there exists a partial first integral of the Euler-Poisson equations restricted to
this manifold, that depends on at most three variables and that is functionally
independent of Hy, k # i, .

¢) When on the complex three-dimensional level manifold {H; = Uy, Hy = Uy, Hs =
Us}, there exists a partial first integral of the Euler-Poisson equations restricted to
this manifold, that depends on at most two variables.

In this paper, we give a complete answer to all these questions, apart from four
classical cases of integrability.

Indeed, in (a) we recover the Goryachev-Chaplygin case and in (b) we find a supple-
mentary partial first integral on level manifold {H; = 0, H, = 0}. By a meticulous and
detailed analysis, we show that these two cases are unique for (a), (b) and (c), when an
additional partial first integral which does not depend on all variables exists.

Let us underline that in the paper [25] by D. N. Goryachev from 1900 where the
case of Goryachev-Chaplygin appears for the first time, as well as in the paper by S.
A. Chaplygin [14] from 1901, there is no explanation how this case was found. To the
best of our knowledge no such explanation was published until 1983, when S. L. Ziglin in
[79] published it for the first time. See also 2005 paper [43] where A. J. Maciejewski and
M. Przybylska present such a deduction in a very clever and clear manner. Nevertheless
these deductions are trying and in no way can be considered as simple or elementary.

On the contrary, the deduction of the Goryachev-Chaplygin case from the general
principles that we present in Sec. is short and simple. It only uses facts that were
already well known in 1900. Once tedious computations are now easy through the use of
elementary computer algebra.

The Euler-Poisson equations have many modifications which describe the different
mathematical models related to the movements of rigid bodies with a fixed point [9, 111
277, 30}, B1], 45], 46]. One of the simplest of these is the system of the equations describing
the motion of the so-called gyrostat, the equations of which, in the simplest case, are only
slightly modified Euler-Poisson equations . Indeed, the gyrostat equations differ from
Euler-Poisson equations only in first three equations, where linear terms bsws — bows,
biws — bgwi, bawy — biwa, by, bs,b3 € C, are respectively added to the first three Euler-
Poisson equations . When b; = by = b3 = 0 we recover the Euler-Poisson equations
(L-I). The gyrostat equations are explicitly written in [21} 24] and in [62 63] (see also
Sec. 2.7 in [I2] and for more details [36] 37, [38] 44, [72]). The four classical integrable
cases of Euler-Poisson equations admit their natural extensions to gyrostat equations. As
proved by L. N. Sretenskii in [62] [63], the same concerns the Goryachev-Chaplygin case of
partial integrability. Its gyrostatic analogue is named the Sretenskii case. By applying the
method of Sec. [5.2] which leads to the Goryachev-Chaplygin case, in Sec. [6.2] we recover
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the Sretenskii case. We also find a new case of integrability of gyrostat equations in the
complex domain.

As it will be proved in Sec. in complex domain the gyrostat equations can have
a fourth integral outside four classical cases.

Let us note that this kind of deduction of Goryachev-Chaplygin and Sretenskii cases
appeared for the first time in [16], but our approach is more general.

In summary, our problem is to know, having a multiparameter family of ordinary
differential equations, how to find the values of the parameters for which the supplemen-
tary first integral (i.e. non-obvious or not yet known), that does not depend on all the
variables, exists.

Below, when we speak about smooth functions, we always mean class C! functions
in the real case and analytic functions in the complex case. Indeed, in complex case any
function having a complex derivative at any point of some open subset of C" is analytic
on it (see [51]).

Let us stress that we only require the C' differentiability of the first integral we are
looking for. Although in complex domain C' differentiability implies analyticity, we shall
never explicitly use this fact. Moreover, all the considerations are local. We never use the
fact that such first integral is globally defined. We only require that it be defined on an
open subset of phase space and not constant on any open subset of it. But the obtained
results in all known examples are global because the explicit formulas that we obtain
for them, are globally defined. Let us note that in complex case multivalued analytic
functions can appear.

The important open question is whether, in the studied examples, there are cases
with supplementary partial first integral depending on all the variables while there is no
supplementary local partial first integral that does not depend on all variables.

It should be emphasized that there is a substantial difference between [42] (9] and
the present paper. In both of the cited papers, the use of the computer algebra could in
principle be avoided by tedious hand calculations. This is not the case here, where the
huge systems of polynomial equations in several variables that appear, cannot even be
written and solved without the use of computer algebra.

1.2. The method. Following [59], let us explain the approach used which is general and
can be applied to many frequently encountered systems of ordinary differential equations.
We describe it in the real case but it also works in the complex case.

Let
dzx

be an autonomous system of ordinary differential equations defined on R™ (or on its open
connected subset), © = (z1,...,2,), G = (G1,...,Gy), G is of class C*°. Let us note
that G =" | Gia%i is the vector field that defines the system and for a smooth
function f = f(z), G(f) = Y1, GigL.

Function F' € C1(U), where U C R" is an open subset, is a first integral of system
(1.9) if F is constant along the orbits of system , that is G(F) = 0, and F is not
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constant on any open subset of U.
We are interested here by the first integrals that do not depend on all variables.

1.2.1. Part one. Let us search a first integral F' of system that does not depend
on x1, that means F' = F(Z), where T = (z3,...,z,), or equivalently 8{% = 0 identically.
Here we have privileged z1, but similar conditions can be written for every index r,
1 <r <n. Then for every z:

As F does not depend on z1, then for every & > 1 one has

n ko
Z 0°C, (x)a—F(’:f) =0.

5 ax’f ox;

In other words, if one notes by Y the vector fields

n ok
Y, = 22 %f,{ (z) ai/ (1.10)
then for every k > 0 one has Y3 (F) = 0, where Yy = G, that is F is a first integral of all
these vector fields. All these vector fields are defined on n-dimensional space R™(x).

If among the vector fields {Y }x>0 one can find (n — 1) of them that are linearly inde-
pendent at some point a € R™(x), then by continuity they are also linearly independent
on some open neighborhood of a. As Y (F) = 0 for all £ > 0, one deduces that grad F'
vanishes identically on U and consequently F|y = const. Then F is not a first integral
of system because by definition a first integral is non constant on any open subset
of its domain of definition. The same argument works also when arbitrary n — 1 vector
fields {Z; }1<i<n—1 such that Z;(F) =0, 1 <¢ <n— 1, are given. Such a criterion of non
existence of the first integral will be frequently used in future.

Let us suppose now that the vector field G is of the form

Zml ) =Y (@) + ...+ 21V, 1 (T) + Y, (2) (1.11)

for some smooth vector fields {Y;}o<i<, defined on R"~1(Z) (or on some open subset of
R"~1(Z)). Then as F does not depend on 1, one has

0=G(F)(z) = 2Yo(F)(@) + ... + 21Y,-1(F)(@) + Y, (F)(@).
As }N/p(f) does not depend on z1, one deduces that f’p(F) = 0. Thus G(z) = 1G1(z)
where the smooth vector field G is
Gi(z) = 22 Yo(@) + ... + 1Y, 2(@) + Y, 1 (3).
As above, one deduces that 17], 1(£) = 0, etc. Finally one deduces that Yi(F) = 0 for all
0 <4 < p. Thus all vector fields Y; defined on R~ L(Z) have a common first integral F
that does not depend on x.

What follows is completely independent of condition (1.11). Like in [59] the main
tools used to decide if two smooth vector fields could have a common first integral are
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the simplest facts from linear algebra and the following well known fact. If F' is a first
integral common for two vector fields X and Y defined on some open subset U of RP,
p > 2, then F is also a first integral of their Lie bracket (also known as Jacobi-Lie bracket)
or the commutator of vector fields) [X,Y], defined by [X,Y](f) = X(Y(f)) — Y(X(f))
for all twice differentiable functions f. Indeed, if X(F) = Y(F) = 0, then evidently
X, Y](F) = X(Y(F)) - Y(X(F)) = 0.

For vector fields X =" | X, ax and Y =57 Y, Bz , simple computations give

P aY; 0X; 9
-3 2 (0 Ya) o

Consequently if X and Y are C*°, then [X,Y] is also C*°.

For x € U, let us denote by D(x) the two-dimensional vector subspace of RP spanned
by vectors X (z) and Y (z). Let us note Dy = {D(x),x € U}. Let us note D1 = Dy +
[Do, Do] = Do+{[A, B]; A, B € Dy}, where [A, B] = AB— BA is the Lie bracket of vector
fields A and B. Let us note Dy = Dy + [D1,D1] = D1 + {[A, B]; A, B € D, }, etc, where
A+ B ={a+b; a € A; b€ B}. Thus Dy C D; C Dy C .... For some k, necessarily
[Dy, Di] = Dy. Dy is nothing but the smallest Lie algebra generated by vector fields X
and Y.

Let now a € U, X(a) # 0 and Y (a) # 0. The Frobenius Integrability Theorem [34] [51]
implies that in some neighborhood of point a € U there exists a function ® such that
X(®) =Y(®) =0, if an only if dimDy(a) < p, where D(x) is the vector space of the
vector bundle Dy over x. The number of functionally independent solutions of equations
X(F) =Y (F) = 0 defined in some neighborhood of a is equal to p — dim Dy(a).

The equation X(F)(z) = 0, z € U, can be considered as a linear homogeneous

equations with unknowns %(z) . The same is true for equations Y (F)(x) = 0
‘ 1<i<p

and [X,Y](F)(x) = 0. More generally this is true for all vector fields from Dj. Then
if dimDg(a) = p, by continuity dim D (z) = p for x belonging to some neighborhood
V C U of a. Choosing an arbitrary basis vy, ..., v, of vector bundle Dy (V') = J,cy Dr()
and writing the corresponding linear homogeneous equations with in general variable
coefficients and unknowns {gai (x)}KKp, as dim Dy (z) = p for x € V, one deduces that

g—i(a:) = 0 for z € V, and finally that F|,, = const. This contradicts the assumption

that F'is a first integral.

Thus the condition dim Dy (a) < p is necessary for the existence of first integral. In this
case the corresponding system of linear equations has infinitely many non-zero solutions.
From Frobenius Integrability Theorem we know that now first integrals exist in some
neighborhood of point a. But we do not know if these first integrals are the restrictions
of first integrals defined on whole phase space: R™ for system .

Let us return to system and let us suppose that dimDg(a) = n — 2 for some
a € R™ and thus dim Dy (z) = n — 2 for = from some neighborhood W of a.

In this case, for z € W, { o (x)} .y satisfy some system of n — 2 linearly indepen-
i 2<4i<n

dent linear homogeneous equations. Let {(; (2)}o<i<n be a fixed solution of this system.
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Any other solution is of the form {u(z)y;(x)}y<;,, for some smooth function p.

If F is a first integral, then for some smooth function pu, g—i(:zz) = u(x)p;(x), which
means that p is an integrating factor of differential form ) ;" | ¢;(z)dz;. From Frobenius
Integrability Theorem we know that such an integrating factor exists because a first
integral exists. Surprisingly, in this work in all cases when this situation arises, that is
when dim Dy = n—2 and n < 6, MAPLE is able to compute ezplicitly the first integral F',
globally defined. This is precisely in this way we compute all the unknown first integrals.

1.2.2. Part two. Let us consider now the systems of ordinary differential equations like
(1.9) but depending on parameters A = (A1,...,Ag)
dx
— =G(x, A 1.12
L~ G, (112)

where G € C°°(R"+* R*) and for smooth function f = f(x),
of
330,-

All the content of Sec. without parameters remains valid also with parameters.
So, like (1.10) we have the vector fields Yy (x, \), k > 0, etc.
As an example, let us consider the simple case when all functions G; = G;(z,\),

G(f, M)(x) = ZGi(%A) ().

1 <i < n, are of the form
GZ(J),A)=$1gz(§)\,>\)+hz(5§‘\,)\), 1<i<n.

Let us search a first integral F'(z, A) of system (1.12]) that does not depend on z;. We
repeat the whole Sec. [[.2:1] but for now the new data depending on \ appear.

This leads us to the identity

0=G(F(@,)),\) = 2:1(F(@, ), ) + V2(F (@, 1), 1),
where
~ = 0 ~ " 0
Yi(z, ) = iAa)‘iv YAa)‘: hi/\v)\i,
BN =D @ NG TaE N = o mE N
ete.

In particular for every A = (A1, ..., Ax) and z € R, starting from vector fields Y1(z, A)
and Ya2(Z, A), computing their commutator and commutators of higher orders we define
Lie algebra Dy(y)(Z, A) like Lie algebra Dy (Z) in Sec. m

We search the smooth function F'(x, A) such that for any fixed A, F is a first integral
of system (1.12)). This leads to the necessary condition

for the existence of such first integral.

As in all examples treated below, n < 6, without difficulty we compute explicitly a
base of vector space Dy(x)(7, A). Let M(Z, \) be a matrix whose rows are coordinates of
vectors of above base. The condition is nothing other but

rank M(Z,\) <n —2 (1.14)
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for all 7 € R"~!. Using MAPLE and the method described in Sec. |3} in all our examples we
manage to determine all parameters A such that holds, and thus also that ,
is satisfied for all # € R*~1.

Having a concrete example to examine, we compute the associated vector fields and
their commutators. After, using computer algebra, we determine the parameters A that
answer the problem posed; existence or nonexistence of supplementary first integral. For
details, see Sec. [5] and

All that, with evident changes, remains valid in complex case with G = (Gy,...,G,)
analytic in some open, connected subset of C™, because Frobenius integrability theorem
can be also formulated in complex framework ([34] [51]).

1.3. History. Today, the standard approach for the detection of integrable versus non-
integrable cases of ordinary differential equations of quite general nature follows mainly
the ideas that begun with S. V. Kovalevskaya (1889) and A. M. Lyapunov (1894) from
one side and those of J. Liouville (around 1840), E. Picard (1883-1896) and E. Vessiot
(1892) from the other and culminate in the so-called Morales-Ramis theory. The history
of this subject, as well as some of its applications, can be found in [47, 48], [49] 23| [2]. See
also [66)], 67, [70L [71], [69, [0, [7].

The method of compatible vector fields that is used in this paper was initiated inde-
pendently by three persons: Anatolij Dokshevich [I6], Vladimir Bogaevskii [8] and Stefan
Rauch-Wojciechowski (in the past Wojciechowski) [75].

Let us make a digression on the problem of priority between A. Dokshevich and V.
Bogaevskii. The book where A. Dokshevich paper is published was sent to the print June
30, 1964. The paper of V. Bogaevskii was received by the editor October 20, 1964. In
footnote of page 93 of [8] he says that the paper was submitted to the editor before the
publication of [I6]. Let us stress also that [8] was published in largely known mathe-
matical journal published in Moscow and that [I6] was published in proceedings of some
conference in Tashkent, at the time the capital of Soviet Uzbekistan. There is no doubt
that the two authors independently each other have discovered and applied the method
of compatible vector fields.

Let us give a very short review of these papers. Both papers are devoted to the study
of real Euler-Poisson equations having supplementary first integral that does not depend
on all variables. In both papers the condition 7§ + 3 + 3 = 1 is assumed.

In Dokshevich paper [16], using method of compatible vector fields one proves that if
the supplementary first integral is of the form F = F(wy,wa,¥1,72) then this occurs only
in Kovalevskaya case and when ¢y = 0, the explicit formula for Kovalevskaya first integral
is deduced. The other cases studied in [I6] concern the supplementary first integrals of
the form F = F(w3), F = F(wy,ws), F = F(w1,w2,71,72), F = F(w1,ws,ws,y3) which
lead to the cases of integrability of Lagrange and Euler, to the invariant relation of Hess
(lf Il (IQ — 13)8% = 12(11 — Ig)c%, C3z = 0 then Ilclwl + IQCQLUQ = 0 is an invariant manifold
for the Euler-Poisson equations) and the Goryachev-Chaplygin partial integrability case
respectively. The author notes also that Sretenskii case of partial integrability of gyrostat
equations can be found among the same lines as Goryachev-Chaplygin case.
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Let us quote the last paragraph of [I6], where the principle of the method of compatible
vector fields is clearly stated.

“From a more general point of view, the idea of the presented technique is as follows.
It is required to solve some first order partial differential equation

n

oF _,
Z X' (x1,...,2n) =0.
i=1

8%—
We add to it also partial differential equations of the simplest form, for example
or
8xk o

Then it will be required that the built system is compatible. If the compatibility conditions

0, 1<k<s, s<n.

are satisfied, then the solution of the system will be at the same time some solution of
the original equation.”

In Bogaevskii paper [§] one considers the supplementary first integral of the form
F = F(w1,w2,71,72,73) for the Euler-Poisson equations of motion of a rigid body with
a fixed point in the potential force field U = U(y1,72,73). When U = ¢171 + caye +
¢33, we recover the standard Euler-Poisson equations . Applying the method of
compatible vector fields one identifies the classical cases of integrability: Euler, Lagrange
and Kovalevskaya.

Afterwards, one considers the problem of finding the general form of the potential U =
U(7y1,72,73) when there exists a supplementary first integral F' = F(w1, w2, v1,72,73)- A
new generalization of the Kovalevskaya case appears.

Unlike [59] and the present paper, where we sweep up all possible cases of first integrals
that do not depend on all variables, in [I6] and [§] they only focus on a few concrete cases
that enable them to catch integrable cases.

This line of research was pursued by Yu. A. Arkhangelskii [3| 4] directly inspired by
[16] and [8] and also by S. I. Popov [55] 56, [57]. For further development see [568, [42] [59)
and the present paper.

Around twenty years later, around 1986, Stefan Rauch-Wojciechowski motivated by
[73) [74], where implicitly the Euler equations on the dual of Lie algebras appear [52], Ch.
6] and also [10], 12| [19] [36] 65] (53], discovered independently the method of compatible
vector fields (the name coined by him) advocating their application to three-dimensional
systems [64], [75], [76] 26] [77]. For further development see [50, 28] [35].

The method of compatible vector fields uses exclusively notions and facts already
well known by Jacobi even if their formal settings were not perfect. Jacobi and some of
his contemporaries already knew and understood vector fields, Jacobi-Lie bracket and
the link between compatible vector fields and existence of the common first integrals for
them, i.e. Frobenius theorem ([I3] Ch. Groupes de Lie et algebres de Lie, p. 310], [29]
Sec. 2.5], [0, [71]). We cannot therefore exclude that the method of compatible vector
fields appeared in certain works now forgotten, in the period going from the second half
of the nineteen century, or even before, until the publication of [16] §].

The paper is organized as follows. In Sec. 2] an important technical tool, the so called
permutational symmetries are shortly described. Sec. [3]is devoted to the use of Grébner
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basis to obtain by MAPLE the solutions of the enormous systems of polynomial equations
which appear in this article. The direct approach used in [59] is totally inappropriate
here. This is one of the pivots of the paper.

Sec. [p| is devoted to the study of five-dimensional invariant manifolds {H; = U},
1 <4 < 3, that is the problem (a) formulated before. This leads us to recover in a natural
way the Goryachev-Chaplygin case. This is the content of Sec. In Sec. [6] we sketch
the study of gyrostat equations and of derivation of Sretenskii case. In Secs. and
without giving the tedious and long proofs, we shortly report what happens on manifolds
{H3 = Us} and {Hs = 0}, respectively. The case of manifolds {Hy = Uy # 0} was
completely elucidated in Sec. 5 of [59]. In Sec. [] we determine the so called domain of the
Goryachev-Chaplygin partial first integral. In Secs. [§] and [0] we study what happens on
four and three-dimensional invariant manifolds {H; =U,;, H; =U;}, 1 <1i,j < 3,1 # j,
and {H; = Uy, Hy = U,, H3 = Us}, respectively.

We refer to [59] for some supplementary details.

The method we used is of general interest and is probably the most interesting point
of this paper. It can also be applied in many other circumstances (see for example [10] -
[12)).

2. Permutational symmetries

The Euler-Poisson equations possess invariant property which we called permuta-
tional symmetry. The permutational symmetries can be described in a general frame-
work as follows. Let © = (z1,...,2,) € C", A = (A1,...,\p) € C", and let V(z,\) =
(Vi(z, A), ..., Va(x, ) depend smoothly on x. Let us consider the following system of
differential equations

dx

— =V(z, N). 2.1

= V() (21)
Let o be an element of the symmetric group S,, i.e., the group of all permutations of
{1,...,n}. For a = (ai,...,a,) € C" we will note o(a) = (as(1), - -, o(n))-

The permutation o € S,, will be called a permutational symmetry of system (2.1)) if
for all x € C™, A € C™, one has

Vi(o(x),0(N) = eV (z, M), 1<k<n, (2.2)

where ¢ = 41 is a constant depending on k but independent of z and A. It is obvious
that all permutational symmetries of given equation form a group.

Let us recall that the subset M C C™ is an invariant subset of system if M is
formed by the entire orbits of it. That means that if for some to € C, z(tg) € M, then
x(t) € M for all t € C such that z(t) is well defined.

Let us formulate the following theorem, already proved in [42] and [59] respectively.
We formulated it in the complex setting, but it remains valid also in the real framework
as well. For the sake of completeness, we also report its proof.
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THEOREM 2.1. The permutational symmetries of the Euler-Poisson equations are
the following:

={(1,2,3),(1,2,3)}, e=1,
={(1,3,2),(1,3,2)}, e=-1,
=1{(2,3,1),(2,3,1)}, e=1, 2.3)
={(2,1,3),(2,1,3)}, e=-1,
={(3,1,2),(3,1,2)}, e=1,
o0 = {(3 2.0).(3:2.1)), e= -1,
where o{(i1,12,13), (J1,J2,73)}, 1 <3, 1< r <3, is the permutation

(817 52, 837t1; t2; 2‘:3 <5217512?8137tj17t.72’t]3)

Proof. The permutation o1 with € = 1 is evidently a permutational symmetry for the
Euler-Poisson equations. One can see from these equations that o, with ¢ = —1 is a
permutational symmetry too. The same is true for o3 with ¢ = 1.

Taking into account the equalities

04 =02003, 05=03, 0g=0300

we deduce that o4 with e = —1, 05 with ¢ = 1 and g with € = —1 are permutational
symmetries for the Euler-Poisson equations.
To complete the proof of the theorem it remains only to note that if the permutation

0—(17 2,3,4, 576) = (llv la,13,14,15, 16)

is a permutational symmetry for the Euler-Poisson equations then Iy, 12,13 € {1,2,3} and
la,l5,l6 € {4,5,6}. Thus o = {(li,, iy, liy), (j,, s, i) }. Now, from the Euler-Poisson

219 Y129 Y13

equations one deduces easily that i = ji, 1 <k < 3. nm

It is interesting to observe that the three sets £, £ and K are invariant with respect
to the permutational symmetries. The same concerns the kinetic symmetry case.

In other words, all permutational symmetries of Euler-Poisson equations coincide
with symmetric group Ss, where the same permutation is simultaneously applied to
variables {w1,ws, w3} and {v1,7v2,v3} and to parameters {I, I, Is} and {c1, ca,c3}.

It is also important to note that the first integrals Hy, Hy and H3 are invariant with
respect to all permutational symmetries of Euler-Poisson equations. This means that for
any such permutational symmetry ¢ one has:

Hy(I,c,w,7) = Hy(o(D),0(),0(w),0(7)), 1<i<3,

where for permutation o € S3, o(a1,az,a3) = (ay(1), Ao (2); Go(3))-

This leads to the following general statement that will be frequently used in the future.

Let us define the function ®q, ®o(x,A) = 1 for all z € C™ and A € C". Let Uy = 1
and let us note M (Up, A) = {x € C™; Pp(z,A) =1} =C™.

Let A € C™ be fixed. Let ®; = ®;(z,A), 1 < i < k < n, be a finite number of
first integrals of system , that are all invariant with respect to all permutational
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symmetries o of the system , that is
D;(x,\) = ®;(0(x),0(N), 1<i<k. (2.4)
For Uy,..., U, € C™ and k > 0 let us note:
MUy, ..., Ui, A) ={x € C"; ®;(z,\) =U;, 0<1i<Ek}. (2.5)

In the future, without repeating it each time, we will only consider the cases where
MUy, ...,Ug, A) is either C™ (when k = 0) or a non-empty submanifold (perhaps with
singularities) of C" (when k > 1).

All these submanifolds of C™ are invariant manifolds of the system and from
it follows that they are all invariant with respect to all permutational symmetries

of system (22.1)).

THEOREM 2.2. Let k > 0. Let o be some permutational symmetry of system . Let
us consider the system restricted to the invariant manifold M (Uy, . ..,Ug, \) and
its local first integral F' = F(x) defined on some open subset Wg C M (U, ..., Uk, N).
Then the function G = F oo~ 1, i.e. G(x) = F(o~(x)), defined on the open subset
o(Wr) = {z € M(Uy,...,Ug,A\); 0 1 (x) € Wg} of M(Up,...,Ux,\) is a local first
integral of the system

— =V(z,0(N)). (2.6)
restricted to M (U, ..., Uk, \).

Proof. As F is a first integral of system (2.1]), restricted to W then for every x € Wg

ka z,\) (gi)(x):&

As o is a permutation of {1,...,n}, the last equality is equivalent to

OF
Voo (2, ) = 0.
Z w (@, (ax (k)>( x)

Taking into account (2.2)), we can write this as:

S oF
> vulote o) () @ =0

The last equality is satisfied for every & € Wp. Then putting instead of z, o~ !(z) we
obtain that for every z € o(Wr)

; z,0 oF o l(x)) =
;Vk( 7 ()\))(3%@))( (2)) =0,

On the other hand a function G = G(z) is a first integral of system (2.6]) if

3 Vil o) <5G) (2) = 0.

81‘k
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Thus to finish the proof it remains to prove that for G = Foo~! and 1 < k < n one has
oF -1 oG
( axdk)) o) = (5 ) @)

For k = 0, Theorem coincides with Theorem 2.1 from [42] and also from [59].
Theorem shows that from the point of view of integrability /non-integrability the
systems (2.1) and (2.6]), both restricted to M (Up,...,Uk,A) are exactly of the same

nature.

but this is obvious. m

In the future, when considering the local first integrals, the word “local” will frequently
be omitted.
Thereafter, we will always have ®;, = H;, 1 <i < 3.

3. Solving some systems of polynomial equations

The method applied to solve all systems of polynomial equations encountered in this
paper uses the theory of Grobner bases of polynomial rings ([15] 18] [60]).

Let us recall some basic facts concerning them and their MAPLE implementations.
For all computations we use exclusively the monomial order

tdeg(Uy,Us, Us, I, 12, I3, ¢1, c2, C3)

with ordering Uy > Uy > Us > 11 > Is > I3 > ¢1 > ¢co > c3.
https://www.maplesoft.com/support/help/Maple/view.aspx?path=Groebner/MonomialOrders

For a fixed monomial order a Grobner basis of an ideal of polynomial ring Q[U, I, ¢]
is characterized by the property that the leading monomial of every polynomial in the
ideal is divisible by the leading monomial of some polynomial in the Grobner basis.

A Maple reduced Grobner basis is such a Grébner basis that if we remove a poly-
nomial from it, the remaining polynomials no longer form a Grobner basis and it has
the additional property that no monomial of any polynomial in the basis is divisible by
any of the leading monomials (other than itself). If all polynomials in a Maple reduced
Grobner basis have leading coefficient 1, then this basis is unique up to permutation of
its elements and is called reduced Grobner basis. Let us stress that the reduced Grobner
basis always exists.

As proved by the following simple example, in general, Maple reduced Grébner basis
is not the reduced Grébner basis.

The MAPLE command Groebner [Basis]
https://www.maplesoft.com/support/help/Maple/view.aspx?path=Groebner/Basis

computes Maple reduced Grobner bases for ideals of polynomial rings.
Let us consider the polynomial ring Clz,y, 2] where z > y > z and its ideal L
generated by polynomials

{3y% — 823, xy? + y2*, 2% — 222 + 5}.


https://www.maplesoft.com/support/help/Maple/view.aspx?path=Groebner/MonomialOrders
https://www.maplesoft.com/support/help/Maple/view.aspx?path=Groebner/Basis
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With monomial order tdeg(x, y, z), the command Groebner [Basis] gives the follow-
ing Maple reduced Grobner basis of L:

(2% — 222 4 5,82% — 392, 8xy? + 33, 9y* + 48y 2 + 32047

with leading coefficients [1, 8, 8, 9]. With monomial order plex(z, y, z) we obtain the Maple
reduced basis

[160023 — 962° + 2402° 4 922, —402° 4 3227 — 32% 4 80y23,

3y? — 82%,1202° — 9627 + 92% 4 640123, 2% — 202 + 5]

with leading coefficients [9, 80, 3, 640, 1].

We observe that the obtained Maple reduced Grobner bases consist of polynomials,
each with integer coprime coefficients and positive leading coefficient.

The reason that MAPLE in its definition of the reduced Grébner bases does not require
that the leading coefficients are 1 is due to avoidance of use of rational non-integer
numbers.

All factorizations are over QQ, that is in the polynomial ring
QU I, c] = Q[U1,Us, Us, In, Iz, I3, 1, ca, c3].

Let us consider polynomials P; = P;(U,I,¢) = P;(Uy,Us,Us, I, I3, I3,¢1,c0,c3) €
Q[U,I,c], 1 < i < n. We want to find all complex solutions of the system P;(U,I,c) =
0, 1 <4 < n,suchthat I; #0, 1 <j < 3. Such solutions will be called good solutions. To
find them we proceed as follows (steps A.1-A.3) and in all cases encountered we achieve
a success.

Let us note (Cg ={(U,I,c) € C% I; # 0, 1 <i < 3}. The good solutions are in (Cg.

A.1. With MAPLE command factor, we factorize over Q all polynomials P;(U, I, c),
1<i<n,

P =1poagergs [ b,
k=1

where B, € N=1{1,2,...}, a1, a2, ;3 € NU{0}, Dy € Q[U, I, c]. Moreover, for k # I,
polynomials D;; and D;; are relatively prime and irreducible in Q[U, I, ¢|, 1 < k,1 < ry,
1< <n.

Then

{(U,I,c) € (CZ; P(U,I,c)=0,1<i<n}=

~ 3.1
{(U,I,c) €C); P(UIc)=0, 1<i<n}, 3.1)

where ﬁz = TTiL, Dix is a square-free factorization of []%, ngk’f Let us stress that in
(3.1) we have identity of zeros but perhaps not of their multiplicities.
It is clear that the following inclusion of ideals in the ring Q[U, I, ¢] takes place:

{Py,..., P,y c{Py,...,P,}, (3.2)
where {Ry, ..., R,} denotes the ideal in Q[U, I, ¢] generated by the polynomials
Ri,...,R,€Q[U,I,d.
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A.2. Using MAPLE command Groebner [Basis] we compute in the ring Q[U, I, ]
a Maple reduced Grobner basis {Q1,...,Qm} of ideal {Py,...,P,} C Q[U,I,c]. The
polynomials @1, ..., Q, can have multiple factors in Q[U, I, c|.
Formulas and imply respectively that
{(U.I,c)eC); P(UIc)=0,1<i<n}=
{(U,I,c) €C); Q;(UI,c)=0,1<j<m}
and
{P1,....P,} C{Q1,...,Qm}-
As {Ry,...,R,} C{Ri1,...,R,} we have

{(Pi,..., P} C{Q1,...,Qm}. (3.3)
and
{(U,I,c) € (Cg; P(U,I,c)=0,1<i<n}=

- (3.4)
{(U.1,c) €C); Q;(U.I,c)=0, 1<j<m}

The passage from the system P; = 0,..., P, = 0 to the system @1 =0,..., @m =0
will be called a simplification.

According to the system obtained by simplification has the same good solutions
as the source system and in all encountered cases the obtained system of equations is
simpler than the source one.

As the ring Q[U, I, ¢] is Noetherian, then after a finite number of consecutive simpli-
fications, we will arrive (see ) to the system S; = 0,...,5; = 0, that will not be
modified by another simplification, that is, every polynomial .S;, 1 < i < ¢, is square-free,
without factors of the form I7"* 1525 and the polynomials {S;}1<i<; form a Maple
reduced Grobner basis of the ideal {S1,..., S}

We call the system of equations S; = 0,...,5; = 0 reduced system or reduction of
the source system P; = 0, ..., P, = 0. The reduced system {S; = 0} has the same set
of good solutions as the source system {P; = 0}. The simplest MAPLE computational
criterion that the system S; = 0,...,5; = 0 is a reduction of the source system is that
its simplification coincides with it. This criterion will be constantly used by us.

A.3. The final step is then to describe the set of all complex solutions of the reduced
system {S; =0}, 1 <j <t

It is clear that when ¢ = 1 and S; = 1, then the source system does not admit any
good solution.

Fortunately, in an unexplained and unexpected way, in all other cases encountered
below, the reduced systems are simple, of low degrees and all {S;}1<;<; are factorized in
product of factors that depend on only one kind of unknowns {U;, Us, Us}, {c1,ca,c3} or
{1, Iz, Is}. Moreover every factor belong to the following short list of possibilities:

Ui, Uy, Us, a1y +asls +asls, c1, co, c3 and blc%+bgcg+bgc§, (35)

where a; and b;, 1 < ¢ < 3, are some integers. There is only one exception in Sec.
[8:2.1] where in one of the equations of the reduced system a factor appears that depends
simultaneously on I; and ¢;, 1 <i < 3, and it is (Iz — I3)c? + (I; — I3)c3 + (I3 — I1)c3.
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In many cases the situation is even simpler because some of polynomials S;, 1 < j <,
merely coincide with some of the possibilities from list . For example, in Sec. [7| (see
formula ) polynomial S7 = c3.

Thus, without any difficulty, all the good solutions can be found either by hand or by
applications of elementary computer algebra, MAPLE for example.

4. Some algebra

The following two simple Propositions will be used repeatedly until the end of the article.
The first one is well known and follows from the well known elementary properties of
resultant ([I5, Chap. 3, §6] and [I§]).

Let K be a field of characteristic 0 and K[z]| be as usual the ring of polynomials of
one variable z with coefficients in K.

PROPOSITION 4.1. Let g € K[z] be a polynomial and h(x) = g—i. Let p be the resultant of
g and h and p # 0. Let T be some root of g, g(T) = 0. Then

(i) WT) # 0,

(i1) g has no multiple roots.

Proof. (i) It follows immediately from the well known fact. If f, g € K[z] then f and
g have a common factor in K[z] if and only if their resultant is 0 or equivalently if f
and ¢ have a common root (perhaps in algebraic closure of the field K if this field is not
algebraically closed).

(ii) Tt follows from the evident fact that if g has a multiple root, then h(x) = j—g has
the same root and thus g and h has a common factor. =

The second Proposition is completely evident but for convenience it is called Propo-
sition.

Let K be a field of characteristic 0. Let f, g € K[z] are polynomials of one variable x
and g # 0. By Euclidean division we know that for some polynomials ¢, r € K[z] one has

f(z) =q(x)g(z) +r(x), degr <degg orr=0.
PROPOSITION 4.2. Let

(i) all roots of g are simple and are in K,
(i1) all roots of g are also roots of f.

Then g divides f in K[z], that means that the remainder r (which is in K[z]) vanishes
identically.

In the following, for fixed n > 1, let K,, = Alg(s1,...,s,) be the field of algebraic
functions of complex variables (s1,...,s,) € C™" ([1], [61], [68]). The field K,, is of char-
acteristic 0.

Let us explain this more in details. Following [I], let Fo,...,P; € Clzy,...,z,] be
complex polynomials of variables x1,...,x,, and with Pg(z1,...,2,) Z 0. A function
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y =y(x1,...,x,) of the variables x1, ..., z, is called complex algebraic function if
Py(xq,... ,a:n)yk + Pr_1(xq,... ,gcn)yk_1 +--+ Po(x1,...,2n) =0 (4.1)

for all (z1,...,x,) € C" and if the above polynomial of y is irreducible in Clz1,...,z,].
The number k is called degree of algebraic function y. If & = 1, an algebraic function
is a rational function y = —Py(x1,...,2,)/Pi(x1,...,2,). For k = 2,3,4, an algebraic
function can be expressed by square and cube roots of rational functions in the variables
X1,...,2Tn. If k> 5, this is impossible in general ([18]).

If k¥ > 2 an algebraic function is multivalued (like for example y = /z) and in an
open dense subset of C", it locally admits holomorphic (analytic) determinations called
also branches. This follows from complex implicit function theorem ([34], [51]).

Let us also note that any non-zero complex polynomial can be factorized in
irreducible factors ([I§]). Thus, the equation defines algebraic functions even if the
polynomial is not irreducible.

Let us note for short = (z1,...,2,). Let us compute the partial derivatives %(m),
1 < i < n, for an algebraic function of degree k. By deriving the formula with
respect to z;, 1 < i < n, one easily deduces that

LA 9L )yt + 2=t ()t -+ G ()
Ox; kPy(z)y*=1 4+ (k — 1) Pe—y1(z)yF—2+ -+ Pi(x)’

The partial derivatives of higher order of the algebraic function y = y(x) can be
computed by consecutive derivations of the formula .

As the degree of algebraic function y = y(x) is k, the denominator of which
is a non-vanishing algebraic function is non-zero on open dense subset of C", where
the formula gives the searched derivative, that is also an algebraic function of
x=(T1,...,Tpn).

Now, let us consider on some open subset U of C", some holomorphic determination
of multivalued algebraic function y = y(z), that we shall note f = f(z). Then, if in
formula instead of y one takes the function f, the formula remains valid.

Consequently, instead of analyzing separately all holomorphic determinations of an

(4.2)

algebraic function y = y(x), it suffices to consider the multivalued algebraic function
y = y(x) as a whole, the derivatives of which are given by the formula (4.2)).
We shall also apply the following well known and easy to prove Proposition.

PROPOSITION 4.3. Let n > 2 and let V € Clzy,...,x,] be a polynomial that is not a
square of another polynomial. Then V'V ¢ C(z1,...,x,) that means that \/V is not a
rational function of x1,...,x,.

5. Five-dimensional invariant manifolds {H,=U;}, 1 <i < 3.
Goryachev-Chaplygin and Sretenskii cases

5.1. Extraction procedure. In this section we study the existence of a local partial
first integral of the Euler-Poisson equations (|1.1)) restricted to the invariant complex five-
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dimensional manifolds {H; = U1} and {H3 = Us}. We study when on each of them there
exists a local partial first integral that depends on at most four variables and such that
on {H; = Uy} it is functionally independent of Hy and Hjz and on {Hs = Us} of Hy and
H, respectively. The same problem can be stated also for manifold {Hs = Uz} where
the functional independence of Hy and Hj is required. For Uy = 1 this case has been
considered in Sec. 5 of [59] and the general case of Uz # 0 can easily be reduced to the
case Uy = 1. Thus it remains to study only the case { Hy = 0}.
Let us fix i, 1 < < 3. According to

M(Uo, U, Ze) = {x € C% Hy((w,7),Zc) = Ui},

where (w,v) = (w1, w2, w3, Y1,7Y2,73) and dim M (Uy, U;,Zc) = 5.

We search all functions F' of four variables F' = F(s1, sa, $3, S4) where (81, S2, 83, 84) €
(w,7), of class C!, such that grad F' does not vanish identically on each open subset of
MUy, U;,Zc), which are local partial first integrals of the Euler-Poisson equations (1.1)
restricted to M (Uy, U;, Zc).

Let i = 1. The unique intrinsic property of C' function F that is a local first integral is
that grad F' does not vanish identically on any open subset of its domain of definition, that
in this case is equal to M (Up, Uy, Zc). This implies that some of the partial derivatives of
F may be identically zero. Thus the results of Sec. also remain valid for the functions
of at most four variables.

As a—id;tl + ('9ng d;; + 63F3 d;f + 8812 d;t“ = 0, where (fjt*, 1 < i < 4, are given by the
right hand sides of the equations of Euler-Poisson , then the order of variables s;,
1<i<4,in F(s1, 82, 83,84) is irrelevant for F' to be a first integral.

We have exactly 15 different four elements subsets of (w,7) and thus 15 cases of
functions of four elements to examine. We will describe now an extraction procedure
based on permutational symmetries which reduces the above 15 cases to only four.

These 15 functions of four variables (up to the order of variables) are shown in the
table below.

Table 511
’ Functions ‘ Case ‘
’ F(UJl,UJQ,UJB,’)/z ) <i:<3 ‘ (1) ‘
| ,w,71,72), Flwa,ws,2,73) | () |

), 1
F(wi,ws,71,73), Fw
Fwi,w2,71,73), Fwi,wz, 71,72), Flwz,ws, 711,72), (i)
( )
(

Fw17w2772’733 ( 17(")3772373) F(WQ,W3,71773)
| F(wi,11,72,73), 1 <i<3 | (iv) |

It is easy to see that under the group of permutational symmetries of the Euler-
Poisson equations for every case (i)—(iv) from Table each function from the case is
consequently transformed into all remaining functions from the same case.

Thus in virtue of Theorem [2:2] we can restrict ourselves to the study of only four
functions where every one belongs to a different case from Table[5.T]and is chosen arbitrary
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from the functions of this case.
We will call such four functions F;, 1 <i <4, (up to the order of variables) a basis.
As Table [5.1] shows, the functions

F(W17LU2,W3,’YS,), F(W1,W3,71,’Y3), F(W1,CU2,’)/1,"Y3), F(w1771a72773) (51)

form a basis.

To be a local first integral of some vector field, first integral defined in some open
subset of some manifold, is an intrinsic property, that is independent of the system
of coordinates used. Thus in M (Uy, U;,Zc) instead of coordinates (w1, ws,ws,Y1,Y2,73)
inherited from the Euler-Poisson equations, we can consider for example the system
of coordinates (wy,ws,ws,¥1,73), where the coordinate (variable) 42 can be eliminated
thanks to identity Hy = U;. The same concerns all remaining coordinates.

Using coordinates (w1, ws,ws,1,73) on M (Up,U;,Zc) we can verify if the first three
functions of the basis are partial first integrals or not. For the last function of basis
(5.1) we will use the coordinates (w1,ws,y1,v2,73)-

The following general remark concerns also Sec. [§ and Sec. [0] If we are interested in
partial first integrals that depend on at most three variables, for instance F(ws,ws,~3),
we can consider it as a particular case of F'(w1,ws,ws,ys3) (case (1)), of F(ws,ws,¥2,73)
(case (ii)) and of F(ws,ws,¥1,73) (case (iii)). From the study of each of these functions,
we can conclude about the existence of the sought partial first integral F'(ws,ws,3).

5.2. Invariant manifold { H,=U; }. Determination of the Goryachev-Chaplygin
case. Here we show the method we use on the example {H; = Uj}. This invariant
manifold gives not only results for non-existing of the sought partial first integrals at
Uy # 0 but when U; = 0 it also gives a nice derivation of the Goryachev-Chaplygin case.

5.2.1. Elimination of ~5. Let us express 7, from the equation H; = U;. We have
_ Ui = hwim — I3wsys

IQOJQ '
We put the expression for v, from (5.2)) in the Euler-Poisson equations (1.1)) and remove
the fifth equation. In this way we obtain

Y2 (52)

dwy  e3Uy + I (I — Is) wiws — Iicswiys — Ipcowsys — Iscswsys

dt I Tty ’
dwy  (Is— L) wiws + 193 — csm

dt I ’
@ _ —c1Us + I (I1 — L) wiw3 + Iicywiyi + Iacowayr + Isciwsys (5.3)
dt IrI5wy ’

dyi _ —hwiwsy — Dwiys — Iswiys +wsUs

dt Iws 7

% _ Ilw%fyl =+ Izw%’yl + 13W1W3’)/3 —wiUq
dt Irws -
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Looking for a partial first integral of system (5.3)) which depends on four variables
indicated in brackets, we come to the following five possible cases:

1. F(wi,ws2,ws,71), (case (i)
2. F(w1,ws,ws,v3), (case (i))
3. F(wi,w2,71,73), (case (iii))
4. F(w1,ws,71,73), (case (ii))
5. F(wa,ws,v1,73), (case (iii))

where “case(*)” indicates in which case of Tablethe corresponding partial first integral
appears.

The functions of types 2, 3 and 4 belong to the basis . We should study all of
them. We start with a partial first integral of type 2.

Type 2. Let us look for a partial first integral of system (5.3]) that does not depend
on 71, i.e. of type 2. Moreover we want this integral to be functionally independent of Ho
and Hs. Let us suppose that the function

Fwi,wa,w3,73) (5.4)
is such a partial first integral of (5.3). It satisfies the following identity
dF _ c3Us + 15 (I2 — Is) wiws — Ticawiy1 — Iacawpys — Iscawsys OF

dt I Irws Owq
(13 — Il) wiws + €173 — €371 oF
_l’_ PR
.[2 80.)2
n —aUi + I (I — L) wiwi + Lawiy + Deowent + leiwzys OF
IQIngQ aLU3
]10.)171 + Igwg'Yl + Iswiwsys — w Uy OF —0
Igwg 8’}/3 ’
or equivalently
dF
111213M2E = ILmYi(F)+ Yy (F) =0, (5.5)

where Y7 and Y3 are the following vector fields defined in C* = C*(wy, wo, w3, 73)

0 0 0 0
Yl = —_[3630.)187&}1 — IBC:;WQTLUQ —+ (.[1610.)1 + 12020‘)2)870\)3 + Ig(.[lw% + IQW%)T%,
YQ = Ig [IQ(IQ — Ig)(,d%(.dg — IQCQwQ")/g — IgCg(Ug"}/g —+ CgUl] 87(,01
— 11]30.12 [(Il — Ig)wlwg — 6173] i
8w2
0 0
— L [Iy(I — I )wiwi — Izciwsys + c1Uy 9o + D1 I3wy (I3w3ys — Ur) — B

As (5.5)) is an identity with respect to all the variables and as Y7 (F) and Y2(F') do not
depend on 7 we have

Y1(F) =Y3(F) = 0. (5.6)
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We compute the Lie brackets Y3 = [Y7,Ya]/I5 and Yy = [Y7, Y3] and obtain

0 0 0
Ys=m31-— +m3zz— +m3z35— +Mas—,

Ow1 Ows Ows 03
Y, + 0 0 0
=Myl — my2 —— M3 ——— maqg ——,
4 41 awl 42 8&12 43 8&)3 44 673
where
ms1 = —I1Ig[3€2(d%0)2 — 11]3263W%W3 — 1221383003003 + 11[2(12 — I3)C1w1w§

— I1I3cic3w0173 + I22(Ig — 213)02w§’ — IyI3¢coc3w07y3 — Igcgw;wg + IgcgUl,
maz = hwa[IoIzciws — I (I — 2I3)ciwi — Ir(I1 — I3)cowiwa + I3(1h — I3)cswiws)
mas = 11 [Illgclw%wg + I dwiys + Ircicownys — In(Io — 213)ciwiws

+ Io(I; — I3)cowiwows — 3I5(I1 — IQ)Cg(UlW% + I3c1c3w37Y3 — clcgUl],
may = L I3[ [zwiws + Liciwiys — 2Lc1wiys + 3lacowiways

+ (211 — 21 + I3)wiwiws + [zcswiwsys — esUrwn ],
ma1 = I3co [ —2I2I3¢0w3 — I 15(315 — I3)ciwiwi — I Izcicowrys — 315 (1o — I3)cows

— Iy Iscocoways + IoIs(Iy — Ig)nggwg — Igcgwg’yg + Ullgcg],
mas = LiwoIzes[ — 2L 5c1w35 + (317 — 513) [1c1wi

+3(I — Is) Lrcowwa — (It — I3)I3cswiws],
mas = I [2]12]20102&)%(4)2 + 2]12]3630.)? + IJgC%nglfyg - 2]22(I2 - ZIg)clcgwg’

+ Iy I3cicocswarys + 3Io05(Io — I3)cycawiws — 3II3(I1 — I3)cacswiwaws

+ I2c1c3wsys — Towiwi (211 Incd — 211 Inc — AL T3¢ — 91 Isch + 215 13¢5

+91515¢3) — Izcic3U ],
mas = L1321 Ize1w] + 611 L Izcowiws — 41530105 + 211 1o (21 — 21 — I3)ciwiws

+ 11[30163{.«]%'}/3 + 2I22(2I1 -2 + 313)020.;1(,03 + 4IQI30103w§73

— 312130203w1w273 — 8[213(11 - Ig)nglew:J, + Igcgwlwgwg — IgC%Ulwl].

Equations (5.6) imply that
Ys(F) = Ya(F) = 0. (5.7)

Equations and can be considered as a system of four homogeneous linear
algebraic equations with unknowns grad F' = g—i, %’ g—i, %)’ which do not vanish
identically on any open subset of domain of definition of F', because F' is non-constant
on any such open subset.

If a new integral F' exists, system 7 has at least one non-zero solution. Let
us consider the 4 x 4 matrix A whose rows are the coefficients of vector fields Y7, Y3, Y3
and Y. The condition under which system f has at least one non-zero solution

is
rank A < 3.

We equate to zero the determinant D of the 4 x 4 matrix A of the coefficients of
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system ([5.6)—(5.7) and study when identity
D =det(4)=0 (5.8)
is fulfilled. We compute D and obtain
D = IPI2I243DD,
where the expression for Dis a polynomial in variables w, we, w3 and <3 having 72
monomials and thus with 72 coefficients depending on Zc and U;. It is clear that to solve
(5.8) is equivalent of finding all values of the parameters Zc and U; for which the 72
coeflicients of D are zero. The expression for D is too long and that is why we do not
write it here. To solve this system of 72 equations we proceed as described in Sec.
After four consecutive simplifications of the source system of 72 equations we obtain
the reduced system having only nine equations:
(12—13)0203 ZO, (Il —13)0203 ZO,
(Ip = I3)cic3 =0, (I — I3)cics =0, ([y — I)ciea = 0,
(12 - 4[3)([1 - 13)02 = 07 (Il - Ig)(]l - 4[3)02 = O,
(12—13)(.[2 —4]3)C1 :0, (IQ—Ig)(Il —4]3)01 :0
We solve these nine equations by the MAPLE command solve and obtain five solu-
tions. Two of them lead to the Lagrange case and one - to the kinetic symmetry case. In
this way we come to the following two cases that should be studied separately:
1. I = I, =413, ¢c3 = 0, (c1,¢2) # (0,0) and U; are arbitrary,
2. c1=c=0,¢c3#0, Iy #0, I #0, I3 # 0 and U; are arbitrary.
Let us study these cases.
Case 1. [} = I, = 413, ¢35 =0, (c1,¢2) # (0,0) and U; are arbitrary. At this condition
we have D = 0 and therefore the vector fields Y;, 1 < i < 4, are linearly dependent.
Let us note by D,, the determinant of 3 x 3 matrix obtained from 4 x 4 matrix
A by canceling row a and column b. Elementary MAPLE computations show that the
determinant Dys:
Dyz = T68I5w; (Wi + w))(—cowr + c1wz) (I3wiws + fzwiws — crw1ys — cawas)

never vanishes identically unless ¢; = ¢3 = 0, i.e. the Euler case. Thus the vector fields Y;,
1 < i < 3, are linearly independent on open dense subset of the space C*(w1, wa,ws,V3)
for every U; € C, in particular for U; = 0.
We compute the Lie bracket Y5 = [Y2, Y3] and obtain
Ys =msi— + 77”052i + m53i +m54i,
8w1 8602 8(,03 8’73

where

ms1 = I3W2 [9]301(,0%0.)2(4)3 - 9]301(&)3&)3 - 4]3020.):130.)3 + 14[362&]1(,0%003

+ 2c1cowiys + c1cawsys — (3] + 263 )wiways ),
mso = I3wo [ - ZIgclwi’wg + lﬁfgclwlwgwg — 15[302(,0%&)20.)3 + 3[3620.)30.)3

— 20%00%’73 — C1Cow1WaY3 + (—40% — 3c§)w%73],
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2., .3 2 2 2 2 2, 2 2 2., .3 2
ms3 = [5ciwiws — 1715 ciwwiws + 915 cowjwaws — 915 cowsrws
3, .2 .2 2 2 2 2
+ 41501 cowrwawsys + ciwiy; + cicaway; — (¢ — 3¢5)Iswiwsys
+ QC%Ulw% — QC%Ulwg + 4cicUrwiwa,
2, 4 2 2 2 2 2 2, 4 2 2
msq = I3 [Igw1w3 — 2[3wiwyws — 3I3wyws — 20I3ciwiwiwsys
2 3 2,2, 2 3
+ 1413cowiwawsys — 61z3cowswsys + ciwiys + 2c1Urwy

— 4e1Uywiwi + deoUrwiws — 2coUh w3 + (4¢3 + 30§)w§7§].

Equations (5.6)—(5.7) imply that Y5(F) = 0. In this way we obtain the following four
equations

Yi(F) = Ya(F) = Ya(F) = Ya(F) = 0. (5.9)

If a supplementary partial first integral F' exists, system (5.9 has at least one non-
zero solution. We consider the 4 x 4 matrix B of the coefficients of this system and look
for such values of the parameters for which

rank B < 3. (5.10)
We have
det(B) = —3840Iw;yU; (cowr — crws)?(Iz3wiws — c1wiys + Iswiws — coways).

Thus will be fulfilled if and only if U; = 0, because (¢, ¢2) # (0, 0).

Let U; = 0. Thus is fulfilled. As Y7, Ys, Y3 are linearly independent, then Ys is
linearly dependent on them. Moreover, as we have already mentioned, Y} is also linearly
dependent on Y;, 1 <i < 3 (see ) Thus equations

Yi(F)=0, 1<i<3, (5.11)

are in involution. They give a system of three first order linear homogeneous partial dif-
ferential equations for determining the function F'. We note here that the local solvability
of system around any point (wi,ws,ws,7y3) where vector fields Y7, Y3 and Y3 are
linearly independent, follows from the Frobenius Integrability Theorem (see [51l [52]).
Hence equations have, at least locally, a non-trivial solution. We shall now present
two ways, (a) and (b), to identify F.

(a) We solve system by the MAPLE command pdsolve. In this way we obtain
the solution

F = G [Lws(w] +wj) — (crwr + cowa)y3] (5.12)

where G is an arbitrary smooth function. By direct computations one can verify that
function Izws(w? + w3) — (c1w1 + cawz)7ys that corresponds to G(z) = x is really a first
integral of system at the conditions Iy = I, = 413, ¢c3 = 0, U; = 0, which is
functionally independent of first integrals Hy and Hjz both restricted to {H; = 0}. In
this way, by our approach we recover the Goryachev—Chaplygin partially integrable case
).

(b) Although the use of the MAPLE command pdsolve immediately gives a solution
of system (5.11)), it is not difficult to solve it by hand starting from the following simple
remark.
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Let us consider the following linear partial differential equation with constant coeffi-

f of
L 81‘ 8y

where p # 0, ¢ are constants and f = f(z,y) is a smooth function defined on some open
subset of C2.

A linear change of variables u = gx — py, v = x transforms equation (5.13) into

w = 0, where f(z,y) = f(v, ¥) = ¢(u,v). Equation 1) is then transformed

cients

=0, (5.13)

into 3“"57:’”) = 0. The general solution of this equation is p(u,v) = ®(u), where ® is an
arbitrary smooth function. Consequently, the general solution of (5.13)) is

f(z,y) = ®(qz — py). (5.14)

Let us return to system . When I = Iy = 413, ¢c3 = 0 and U; = 0, one has

Iswo Y1 = Z, where

0 0
Ows s’
Y1(F) = 0if and only if Z(F) = 0. The equation Z(F) = 0 is of type (5.13)), with = w3,
Yy =73, p=cw + cowy and q = I3(w? + w3). Thus by the general solution of
equation Z(F') = 0 is given by formula . Now, all the rest is exactly the same as in
(a).

Let us stress that in fact we never used the Frobenius theorem. Indeed, the desired
partial first integral was obtained by direct computation.

Case 2. ¢c1 = ¢ =0, c3 ;é 0, Iy #0, I # 0, I3 # 0 and U; are arbitrary. Novv the
first integral Hy is of type (5.4). If a new integral F' of this type exists, system .
has at least two non-zero solutlons The condition under which system (5.6 . ) has at
least two linearly independent solutions is

Z = (cqwr + cowe)— + .[3(0.)1 +w2)

rank A < 2. (5.15)

We compute the determinant D4y of the matrix obtained from A by crossing out its
last row and last column and obtain

Dyy = —L LI (I — L) c3wiwiws [11 (21 — 313)wi + (21> — 3I3)w3 — 4I3c373)] -

Condition ([5.15) implies that D4y is identically equal to zero. One easily sees that
as cg # 0, the last is possible only when I1 = I5, i.e. Zc¢ € L. Thus a new partial first
integral of the studied type does not exist for system (5.3]).

Type 3. Here we look for a first integral of system ({5.3]) of type 3 F'(w1,wa,v1,73), i.€
a first integral that does not depend on w3 requiring that it is functionally independent
of Ho and Hj. It satisfies the following identity

E _ csUr + I (12 — 13) w%wg — Licswiyr — Iacoways — Iscawsys ai
dt I1Irwo Ow
(13 — Il)wlwg + Cl")/3 — 03’)/1 8F
+ i
I2 8w2
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—Lwiwsyr — Lw3ys — Isw3vys + Urws or

+
Trws om
n Lwim + Lwim + [swiwsys —wiUs OF 0
Trws 03 ’
or equivalently
dF
Liwy—- = w3Y1(F) + w3Ys(F) + Y3(F) =0, (5.16)

where Y7, Y5 and Y3 are the following vector fields defined in C* = C*(wy, wa, v1,73)

0
Y, = —1'1]3’7367%,

0 0
Yy = (w315 — Lwils — 031373)67@ — Lwiwe (—1I5 + Il)@

0 0
+ (U — Ilwl'Yl)Ilaifyl + WlIS’Y:%Il%

0 0
Ys = (c3Uy — cglhwiy — 02[2(-0273)% + Liwa(c1ys — 63’71)%
1 2

0
— Ilwgvglga—% + (Lwiyy — Uy + I1w%71)1187,y3~

As (5.16)) is an identity with respect to all the variables and as Y1 (F), Y2(F) and Y3(F)
do not depend on w3 we have

Yi(F) = Ya(F) = Y3(F) = 0. (5.17)
We compute the Lie brackets Yy = [Y2,Y3]/I1 and obtain
Yy = [Beswim + LI + Is)eswim — 215(1 — I3)ciwsys
0
+1 (11 — 2I3)cowrways + Isc3v1ys — (I + I3)Urcsw | For
0
+ [-71[301001002’73 + I [zczwiwam + Io(I3 — -71)6200573 - 1303U1w2} s

+ [~ I eswivi — Lilzcowoyrys + NIz (It — 313)wiwiys + TicsUry] o
1

— [(I1 + L) Wiy + (31 — 21 + I3) [ wiwivyr + I Izc3w17173

0
—.[2.[3620&}2’73% — Il(Il + Ig)Ulw% - IQ(Il — IQ + Ig)Ulwg] 87’}/3
Equations (5.17) imply that
Y4(F) = 0. (5.18)

Equations and can be considered as a system of four homogeneous linear
algebraic equations with unknowns grad F' = (g—i, g—i, %, %)’ which do not vanish
identically on any open subset of domain of definition of F', because F' is non-constant
on any such open subset.

If a new integral F exists then system (5.17)~(5.18) has at least one non-zero solution.

Let us consider the 4 x 4 matrix A whose rows are the coefficients of vector fields Y7, Y3,



32 J. Moulin-Ollagnier, S. I. Popov and J.-M. Strelcyn

Y3 and Yy. We know that the condition under which system (5.17))—(5.18) has at least

one non-zero solution is

D = det(A4) = 0. (5.19)
We compute D and obtain
D = 21215033 D.

The expression for Dis long and we do not show it here. This expression is a poly-
nomial in variables w1, wa, 71 and 3 having 26 monomials and thus with 26 coefficients
depending on Zc and U;. It is clear that solving is equivalent to finding all values
of the parameters Zc and U; for which the 26 coefficients of D are zero. To solve this
system of 26 equations we proceed as described in Sec.

After three consecutive simplifications of the source system we obtain the reduced
system consisting of the following five equations:

CoC3 = O7 Ci1C3 = 0, (Il - 12)63 = 0, (Il - 13)02 = O, (IQ - 13)61 =0.

We solve these five equations by the MAPLE command solve and obtain five solutions.
Three of them give the Lagrange case, one - the Euler case and one - the kinetic symmetry
case.

Thus a new partial first integral of type 3 does not exist.

Type 4. Now let us study the existence of a first integral of system (5.3)) of type 4,
ie. F(w1,ws,71,73) requiring that it is functionally independent of Hy and Hs. We have
the following identity

dj . CgUl + IQ (IQ — Ig)wgw:; — 11C3w1'yl — 1262602"}/3 — [303&)3")/3 8i

dt I Irws Ow;
n L(I — L)wiw3 + Iicywrm + Tacowayr + Izciwsys — e Us oF
IQIngQ 8w3
—Lwiwsyr — Lw3vys — Iswivys + Uyws OF
J’_ PR
Tows 371

11W%71 + IQW%'Yl + Izwiwsys — w Uy OF
+ il
IQ(AJQ (9’}/3

= O’
or equivalently
dF
I1I2.[3WQE = IQCUQYl(F) + IQCUQ}/Q(F) + (Ul - Ilwlfyl — Ingg’Yg)Yg(F) = 0, (520)

where Y7, Y5 and Y3 are the following vector fields defined in C* = C*(wy, w3, v1,73):

0 0 0

Y1 =wsls(lo — I3)— + I I I I I I I

1 =wsl3(Iy 3)8w1+ 1w (1 — 2)8w 7313a 4—’Y113873
0 0

Yy = I I

2 02( 373a +1718 )

Vi = Ines—0— — Loy 2+ I Lyws 2 — Iy Ty, -2

3_336w 116 13367 131673'
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As (5.20) is an identity with respect to all the variables and as Y7(F'), Y2(F) and
Y3(F) do not depend on ws we have
Y1(F) =Y3(F) =Y3(F) =0. (5.21)
We compute the Lie brackets Yy = [Y7,Ya]/I1 1213 and obtain

0 0
Yi=—c (71&01 +73> .

aw;;
Equations (5.21) imply that
Yi(F) = 0. (5.22)

Equations (5.21]) and (5.22]) can be considered as a system of four homogeneous linear

algebraic equations with unknowns grad F' = (g—fl, gTFs, %’ %)’ which do not vanish
identically on any open subset of domain of definition of F', because F' is non-constant
on any such open subset.

If a new integral F' exists then system 7 has at least one non-zero solution.
Let us consider the 4 x 4 matrix A whose rows are the coefficients of vector fields Y7, Y5,
Y3 and Y;. We know that the condition under which system f has at least

one non-zero solution is
D =det(4) =0.
We compute D and obtain
D = —I?I2c2y3wi (1172 + Isv2).
This determinant is not zero if ¢ # 0. Thus in this case a new partial first integral
cannot exist. We should consider the case c; = 0.

Therefore let c; = 0. We compute the Lie brackets Y5 = [Y1,Y3]/(I1]3) and Y5 =
[Y1, Y5]. We have

0 0
Ys = (I2 — L%)ClaTu1 — (I — I2)es 55—

8&13
+ 5L — I — 3w ifI(I + I — I3)w 9
1 =2 = Iy 5 slli #Io = Iy)ws o
1o} 0
Yo = I3(1p — I3)(I; — 12)6387./1 — LI — )2 — I?,)Cl(,ﬂ)iw3

)
—hmﬁ—hb+ﬂ@+bk—ﬂ@M5?
1

0
— LW I3(21F — 1Ty — 21113 — I3 + Io13)w; ——.
s
We consider the system

Yi(F)=0, Y3(F)=0, Y5(F)=0, Ys(F)=0.

As we know its determinant § should be zero. We compute § and obtain
§ = 12139,

where

6 =121, — L)1, — I — I3) (21, — 215 — I3)csw?
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— LI3(Iy — I3)(31F — I Iy — 31113 — 213 + 21513)ciwiws

— LI3(I — 1) (21 Iy — 31113 — 23 — Ix13 + 313)caw wi

+ (21 — 215 — I3) (11 Isc} — I I3} — I 13¢5 + IoI3c3)wiys
+ I3(Iy — I3)(I1 + Io — I3) (1) + 215 — 213)c W

+ I3(I) + 215 — 213) (11 Ipc? — 1 I3¢? — I I3¢3 4 Iol3c2)wsy .

It is clear that the equation 6 = 0 is equivalent to 5 = 0. As it is seen from the
expression for Sitisa polynomial in variables wy, w3, 71 and 3 having six monomials and
thus with six coefficients depending on Zc. Thus we should solve a system of six equations
with respect to the parameters Ze. To solve this system we apply a simplification. After
four consecutive simplifications we obtain the reduced system consisting of the following
five equations:

(Il —13)0103 :0, (Il —12)(2_[2—.[3)03 :0, (2]14—2[2 —3_[3)(]1 —IQ)Cg :0,
(Ig — Ig)(2[2 — 13)61 = O, (Il — Ig)([g — 13)61 = 0

We solve these five equations by the MAPLE command solve and obtain the following
six solutions:

{Lh=hL, =10, Is=13, ¢, =0, ¢c3 =0}
{h=h, =1, Is=13, ¢, =0, ¢3 =c3}
{1 =21, L =1, I35=2I5, ¢ =0, ¢c3 =c3}
{Lh=10,I=1I313=1I3c =c,c3 =0}

{ =21, =10, I3=20, ¢y =¢1, c3 =c3}

{h =13 I=1I3, I3 =13, c; = c1, c3 = c3}.

Taking into account that we consider now the case co = 0 we see that the first solution
leads to the Euler case, the second and fourth ones - to the Lagrange case. The third and
fifth solutions give the Kovalevskaya case and the last one - the kinetic symmetry case.

Thus a new partial first integral of type 4 does not exist.

5.2.2. Elimination of ws. Let us express wo from the equation Hy; = U;. We have

_ Ui — hhuiy — Izwsys

5.23
Iyys (5.23)

w2
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We put the expression for ws from (|5.23)) in the Euler-Poisson equations (1.1)) and remove
the secon equation. In this way we obtain

dwy (12 = Is)ws [ — Ly — Iswsys + Ui + cslavg — calayays

dt I Irys ’

dws (I = I)wi[ = hwim — Lwsys + Ui] + calomine — eil3

dt ILYERD! ’

dn _ hwimys + Lwsvs + Iswsvi — Uiy (5.24)
dt IQ")/Q ’

b _

i 173 371,

dys _ —hwiyi — bwiyd — Iswsmys + Uin

dt IQ"}/Q '

Looking for a first integral of system ([5.24)) which depends on four variables indicated
in brackets, we come to the following five possible cases:

1. F(wy,ws,v1,72]), (case (iii))
F(wy,w3,71,73), (case (ii))
F(w1,ws,7Y2,73), (case (iii))
F(w1,91,72,73), (case (iv))
F(ws,71,72,73)- (case (iv))

In Sec. we have already studied cases (i), (ii) and (iii) from Table[5.1] It remains
only case (iv). The functions of types 4 and 5 belong to this not yet studied case. We
should examine one of these two partial first integrals, it does not matter which. We
choose type 4, because their study is exactly of the same nature.

AR i

Type 4. Let us study the existence of a first integral of system (5.24) of type 4, i.e.
F(w1,71,72,73) requiring that it is functionally independent of Hs and Hs. We have

dF (I = Ij)ws[ — Lo — Lwsys + Ui + 3073 — calonays OF

dt I Iy 0w
I I 241 2-U oF oF
4 hemos + lowsyy + f3w3ys — Uiys dF + (wis — W)
Lyys On 72
n —Lwi7} — hwiys — Iswsyys + Ui OF 0
Iy, 03 ’
or equivalently
dF
Lisys— = wiY1(F) + wsY2(F) + Y3(F) =0, (5.25)

dt
where Y7, Y5 and Y3 are the following vector fields defined in C* = C*(wy, 1, v2,73):

0
Yi= *13(12 - 13)’7387%7

0 0
Yo = (IoUr — Lblywiyr + Ishiunyr — I3U1)87 + I(Ivs + 137?%)%
1 1

0
—ilayoli — — Isy1ysly

02 3773’
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0 0
Y3 = —Ixya(—c3v2 + Cz’YB)aTle — 31 (=Lwiy + Ul)aTI

0 7]
+ 1-2721-10-21738772 + (—hwivf — wiys + U1’Yl)1187’y3
As (5.25)) is an identity with respect to all the variables and as Y7 (F), Ya(F) and
Y3(F) do not depend on w3 we have

Y1(F) = Ya(F) = Y3(F) = 0. (5.26)

Equations (5.26) can be considered as a system of three homogeneous linear algebraic
OF OF OF OF
Owy1? Ov1’ Ov2? 073
on any open subset of domain of definition of F', because F' is non-constant on any such

equations with unknowns grad F' = ), which do not vanish identically

open subset.

It is clear that the first integral Hs is of type 4 and therefore grad Hs is a solution
of system . If a new integral F' exists then system has at least two non-zero
solutions. This is possible if and only if

rank A < 2, (5.27)

where A is the 3 x 4 matrix whose rows are the coefficients of vector fields Y7, Y5 and Y3.

Let us consider the 3 x 3 matrix Ajo3 obtained from A by crossing out it last column.
A necessary condition for the fulfillment of (5.27) is

D123 = det(Algg) =0.
We compute D123 and obtain
Dyo3 = I I I3(Iy — I3)yey3 (— w1y — Taw1ys — Iawivs + Ury).

It is easily seen that D1o3 = 0 is possible if and only if I, = I3. At this last condition
we compute the Lie bracket Yy = [Ya, Y5]/([113) and obtain

0 0
Yy = 2I3(—c3v2 + covs)mven— + 1173 [Ilwl(”hz +%+73) — U1’Yl} 7

(90.}1 8'71
0
+ 117273 [wﬂl(h —1I3) — U1:| o
V2
0
+15 [(13 —20)wimvs — hwin (3 +93) + Ui + Vg)} I
3
Now Y7 = 0 and we consider the following system:
Yo(F) =Y3(F) =Y4(F) =0.
By the same reason as above we should require that
rank B < 2, (5.28)

where B is the 3 x 4 matrix whose rows are the coefficients of vector fields Y5, Y3 and Yj.
We consider the 3 x 3 matrix Bjs3 obtained from B by crossing out it last column.

Condition (5.28) implies
D1g3 = det(B123) = 0. (5.29)
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Computing 13123 we obtain
Dios = I213(ca2 — cov3) 373 [—3hwiyy — 2L + I3)wini (73 +73) + U307 +73 +73)]-

One immediately sees that the condition leads to ¢ = c3 = 0 which together
with Is = I3 leads to the Lagrange case. Thus a new partial first integral of type 4 does
not exist.

The results from Secs. and show that we have completely studied all the
four cases of the basis . Now from Theorem we conclude that outside of the four
integrable cases of the Euler-Poisson equations , outside of the Goryachev-Chaplygin
case (11 = Ig = 4]37 (01702) 7é (0,0), C3 = 0 or Il = 13 = 4[2, (61,63) 75 (O,O)7 Cy = 0
or I = I3 =4I, (c2,c3) # (0,0), ¢1 = 0), the Euler-Poisson equations restricted to the
invariant manifold {H; = U;} never have a local partial first integral depending on at
most four variables and functionally independent of Hs and Hj.

5.3. Invariant manifold {H>=0}. We will now study what happens on submanifold
{Hy = 0}. Here we proceed as in Sec. We should stress the following easily seen but
important fact that now a first integral belonging to case (iv) from Table does not
exist because all possible eliminations from the equation Hy = 0 are eliminations of some
i, 1 <4 < 3. We consider here the elimination of 3. The completely analogous results
concerning the elimination of ; or v, follows from Theorem But they can also be
obtained by exactly the same way as the elimination of 3 that we describe below.
Let us express 73 from the equation Hy = 0. We obtain

=1/ — % (5.30)

~3 is now considered as an algebraic function (see Sec. [4]) of variables (y1,72).
Putting the expression for 75 from (5.30) in the Euler-Poisson equations (1.1)) and
removing the sixth equation we have

dw1 (I3 — I3) wows + 3772 — ¢2 Vi —’Yf - ’722

dt I ’

dwy (I — I)wiws + a1/ =17 =73 —em

dt I ’

dws (I — L)wiws + oy — a2 (5.31)
dt I3 7

dm _ Wy — /2 _ .2
at 372 — W2 1~ 72
7d72 = W — 2 — 2 — W

dt = 72 371-

Looking for a first integral of system (5.31)) which depends on at most four variables
we come to the following five possible cases:

1. F(wi,w2,ws,71), (case (i)
2. F(wi,ws,ws,72), (case (i))
3. F(wi,wa,71,72), (case (ii))
4. F(wi,ws,71,72), (case (iii))
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5. F(w2,ws,71,72)- (case (iii))

Then it suffices to examine here the functions of types 1, 3 and 5.

Type 1. Here we use the idea from [59] applied there for the proof of Theorem 1.1.B.
Let us look for a first integral of system that is of type 1, F(w1,ws,ws, 1), i.e.
which does not depend on 7 and which is functionally independent of H; and Hs. Thus
I satisfies the following identity

dF _ (Iy — I3)wows + c3v2 — C2\/ﬂai

dt I Ow1
4 Us = IJwwws +e1y/ =97 =g = cam OF
IQ 8w2

(Il — Ig)wlwg + CoY1 — C172 8F 2 2 8F
_ — — — =0
+ T s | w32 —w2y\/ =1 — 73 o7 )

or equivalently

dF
S = WYi(F) + /=17 — 13 Ya(F) + Y(F) = 0, (532)
where Y7, Y5 and Y3 are the following vector fields defined in C* = C*(wy, wa, w3, 1)
C3 0 C1 0 0
Yi=—— - = —
! 11 &ul I3 8(,«)3 +WB8’}/1,
Co 0 C1 0 0
Yo=—F —+ - — —wy— 5.33
2 Il awl + [2 8&12 w2 8’}/17 ( )
Ve — (I2 — I3)wowz O n (Is — L)wiws —c3y1 O 4 (L — Llwiwz + o1 0
3 .[1 8001 .[2 80.)2 Ig (%13 '

Let us write (5.32)) in the following way

2Yi(F) + Ya(F) = —/ % — 3 Ya(F).

Raising the last equation to the second degree we obtain
73 [Yi(F)? 4 Ya(F)?] + 29Y1(F)Y3(F) +2iYa(F)? + Ya(F)? = 0, (5.34)

where Y1 (F), Y2(F) and Y3(F') depend only on (w1, wa,ws,¥1).

As is an identity with respect to all the variables wy, wy, w3, v and o the
same concerns . Moreover is a polynomial with respect to «2 because the
coefficients of the powers of 75 do not depend on ~s.

Let us fix wi, we, wz and v, # 0. We prove that

Yi(F) = Ya(F) = Y3(F) = 0. (5.35)

For this purpose, we examine the polynomial (5.34) studying separately two cases.
A) The first two coefficients of (5.34)) vanish. That means that

Yi(F)2 4+ Ya(F)2 =0, Yi(F)Ys(F) =0. (5.36)
Thus either Y1 (F) = 0 or Y3(F') = 0. If Y1 (F) = 0, then from first equation of (5.36) one
obtains Y5(F) = 0 and thus from (5.34), Y3(F) = 0. If Y3(F) = 0, then from (5.34) one
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has 72Y5(F)? = 0. As v? # 0, Y2(F) = 0 and thus also Y3 (F) = 0. Thus in case(A) (5.35))
holds.

B) At least one of the first two coefficients of is non-vanishing. In this case (|5.34))
is a first or second order non-zero polynomial in 2. For fixed (w,~1) such a polynomial
admits at most two roots. But this contradicts the fact that for these (w,v1), is
identically satisfied for all vs.

This proves that case (B) cannot occur and consequently that implies .

Let us compute the Lie bracket Yy = [Y3,Y3]. We obtain

Y, = Mi + (Iy — I3)cows + Iicawa O

11]2 (%Jl 11[2 87(,«)2
L Ll — I)ewwr + Ia(Is — 25)cows O n (I3 — I)wiws —cz3m1 0
.[1.[2]3 8w3 I2 871 .
Equations (5.35) imply that Y4(F') = 0 so that we have the following system
Yi(F) = Ya(F) = Y5(F) = Ya(F) = 0. (5.37)

Equations (5.37) can be considered as a system of four homogeneous linear algebraic
g—i, %7 %7 %), which do not vanish identically.
As in Sec. we should equate to zero the determinant D of the 4 x 4 matrix A of

the coeflicients of system . We compute D and obtain
1

RI31;

+ L1y (I — I3) cgwlwgwg + LIy (I — I3) clcgwgwg

+ I (I} — I3) (Is — I3) crcowiws + Iy (I — I3) cicaczwiwsy

— Iy (Iy — I3) (I} — I + I3) cycowsws — Iy (I — Iy) caciwim

+ I (21 — I — I3) S3eswowsyy — (IIact + I11acs — IiIsei — InI3c3) cow3m |-

equations with unknowns grad F' =

D = [Ilfg (I1 — .[2) nglwg — 11]2 (2.[1 — IQ — .[3) 0263w1w§W3

It is identically equal to zero and therefore all of its coefficients should be zeros. D is
a polynomial in variables wi, wo, w3 and v; having ten monomials and thus with ten
coefficients depending on Zc. It is clear that to solve equation D = 0 is equivalent to
finding all values of the parameters Zc for which the ten coefficients of D are zero. To
solve this system of ten equations we proceed as in Sec.

After three consecutive simplifications of the source system we obtain the reduced
system having five equations:

(It = Ix)es =0, (I1 —I3)ca =0, (I — I3)cac3 =0,
(IQ - 13)6103 = 0, (IQ - 13)6102 =0.
We solve these five equations by the MAPLE command solve and obtain the following
four solutions:
Il ZIQ, C1 ZCQZO7
Il 213, C1 =C3=O7
L =1, =1,
Cy = C3 = 0.

W =
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The first three of them lead to the Lagrange and kinetic symmetry cases. We should
study only the fourth solution.

Let co = c¢3 = 0. In this case Yy is dependent on Y7, Y5 and Y3 and system
has a solution grad H3. However, H3 is not a fourth integral. Thus, if a fourth integral
F' exists, system has at least two linearly independent solutions. We consider the
3 x4 matrix A of the coefficients of this system. It is clear that our problem has a solution
if and only if

rank A < 2. (5.38)

Now we are going to study when is fulfilled. For this purpose we calculate all
possible determinants of order three which can be obtained from the matrix A. For
1 <1 <4, by D;, we denote the determinant obtained from matrix A by crossing out its
i-th column. We have

(]2—[3)01 (IQ_IS)CI 2
Dy =227 Dy=-2_22"1
1 1213 WiWwows, 2 1113 UJQ(,U3,
(12—13)01 2 (12—13)0%
Dy = -2 — Dy=—"7-"—— .
3 IIIQ Wals, 4 Il 1213 wWaWw3

It is easy to see that the equations D; = 0, 1 < i < 4, are satisfied only if either ¢; =0
which with the condition co = ¢35 = 0 leads to the Euler case or I, = I3 which leads to
the Lagrange case.

Thus a new partial first integral of type 1, i.e. F(wy,wa,ws, 1) does not exist.

Type 3. Let us look for a first integral of the system (5.31) that is of type 3,
F(w1,wa2,71,72), i.e. which does not depend on ws and which is functionally indepen-
dent of H; and Hs. Thus F' satisfies the following identity

dF (I — Is) wows — cay/ =7 — 75 + c372 OF

dt I Owy
n (Is — ) wiws + c1/ =% — 75 —esm OF
12 8w3

5 5\ OF 5 2 oF
+ (wsy2 —way/ =71 — 73 8771+ wiy\/ =71 =72 —wsm 8772:0’

which can be presented in the following way
dF

where Y7 and Y3 are the following vector fields defined in C* = C*(wq, w2, 71, 72)
(Ig—[g)(,dg 0 ([3—]1)&)1 0 0 0
Y = - B e — _— P —
! [1 &ul + IQ &ug + "2 8"}/1 m 872 ’
y, = @2V - 0 av-ri-r-an 0

I 30.)2

Il 8w1 2
0 0
— w24/ —7% - 738771 +wiy/ —7% - 738772
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As (5.39) is an identity with respect to all the variables and as Y7 (F) and Y2(F) do
not depend on w3 we have
Yi(F) = Ya(F) = 0. (5.40)
We compute the Lie brackets Y3 = [¥7, Yz] and Yy = [Y7, V3] and obtain

Y, = (I3 — L)/ =3 — v3 — Izesm (I1 — I3)ea/ =72 — 73 + Izc372

NG 5‘w1 L1, Oy
+fh—b—thFﬁ—ﬁi9_UrJfHéwv—ﬁ—ﬁjl
I, 5"71 L o2’
Y, = I3cs (Ip — Iy — I3) 2 + (Iy — I3) ( 2V =15 0
21, Awy
" Iscs (Ip — Iy + Is) 1 — (It — I3) (Io — Is) c1 /= — 73 8
L3 w2
L (DIt Lly — 203 4 13— L) w7 — 93 0
LI om
L @E-2Lb -yt bl)wiy =97 -3 0
I, v
Equations imply that
Ys(F) = Y4(F) = 0. (5.41)

Equations (5.40) and (5.41) can be considered as a system of four homogeneous linear

9F 9F O9F OF

algebraic equations with unknowns grad F' = (87)1, Bos’ Do s

), which do not vanish
identically, because F' is non-constant on any open subset of its domain of definition.

If a new integral F exists, system f has at least one non-zero solution. As
in Sec. we consider the 4 x 4 matrix A of the coefficients of this system. The condition
under which system f has at least one non-zero solution is rank A < 3.

Therefore we equate to zero the determinant D = det(A) and study when identity

D=0 (5.42)
is fulfilled. We compute D and obtain
7+ A
D= JETE D,

where

B = .Dl\/ —’Y% _’73 +D2
The expressions for D1 and Dy are polynomials in variables wy, wo, 71 and 7.

It is clear that is equivalent to D= 0, that is D1\/—7% — 72 + Dy = 0. If
Dy = 0 identically, Dy = 0 identically too. Let us suppose that D; # 0. Then we have
Dy
D

Applying Proposition{4.3{to V' = —vZ —~2 one sees that can never occur because
V'V ¢ C(v1,72). Consequently D; = Dy = 0. Thus we require that all the coefficients of
D and D5 be zero. First we consider polynomial D;. It has six monomials and thus six

—2 2= (5.43)
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coefficients depending on Zc. We want to find all values of the parameters Zc¢ for which
the six coefficients of Dy are zero, i.e.
(L = I3) (2L — I — 2I3) (1 — I — I3)cp = 0,
LIo(Iy — I3) (317 — 31,1y — I I3 + 21513 — 2I3)c; = 0
LIy(I — I3) (311 Iy — 211 I3 — 313 + I 13 + 213)cy = 0
— L(2I7 15¢3 + 213 13¢5 — 21713} — L I3c3 — 1 T3¢ — I I Izch
— AL I I5¢3 + 21 I T3¢ + 21 1363 + I215¢3 — 21313¢% + 21515¢3) = 0,
— 122(12 — 13)(11 — 12 —|— 13)(11 — 2[2 —|— 2[3)01 = 0,
— L(I3 1563 + I 1ac} — IR 13¢5 + 217 13¢5 — 211 I5¢3 — 211 I5¢3
+ I IaI3¢5 — 211 Ix 13¢5 + 4L Io Iz} — 211 13¢5 + 215 13¢5 — 2115¢3) = 0.
After five consecutive simplifications we obtain the reduced system that consists of
seven equations, that is
(Il —12)03 ZO, (Il —12)0102 ZO, (Il —Ig)([g —2[3)02 :O7
(Il —13)(11 —2[3)02 :O, (IQ —Ig)(IQ—Q.[g)Cl :0, (.[2 —13)(11 —2[3)01 :0,
(12 — 13)(12 — 2[3)62(}3 = O
Solving this system by the MAPLE command solve we obtain six solutions. Removing

the solutions that lead to the Euler, Lagrange, Kovalevskaya and kinetic symmetry cases

it remains only one solution
I, =213, I, =213, I3, ¢1, ca, c3 are arbitrary.
Thus we should consider only the case
I, =1, =2I3. (5.44)
At the condition we have also Dy = 0 and therefore vector fields Y;, 1 <1 < 4,

are linearly dependent (they satisfy equation 4Y; 4+ Y = 0). That is why we compute the
Lie bracket Y5 = [Y2, Y3] and obtain

_wi(eam +e1ve) +2c3way/ =97 — 5 Fwa (e —cam) 0

Vi — i
5 41 Ow
_wiam —ene) +2cw1y/ =97 — 93 w2 (e +a2) 9
4[3 8w2
I3w? + I3w3 — c3\/—2 — 2 ( 0 0 )
+ 25 —Yig—
215 o 02

and consider the following four equations:
Yi(F) =0, 1<i<3, Y5(F)=0. (5.45)
As above we equate to zero the determinant A = det(B), where B is the matrix of
the coefficients of system (5.45)) and study when the identity
A=0



The Euler-Poisson equations; partial integrability 43

is fulfilled. We compute A and obtain
A VTi-Eg
812 ’

where

A = c3 (cawiv} + crwivine + cawinVs + awiys — 2ciwiwa; + 2c0w1wa Vi Y2
— 201w1w271722 + 262w1w2’y§ — cngyf — clwg'yf'yg — czwgylvg — clwgfyg’) .

It is clear that the equation A = 0 is equivalent to A=0. It is easily seen from the
expression for A that A vanishes identically only if ¢35 = 0 or if ¢; = ¢ = 0. Taking into
account the condition ([5.44)) we see that if c3 = 0 we come to the Kovalevskaya case and
if c; = co = 0 - to the Lagrange case.

Thus a new partial first integral of type 3, i.e. F'(w1,w2,71,72) can only exist in the
two cases known above.

Type 5. Let us look for a first integral of the system (5.31) that is of type 5,
F(ws,ws,71,72), i.e. which does not depend on w; and which is functionally indepen-
dent of H; and Hs. Thus F' satisfies the following identity

dF (I3 = h)wiwg + a1/ =7 =73 —esm OF
dt a IQ 8(4}2
(1 — L) wiws + cam1 — 172 OF

13 8w3

oF oF
+ <w3’72 —way/ =% — ’Y%) o + (Wl\/ = - ws’h) Oy 0,

which can be presented in the following way
dF
dt
where Y7 and Y, are the following vector fields defined in C* = C* (wz,wg,wl, ~Y2)

(13 —Il)CU3 3 (Il IQ w2
y, =2 U5 — +1/— —
! _[2 an tn awg ,72 8’7

Y, — avV =73 — 75 —em 3 Lem-ar 0

IQ 86«)2 Ig aw3

5 5\ O 0
| w3y2 — w2/ =1 — V3 8771—@3716*%-

As (5.46]) is an identity with respect to all the variables and as Y1 (F) and Y2(F) do
not depend on w; we have

+

:wlYl(F) +Y2(F) =0, (546)

Yi(F) = Ya(F) = 0. (5.47)
We compute the Lie brackets Y3 = [¥7, Y2] and Yy = [Y7, Y3] and obtain
(I = I3) coy1 — Iierya O (I — L) esy1 — Lien/ =73 — 3 0
N + N
LI Ows I Ows

L I (Iy — I + I3) woys + I3 (It + I — I3) wyn/—7F — 73 0
I2I3 8’71

=




44 J. Moulin-Ollagnier, S. I. Popov and J.-M. Strelcyn

(Il — 12 + 13)602’}/1 6

I3 oy’
v, — (L-DL)(h—B)en—L(h+L-L)ay-i-7% 0
4 1215 Do
_ (h—L)(ILi—Is)coyn — L (L — I+ I3)eiye O
IQI?% a(.U3
I (Il — I, + 13) + 213 (Ig — I3)
- w32
113
L (I + I — I) — 20y (I — I) Jr =] 2
IQI3 w2 7 72 671
ILi (I —Is+13) + 213 (Is — 1 0
n 1(Iy — I + I3) 3 (12 3)w371—.
II3 072
Equations (5.47)) imply that
YA(F) = Ya(F) = 0. (5.49)

Equations (5.47) and (5.48) can be considered as a system of four homogeneous linear
algebraic equations with unknowns grad F' = (é%’ E?TFg’ c%j’ g—i), which do not vanish
identically, because F' is non-constant on any open subset of its domain of definition.

If a new integral F' exists, system (|5.47)—(5.48) has at least one non-zero solution. As
in Sec. [5-2] we consider the 4 x 4 matrix A of the coefficients of this system. The condition
under which system (5.47)—(5.48) has at least one non-zero solution is rank A < 3.

Therefore we equate to zero the determinant D = det(A) and study when identity

D=0 (5.49)
is fulfilled. We compute D and obtain

p_ Vi A

LI ’

D = Di\/=4} =43 + Dz.

The expressions for D1 and Dy are polynomials in variables ws, w3, 71 and 7.

It is clear that 1’ is equivalent to D = 0, that is Di\/—v —~2+ Dy = 0. If
Dy = 0 identically, Dy = 0 identically too. Let us suppose that D; % 0. Then we have

D,
s = D, (5.50)

Applying Propositionto V = —42—~2 one sees that can never occur because
VV ¢ C(v1,72). Consequently D; = Dy = 0. Thus we require that all the coefficients of
Dy and D5 be zero. First we consider polynomial Ds. It has 11 monomials and thus 11
coefficients depending on Zc. We want to find all values of the parameters Zc¢ for which
the 11 coeflicients of D5 are zero, i.e.

I3(I — ) (21 — 21> + I3)(I1 — Ir + I3)c3 = 0,
2]2[3([2 — Ig)([l — 12)(11 —|— Ig — 13)01 = O7

where



The Euler-Poisson equations; partial integrability 45

2121y — I3)(Iy — I3) (I + I — I3)e; = 0, IpI3(Io — I3)(I; — I3)cica = 0,
LI(I; — I3) (1) — I)eies = 0, I2(1 — I)(I + Iy — I3) (211 + Iy — 2I3)co = 0,
I I3(21F — AL 1o + 31,13 + 213 — 21513)cic3 = 0,

I3(21315¢2 — AL IoI3c2 — 2111362 + 211 o Is¢? + 217133 + 21,13¢3—

201563 + L 13¢5 — I313c3 — I3 13¢5 + 212155 — I 1213¢3) = 0,

L1321 — I3)(I; + I — I3)cico = 0,

LI(I, — L) (217 — 21115 + I I3 + 3113 — 313)c3 = 0,

LI3(I — I3) (217 + I I, — 211 I3 — 313 + 31513)cy = 0.

After six consecutive simplifications we obtain the reduced system that consists of
eight equations, that is

(Io —I3)er =0, (Ia—I3)csca =0, (217 — I3)cger =0,

(I — I3)(I) — L)es =0, (I1 — )21 + 215 — 3I3)es =0, (211 — I3)cieo = 0,

(I — I3)(Iy — I3)ea =0, (2 — I3)(I; — I3)ce = 0.

Solving this system by the MAPLE command solve we obtain seven solutions. Remov-

ing the solutions that lead to the Euler, Lagrange, Kovalevskaya and kinetic symmetry
cases we obtain only one solution

IQ = 2[17 Ig = 2[1, Il, C1, C2, C3 are arbitrary.
Thus we should consider only the case
I, =13 =2I. (5.51)

Under condition (5.51)) we also have D; = 0 and therefore vector fields Y;, 1 <7 < 4,
are linearly dependent (they satisfy equation 4Y; + Y5 = 0). That is why we compose the
Lie bracket Y5 = [Y2, Y3] and obtain

cawaye + ws (2c171 — ca72) + (caws +c3w3) V=11 — 75 9

Y =
> 45 Ows

w2 (2e171 + e272) + c3wsy2 — (cawz — caws) V1T =75 O
4]1 8w3

Ilw§+11w§761’)/1 2 2i

211 7 V2 8’}/2

and consider the following four equations:
Yi(F) =0, 1<i<3, Ys(F)=0. (5.52)

As above we equate to zero the determinant A = det(B), where B is the matrix of
the coefficients of system (5.52)) and study when identity

A=0
is fulfilled. We compute A and obtain

A=_TLA
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A=A/ =25+ A
The expressions for A; and Ay are the following polynomials in variables ws, w3, 1 and
Y2-
A = cl"/g(—c;w% + 2cowows + c;;w%)7 Ay = cl(vf + 7%)(020.)% + 2c3wows — czwg).

As A = 0, by Proposition we have Ay = Ay = 0. As it is easily seen the last
equations can be satisfied only in two cases: when ¢; = 0 which together with condition
(5.51)) leads to the Kovalevskaya case and when ¢ = ¢3 = 0 that leads to the Lagrange
case. The conclusion is that a partial first integral of type 5 does not exist.

where

5.4. Invariant manifold { H3=Ujs}. Here we proceed as in Sec. We first eliminate
ws from the equation

Hj3 = Us. (5.53)
Then we study the elimination of v3 from (5.53|). The results of these investigations are

presented in the next two subsections.

5.4.1. Elimination of ws. We express w3 from (5.53)) and obtain
wn — \/U3 — Ilw% — Igw% — 261’)/1 — 26272 — 203’}/3
3= .
I3

w3 is now considered as an algebraic function of all its variables.
To shorten the formulas, we denote the square root of (5.54]) by Q3 so that we have

w3 = Qg. (555)

(5.54)

Now we insert this form of w3 in the Euler-Poisson equations (|1.1)) and remove the
third equation. In this way we obtain the following system of five differential equations:

dwi  (I2 — I5)walds + 372 — 273
da I ’
@ - (13 - Il)wlﬂg + 173 —e3m
dt I ’
dn
dt
dr
dt
ds
dt
There are five possible types of first integrals of this system which depend on at most

four variables. They are:

= Q372 — ways, (5.56)

=w1y3 — s,

= W21 — W12

L. F(wi,w2,71,72), (case (ii))

(case (
2. F(w1,w2,71,73), (case (iii))
3. F(wi,wa,72,73), (case (iii))
4. F(w1,71,72,73), (case (iv))

F w2,71,72,73
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It is then sufficient to examine here the functions of type 1, 2 and 4. Afterwards,
eliminating +s, we will be able to study the functions belonging to case (i), the function
F(wy,wsz,ws,v1) in this circumstance.

Type 1. Let us look for a first integral of system that does not depend on
v3, i.e. of type 1. Moreover we want this integral to be functionally independent of H;
and H, restricted to the invariant manifold {H; = Us}. Let us suppose that the function
F(w1,wa,7v1,72) is such a first integral. Then we have

dF F
IlIQE = _[2 [(IQ — Ig)OJQQg + C37Y2 — 02’73] 87(»1
oF
+ I [(Izs — I')w1 Q3 + c1773 — 371 Do
W
oF oF
+ 111y (372 — woys) =— + 1 Iz (w13 — Q371) m— = Y1(F) =0, (5.57)
omn 072

where Y7 is the corresponding vector field, defined on C®(wy, wa, Y1, V2,73)-

Equation is an identity with respect to all the five variables. F' does not depend
on 3. Thus if we differentiate this identity with respect to 3 we again obtain a linear
partial differential equation for F'. Let us note that from and it follows that

893 _ C3
03 1303
In this way we obtain from (5.57))
oY 1 (F
1503 1( ) = —12(136293 + Iscsws — 13030\}2)7
073 Ow1
OF OF
+ i (Iycswy — I3czwy + I3¢103) — — L2 (c3ye + I3wad3) -—
8w2 871
OF
+ 11[2(130.}193 + 03’}/1)87’}/2 = YVQ(F) = 07 (558)
where Y3 is the corresponding vector field, defined on C®(wy,wa, Y1, v2,73)-
We differentiate ([5.58)) and obtain
9Ya(F) oF oF oF oF
Q = Ioco— — ey — + [1lowos— — I1Iow1— | = Y3(F) =0, (5.59
3 93 c3 | Laco iy 1€1 Do + 1 2w25’y1 112w 972 3(F) , ( )

where Y3 is the corresponding vector field, defined on C3(wy,ws, 1,72, 73)-

When c3 = 0, Y3 vanishes identically. That is why we consider separately two cases:
c3 # 0 and c3 = 0.

First let c3 # 0. Then we compute the Lie bracket Yy = [Y2, Y3]/(I112¢%) and obtain

oF oF
Y4(F) = —Cl(Ig - 13)870\)1 - 62(11 - 13)(97(4]2
or
—|—Ilw1(11 —12 _13)87’)/1 —IQ(UQ(Il —Ig+[3) =0. (560)

Equations (5.57)—(5.60) can be considered as a system of three homogeneous linear
algebraic equations with unknowns grad F' = (%’ 3—52, é‘%’ %), which do not vanish
identically, because F' is non-constant on any open subset of its domain of definition.
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Thus, if a new first integral F' exists, system (5.57)—(5.60) has a non-zero solution
grad F'. This is possible if and only if the determinant D of the coefficients of equations
(5.57)—(5.60) is identically equal to zero. We compute this determinant and obtain

D = I?136D,
where
D=L~ L)L — I~ L)we — (I — L) (I — I — I3)wiwsm
— LIy = I3)(Iy — Iz + I3)wiwiye + Lica(ly — I — I3)wi i
— L (I — 2L)wimye — Laea(lh — I)wiys + (I — I3) (1 — I + I3)wim
+ Iiei Iz — I3)wo} + Taca(Io — 2I3)wamive + Taer (It — Iz + I3)wss.
It is clear that tile equation D = 0 is equivalent to D =0. D = 0 has ten coefficients.
The annulation of D = 0 means that all of its coefficients should be zeros. In this way we

obtain a system of ten equations for the parameters Zc.
After three consecutive simplifications we come to the reduced system:

01:0, 02:0, IQ—I3:0, 11—13:0,

which obviously leads to a particular case of the kinetic symmetry case. Thus a new
partial first integral of type 1 does not exist when c3 # 0.
Let ¢5 = 0. Now €23 does not depend on 3 and Y3 (F') is of the form (see (5.57)))

Yi(F) = Z1(F)vys + Z2(F)Qs, (5.61)

where the vector fields Z; and Z,, defined on C*(wy,ws,71,72), are given as follows:

0 0 0 0
Zy = —DLheo—+ Lici 57— — I1 Iowo— + I1 [ow; —,

Owy Ows Oy 02
0 0 0 0
Zoy = Iy(Iy — I — + (I3 -1 — + L Iyyo— — 1 oy —.
2 2(12 s)wzawl + 11 (I3 — I )wy Do +1h 2728% 1don 9
Equation ([5.61)) implies that
Z1(F) = Zy(F) =0. (5.62)

We compute the Lie brackets Zs = [Z1, Zo]/(I112) and Zy = [Z3, Z3] and obtain

B d
Zz= Iy — I3)cr— + (I1 — I3)ca——

awl an
— Il(Il — I — .[3)(/.)1i + IQ(Il — I+ Ig)wgi,
(9’71 872
Z4 = —IQCQ(IQ — Ig)(]l — Ig)i + .[161(_[2 — Id)(Il — Ig)i
Ow Ows
— L,(2L I, — I3 — 212 + Lo 13 + I3)ws 0

m
— L L2217 — 2011y — L1135 + I 15 — Ig)wli

02
Equations (5.62)) imply that
Z3(F) = Z4(F) = 0. (5.63)
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Asin the case ¢z # 0, the system of equations ((5.62)) and (5.63]) is a linear homogeneous
system that has a non-zero solution. Thus the determinant § of its coefficients should

vanish identically. We compute § and obtain
§ = 12139,
where
8 =121 — I3) (2, — I — 2I3) (I, — I — I3)caw?

+ NI (Iy — I3)(2131, — 311 Iy + 317 — Is1; — 2I3)ciwiw,

+ LIo(I) — I3) (31 Iy — 211 I3 + Iol3 — 313 + 212) cow w3

— L2 — I — 2I3)(I1 Iz} + L1 Ixc3 — I1I3c; — o I3c3)wiye

— I3(Iy — I3) (I — 21y + 213) (11 — I» + I3)ciws

— Iy(I1y — 21 + 21I3)(I1 Iac} + L1 Iacs — I1 I3} — Ial3c3)ways .

Equation 6 = 0 is equivalent to the equation & = 0. Thus the six coeficients of &

which should be zeros. In this way we have obtained a system of six equations for the

parameters Zc. We subject it to simplification and after five consecutive simplifications
we come to the reduced system consisting of the following five equations:

(I1 — I)cica =0, (I1 — I3)(I2a — 2I3)ca =0, (1 — I3)(I1 — 2I3)ce = 0,
(I — I3)(Iy — 2I3)c; =0, (Iy — I3)(Iy — 2I3)c; = 0.
We solve them by the MAPLE command solve and obtain five solutions:
{Lh=h, =10, Is=13, ¢, =0, co =0}
{h=1s3 =1, Is=13, ¢ =0, ¢ca =ca}
{Lh=h, h=1I3 I3=13, ¢y =c¢1, c2 =0}
{h =2I3, I =2I3, Is=1I3, ¢c1 = ¢1, ca = Ca}
{h =1, h=1I3 I3=13, c1 =c1, c2 = c2}.
Taking into account that now c3 = 0 we see that the first of these solutions leads to
the Euler case, the second and third ones - to the Lagrange case, the fourth solution leads

to the Kovalevskaya case and the last one - to the kinetic symmetry case.
Thus a new partial first integral of type 1 does not exist also when c3 = 0.

Type 2. Let us study now a first integral of type 2, i.e. F(w1,ws2,v1,73). We have

dF oF
Ilo— =L (I — I- Q- — 3| ——
1l 2 [(I2 — I3)w2Qd3 + c3772 — c273] Do
oF
+ Il [(I3 — Il)o.)lﬂg + C17Y3 — 03’)/1] (97
w2
oF oF
+ 1115 (Qg’yg — w273) (97 + 11 I ((.UQ’)/l — wl’}/g) —_— = Yl(F) =0, (564)
" O3

where Y7 is the corresponding vector field, defined on C®(w1,wa, Y1, v2,73)-
Equation (5.64)) is an identity with respect to all the five variables. F does not depend
on 2. Thus if we differentiate this identity with respect to 72 we again obtain a linear
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partial differential equation for F'. Let us note that

893 _ C2
072 I3Q3°
In this way we have
oY1 (F oF oF
1303 1(F) = I5(I3¢323 — Iacows + I3cows) —— + 11 (11 — I3)cowi -—
872 6W1 8w2

oF oF
—|— 11[2(—02"}/2 —|— 1393)87’)/1 — 11[213(01936773 = }/Q(F) = 0, (565)

where Y3 is the corresponding vector field, defined on C®(wy,ws, Y1, V2,73)-
We differentiate ([5.65)) with respect to v2 and obtain

Q3 OY>(F) oF oF oF
L30T O N0 i ) = Va(F) = .
12 8’72 Co 638 ) 3 1 38’}/1 1W1 873 3( ) 0, (5 66)

where Y3 is the corresponding vector field, defined on C®(wy, w2, V1, V2,73)-

When ¢y = 0, Y3 vanishes identically. That is why we consider separately two cases:
c2 # 0 and cg = 0.

Let first co # 0. Then we differentiate with respect to v, and obtain

L0 9Y3(F)  OF B
3d o By~ Yi(F) = 0. (5.67)

Equations (5.64)—(5.67) can be considered as a system of four homogeneous linear
algebraic equations with unknowns grad F' = (gTF, g—F, g—F, g—F), which do not vanish
1 w2 71 3
identically, because F' is non-constant on any open subset of its domain of definition.
Thus, if a fourth integral F' exists, system (5.64])—(5.67) has a non-zero solution grad F'.
This is possible if and only if the determinant D of the coefficients of equations (5.64)—

(5.67) is identically equal to zero. We compute this determinant and obtain

D = I*I,c3w, D,

where
D = eo(I1 — Iy)wiys — es(I1 — Ia)ways — e1(Io — I3)was.

The equation D = 0 is equivalent to D = 0. Thus, as ¢ # 0, the first coefficient
of D vanishes identically if and only if Iy = I3. At this condition the two remaining
terms vanish either if Iy = I3 or if ¢; = ¢3 = 0. The first possibility leads to the kinetic
symmetry case and the second one - to the Lagrange case.

Thus a new partial first integral of type 2 does not exist when ¢y # 0.

Let ¢; = 0. Now 3 does not depend on 2 and Y3 (F') is of the form (see (5.64]))

Yi(F) = Z1(F)v2 + Z2(F)Qs, (5.68)

where the vector fields Z; and Zs, defined on C*(wy, wa,v1,73), are given as follows:

0 o0 0
Z1 = Ihes— + L1 I,O03— — [1 [ow; —
1 2638w1 + I112 3571 1 2w1373,

0 0
Zy =Ir(I — 13)0)2938701 + I [(Is — I1)w1Q3 + 173 — ¢371) Dog
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0 0
— i Jhwoys 5— e + Libwoyi 75— o
Equation ([5.68)) implies that
Z1(F) = Zy(F)=0. (5.69)
We compute the Lie brackets Zs = [Z1, Zs]/(I112) and Zy = [Z3, Z3]/I> and obtain
0 0
Zs = —15(1y — I — + [I3¢303(13 — 21 I I — 21
3 2(12 3)01w28w1 + [I3¢3823 (15 1) + Liciwi (1 3)] D

0 0
— LI — I, - IS)wleéTyl + LIs(I1 + Iz — I3)wel3 —

s’
0 0

Zy = + — — Q4=
a a —a a
4=015— 25 391 4972

Ow1 Ows

where
ay = (I — I)[~ 1211 — I3)czw? + 1 Izc01Q3 — I (31 — I — I3)czws
— (311 — 2I3)cie3yy — (Iicd + 4ILch — 213¢3)ys + (211 — I3)csUs],
ag = —lwso[I1 (21} — 215 — I3)cswy + Is(I + 215 — 215)e1Q3],
az = L[L (I — I3) (I — I — I3)wiQs + [ (I — Io — I3)czwiyy + 1 (I2 — I3)ciwiys
— Iy(I11y — 21 I3 — I3 — I I3 + 212)w3Qs — I3(21) — I3)c3y39s],
ay = L[L(I — I3) (1 4 Iy — I3)w? + I(317 — 4L I3 — I2 + I3)w w3
+ (I7 + 20 1o — 251 I3 — 21505 + 215 )cywi vt + 2(1 — I3) (L + I — I3)cswiys
— Iy = I3)(I1 + Iz — I3)Uswy + I3(I1 — I3)e3yi Q3 + I3(1y + I — I3)c1y3Qs).
Equations imply that
Z3(F) = Z4(F) = 0. (5.70)

As in the case ¢y # 0, the system of equations (5.69)) and (5.70)) is a linear homogeneous
system that has a non-zero solution. Thus the determinant § of its coefficients should
vanish identically. We compute § and obtain

§=17 12w2(235
where the expression for 8 has the following form:
6 = I393by + Liw by.
b1 and by are polynomials of the variables wq, ws, 71 and 73 with coefficients that depend
on the parameters Zc and Us. They are given by the following formulas:
by = —2@c1(Iy — I3)(I; — I3)(211 + I — I3)w?
— LIy — I3) (I + Iy — I3) (I} + 215 — 213)cyws
— (I} + 21y — 2I3)(I1 Ioc3 — I I3¢2 + I Isca 4 213¢3 — 4loI3¢3 — Iolzcs + 213¢3)y
—2c3c1(Ia — I3)(Iy + In — I3) (11 + 21 — 213) 73
+ (Io — I3) (11 + Iy — I3) (11 + 25 — 2I3)c1 U3,
by = 21, (I} — I3)(I; — Iy)(I; — Iy — 2I3)c3w?
+ (I — 1) (2111, — 31113 — 215 — Io13 + 313)caws
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+ 2([1 - 12)(—3[1]3 + 2[1[2 + 3I§ - 1213 - 2[22)6103’}/1
+ (27 Iy (3 4 2¢2) — 211213(c§ +4ck) — 20 13(c +4c3) + L I I3(c3 + 8¢2)
+ LIZ(c3 +T7c3) +ALycs — T I5c3)]ys
— (I — L)(2L I, — 31113 — 213 — IoI3 + 313)c3Us.
The equation § = 0 is equivalent to §=0.0 depends on function 23 and it is easy
to see that (23 ¢ C(wy,wa,71,73). Then according to Proposition |4.3] u the coefficients by
and by of 5 should be zeros. In this way we obtain a system of ten equations for the

parameters Zc¢ and Us. After four consecutive simplifications we come to the reduced
system consisting of the following five equations:

(I1 = I3)cies =0, (21 — I3)(I1 — Iz)es =0, (I; — L) (211 — 315+ 215)c3 = 0,
(2L — I3)(Is — I3)e; =0, (Iy — I3)(Iy — Is)e; = 0.
We solve them by the MAPLE command solve and obtain six solutions:

{Lh=hLh, =1, Is=13, ¢ =0, c3 =0}

{h=h, =0, Isy=13, ¢, =0, c3 =c3}

{h=0h, L=1I Is=1I3, ¢ =¢1, c3 =0}

{1 =2, h=1, I35=2I5, ¢y =0, c3 =c3}

I3

{h=1I, I, = 5 Is =15, ¢y =1, c3 =c3}

{hh=1I3, Iy =13, I3 =13, ¢1 = ¢y, ¢3 = C3}.

Taking into account that now co = 0 we see that the first solution leads to the Euler
case, the second and third solutions lead to the Lagrange case, the fourth and fifth ones
- to the Kovalevskaya case and the last one - to the kinetic symmetry case.

Thus a new partial first integral of type 2 does not exist also when ¢o = 0.

Type 4. Let F(w1,71,72,73) be a new first integral of type 4. Thus we have

dF oF oF
I — 7 = [(I2 — I3)w2Q3 + c3772 — cay3] Do + I (372 — way3) — o
oF oF
— I (371 — wi73) vy + I (wey1 —wiy2) m— = Y1(F) =0, (5.71)
V2 0v3

where Y} is the corresponding vector field, defined on C3(wy,ws, 1,72, 73)-

Equation is an identity with respect to all the five variables. F' does not depend
on wy. Thus if we differentiate this identity with respect to wo we again obtain a linear
partial differential equation for F'. Let us note that

893 - _IQLUQ
8w2 B I3Q3.
In this way we have
dY1(F) 9 9 OF OF
150 = (I, — I3)(I3Q5 — I. — -1 (I I37v3Q3) —
L (L2 — I5) (1393 2w2)3w1 1(Taway2 + I373 3)871

oF OF
—f—IlIQWQ’}/li +11[3’}/1937 ZYQ(F) :O7 (572)
02 03
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where Y5 is the corresponding vector field, defined on C®(wy, wa, Y1, V2,73)-
We differentiate ((5.72]) with respect to wo and obtain

0Ys(F oF oF
Qs 6?52 ) = —4h (I, — I3)w2QS(‘)TJ1 — I I5(7293 — w273)8771
oF oF
+ 1112%933772 - 111’20«’27187,}/3 =Y3(F) =0, (5.73)

where Y3 is the corresponding vector field, defined on C3(wy,ws, 1,72, 73)-

Let us note that the first integral Hs is of type 4, i.e. it satisfies system (5.71])—
(5.73). Thus if a new first integral exists, then this system will have two non-zero linearly
independent solutions grad Hs and grad F'. This is possible if and only if the 3 x 4 matrix
M of the coefficients of system f satisfies the condition

rank M < 2. (5.74)

We compute the determinant Mio4 obtained from matrix M by crossing out its third
column and obtain
Mg = I3 Iy Mo,
where
Mizq = Q3b1 + bo.
Here the coefficients b; and by are polynomials given by the formulas:
by = (I — Is)(—Liwiye + 3Liwiwsy + 2hwiwsye — 2c1w17172 — 2C2w175 — 203w17273
+ Uswiyz + 61wzt + 6eawsy vz + 6eawayiys — 3Uswan),
by = =311 (T2 — Is)wiwyys — Ncswimiye + licawimys — 2L(Iz — Is)wiws s
— 6(I2 — Is)crwiway1ys — 6(I2 — I3)cowrwayeys — 6(I2 — I3)cawiwas
+3(Iy — I3)Uswiways — 2¢16371 72 + 2c1¢07173 — 2c2¢3m3 + 2(¢5 — ¢3)m7273
+ c3sUsnyz + 2c2e3m 73 — 2Us717s.
Taking into account Z/\4\124 should vanish identically. According to Proposition
the coefficients b; and by should be zeros because Q3 ¢ C(w1, wa, V1, Y2, ¥3). Polynomial
b1 has 11 coefficients and by - 15. We only use by = 0. In this way we obtain a system

of 15 equations for the parameters Zc and Us. After two consecutive simplifications we
come to the reduced system

02:0, C3:0, 12—13:0.
It leads to the Lagrange case, and therefore a new partial first integral of type 4 does

not exist.

5.4.2. Elimination of v3. We now study the elimination of 3 from the equation (5.53).
In this section we suppose that c3 # 0 because otherwise the elimination under consider-
ation is not possible. We obtain:

Uz — Lw? — Iwi — [3w3 — 2e171 — 26072

V3 = (5.75)

203
To shorten the formulas, we denote the right-side of (5.75]) by I's so that we have v3 = I's.



54 J. Moulin-Ollagnier, S. I. Popov and J.-M. Strelcyn

Now we put this value of 3 in the Euler-Poisson equations (|1.1)) and remove the sixth
equation. In this way we obtain the following system of five differential equations:

dwl - (12 — Ig)(JJQ(Ug + C37Y2 — CQFg

dt I ’

dwy (I3 — Ii)wiws + 1’3 — esm

dt I ’

dws (I — L)wiws + 271 — €172 (5.76)
dt I3 ’

d

% = wzy2 — wal’s,

d

% = w1F3 — W371-

There are five possible types of first integrals of this system which depend on at most
four variables. They are:

1. F(wi,w2,ws,71)
F(wr,ws, w3,72) )
F(w1,wa,71,72), (case (ii))
F(wyi,ws,71,72), (case (iii))
F(w2,ws,71,72)- (case (iii))

, (case (1))
, (case (i)

case

ot Lo

Considering the fact that the functions belonging to cases (ii) and (iii) have already
been examined, it only remains to study a function belonging to case (i).

Type 1. Let us look for a first integral of system (5.76)) of type 1, i.e. F(w1,ws2,ws,¥1)-
Moreover we want this integral to be functionally independent of H; and Hs restricted
to the invariant manifold {H3 = Us}, but this condition will play no role here. Then we
have

dF oF
111213E = I3 [(I2 — I3)wows + 372 — c2l's] Door
oF
+ I I3 (I3 — I)wiws + 11’3 — c371] N
w2
oF
+ I 1 (11 — I)wiwa + cam1 — c172] Do
w3
oF
—+ 11[213 (w;g’)/g — UJ2F3) Z(F) = O7 (577)

on
where Z is the corresponding vector field, defined on C°(wy,ws, w3, ¥1,72)-

Vector field Z is of the form Z = 2Y77s 4 Y5, where the polynomial vector fields Y;
and Ys are defined on C*(wy,ws,ws, 1) as follows:

0
Yl = 1213(03 + Cg)a

1o} 0 0
— — Lizcico— — LiIrercz— + I o I3(cows + caws) —,
W1 80J2 8&)3

omn

Y2 = 1213[62(11(41% + Igwg + 13w§ + 201’}/1 — Ug) + 2([2 — 13)03(4]2&)3]87“1

0
— 11[3[01 (Ilwf + Igwg + Igw§ + 2¢c171 — U3) + 2([1 — 13)03W1W3 + 20%71]87
2
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0
+ 201 Ires[(1y — I2)wiws + 02’}’1]87)3

7]
+ Illglg(llw% + Igwg + Igwg + 261"}/1 - Ug)wgg.
1

Taking into account that (5.77]) should be an identity with respect to all the variables
and that F does not depend on 75, we conclude that

Yi(F) = Ya(F) = 0. (5.78)
We compute the Lie bracket Y3 = [Y1,Ya]/(2]11213) and obtain

}/3 = [121362(63 + C%)Oﬂ — IQ(IQ — 13)6105012 — 13(12 — 13)610263(,03]87
1

=+ [1101(1163 — 13(33 — 2[36%)0)1 — IlI3CQC§W2

0
- 13([103 + 2[16% - IgC% - IgC%)CgU)g]ai
wo

0
— C3 [Il (Il — 12)01620.)1 — 12(211(3% + Ilcg - IQC% — IQC%)(.UQ — 11[26302(.4.)3]7

aLU3

— Il [IQ(IIC% — IQC?)) — 1303 — I3C§)LU1W2

9
omn '

Then we compute Yy = [Ya,Y3]. Unfortunately the expression for Yy is too long to be

— Ig([l — 13)6263&)1&]3 + (IQ — Ig)CQC%’yﬂ

shown here.
Equations (5.78) imply that
Yy(F) = Ya(F) = 0. (5.79)

System (5.78])—(5.79)) can be considered as a homogeneous linear algebraic system with
g—F, g—F, g—F, g—F), which do not vanish identically, because F' is
w1 w2 w3 1
non-constant on any open subset of its domain of definition.
Thus, if a fourth integral F' exists, system (5.78)—(5.79)) has a non-zero solution grad F'.
This is possible if and only if the determinant D of the coefficients of this system is

identically equal to zero. We compute this determinant and obtain

D =I?IZI2ED,

unknowns grad F' =

where D is a very long expression that we cannot show here. This expression is a poly-
nomial of the variables wq, ws, ws and v with 79 coefficients, which are polynomials of
the parameters Zc and Us. As ¢3 # 0 the equation D = 0 is equivalent to D = 0. Thus
all the coefficients of D should be zeros and we have to solve the corresponding system
of 79 equations.

After three consecutive simplifications we come to the reduced system consisting of
the following six equations:

(IQ — 13)02 = O, (11 — 13)62 = 0, (Il — 13)01 = O7 (2[2 — 13)(11 — ]2) = 07
(Il — IQ)(QIl —+ 2]2 — 3]3) = 0, (2[2 — .[3)(.[2 — 13)01 = 0
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Solving these equations by the MAPLE command solve we obtain four solutions

{Us=Us, =1, Iy =1, I3 =13, ¢ =0, cg =0, ¢35 =c3},

{Us =Us, Iy =13, I =13, I3 = I3, ¢; = ¢y, c2 = 2, C3 = C3},
{Us=Us, I =205, Iy =15, I3 =213, ¢; =0, ¢ =0, ¢3 =c3},
I3
5

The first solution leads to the Lagrange case, the second one - to the kinetic symmetry
case and the remaining two solutions - to the Kovalevskaya case.

{Us=Us, 1 =13, I = Is=13, ¢y =c1, ca =0, c3 =c3}.

Thus a new partial first integral of type 1 does not exist.

6. The gyrostat

6.1. The gyrostat equations. These equations (6.1) are only slightly modified Euler-
Poisson equations (|1.1])

Ilﬂ = (I2 — I3)waws + bawy — baws + Mg(czy2 — c273),
[2% = (I3 — I )wiws + byws — bgwi + Mg(c1vs — c371),
13% = (I — Iy)wiwa + bawy — biws + Mg(cays — c172),
i (6.1)
E = W37Y2 — w273,
% = W17Y3 — W31,
% = W21 — w172

As for the Euler-Poisson equations, we study them in complex domain and without any
restriction of generality, we admit that Mg = 1.

Like for the Euler-Poisson equations, Hy and Hj3 defined by continue to be first
integrals of equations of gyrostat . This is no more true for H, defined by . The
area first integral for gyrostat is

Hy = Liwiy1 + Iawayz + Iswszys — biyr — baya — bays. (6.2)

Up to the end of Sec. @ H; is defined by and such H; is a first integral of gyrostat
equations . The first integrals Hy, Hy and H3 are always functionally independent.

Formally the definition of permutational symmetries cannot be applied to the gyrostat
equations because the number of variables and of parameters does not coincide. But in
fact it is easy to see that all permutational symmetries of gyrostat equations, like for
Euler-Poisson equations, coincide with symmetric group S3, where the same permutation
is simultaneously applied to variables {wi,ws,w3} and {v1,72,73} and to parameters
{I, 5,13}, {b1,b2,b3} and {c1,ca,c3}. It is easy to verify that property remains
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true. That is:

Vk(g(w)’ U(’Y)v U(I)v O'(b)’ U(C)) = EVU(k)(w’ v, 1, b, C),
Wi(o(w),o(7)) =W (w,7),  1<k<3.

Here {Vi }1<k<3 are the right sides of the first three gyrostat equations , {Witi<k<s
are the remaining three equations and ¢ = +1 only depends on the choice of
permutation o € S3. The same concerns the analogue of the Theorem [2:2] We leave
the details to the reader.

The known integrable cases for the real gyrostat equations are the same as for
the Euler-Poisson equations but with some additional restrictions on the constants
bi, 1 < i < 3. Up to permutational symmetry they are the following ones. These cases
remains valid also for complex gyrostat equations.

The Zhukovskii case which is an extension of the Euler case [21], [24]. It is defined by
the condition without additional restrictions on b;, 1 < ¢ < 3. The fourth integral is

Hy = IFw? + Tws + 202 — 2(11byw + Ipbows + I3bzws).

When b; = by = b3 = 0 we recover the fourth integral of Euler case.

The Lagrange case for gyrostat [21] [24] is defined by the conditions (1.4) and b; =
ba = 0. The fourth integral in this case is the same as for the Euler-Poisson equations,
i.e.

H4 = ws3.

The Yehia case [211 [78] which is an extension of the Kovalevskaya case is defined by
the conditions (1.5 and b, = ba = 0. The fourth integral in this case is

2
Hy = [I3(w} —w3) — c1m + c22]” + (2Lswiws — c172 — cam)?
+ 4bgys(c1w1 + cow) — 2b3(wi + w3) (Taws + bs). (6.3)

When b3 = 0 we recover Kovalevskaya fourth integral (|1.7]).
The kinetic symmetry case for gyrostat is defined by the conditions (|1.6)) together
with condition that the vectors (c1, ca, c3) and (by, ba, b3) are proportional, i.e.:

bics = bzcr,  bacg = bsca,  bacy = bic,
and the fourth integral is the same as for the Euler-Poisson equations, i.e.
Hy = ciwy + cows + c3ws.

Let us note that except the Yehia case, in all remaining three cases, the fourth integral
can be found along the same lines as in [59], where fourth integrals are computed for
integrable cases of the Euler-Poisson equations.

This is not so for the Yehia fourth integral because even if co = 0, it depends on all
variables. When ¢y = 0, this fourth integral can be found in [2I] and in [78]. Comparing
formula of fourth integral in Kovalevskaya case when ¢o # 0 and when ¢y = 0 with
formula when ¢y = 0, it is natural to conjecture that formula with an arbitrary
¢y defines a fourth integral in the general Yehia case. Simple MAPLE computation confirms
this.
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Like for the Euler-Poisson equations, we will call these four cases classical integrable
cases.

6.2. The Sretenskii case. In 1963 L. N. Sretenskii discovered an extension of the
Goryachev-Chaplygin partial first integral of the Euler-Poisson equations to the
gyrostat case [62], 63].

Now we apply the method used in Sec. that led to the successful derivation of
the Goryachev-Chaplygin case for the Euler-Poisson equations to the gyrostat equations
(6.1). The computations are almost the same, bigger but not so much. That is why we
do not give details here.

We express v from equation Hy = Uy, where H; is the function given by and

obtain
_ (hwi = b)) + (Isws —b3)ys + Us

IQwQ — b2

Y2 =

We put this expression for v, in the gyrostat equations (6.1) and remove the fifth
equation. We study the obtained system of five equations for the existence of a new first
integral F'(wy,ws,ws,73), i.e. which does not depend on ~;. For this purpose we compute

4E and take only its numerator. It is easily seen that the obtained expression can be

dt
represented in the following way:
dF
a =mY1(F) + Y2(F) =0, (6.4)

where Y] and Y5 are vector fields defined in C* = C*(wy, wa, w3, v3). As (6.4) is an identity
with respect to all the variables and as Y1 (F') and Y5(F') do not depend on 7y, we have

Yi(F) =Y3(F) = 0. (6.5)

We compute the Lie brackets Y3 = [¥1,Y2] and Yy = [Y1, Y3]. Taking into account equa-
tions (6.5)) we have that
Y3(F) = Y(F) = 0. (6.6)

Equations (6.5) and can be considered as a system of four homogeneous linear

algebraic equations with unknowns grad F' = (gTF, g—F, g—F, g—F), which do not vanish
1 w2 w3 3

identically on any open subset of domain of definition of F', because F' is non-constant

on any such open subset.

If a new integral F' exists, system 1) has at least one non-zero solution. Let
us consider the 4 x 4 matrix A whose columns are the coefficients of vector fields Y7,
Ys, Y3 and Y. The condition under which system ij has at least one non-zero
solution is

rank A < 3.

We equate to zero the determinant D of matrix A and study when it is identically
equal to zero.

D is a polynomial of the variables w1, wy, wg and 3. We consider the system consisting
of the coefficients of polynomial D equated to zero. This system has 226 equations in
unknowns Uy, I;, by, ¢;, 1 < i < 3. After four consecutive simplifications we obtain the
reduced system of 28 equations. Solving these equations by the MAPLE command solve
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we obtain nine solutions. Two of them contain zero values of the moments of inertia, two
lead to the Lagrange case and three lead to the kinetic symmetry case. Thus only two
essential solutions remain. They are:

1.1y =413, I, =4I3, by =0, by=0, c3=0;

2.c1=cy=0.

Studying them exactly as in Sec. we find that the first solution leads to a partial
first integral at additional restriction U; = 0, that is

Hy = (Izws + b3)(w} + w?) — (crw1 + cowa)7s,

which is the Sretenskii partial first integral of the equations of gyrostat . When
bs = 0 we recover the Goryachev-Chaplygin partial first integral. As noted in Sec.
this result was announced already in [16].

The second solution, during the investigations, imposes additional restrictions I; = I
and by = by = 0, i.e. leads to the Lagrange case.

6.3. The new complex integrable cases. If we restrict ourselves to the real case, then
1906 E. Husson theorem [32] asserts that for the Euler-Poisson equations only in four
classical cases the fourth integral is an algebraic function [3] [I7, 20] 54]. The completely
analogous assertion for real gyrostat equations was proved in 1992 by L. Gavrilov [21].

The main result of [59] can be formulated as follows. For complex Euler-Poisson
equations, the fourth integral that does not depend on all variables, exists only in the
four classical cases.

The theorem below proves that for complex gyrostat equations the analog of
main result of [59] is not true. As consequence, it proves that in complex setting the
analog of Gavrilov theorem fails. Indeed, in the proof of this theorem we find two new
cases of integrability with not only algebraic but polynomial fourth integrals.

THEOREM 6.1. Up to permutational symmetry the complex gyrostat equations admit
exactly two new (non-classical) integrable cases with a fourth integral which does not
depend on all variables. These cases are

11 = IQ = 2]3, b1 = —’L'Ebz, b3 = O, C1 = ’iECQ, C3 = 0, (67)
where € = £1. In both cases, the fourth integral can be found as a quadratic polynomial.

Proof. Let us look for example for a fourth integral F' of the gyrostat equations (6.1])
that does not depend on ws, i.e. F = F(wy,ws,v1,72,73)-
We compute the derivative of F' with respect to the gyrostat equations and obtain

dF OF
11127 = IQ |:(IQ - Ig)WgWg + b3¢d2 — bQ(Ug + C3%Y2 — Cg’yg:| -
dt 6&)1

oF

+ 1 {(13 — I)wiws + biws — bawy + 173 — 0371} %o

oF oF OF
+ L1 {(WWZ - WZ’YB)TW + (w13 — WSVI)% + (woy1 — w172)8773 = 0.
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It is easily seen that

dF
III2E :UJ3Y1(F) +Y2(F) = O, (68)
where Y; and Y; are the following not depending on ws vector fields, defined on C° =

Cs(wlaw27’)’17’72a73)1

0 0 0 0

Yi=01|(I:— I —by| m—+ 1 |(Is— 1T bi| =— + hilayo— — I1 Ioy1 —,

1 2[( 2 — I3)ws 2} Boon + 1[( 3 — I )wr + 1} Do + 1 2%371 1lam s

0 0
Yo=1 (bswz + 372 — 0273) Foor + I ( —bsw1 + 173 — C371> Pon
+ LI |—w ﬁ—kw i—|—(cu —w )i
142 273 o 173 7o 271 172 s |
As Y1(F) and Y3(F) do not depend on w3 then identity implies that
Yi(F) = Y2(F) = 0. (6.9)

We consider the Lie brackets Y3 = [Y1,Y32]/(I112) and Yy = [Y1, Y3] and obtain

0
Y; = [(12 — I)bswi — Iscay + (I3 — Iz)crys + 5153)} —

8&)1

0
+ {(Il — I2)bswy — I3c3yo + (I3 — I1)cays + bzb:s)] N

w2

0 1o}
+ I3 [(Il — I — I3)wy — bl} o + Ioys [(12 — I — I3)ws — b2} B
1o}

+ [* LI — Iy — I3)wiyn — Io(le — Iy — I3)waye + Iibiyn + I2b272] 8773’

Y4 = 7.[2 |:2(12 — Ig)([l — IQ)bgWQ —+ 13(712 —+ I1 + .[3)63")/2

0
— (Iy = I3)(I1 — I3)coys — (I — 212 + Is)bzbs} o

-1 [2(11 — I3)(I1 — I2)bswy + I3(Iy — Is — I3)csm
0

(I = I3) (I~ T)erys = (21 — I = Iy)babs | 5

0
+ 11]2 {’}/3 [(2]2]1 + 1213 — 2[22 + 132 — Illg)LUQ — (Il — 2]2 — I3)b2] ﬁ
1

0
+ Y3 [(1213 —|— 2[12 — 2[2[1 — Ig — Illg)wl — (2[1 — IQ —|— I3)b1:| W
2

— [(1213 +2IF — 201 Iy — I3 — 1 I3)wiye + (211 Iy + Inl3 — 213 + 12 — I, I3)wamy
(I — 215 — I3)boys — (211 — In + Ig)bm] 8‘33} .
Equations imply that
Y3(F) = Y4 (F) = 0. (6.10)
The system — is a linear homogeneous system in unknowns grad FF =
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(g—i, g—i, %’ g—f; %)’ which do not vanish identically on any open subset of domain
of definition of F', because F' is non-constant on any such open subset.

As Hs is a first integral of the sought type, i.e. it does not depend on w3, then if a new
integral F' exists, system 7 should have at least two non-zero solutions. Let us
consider the 4 x 5 matrix A whose rows are the coefficients of vector fields Y7, Y5, Y3 and

Y,. The condition under which system 1) has at least two non-zero solutions is
rank A < 3.

We compute all the five 4 x 4 minors of matrix A and require that they be identically
equal to zero. Denoting them by D;j;, where the index contains the numbers of the
included columns of matrix A, we see that D345 = Da3q5 = 0. Thus it remains to study
when minors D234, D1235 and Dqs45 vanish identically. These three minors are polyno-
mials of wy, wa, 1, 72 and 73 with coefficients that are polynomials of the parameters I,
b; and ¢;, 1 < i < 3. We cannot write here the expressions for D134, D1235 and Diass
because they are too long. They have non-zero factors which we remove by setting
D234 _ Daags _ Dags
7112[2273, 1235 = 7112[2272, 1245 = 7112[22%~

After this cancellation of the non-zero factors it turns out that

d1234 =

dy234 = —di1235 = dy245.

We can therefore restrict ourselves to considering only the identity dis34 = 0.

The polynomial dj234 has 83 monomials and therefore 83 coefficients which should
vanish. We consider the system consisting of the coefficients of di234 equated to zero, i.e.
the system of 83 equations in unknowns I;, b; and ¢;, 1 < ¢ < 3. After six consecutive
simplifications we obtain the reduced system consisting of 29 equations. Solving that
system by the MAPLE command solve we obtain the following ten solutions:

1{lh =13, Iy =1, Iy =13, by =0, by =by, b3 =0, ¢; =0, ca =ca, c3 =0}

2{hL =1, Ir=1y, Is=1I3, by =by, by =bo, b3=0, ¢ =0, co =0, c3 =0}

3{h=h, L=1I3 I3=1I3, by =b1, bo=0, b3=0, ¢c; =c¢1, c2 =0, c3 =0}

4{, =0, I, =0, I3 =0, by =by, by =by, b3 =0, ¢; =c1, c2 = ca, ¢c3 =0}
c1bo

S5{h =13, Iy =13, I3=1I3, by = ——, by =ba, b3 =0, c1 = ¢y, c2 =2, c3 =0}
C2

6.{ =2I5, I, =2I3, I3 = I3, by = —icby, ba =ba, b3 =0, ¢; =icca, ca =ca, c3 =0}
T{h =13 Io=13, Is=13, by =0, by =0, by =bs, c1 =c1, ca =2, c3 =0}
8{h =—-I3, L=—1I3, Is=1I35, by =by, bg=ba, b3=0, ¢; =0, ca =0, ¢c3 =c3}
9 =215, L =2I3, I3=1I3, by =0, by =0, b3 =0, ¢; =c¢1, ¢ =2, c3 =3}
10{L =10, b=1I, I3=13, by =0, by =0, b3 =b3, ¢ =0, coa =0, c3 = c3},
where € = +1.

A careful study of this list shows that only three solutions are essential. They are

the sixth, seventh and eighth solutions. All other solutions lead to some of the classical
cases of integrability of gyrostat equations. Let us stress that the ninth solution implies
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b1 = ba = bz = 0 and therefore the gyrostat equations become the Euler-Poisson equations
whose fourth integrals not depending on all variables have been studied in [59]. Note that
the sixth solution leads to the condition . Below we examine these three essential
solutions.

Solution 6+4: Iy = Iy = 213, by = —ieby, b3 =0, ¢; = ieca, c3 =0, ¢ = 1.

At these conditions Y;, 1 < i < 4, are linearly dependent as dy234 = 0. More precisely
we have

(I3w1 — 7:]30.}2 — lbg)Y4 + I§(I3w1 - i]gb.)g - 42()2)}/2 + 6]§b2Y3 = 0.
We compute Y5 = [Ya, Y3]/[412 (I3w; — il3wq — iby)] and obtain

0 0

0 0
Ys = — ive) [ =— —i— | —2I ' — — .
5 62(71 + Z’}/Q) (aw1 ZBOJQ> 3(&11 + Z(.dg) (’}/2 871 Y1 aﬂﬁ)

Like Yy, Y5 is also linearly dependent on Y5 and Y3. Indeed, we have

2I3(Iswy — il3we — iba)ysYs — (Isw1y1 + Isways — ibayi + bay2) Yo
+215(wiv2 — way1)Y3 = 0.

Moreover, easy computations show that vector fields Y;, 1 < i < 3, are linearly indepen-
dent. Thus system Y;(F) =0, 1 < i < 3, is in involution and according to the Frobenius
Integrability Theorem should have two functionally independent solutions. The first one
is function Hs. Finding another one, functionally independent of Hs is not feasible with
crude use of the MAPLE command pdsolve. To overcome this difficulty we add the fourth
equation Yy(F') = 0, where Yy = 8%3. We choose such Y because Yy(Hz) # 0. The MAPLE
command pdsolve applied to the system of four equations Y;(F) = 0, 0 < ¢ < 3, gives
as an answer the solution:

(Igw% + 2il3wiwo — [3&)% — 2icoy1 + 202’72)(13601 — il3wy + 2ib2)2

F=G|-
262

)

where G is an arbitrary smooth function. As a second solution of system Y;(F) = 0,
1 < i < 3, we take the function

H4+ = (Igw% + 2il3wiwe — 130.}3 — 2icomy + 202’72)(]3&)1 — il3wse + 2ib2)27
that corresponds to G(z) = —2cax.

Solution 6-: I; = I, = 2I3, by = —ieby, b3 =0, ¢; =ieco, c3 =0, e = —1.
In this case in a completely analogous way we find

Hy_ = (I3w% — 2tl3wiwy — I3w§ + 2icoy1 + 20272)([3&11 + il3wy — 2ib2)2.

It is easy to verify at the hand that Hy, and Hy_ are functionally independent of the
first integrals H; (see (6.2)), Hz and Hj (see (1.2)) and thus they are fourth integrals of
gyrostat equations , for e = 1 and € = —1 respectively.

Solution 7: Il = I2 = Ig, bl = bQ = 0, C3 — 0.

As in the previous case, due to the equality dy234 = 0, the Y;, 1 < i < 4, are linearly
dependent. Indeed, we have

(Wit + w2y2)Ya — I3 (wi + w3)y3Y1 — I3 (w172 — way1)Ys = 0.
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We compute Y5 = [Ya, Y3]/I3 and obtain

0 0 1o}
- 01> + [I3(w3 4 wi)v2 — (bswa — c273)73) o

Y; = —_
5 = (w171 + w22) (Cz Doy Do

0
— [I3(w} + wd)y1 — (bswr — c17v3)7s) 5 —

Y2

0
- [(bswl —c173)72 — (bawz — 0273)’)’1] v
V3

As Hs is a first integral of the sought type then the existence of a fourth integral of
the gyrostat equations requires that the vector fields Y;, 1 < ¢ < 3, and Y5 be linearly
dependent. We compute the determinant V3234 consisting of the first four columns of the
matrix of the coeflicients of these vector fields and obtain

Viaas = I3b3y3 (w11 + waye)? (cawr — crws).
If the vector fields Y;, 1 < i < 3, and Y3 are linearly dependent then Vja34 should be
identically zero. It is clear that this happens either if b3 = 0 which leads to the Euler-
Poisson equations or if ¢; = ¢o = 0 which leads to the Zhukovskii case. Thus a new
integral for Solution 7 does not exists.
Solution 8: [y = I, = —1I3, b3 =0, ¢y = cy = 0.
In this case Yy = —Y5. We compute Y5 = [Ya, Y3]/I3 and obtain

0
Y5 = 63’}/3(213(4]2 + bg)i — 6373(213(.01 —+ bl)

8&11 87‘/“/2

— I3(Isw} + Isws + biwi + bows + 2c373) (728871 - 71;;) .

As in Solution 7, we compute the determinant Wiss4 consisting of the first four
columns of the matrix of the coefficients of vector fields Y;, 1 < 7 < 3, and Y5 and
we obtain

Wiozs = I§03(13w§ + Isw? + biw; 4 3373 + baws ) ysw,
where

w = I3(bow17} — 2b1w1v1Y2 — bow17s + biwai + 2bawayive — biways)
+ babi} — (b7 — b3) 7172 — bibas.

If a new first integral exists then W34 = 0 should be fulfilled. To avoid the Zhukovskii
case we consider that c3 # 0. In such a case it is clear that Wia34 = 0 is equivalent to
w = 0. The last is possible if and only if by = by = 0 which leads to the Euler-Poisson
equations. Thus a new first integral of the sought type does not exist for Solution 8 too.

All the above considerations lead to the conclusion that the gyrostat equations (6.1))
admit a local fourth integral which does not depend on ws either in certain classical cases
or else only when the conditions are fulfilled.

Now let us look for a fourth integral F' of the gyrostat equations that does not
depend on s, i.e. F'= F(wy,wa,ws,Y1,72)-

We compute the derivative of F' with respect to the gyrostat equations and obtain

OF

dF’
Il[QI?’E =113 {(12 — I3)wows + bywa — bows + 372 — 6273} o
1
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F
Ouws,

oF
Ows

+ 1113 {(13 — I1)wiws + biws — bawy + c1y73 — 0371}
+ 11 {([1 — Iy)wiwa + bowr — biwa + (c2y1 — 01’72)]

oF oF
+ L3 [(W?ﬁz - wﬂg)afyl + (w1 — wgvl)aw] =0.

It is easily seen that

LI dr
ol
where Z; and Z, are the following not depending on 73 vector fields, defined on C® =

Cs(W1,W27W3a71772)5

9 i)
o 1572 '
Zoy = I3 [(12 — I3)wows + byws — baws + 6372]

0 0
Zl = _1262 —|—IlCl —11]2((,02
8 W1 80.)2

£
0

+ 1113 [(13 — I)wiws + biws — baw — 0371} 5o

0
+ 111, [(11 — I)wiwa + bowy — biwa + coy1 — 0172] —

80.)3
0 0
+ 11 IrI3ws ( — 1) .

" om - 972
As Z,(F) and Z5(F) do not depend on 73 then identity (6.11) implies that
Z1(F) = Zy(F) = 0. (6.12)

We consider the Lie brackets Z3 = [Z1, ZQ]/(Illg), Z4 = [Zl, Zg] and Z5 = [ZQ, Zg]/[g
and obtain

0 0
Z3 =13 [(12 - -[3)010‘)3 + Irezwr + Clb3} Twl + 13 [(I1 - 13)020.)3 + licgwo + Cgbg} 87(,4}2

|:Il(11 — 2]2)010.)1 + (IQ — 2]1)[202(4]2 — IQbQCQ — Ilblcl] aw?)

— 113 [(Il — Iy — Ig)w1w3 + bgwi — biws + 6371}

om
0
+ I3l [(11 I + I3)wows — bawa + baws — 6372} 3’
0
Ly = 121362038 + 11]3(}163872 — 3[1]2(]1 12)0261870.}3
0
+ 111515 [(2[1 I, — 2[3)CQW3 + 211 c3ws + 2b302} a
Y1
0
VLI [(11 — 2Ly + 2I3)crws — 2Lacswy — 2b3c1} 5
’72
Zs g +a + 0 + 0 +a 4
F=aqQ Qa a 548
Yow, 0wy Pows T Moy P o



where

The Euler-Poisson equations; partial integrability 65

a1 = I [11[2(12 — I3)cawiws + I1 (I — I — I3)baciwy + Io(Is — I3) (21 — 12)62w§
— I3(215 05 — I I3 — 212 + 211 Iy cawows
— (211 Iybaco o Isboco + Iy Isbgcs — 215I3bscs — 2I2baco)ws
— I3(Iy — I3)(I1 — I3)cowi — I3(I1bzca — 2I3bzco + 2Iobacs + Iabzca)ws
+ 11 (1o — I3)cicom + (2121563 — I Ioci + L1563 )2 — baliciby — Isbies — Iaeab3),
az = L [L1(I1 — I3) (I — 2L2)cwi — 1o (Ih — I3)cowiwa
— 13(2I1 — 2015 — 21113 + Iz 13)cswiws
— (2I?bycy — 211 I3bycy — I I3bicy + 211 Isbses — IoIsbsces)wr
+ I(Iy — I + I3)bicaws + I3(Iz — I3)(I1 — I3)ciwj
+ I3(211byc3 + Iibsey + Ipbzey — 2I3bzer )ws + (I Iocs — 211 I3cs — Iolzca)m
—I(I — 13)6162’72 + Ilblcl + Iobobico + I3b361]

as = 11]2[

(Il + IQ)C3(U10J2 + I1 (2.[1 12 — 2[3)02(4)10.)3 + (2I1b302 — IQbQCg)wl

+ 12(11 - 212 + 2I3)crwaws + (I1bicz — 202bzct )wr
+ (I3b201 — 2I1b1co + Iobico — I1bocy — Isbics + 2]2[)201)(4}3 + 63(311 - 12)62’71
+ (11 — 3[2)6163’}/2 =+ bg(blcg — bgcl)],

as = —I1 [ (I

— 12)(11 — IQ — Ig)w%wg —|— Il(ll — IQ — Ig)bgw%

— (211 — Is — 2L)bywiwa + L1 (I — Io — I3)cowryr — I1 (1o — I3)ciwiye

— Iibobywy + I3(I5 + Inlz — Iy I3 + 211 Iy — 213)wow3 + I3(Iy — Iz — 213)bawows
— I(211 — Iy)cowarys + (1103 + I3b3)we — I3(I) — 215 — I3)bows

+13 211 - 212 — I3)cswsys — Isbabsws — Inbicayi + (Isbses — Iabaca)2],

as = 11]2 I

11 I, + 13)0.)10.12 + 12(211 — 215 + I3)b2&)10.)2

+ Il Il — 2]2)clw171 —|— (Ing —|— I3b3)w1 12(11 — 12 —|— Ig)blwg — 0212(11 — Ig)bdg’)/l
— 12 Il I2 + 13)61(4}2’)/2 — IlebQCdQ + 13(211 + I2I3)b1w3
— I3(2I1 — 215 + Is)cswsyr — Isbibsws — (I1bier — Isbges)yr — Izcibae].

(
7[3(2 72[1[2 7[1]34’[2]3 7]3)601(4)3 Ig([l IQ+213)b3W1W3
(
(
(

Equations (6.12)) imply that

6.12) and (6.13

T'his is possible 1
identically.

Z3(F) = Zy(F) = Zs(F) = 0. (6.13)

If a first integral F = F(wq,ws,ws,v1,72) exists then the system of five equations

Owi ? OQwsz? Qws? Oy1? 872
and only if the determinant D of the coefficients of that system vanishes

should have a non-zero solution grad F = (a—F O OF OF B—F).

We compute D and obtain a very long polynomial whose presentation here is im-
possible. But D has a factor I3I313c3. Thus we should consider two cases: ¢z # 0 and

6320.
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Let us start with c3 £ 0. We remove the non-zero factor of D and note

~ D
R Ty

The equation D = 0 is equivalent to D =o. Polynomial D has 253 coefficients
depending on the parameters I;, b; and ¢;, 1 < i < 3. To satisfy the equation D=0
we should consider the system consisting of the coefficients of D equated to zero, i.e.
the system of 253 equations for the parameters. After three consecutive simplifications
we obtain the reduced system consisting of seven equations. Solving that system by the
MAPLE command solve we obtain the following two solutions:

{lh =1, Iy =1, I3 =13, by = by, by = by, by =b3, c1 =0, co =0, c3 =c3}
b b
{Ih =13, Iy = I3, I3 = I3, by = b1, by = by, b3 = b3, 6121702, ¢y = cy, 63:3702 .
bQ b2
The second solution leads to the kinetic symmetry case. Thus only the first solution
should be studied. For this, let I; = I3, ¢; = ¢o = 0. Under these conditions we have
Zy + 2I513¢37Z, = 0. We compute Zg = [Z3, Z5|/(I313c3) and the determinant M of the
coefficients of the vector fields Z;, 1 <1 < 3, Z5 and Zg. We know that if the sought first
integral exists then M = 0. We have

—

M = —I5I5c3(bowy — biws)* M,
where
M = —3I3(I — 3I3)whws — 9Isbsw? — 2(Ip — 1113)bywdws — 151530y, — Thybsw?
— 613(Iy — 3I3)wiwiws — 18I3bswiws — 2(Iy — 1113)bowiwows — 15I3c3wiwaye
— 7b2b3w%w2 + 12b?w%w3 — 12b103wf71 —2(Iy — 1113)b1w1w§w3 — 151303w1w§'yl
— Thibwiws + 24b1bowwows — 12bycswiwayr — 12b1cswiways — 313(Io — 313)wiws

— 9]3()3&)3 — 2([2 — 11[3)[)20.}3(,03 — 15[3030.}5”72 - 7b2b3w§ + 12[)3&)5&)3 — 121)203&)3’}/2.

Let us consider, for example, the coefficient of M in front of w31, that is —1573c3.
However —1513¢3 # 0, therefore M never vanishes either. Thus the only possibility to sat-
isfy the equation M = 0 is to put b; = by = 0. Taking into account that now I; = Is, ¢; =
co = 0 we come to the Lagrange case. Thus a new first integral F' = F(wy,ws,ws,v1,72)
does not exist when c3 # 0.

We now study the case c3 = 0. Under this condition, the first integral Hs does not
depend on 73, i.e. it is of the type sought. If a fourth integral F = F(w;,ws,ws,v1,72)
exists then system 7 should have at least two non-zero solutions. This is
possible if and only if the matrix B of its coefficients satisfies the condition rank B < 3.
This condition means that all four equations of system 7 should be linearly
dependent. We chose to consider the system

Zi(F)=0,1<i<3, Zs(F)=0. (6.14)

This choice is appropriate because if we choose, for example, Z;(F) =0, 1 <i < 4, then
we come to a great number of cases which should be studied.
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We compute all the five 4 x 4 minors of the 4 x 5 matrix consisting of the coefficients
of system and require that they be identically equal to zero. These five minors
are polynomials of wi, ws, 71, 72 and y3 with coefficients that are polynomials of the
parameters I;, b;, 1 < i < 3, ¢; and co. Like before we note them by A;j;r; and see
that they have some non-zero factors. To remove these factors we introduce the following
notations:

Aq234 Aq235 Aq24s
01234 = w5757 01235 = 557975 01245 = T57575 >
2121, 2121, 1212w
IANEYE Agays

Sras = B0 sy = 2D
1345 I%Ig[ng ) 2345 1%122—[3&}1

Let us note that d1034 has a factor co and d1235 has a factor ¢;. We have left them
intentionally at the above cancellation because we do not know whether ¢; or ¢s is zero.
But, as we consider now the case ¢z = 0, we know that (c1, c2) # (0,0) because otherwise
we come to the Zhukovskii case.

It turns out that

01245 = —01345 = 02345. (6.15)
Moreover if ¢; # 0
)
25— Sioas, (6.16)
C1
independently of the value of cy. If co # 0
d12s4 _ 01245, (6.17)
independently of the value of ¢;. If ¢; # 0 and ¢o # 0 we have
019 0
1234 01235 (6.18)
C2 C1

Thus if the identity d1245 = O is satisfied equations will be linearly dependent.
Indeed, from it follows that §1345 = 2345 = 0 independently of the values of ¢;
and cs.

Let ¢; # 0 and ¢ = 0. Then 61234 = 0 because it has a factor ¢y and d1235 = 0 follows
from .

Let ¢1 # 0 and ¢ # 0. Then 1235 = 0 follows from and 1234 = 0 - from .

Let ¢ = 0 and ¢o # 0. Then 61235 = 0 because it has a factor ¢; and d1234 = 0 follows
from .

The polynomial 1245 has 84 monomials and therefore 84 coefficients which should
vanish. We consider the system consisting of the coefficients of §1245 equated to zero, i.e.
the system of 84 equations in unknowns I;, b;, 1 < i < 3, ¢; and cg. After eight consecutive
simplifications we obtain the reduced system consisting of 15 equations. Solving that
system by the MAPLE command solve we obtain the following seven solutions:

{l =213, [, =2I3, Is=13, by =0, by =0, b3 =0, c1 =c1, coa =2}
{L=I L=1, Is=13, by =0, bp =bg, b3=0, c1 =0, c2 =ca}
{L=hL, =10, Is=13, by =by, bo =bg, b3=0, ¢; =0, ¢cg =0}
{Lh=0hL, Ib=1I3, Is=13, by =by, bo =0, b3 =0, ¢; = ¢y, ¢ =0}
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{I1 =0, I, =0, I3=0, by =by, by =by, b3 =0, ¢y =c1, c2 = ca}
b

{h =1, =15, I3 =15, 512761 2 by =Dy, b3 =0, ¢1 =c1, 3 = o}
C2

{Il = 2[3, 12 = 2[3, 13 = 13, b1 = —ie’:‘bg, bg = bg, b3 = O7 C1 = iECQ, Co = CQ},

where € = £1.

Examining this list we see that only the last solution is essential. All the other solutions
lead either to the classical cases of gyrostat equations, or to the Euler-Poisson equations
or to the excluded cases with values zero of the moments of inertia.

Taking into account that now c3 = 0 we see that this last solution determines the
conditions (6.7).

At these conditions the vector field Z, vanishes identically and Zj is linearly dependent
on Z;, 1 <14 < 3. Moreover the vector fields Z;, 1 < i < 3, are linearly independent. Thus
system Z;(F') =0, 1 < ¢ < 3, is in involution and according to the Frobenius Integrability
Theorem it has two functionally independent solutions. The first one is H3 and the second
one is the fourth integral we look for. But it is not necessary to look for this fourth integral.
We should only notice that the fourth integrals Hy, from Case 6+ and Hy_ from Case
6- not only do not depend of w3, they do not depend on 73 too. =

Thus the problem of characterization of all cases when complex gyrostat equations
have a fourth integral that does not depend on all variables is solved.

7. Domain of the Sretenskii partial first integral

7.1. Definition of the domain. Given that the gyrostat equations are polynomial
with polynomial first integrals, in this section we will restrict ourselves exclusively to
polynomial systems of ordinary differential equations and their polynomial first integrals,
although this is not necessary.

Let us consider a polynomial system of ordinary differential equations

d; .
T ), 1<i<n, (7.1)
dt
x = (x1,...,2,) € C", f1,..., fn € Clz]. To consider system (7.1) and its solutions is
equivalent to consider the associate polynomial vector field V(z) = (f1,..., fn) and its

orbits.

A subset of C™ is V-invariant if it is filled with whole orbits of vector field V.

A differentiable function ® such that the set {z; ®(x) = 0} is filled by the whole
orbits of system is called invariant relation ([20], [38, Chapt. X, §4]).

Let F' € Clz]\C be some non-constant polynomial that is not a first integral of system
(7.1), or equivalently that is not V-invariant. Let M C C™ be a V-invariant subset such
that F|p (F restricted to M) is non-constant on any open subset of M. When F|y is a
local first integral of system (or vector field V') restricted to M?



The Euler-Poisson equations; partial integrability 69

For this aim let us compute

dF " 9F  _dz; " OF

def
E(ﬂf) = £ aixi(x) dt (z) = 2 afw(x)fi(x) = A(z).

A(x) is a polynomial, because F' and {f;}1<i<n are polynomials. F' is not a first integral
of system on C”, then A does not vanishes identically, but A(z) =0 for € M.

Let us note A = {z € C"; A(z) = 0}, A ¢ C". Thus M C A and the problem is
reduced to the study of V-invariant subsets of the algebraic subset A of C™.

Let M C A be a V-invariant smooth submanifold such that F |a is a partial first
integral of system restricted to M. Any such submanifold will be called a domain
of I'. In what follows we will consider exclusively the case when submanifold M is of
codimension one. Nevertheless the case of smaller codimension also deserves the study.
In what follows we will be interested of the identification of maximal domains of F.

7.2. Determination of the maximal domain. Now we shall determine codimension
one maximal domains of the Sretenskii partial first integral
F = (Ig(dg + bg)(w% + wg) — (clwl + CQ&JQ)"Yg. (72)
To avoid the Zhukovskii and Lagrange cases, we will suppose that (¢1,¢2) # (0,0).
Let U € C° be an open subset. We want to find all invariant manifolds
S ={(w,7) €U;S(w,v) =0}, (7.3)

where S is a C! smooth function defined on U, such that on S , F' is a partial first integral

of equations (6.1)).

We will consider five distinct cases.
1) Let us suppose that g—i # 0 in some point of U, and by continuity also in some
open subset of U. We express 71 from equation (7.3)) and obtain that locally
71 = L1(wr,wa, w3, 72,73)- (7.4)
We compute % and replace y; with I'; everywhere.

dF _ [2(Isws + bg)wr — c1ys] (T2 — I3)waws + baws — baws + c372 — €273

di 7

[2(I3ws + b3)ws — cay3] [(I3 — 1 )wiws — bzwy + biws + c173 — c3T'1]
P

+ (Wi +w3) [(J1 — I )wiws + bowy — biwy + c2T'1 — c172]

— (clwl + CQWQ)(LOQFl — wl"}/Q).

+

As we suppose that F' is a partial first integral on invariant manifold (|7.3) we have

dF
= =o. (7.5)

We solve equation ((7.5) with respect to I'y and obtain a rational function depending on
w1, w2, w3, 2 and ys:
1

F =
! Il(_IQCQUJ% + Igclwlwg + 2b303&)2 + 2]3030.)2&}3 — 6203’73)

LIy(I — Iy)wiw,
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+ I Ipbow? — I Inbywiws + I I (I — Io)wiws + I Inbowiws
—2I3(I, — L) (I1 + Iy — I3)wiwaws — 2(IF — I3)bgwiwaws + I1 Ircawiwaye
—2(L — Ig)b3w1w2 — 2]2[3b2w1w3 + 215 I3c3w1W3Y2
+ (I = I1I3 — 2L513) cawiwsys — 2Iababzwiws + 2I2bsczwiyo
+ (I — 215)bscowrys — I Ipbyws — I Ipciwirys + 2]1]3b1w2w3
+ (211 I3 — IZ + I I3)ciwawsys + 211 by bswaws + (211 — Ip)bsciways
-

b162 — Igbgcl)W3’)/3 — 120103’)/2’)/3 — (Il 12)6162’}/3 . (76)

As Ty =~ then
'y dm
= _ 1 —0. 7.7
dt dt (7.7)

Function W depends on 7 linearly. Indeed, as the expression for I'y from ([7.6]) does

not depend on 7; then its derivative dd% is a linear function of 7; which is easily seen

taking into account that the right-hand sides of Euler-Poisson equations (|1.1)) are linear
with respect to ;. It may happen that the coefficient of v; in % is 1dent1cally Zero.

This only occurs in the following three cases:

Case 1.
LI, — I
R=BE 0 =0 w=0 =0
Case 2.
L =213, Iy=4I3, by=0, c2=0, ¢3=0,
Case 3.

I} = 4RootOf(82% + 78 — 512)I5 — 1213, I, = RootOf(8Z* + 78 — 51Z)I3,
b1:0, b2:0, b3:0, 01:0, 63:0.

In the last case the gyrostat equations are reduced to the Euler-Poisson equations
[T1).

The two values of RootOf(822 + 78 —51Z) are %‘éﬁ. In fact Case 3 presents two
different solutions, where in I; and Is the same sign + or - appears and so it will be in
what follows.

Let F be the Sretenskii partial first integral (7.2)).

Let us compute along the orbits of gyrostat equations ((6.1). In above three cases
we obtain:

Case 1.
dF 3[2[3(,0%&)2 2 12[3%([2 + Ig)wlwzwg
et -t St R _
dt T+ 2l Wi awient
3.[2]3(4)10.) 2[3b10.)2(4)2
— TH: - bl‘*’% - leﬂ%’h + Tg — C1WaW373,
Case 2.
dF 51 2 b2
r — —213w§’w2 — b1wfw2 — 2Igw1w§ + % + 3bswiwows + 3;;w2
3
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biw UJ2 b1 bawow:-
— CclwiwoeY — blwg’ — clwgw 4 23 Crwawsys + w7
2 213
Case 3.
dF 51 + 105 51 + /105 )
— =3 —— —14 Igw%w2+02w%71+3 7\/774 Igwle
dt 16 6
Tywiwaw?
+ cowiways + %

aF
Y dt

the domain of the Sretenskii partial first integral and we will ignore them.

In all these cases does not vanish identically and thus these cases are outside of
Outside of these three cases the MAPLE command degree gives that the degree of W
with respect to 7 is 1.
We solve equation (|7.7) with respect to 77 and obtain

" = fl(w17w2,w3,72,73)-

The expression for T, is too long to be written here and we skip it. Let us note however
that W is a rational function of all variables (w,~), whose numerator has 296 monomials
and its denominator is

112[3(1262(40% — IQCloJ1WQ — 2b36 — 30J2 — 2[303LU20J3 + 0263’73)2.

Thus I'7 — fl = 0. Function I'; — fl is a rational function of variables wy, wa, w3, Y2
and 3. We only take its numerator which we denote by D. We want to know when D is
identically equal to zero with respect to all the variables wi, wa, w3, v2 and ~3. For the
purpose we compute the coefficients of polynomial D. They are 513. We should find the
conditions on the parameters Zc at which all of these 513 coefficients are zero.

We apply simplification to the obtained system of 513 equations. After three consec-
utive simplifications we come to the reduced system consisting of nine equations:

C3 = O, bQCQ = 0, b102 = O, (IQ — 4]3)82 = 0, (I1 — 4[3)62 = O,

(7.8)
b201 = 0, b101 = 0, (IQ — 4]3)61 = 07 (Il — 4]3)01 =0.

We solve it by the MAPLE command solve and obtain two solutions. The first one is
c1 = ¢3 = ¢3 = 0 and we remove it because it leads to the Zhukovskii case. The second
solution is

Il = IQ = 4]3, b1 = b2 = O7 C3 — 0. (79)

Now D vanishes identically. Taking into account (7.4) we compute v; from (7.6]) at
condition (7.9) and obtain
 Al3wey2 + Iswsys — b3ys

"= 4]3(,01 3

that is
4l3w171 + 4l3ways + I3wsys — bzyz = 0.
Let us note that the last equation is actually nothing but H; = 0 (see (6.2])) when

I = I, = 413, by = by = 0. {H; = 0} is an invariant manifold. Finally we conclude that
when 5% # 0 in some point of U, when I} = Iy = 413, by = by = 0, (c¢1,¢2) # (0,0),
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cs = 0, {H; = 0} is the searched maximal invariant manifold. Thus we remain in the
framework of the Sretenskii case.
The gyrostat equations ([6.1) admit permutational symmetry (see Sec.

oy =1(2,1,3),(2,1,3)}.

Function F' (see (7.2))) and also first integral Hy are o4 invariant. Thus the solution of
the problem about maximal invariant manifold S when g—i # 0 in some point is exactly
the same as in the just studied case when g—i # 0 in some point of U.

oS

2) Let us suppose now that oy and g—i vanish identically on U that means that S

does not depend on ~; and 7». Thus
S = S(w17w2;w3373)'

Let us suppose that %93 # 0 in some point of U, and by continuity also in some open

subset of U. Like before we express 73 from equation ([7.3) and obtain
73 = [3(w1, wa, w3).
We compute %, replace 73 with I's everywhere and obtain

dF _ [2(I3ws + bg)wr — 1] [(Tp — Is)wows + baws — baws + ¢392 — ol
dt I
+ [2(13ws3 + b3)wa — col'3] [(I3 — [1)wiws — bswy + biws + c11'3 — c371]
I

+ (Wi + w3) [(I1 — L)wiws + bowr — biws + cay1 — €172)]

— (c1w1 + cows)(way1 — wiv2).

As we suppose that F is a partial first integral on invariant manifold {S = 0} we have
% = 0. Let us denote the numerator of % by J. In this way we obtain the following
equation for I's

J=—(I1 — L)ereols + [(I7 — I1 15 — 2L 13)cowiws + (I — 215)bscown
+ (2115 — I2 + LI3)ciwows + (211 — Ip)bsciws + (Inciby — Iibicy)ws
+ Licaesyt — Daciesye]Ds + L1 (I — I)wiws + I Irbow? — I Irbywiws
+ L Ireow?yy + LI (1) — I)wiw + I Ipbow w?
—2I3(I — L) (11 + Iy — I3)wiwows — 2(I7 — I3)bzwiwoews + I Iscowiwaye
+ (=hi ey + 20065 — 2103 )wiws — 215 Isbywiwi + 2 scswiwgya
— 2I3bobwiws + 2Iabscawr e — I1Iobiws — I Ireiwiya + 211 I3biwows
— 211 (I3c371 — bibz)waws — 211bzczwayr = 0.

As I's = I's(w1, w2, ws), after differentiation of J with respect to ; and -2 we have

aJ
87 = 11]202&.}% — 11]201w1w2 — 2[1]303M2W3 — 2[11)303&.12 + 11C2C3F3 = O7
87]1 (7.10)

({97 = I1 Iscowqwy + 21915c3w w3 + 219bscawi — 11[2(31(4)% — Ireiesl's = 0.
Y2
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Let us first suppose that ¢;, co and c3 are all different from zero. Then excluding I's
from ((7.10) we obtain
(Cl(.OQ — ngl)(Igclwl + IlcQan + 2[363(.03 + 2b363) = O,

which is obviously impossible.
Let now ¢; = 0. Then from second equation (7.10) we have the following identity

I Iscowiwe + 215 I3c3w w3 + 215b3c3wy = 0,
which is possible only when ¢y = c¢3 = 0. But this is the Zhukovskii case.
Let now ¢y = 0. From first equation ([7.10) we have
—Illgclwlwg — 2[1[3030.}2(,03 — 2[1()303&)2 = 0,
which is possible only when ¢; = ¢3 = 0, i.e. again we are in the Zhukovskii case.
Finally let ¢3 = 0. Equations ([7.10) give
.[1[2(02(4)1 — ClchQ)OJl = 0, Ilfg(CQCdl — .[1.[2010.)2)(4]2 = 0
The above two conditions can be fulfilled only when ¢; = ¢o = 0, i.e. only in the Zhukovskii
case.
The conclusion is that the sought function S(w,ws,ws,v3) does not exist.
3) Let us suppose now that all g—i, 1 = 1,2, 3, vanish identically on U, that means
that .S does not depend on 71, 2 and ~y3. Thus
S = S(wl,WQ,CU3).
Let us suppose that 8‘3—53 = 0 in some point of U, and thus also in some open subset
of U. We express w3 from equation ([7.3]) and obtain
w3 = Qg(wl,WQ). (711)
We compute ‘Z—f and replace ws with 23 everywhere.
dF o [2([393 + bg)wl — Cl")/g] [(12 — Ig)LUQQg + bgwg — b3 + c37v2 — 6273]

dt L
n [2(13Q3 4 b3)wa — coy3] [(I3 — I1)wid3 — bswi + 01823 + c173 — c371]
I
+ (wf + wg) [(Il — Ig)wlwg + bzwl — b1w2 + Co2Y1 — 01’72]

— (w1 + cow2) (wayr — wiya).

As above ‘Z—f = 0. Denote the numerator of ‘Z—If by K. In this way we obtain the

following equation for §23

K =[=2L(5 — L)(I1 + I — I3)wiws — 2L I3bowy + 211 I3bywo | Q3
+ [ = 2b3(1F — I3)wiws + 2Lz 5c3w172 + (17 — I1 13 — 20513)cowr s — 2Iabobswy
— 2@ Izcswayy + (21115 — I3 + Lo I3)ciways + 211 bibswa + (Iabacy — Iibica)ys] Qs
+ (I — Ip)wiws + Dibie} — Libbiwiws + hilscowin + Lilo(I = Io)wiws
+ I Ipbowyws — I Iscywiwayy + I Ipcawiwarys — 2(Ih — Io)bawiwa + 2Ibzczws Yo
+ (I — 2L5)bscowrys — I1Iabywl — Iy Ircywiye — 2L1bscswayy + (211 — Io)bsciways
+ Licacsyrys — Lcresyays — (It — Io)ereavs = 0.



74 J. Moulin-Ollagnier, S. I. Popov and J.-M. Strelcyn

As Q3 = Q3(w1,wa), then after differentiation of K with respect to 71 and v2 we have

0K
87 = 11[20200% — 11[201(,&}1(.02 - 2[1b363&)2 + 110263")/3 - 2]1[363(.0293 = O7
a;é (7.12)
W = 11]282001(.02 - Illgclwg + 2[2()363601 — 128163")/3 + 2]2[363(4)193 = O
2

If we suppose that cg # 0 then we come to the Lagrange case. Indeed, as €23 depends
only on wy and ws, then from first equation of it follows that ¢c; = 0. This is so
because otherwise €23 would depend on -3 too. For the same reason second equation of
(7.12)) gives that ¢; = 0. However at the condition ¢; = ¢ = 0 and c3 # 0 both first
and second equations of lead to the conclusion that Q3 = —bs/I3, i.e., according
to 7 wsg = —bs/I3. In such a case we obtain from the third equation of the gyrostat
equations that Iy = I, by = by = 0 and ¢; = ¢o = 0. Thus we come to the Lagrange
case.

Let now ¢3 = 0. Then the first and second equations of (|7.12)) become:
I Ix(cowr — crwz)wy = 0, I Iz(cowi — crwa)wa = 0.

The above two equations should be identities which is possible only when ¢; = ¢5 = 0,
i.e. we come to the Zhukovskii case.

The conclusion is that the sought function S(wy,ws,ws) does not exist.

4) Let now the function S be

S = S(wl,wg)

and 68—52 = 0 in some point of U and therefore in some open subset of U. We express wo
from equation (|7.3]) and obtain

Wo = Qg(wl). (713)
We compute %’ replace wy with 5 everywhere and obtain
@ _ [2([3(4)3 + bg)wl — Cl’}/g] [(IQ — 13)92&)3 + bggg — bgw;g, —+ C37Y2 — CQ’}’g]
dt I
n [2(I3ws + b3)Qs — cay3] [(I3 — I1)wiws — bzwy + biws + c173 — c371)
I

+ (Wi 4+ 93) [(I1 — L)w1 Q2 + bawy — b1 + com1 — ¢172]
— (c1w1 + c222)(Q2m1 — wiv2)-
dF

As above %~ = 0. Denote the numerator of dd—lz by L. In this way we obtain the

following equation for 29
L=NLL[I—L)w — b+ L1(bwi — c172)Q3
+ [L (I — B)wi — L1 Lbbiwi — 2I3(11 — L)(I1 + I — Iy)wiwi — 2(17 — I3)bswiws
— LiIreywimi + I lacowrys — 2(I1 — Io)biwy + 211 I3bywi — 21 Iycswsm
+ (2L 15 — I3 + I I3)ciwsys + 211 bsbiws — 2I1bgesyr + (211 — Io)bseyys] Q2
+ Illgbngf + IJgng%'yl — 2I213b2w1w§ + 215 I5c3WwiW37y2
+ (17 — 1113 — 2I513)cowiwsys — 2Iabobswiws + 2Iobzcawiye + (11 — 213)bscawrys
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+ (Iabacr — Iibica)wsys + Ticacsyys — Iacicsyays — (I — L)eicayi = 0.
As Qg = Qao(wq), then after differentiation of L with respect to v1, 72 and 73 we have

OL
W = IlcQ(IQw% + C3’)/3) — 11(12010.11 + 213c3ws3 + 2[)363)92 =0,
1
oL ,
o Ize3(213wiws + 2b3wi — €1793) + [11acowi Qo — I112¢:1Q5 = 0,

OL 9 (7.14)
87’)/3 = (Il — 1113 — 2[2[3)CQUJ1W3 + (Il — 2]2)133020.)1 — Lieobiws

+ Irc1bows + 116203’}/1 — 126103’}/2 — 2([1 — 12)0162’}/3
—+ [(2[1[3 — 122 + IQIg)Clng + (2.[1 — IQ)bS} QQ = 0

From the first equation of it follows that co # 0. Indeed, if co = 0 then either
c1 = c3 = 0 that is the Zhukovskii case or {25 vanishes identically, that contradicts (|7.13]).
From the same equation it is seen that c3 = 0 because if ¢c3 # 0 then this equation contains
only one monomial depending on -3 which cannot be canceled because €25 depends on
w1 only. Thus ¢3 = 0.

In such a case the first equation of is rewritten as follows:

11I2w1(62w1 - 6192) =0. (715)

Equation 1] imposes the restriction ¢; # 0 because otherwise 11]2020.)% = 0 which is
impossible. We solve (7.15]) with respect to {2 and obtain
CoW1
QQ = QQ (wl) = .
&1

At this condition the second equation of (7.14)) is satisfied and the third one becomes

(11 = I2) (11 + I3+ Ig)cawrwz +3(11 — Ia)bzcawr + (I2bacr — 1y ca)ws —2(11 — I2)crcays = 0.
Taking into account that ¢; # 0 and co # 0, the last item of the above equation leads to
I; = I. Thus

IQ(bQCl — blcg)w;g =0.

In this way we come to the case
L =1, c1#0, c2#0, c3=0, baci —bica=0.
In this case L vanishes identically and therefore we can take as function S the following
function
S = C1Wwo — CoW1.

So far we have not yet examined when {S = 0} = {cjws — cow; = 0} is an invariant

manifold. To do this we compute % and obtain

ﬁ _ (clwl + CQLUQ) [(I3 — IQ)CQUJ?, — b302} + (C% + C%)(bQUJS + 6273)

dt Irco

It is seen that in generic case {S = 0} is not an invariant manifold. But let us put

2, 2
ci+c3=0,
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i.e. either ¢; = icg or ¢; = —icy. Let us first consider the case ¢; = ico. We have
520251, Sl :iwg—wl

and
dSl (t) Z[(IQ - Ig)(.d;g( ) + bg] (ZOJQ( ) w1 (t)) Z[(IQ - Ig)(.dg(t) + b3]
= = S1(¢) .
dt I I

This equation admits the zero solution Si(t) = 0 for all ¢. Thus from the unicity of
solutions for this equation one obtains that if Sy (tg) = 0 for some tg, then Sy (t) = 0 for
all t. In other words, if for some tg, iws(tg) — w1(tp) = 0, then iws(t) — wi(t) = 0 for all
t. But this is precisely the invariance of manifold S; = {S; = 0}. In this way we come to
the conclusion that when

Il = 12, Cc1 = iCQ 7£ 0, C3 = O7 bgCl - blcg =0.

the gyrostat equations have an invariant manifold {iws —w; = 0}.

The case ¢; = —ics is considered in the same way. The difference is that now S = ¢35,
where Sy = —iws — wy and the invariant manifold is {iws + w1 }.

But F' is not a partial first integral of the gyrostat equations on the invariant
manifolds S; = {S; = 0} and S, = {S, = 0}. In fact it is easy to see that on them F
vanishes identically.

Finally, we conclude that the codimension one maximal domain of the Sretenskii
partial first integral coincides with the manifold {H; = 0} under the conditions

L=IL=4I3, by =0b=0, (c1,¢2)#(0,0), ¢3=0.
In addition, when
Il =15, byei —bica=0, c+c2=0, c3=0,
we found two invariant relations for gyrostat equations (6.1)):
S| = iwe — wy when ¢ = icy and So = —iwg — w1 wWhen ¢ = —ics.

We will prove that S is functionally independent of first integrals Hy, Hy and Hs.
For this purpose we consider the Jacobi matrix J of functions Hy, Hs, H3 and S;. We
prove that rank J = 4. Indeed, computing the determinant J14 composed from matrix J
by crossing out its first and fourth columns we obtain

Jig = —4il3(Iowswsys — Isw3ye — €273 — bawsys + bswsz).

It is clearly seen that Jy4 never vanishes identically. Thus functions Hy, Hs, Hs and
S1 are functionally independent.

The study of the functional independence of Hy, Ho, Hs and S5 is the same. The only
difference is that now the value of the determinant is —.J4.

5) Finally let S = S(w,7y) = S(w1), where S does not vanish identically. It is easy to
see that then S = {(w,7) € U; S(w;) = 0} is a five-dimensional submanifold if and only
if S = {(w,v) € U; w1 € 1}, where Qy is a set of zeros of S. In complex case §2; is at
most countable. In real case €27 is a subset of R that does not contains an open interval.
In both cases d“’l = 0 and from the first of the gyrostat equations (6.1) one obtains that

(12 — Ig)tdgwg + bgLL)Q - bgbu3 + C37Y2 — C27Y3 = 0
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for all wsy, ws, v2 v3 € C. Thus I, = I3, by = b3 = 0 and ¢ = ¢3 = 0 and we recover the
Lagrange case. Thus in both cases, complex and real, the sought function S(w;) does not
exist.

Let us recall that when in gyrostat equations by = by = bg = 0, we recover the
Euler-Poisson equations . The Sretenskii case of partial integrability becomes the
Goryachev-Chaplygin case of partial integrability and the Sretenskii partial first integral
becomes the Goryachev-Chaplygin partial first integral .

Consequently, from the above, one deduces immediately that the maximal domain of
the Goryachev-Chaplygin partial first integral is

{Hl = Lwiy + Tawoys + Iswsys = 0}7

where Il = IQ = 4]3, (01,02) 7é (0,0), C3 — 0.
Finally let us note that the invariant relations are the same in Sretenskii and in
Goryachev-Chaplygin cases.

8. Four-dimensional invariant manifolds. New integrals on
{H;=U;, H;=U;},1<i<j<3

8.1. Extraction procedure. In this section we study the existence of a local partial
first integral of the Euler-Poisson equations restricted to the invariant complex four-
dimensional level manifold {H; = U;, H; = U;}, 1 <i < j < 3. We study when on each
of them there exists a local partial first integral that depends on at most three variables
and such that on {H; = U;, H; = U;} it is functionally independent of Hy, k # 1, j.

Let us fix i and j, 1 <i < j < 3. According to (2.5))

M(U07Ui7UijC) = {.T € (C6; Hi((W77)aIC) = Ui7 Hj((W,’Y),IC) = Uj})

where (w,7) = (w1, w2, ws, 71,72, 73)-

We search all functions F of three variables F' = F(s1,s2,83) where (s1,82,83) €
(w,7), of class C!, such that grad F' does not vanish identically on each open subset of
M(Uy,U;,Uj,Zc), which are local partial first integrals of the Euler-Poisson equations
restricted to M (U, U;, U, Zc). Like in Sec. |5| the unique intrinsic property of C!
function F' that is a local partial first integral is that grad F' does not vanish identically
on any open subset of its domain of definition. This implies that some of the partial
derivatives of F may be identically zero. Thus the results of Sec. [§ also remain valid for
the functions of at most three variables.

We follow the same way as in Sec. Asin Sec.[5.I]the order of variables s;, 1 < i < 3,
in F(s1,s2,s3) is irrelevant for F to be a first integral.

We have exactly 20 different three elements subsets of (w,~y) and thus 20 cases of
functions of three elements to examine. We will describe now an extraction procedure
based on permutational symmetries which reduces the above 20 cases to only six.

These 20 functions of three variables (up to the order of variables) are shown in Table

Bl
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Table B

Functions ‘ Case

F(wi, w2, ws) ‘

’ F(wi,w2,73), F(w1,ws,¥2), F(ws,ws, V1) ‘ ii)
Flwi,we,m), Fwi,ws, 1), Fwa, w3, 72), (i)
Fwi,wa,72), Fwi,ws,73), Fwe,ws, 73)
F(wi,71,72), F(wi,71,73), F(w2,72,73), (iv)
F(w2,71,72), F(ws,71,73), F(ws,72,73)

| Fws,71,72), Flw2,71,73), Flw1,72,73) | (v) |

’ F(y1,72,73) \ (vi) ‘

It is easy to see that under the group of permutational symmetries of the Euler-
Poisson equations for every case (i)-(vi) from Table 8.1 each function from the fixed case
is consequently transformed into all remaining functions from the same case.

Thus in virtue of Theorem [2:2] we can restrict ourselves to the study of only six
functions where every one belongs to a different case from Table[8.TJand is chosen arbitrary
from the functions of this case.

We will call such six functions F;, 1 <4 < 6, (up to the order of variables) a basis.

8.2. Invariant manifold {H,=U;, H2=Us}. Here we continue the study of the
existence of a partial first integral of the Euler-Poisson equations (|1.1)) restricted to the
complex four-dimensional level manifold

{H, =U,, Hy ="U,}, (8.1)

supposing that this first integral depends on at most three variables and that is function-
ally independent of Hs. For this aim we shall use the same approach as in Sec.

In the future when we refer to “some suitable open set” in space (C4(a1, Qg, a3, ay4) in
Sec. Where {aq, 2, a3, 04} € {w1,wa,ws,71,72,73} or in space C3(ay, az, as) in Sec. |§|
where {aq, ag, as} € {w1, ws,ws,¥1,72,73}, we mean an open set such that all functions
of the above variables never vanish on it when this is necessary for a proof. For example
if such a function appears in some denominator or when we need to have a holomorphic
branch of roots of some of these functions. In the future, we will use this terminology
without any further discussion.

8.2.1. Elimination of 2 and ~3. Using the MAPLE command solve we express 7

and -3 from the equations H; = U; and Hy = U, and obtain the following solution:
Ty + IwsR - Uy
B Thwo

) V3 = R7 (82)
where R is a root of equation

Q(z) = Ax* + Bz +C =0,
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that is
Q(R)=AR*+BR+C=0 (8.3)

and A = A(ws,ws), B = B(wi,ws,v1) and C = C(wy,ws,71) are the following polynomi-
als:
A:]gw%-l-_[gwg, B:213W3(11W171—U1),

(8.4)
C =122 — 2N Uiy — 13Uswa + T3wiy? + UZ.

Here MAPLE does not give an explicit formula for R but expresses R as a root of the
following quadratic polynomial:

RootOf((I§w§ + I%w%)ZQ + 2[3(4}3([1@1’}/1 — Ul)Z
+ Lwiyg — 2L Uwin — 1303 + I3w3v; + U7)
= RootOf(AZ* + BZ + C),

Thus we can say that R is a root of equation where the coefficients A, B and C
are defined by .

Let us consider the four-dimensional vector space C* = C*(wy,ws,ws, 1) and a point
(w1,w2,w3,’71) € C* with Wws 7é 0,2=1,2,3, 7 # 0.

All our considerations are local. Thus from the beginning we can restrict ourselves to
some suitable open set 2 in the space C* = C*(wy, wo,ws,71).

By their very definition the first integrals are not constant on any open subset of their
domain of definition. As we consider C' first integrals, this means that their gradients
are non-zero on any open subset of their domain of definition.

We put the values of v and 3 from in the Euler-Poisson equations and
remove the fifth and sixth equations. In this way we have the following system of four
equations in unknowns wi, ws, ws and p:

% - ﬁ [I5(I> — I3)wiws — Iicswi 1 — (Iacaws + Icsws) R + c3Un ],

% = %2[(13 — I)wiws + 1R — c3m], .
% = ﬁ[h(h — L)wiws + Icywiy + Iacowsyr + IzciwsR — clUl], )
% = ﬁ [ — Luwiwsy — (Iwi + Iw3)R + w3U1],

Here we study whether system has a first integral that depends on at most three
variables among the variables (w1, ws,ws,y1) and that is functionally independent of Hj
restricted to invariant manifold . Thus we should investigate the following four types
of a new first integral:

F(wy,ws,ws), (case (i)
F(wi,w2,m), (case (iii))
F(wi,ws,71), (case (iii))
F(wa,ws,71)- (case (ii))

case (111

> W=

Then, like in Sec. [f]it suffices to examine the functions of types 1, 2 and 4 respectively.
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Type 1. Let us suppose that the sought first integral F is of type 1, i.e. F =
F(wy,wz,ws). As F is a first integral of system (8.5 we have

dF 1 oF
= = [Iy(Iy — I3)wiws — Ic- —(I Tacaw- =
i Illgwg[ 2(Iz — Is)wiws — Licgwiyn — (Ipcows + I3caws) R + c3Uy ] 9o
1 oF
C(Ja— T _ il
+ A (I3 — I)wiws + c1 R — e3m1 ] 9
[12(11 — Ig)w1w2 + Iiciwiyr + Iecowayr + Iscqws R — ClUl} 76F =0
.[2130.)2 2 3 3 8w3 ’
or equivalently
dF
L3130 — =Y (F) =0, (8.6)

dt
where Y7 is the corresponding vector field defined on 2.

Equation should be an identity with respect to all the four variables wy, wa, w3
and ;. As function F' does not depend on ~; then its partial derivatives will not depend
on 71 too. Thus if we differentiate identity with respect to ; we shall obtain again
a linear partial differential equation for function F'. We obtain

oY1 (F OR | OF OR OF
81,51 ) = —1I3 |:Ilc3w1 =+ (1262602 + I3C3M3)8’h:| ({97(4)1 + I1 I3ws (Cla’yl — C3> 87(4)2
OR\ OF
+ I | Iiciwi + Iscows + Izciwg—— )| — =0,
01 ) Ows
ie. oY, (F)
Y1 (F
T Yo (F)=0 8.7
o = a(F) =0, (5.7
where Y5 is the corresponding vector field defined on Q.
We differentiate one time more identity (8.7) with respect to v; and obtain
0Ya(F) 0’R oF oF OF
=1 — (I 1 — + I —+1 —1| =0,
o 3 % (Izcows + 3C3w3)8w1 + faciwa Do +1liciws Dos
ie. Vs(F)
1 Y5 (F
il =Y3(F) =0, 8.8
= YalP) (535)
where Y3 is the corresponding vector field defined on (2.
Let us suppose first that
0’R
—5 # 0. 8.9

Equations 1) can be considered as a system of three homogeneous linear alge-
OF OF OF
Owi ? Owsa ? dws
because F' is non-constant on any open subset of €.
Thus, if a fourth integral F' exists, system l} has a non-zero solution grad F.

This is possible if and only if the determinant D of the coefficients of this system is

braic equations with unknowns grad F' = ( ) , which do not vanish identically,

identically equal to zero. We compute this determinant and obtain

0’R
D = I?I,I3w?—= D1 D>,
! 203



The Euler-Poisson equations; partial integrability 81

where

Dy = (Iic1wy + Iacows + I3c3w3), (8.10)
D2 = (IQ — 11)03w1w2 + (Il — .[3)02(.010.)3 + (Ig — 12)01QJ20J3. )

Note that D depends neither on R nor on G—R Takmg into account QWD it is clear
that D = 0 if and only if at least one of the expressions is identically equal to zero.
It is easily seen that this happens only in the Euler, Lagrange and kinetic symmetry
cases.

Thus the restriction leads to nothing new and we suppose now that
0’R B
o

In such a case only equations and (8.7) remain because Y5 = 0.

Let us study whether there are such values of parameters Zc¢, U; and Us at which

(8.11]) is fulfilled. For this purpose we differentiate (8.3)) twice with respect to ;. Taking
into account that polynomial A from (8.4) does not depend on v; we have

oQ 0B oC  dQ OR
_0Bp 0C dQOR _ 8.12
oy Omn Oy1  dROm (8.12)

(8.11)

and
0? 0’B 0B OR  0%*C 0 (d OR dQ O’R
62? _IBp OBOR  0C, 9 (Q) or Q—z —0. (8.13)
i 07 ooy i Om On  dR O
First we prove that if R is a root of equation (8 then 7é 0. For this purpose we
apply Proposition to polynomial Q). We consider the resultant p of polynomials Q(R)
and % and prove that p # 0. Indeed, we have

p = A(4AC — B?).

As we are interested in cases where p vanishes identically with respect to wy, we, ws and
~, only and as A never vanishes identically we do not consider p but p = 4AC — B?
instead. Putting in p the expressions for A, B and C (see (8.4])) we obtain

= AL wi(ITwiyt + Lwiyt + w3yt — 2L Un — Bw3Us — 303Uz + U7), (8.14)
which, as one can easily see, never vanishes identically. Thus we can express g—i from
2°R
3
R 12038
Ovi  [(J3ws + I3wi)R + Lws(Liwiyr — Un)PP

from (8.13)) as follows:

equation (8.12

(8.15)

where
S = (Izwz +I3w3)(11w1 —|—I2w2 3w3)R2
+ 2[3(.03([1001 + 12(,02 + 3013)([]1 Ilwl’}q)R
— Ifwing + 2Bwim Uy — 2L 3wiwin? — R Ewiwsy; — [[wiUf

+ 21 I w3y Uy + 21 Bunywiy Uy — TjwsyE — I2Twiwin? — 120202
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Equations (8.15) and (8.11)) imply that S = 0. Taking into account that @ = 0 (see
(8.3)) we can assert that
(Ifw} + 303 + w3)Q + S = Bui[UF — Us(Ifwi + 1305 + I3w3)]
is also zero. This is possible if and only if
Uy =U;=0. (8.16)
Let us consider the case defined by (8.16]). In this case R can be presented in the form
R = P, where P is a root of equation

(202 + I2w2)P? 4 21 Isw w3 P + TFw? + [3w3 = 0. (8.17)
This fact is obtained very easily fro if we take into account condition (8.16]).

Indeed, it suffices to divide equation 1) by 72 and denote 'Yﬂl by P. Moreover, being a
root of equation , P is a homogeneous function of degree zero and depends only on
w1, Wa and ws.
Thus vector field Y7 (see ) is linear with respect to 41 and can be presented as
follows
Y1 = Kim + Ko,

where K1 and K5 are vector fields defined on 2 by the formulas

0 0
K= —13(11030.}1 —|—IQCQLUQP—|—1363LU3P)8 +11[3OJ2(01P — 63)8(.;}
2
0
+ I (Iiciwr + Tacows + 13010J3P)a
ws’
Ky=uw [wa (b — I5) =L — I Lywnws(Ih — I5) =
2 = wp | Llswaws(ly = I) 5~ — hilswiws (I = Is) 5~

0
+ Ilfgwlwg(fl — 12)87(,«)3} .

Equation and the fact that first integral F' does not depend on ~; imply
K, (F)=Ky(F)=0. (8.18)
Function I?w? + I3w3 + I3w3 is non-constant on all open subsets of C4(wy,ws, w3, Y1)
Thus without any restriction of generality one can suppose that on our suitable open set
the function I?w? + I3w3 + I3w3 # 0.
In order to simplify the formulas let us put
o= 12w2 + 1303, = TRl - T3} — 32, Re(B) > 0. (8.19)
Equation (8.17) has two roots

— I Iswiws + elaws 8

pP= ,
e
where € = 4+1. Substituting this value of P in the expression for K; we obtain
aK 0
! = —1213 l:Ilwl (12030.22 - Igng?,) + 86([262(#2 + I3Cg£d3):| -
w2 80.)1

0
+ 1113 |: — 1 I3ciwiws — cs3a + Eﬂ[201w2:| —
8w2



The Euler-Poisson equations; partial integrability 83

0
+ 11]2 11]201w1w2 —+ coax + 551301(«}3 -_—.
8w3

As we are interested in equations (8.18) we remove all the non-zero factors from K; and
K>, i.e. we shall work with the vector fields

K K.
7z =281 and zy = 22
w2 w2
Therefore instead of (8.18)) we consider the following equations:
Z1(F) = Zy(F) = 0. (8.20)

We compute the commutator K3 = [Z7, Z2] and obtain

K
3 = [— (Il — IQ) 11[2136200%(,02 — (I1 — Ig) 11[2136300%(,03
LI

=+ (IQ — I3) 11]2261(,01(,«)5 — (Ig — 13) Illgclwlwg

+ Eﬁ (11 - -72) Iz I3c3wiws — 55 (-71 - 13) Iz I3cou w3

+ (I — I3) Licaws + 2B (I — I3) I Iscywaws — (I — I3) IS caws o
1

+ | = (Is = I3) I eywiwy — (I — I3) [ T3 cowy Wi

— (I Iy — 2 1 I3 + I 13) I  Izcawiwaws — 2 (I — I3) I I3 coww?
+ (I, — I3) Illgclewg +eB (11 — I3) Iy I3cowows

+eB (I —I3) Igcgwg] 8%2
+ | (Iy — I3) BBeywiws — 2 (1) — Ip) I T2 cwyw

+ (20L1s — L1 I3 — I 13) I Incawiwows — (I — Ip) I T3 cawiwi

7]
- (IQ - [3) 11[226101%&)3 — Eﬂ (Il — IQ) 12262(4)% — Eﬂ (Il — IQ) 1213636020&)3 %
3

‘We consider vector field
K3

- VERLYE!

Z3

instead of K3.
Equations (8.20) imply that Z3(F) = 0. In this way we obtain the following three
equations for determining function F

Z1(F) = Zy(F) = Z3(F) = 0. (8.21)

Equations can be considered as a system of three homogeneous linear algebraic
equations with unknowns grad F' = (g—fl, g—j;, g—f;), which do not vanish identically,
because F' is non-constant on any open subset of its domain of definition.

Thus, if a fourth integral F' exists, system has a non-zero solution grad F'. We
know that this is possible if and only if the determinant D of the coefficients of equations

(8.21)) is identically equal to zero. We compute this determinant and obtain that on 2
D =10L1LI:(f1if+ f2), (8.22)
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where f; and f5 are the following polynomials in wy, we and ws:

N

T == (I} — L) (I} — I3) I I3 cicowiws — (I — Ip) (I — I3) I 12 3¢ cawdwiws
( L) (I — I3) IF I I3 cicowiwaws — (I — Ip) (I — I3) I{ L3¢y cawiws
L) [(Io — I3) 1} — (I — I3) Ircs — (I — Io) Isc3| [ Tywiwy
- 2 (11 L) (Iy — I3) IF 12 Iscocswiwiws
+ L1513 [(12 — L)Y’ I?A + (I — I3) (I ]y — 31115 + 2 I 13) Iy 3
— (I1 = L) 311> — I1 I3 — 2 I, 13) I3c3| wiwiw;
+2 (I — I3) (I — I3) IF I I3 coczwiwaws
— (I = I3) [(Ia — I3) [1c} + (I — I3) Irc3 + (11 — 1) Isc3| [ T3wiws
+ (I} = ) (Iy — I3) [ I3 crcounwl + (I — 1) (I — I3) I I3 T2 ¢y cown wiw?
— (I} — I3) (Iy — I3) L I3 T2 ¢ cswnwiws — (I — I3) (I — I3) 1 I ¢ cawrwi
— (L L)1 )12130203(.02(.03
+ (I — I3) [(Io — I3) [1e} + (I — I3) Ioc3 — (I1 — o) Isc3] I3 Tzwyw}
+ (Iy — I3)? I I2 2 cycawiw
+ (I — I3) [(Is — I3) 1l + (I — I3) Iac3 — (I1 — o) Isc3] I I5wiws
+ (I; — I3) (Iy — I3) I I cacswows3,
% = (I = L)2Lcsei (— I I3 + L1 Iy + €211 I3 — €2 [ I3)wiws

+&2(I — L)(—-I3 + Il)Illglgcgclwwawg

—e2(I) — IL)(I) — I3) 1 I I3 czeiwiwaws

+ (I — L)W I3 — LI + 2L Iy — 2 I I3) [ I3 cacwiws
— (I} = I) (I, — I3) I I3 cocswiwy

—2(I) — L) (I — ) I3 13(%¢3 + 2wy wiws

+ I (Iy — I3)(I1 Is + 11 I — 21513) Iy I3cac3wiwaws
—2(Iy — I3)(I) — I3)[1 I I3 (23 + ¢3)wywaws

— (I = B)Y(Iy — I3) 1 I cscauwnwy — e2(I — L) (Iy — I3) I3 I3caciwiws
— (Iy — IY(I1 Iy — I I3 + 11 I3 — €® I513) I3 I3c1 cawiws
— (I — Y1113 — LIy + 211 Iy — 2 ,13) [ I3 ¢y cowsws
—e2(I) — I3)(I2 — I3) I L3¢y cawaws.

As I; # 0,1 < i < 3, then from (8.22) one deduces that fi8+ fo = 0. If f1 =0
identically, fo = 0 identically too. Let us suppose that fi; # 0. (8.22)) is then equivalent

to

__f
=k

(8.23)

Applying Proposition |4.3[to 82 = —I7w? — I[3w3 — [3w3 one sees that (8.23) can never
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occur because ¢ C(wy,ws,ws). Consequently

fi=fo=0.

Note that ¢ appears in f; as a factor and in f, only as 2. We replace €2 with 1
everywhere in fo. As 32 can never be identically equal to zero, we require that all the 18
coefficients of fi/e and all the 13 coefficients of fo/32 be zero, i.e. we obtain a system of
31 equations for the parameters Zc.

After three consecutive simplifications we obtain the reduced system that contains
eight equations:

(Io —I3)eacs =0, (11 — Is)cies =0, (I — I)(I; — I3)(Io — Is)es = 0,
(h = L) (L =) (& +¢3) =0, (L —IL)(l2—Iz)cies =0,
(I1 — I)(I1 + Iz — 2I5)c102 = 0,
(Io — I3)[(I2 — I3)ct + (I — I3)c3 + (I — I1)c3] =0,
(I = I3)(I2 = I3)(c} + ¢3) = 0.
We solve these eight equations by the MAPLE command solve and obtain a set of

eight solutions. We remove the solutions that lead to the Euler, Lagrange and kinetic
symmetry cases and obtain only three new solutions. They are:

I. 11212, C1 _iiCQ,ngo
II. Il = Ig, c1 = :l:ZCg, Coy — 0
II1. IQ = Ig, c1 = O, Cy = :l:ZC3.

We describe here only solution I because solutions II and III are obtained from it by
permutational symmetries oo and o3, respectively.
We consider separately two cases:

1. ¢ = icy with e = 1 and with ¢ = —1.
2. ¢1 = —icy with e =1 and with e = —1.

Let us remark that the above situation is exactly the one we met in Sec. [7.2] when
finding invariant manifolds.

Case 1. Let I1 = I5, ¢; = ico, c3 = 0 and € = 1. Now vector field Z3 is linearly
dependent on Z; and Z5 and therefore the local solvability of system around any
point (w1, ws,ws) # (0,0,0) follows from the Frobenius Integrability Theorem. Moreover,
system is quasi-homogeneous (we recall that R = Py, and P is a homogeneous
function of degree zero). Thus from [41] it follows that the searched first integral F
can be chosen as a homogeneous function of the variables (w;,ws,ws). But in fact we
shall compute F' by a crude computation, without any use of the Frobenius Integrability
Theorem nor the results of [41]. Nevertheless the above facts guide our approach to the
problem.

Let us add to equations the Euler “homogeneity equation”

881*1 + wo a@F + w3 gi F. (8.24)

Dividing equations and (8.24) by F we obtain a system of three linear partial
differential equations for dctermining function V' = log F'. We solve this system as a linear
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inhomogeneous algebraic system with respect to partial derivatives of V' and obtain

ov (IBwiws — il3ws — il3w] + Izwsf3) wy

Oy (I3wPwy + I3w3 + I3wow3 + IzwiwsfB) (wy — iws)’
o (IBwiws — il3ws — il3w3 + IzwsfB) wo

Ows (I3WPwq + I3w3 + I3wow3 + IzwiwsfB) (wy — iws)’
oV il3 (Iswiws — waf)

37(,03 N IBwiwy + I2w5 + I§w2w§ + Iswwsf
Now, by the standard procedure, we find function V.
We integrate 6— 1 < i < 3, with respect to w; and in this way we obtain three
expressions for the function V.
VZ / (Igwlwg —il3w3 —il3w3 + Igwgﬁ) w1
(I3wiwy + I3w3 + I3wows + IzwiwsfB) (wy — iws)
Vo / (I3wiwy — il3w3 — il3w] + Izwsf3) wa
(I3w?wy + I3w3 + I3wow3 + IzwiwsfB) (wy — iws)
il3 I3w1w3 — waf3
V= / Bwiws + 3w + Iwaw? —|-)I3w1w36dw3 + Gs(wn,w),
where G1, G2 and G3 are arbitrary functions of the corresponding variables.
The first two expressions for V' are too complicated and we do not use them. We only
use the third expression which is rewritten as follows:

dwl + Gl(OJQ, W3)7

dCUQ + Gz(wl, W3),

csgn(l3)Isws
B
where the function csgn(z) is used to determine in which half-plane (“left” or “right”)
the complex-valued number z lies. It is defined by
1 if Re(z) > 0,
csgn(z) =<¢ —1 if Re(z) < 0,
sgn(Im(z)) if Re(z) =0.

V = csgn(I3)i arctan + G3(wy,ws),

As arctan is an odd function we can write

2 4 Gs(wr,ws). (8.25)

. Isw
V = iarctan —

In order to determine function Gg(wy,ws) we differentiate (8.25) with respect to w;,
1 < < 3, and obtain

ov o ’iI3wloJ3 6G3
0w (W4 wd)B | Ow’
ov o i13w2w3 6G3
0wy (W4 wd)B | Owy’
oV ils
dwy B

We know that function V' satisfies system (8.20) so that we have
Z1(V) = Zo(V) = 0. (8.26)
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System (8.26)) is a system of two linear partial differential equations with respect to
function G5(w1,ws). We solve it as a linear inhomogeneous algebraic system in unknowns

9G3 and 255 and obtain
80.71 awz

0G5 w1 0G3 wo

= , = .
Owr  w?+wi Owy  w? 4wl

After integration these expressions lead to
_1 2, 2
Ga(w1,w2) = 5 log (wi +w3) + C,

where C is a constant which can be considered as a zero because it is added to a first
integral. Thus from (8.25)) we have

Isws 1
V =idarctan 37% + 3 log (w? + w3).

As V =log F' we have
—Ig(dg —+ Zﬁ

+1 '

We remove the constant denominator and change the sign of the function. Let us note
the obtained function by F}. We have

F=expV =

F1 = Ingg — Zﬂ
Fy satisfies equations (8.20) that means that in Case 1 with € = 1, F} is a first integral
of system (88.5)).
Let now € = —1. The considerations are exactly the same as above however now

I 1
V = —iarctan 37003 + 3 log (w? + w?)

and F'=expV is

o Bt +i)

Isws —if
Function F' can be simplified. Indeed, as according to (8.19))
B = I3 (wi +w3) — I3ws,
then
2 9 I§w§ + ﬁQ . <13W3 + iﬁ)([g&)g — ZB)
w] tw; =— 2 =— 2 .

2 2
We put the obtained value for w? + w3 in the above expression for F' and obtain

Fo_ T3ws + Zﬂ’

I

By removing the constant denominator I and changing the sign of F' we obtain a
new function noted by F5
F2 = Ig(d3 + ’L,B

F; satisfies equations (8.20). Thus in Case 1 with ¢ = —1, F5 is a first integral of

system ([8.5)).
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Case 2. Let I1 = I, ¢ = —ica, cg = 0. The only difference in this case in comparison
with Case 1 is that when € = 1, F» is a first integral of system and when ¢ = —1
the first integral is F}.

The functional independence of these partial first integrals with Hj follows from the
fact that they do not depend on +; while H3 does.

Let us note that the partial first integrals F; and Fb are algebraic without being
rational. This is a new fact. Up to now, the known first integrals or partial first integrals
not depending on all variables, have been polynomials.

Type 2. Let us study the existence of a first integral of type 2, i.e. F = F(w1,ws,71)-
Now we have

dF 1 9 oF
E = m [12(12 — 13)w2w3 — Licswiy — (IQCQWQ + IgCgOJg)R + C3U1] 370.)1
1 OF
+ A [(Is — I)wiws + c1 R — 371 | 2— 9o
1 OF
+ oo [ — hwiwsyr — (Taws + T3w3) R 4wl ] P 0,
or equivalently
dF
11]2(4]2 dt —Yl(F) O, (827)

where Y7 is the corresponding vector field defined on 2.

Equation should be an identity with respect to all four variables (w1, ws, w3, ¥1).
Similarly to the consideration of a first integral of type 1 if we differentiate identity
with respect to wsz we will again obtain a linear partial differential equation for function
F'. We obtain

Y1 (F OR | OF
8153 ) |:_[2(.[2 — Ig) IgCgR (IQCQCUQ —+ .[303(.03)87%_ 87(,«)1
OR | OF
-1 I — I — —
1W2 {( 1= 3)w1 Cl 35— Ows | Oy
OR 10F
— Il [Ilwl'yl + 2[3&}3R + (IQ(U% + 130.)3)87&)3 — U- (37’)/1 = 0,
i.e. ")
oY1 (F
=Y3(F)=0 8.28
o = a(F) =0, (8.29)
where Y5 is the corresponding vector field defined on (2.
After differentiating identity (8.28)) with respect to w3 we obtain
8Y2(F) OR 0’R) OF 0’R OF
—|2I3cs— + (I 1. + I —
Dios 3C3 s + (lecows + I3c3w3) o2 o 1C1W2 5 007 Do
OR 0’°R] OF
711 {213R+4I3w36+(12w2 +13W3)8 :| 8’)/1 —O,
i.e.
Y5 (F
2(F) _ Y3(F) =0, (8.29)

8w3
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where Y3 is the corresponding vector field defined on 2.

We already know that if a fourth integral F exists, system ({8.27] - ) has a non-
zero solution grad F' and it is possible if and only if the determlnant D of the coefficients
of this system is identically equal to zero.

We compute D and obtain a long expression which we do not write here. Let us note
that D has a non-zero factor I?wy; and we note

5o _ D(R)
= 11272
It is clear that the equation D(R) = O s equivalent to D(R) =0.

Derivatives g R and a R (R) To determine them we differentiate equation
(8.3) with respect to ws two times. Taking into account that polynomial C' from
does not depend on w3 we obtain

0Q 0A 0B dQ OR

= R4+ —R+-S—=0. 8.30
30.)3 &ug + &ug + dR 8&)3 ( )
and

9%Q 0%A 0A OR 0O°B 0B OR

- = R?’42R— 4 — _—

ow3 w3 Ows Ows * Ow3 * Ows Ows

0 (dQ dQ 0°R

x T —=0. 8.31
Ows (dR) Ows TR Ow3 (8:31)

Like in the investigation for a first integral of type 1, by Proposition [£.1] we prove that
if R is a root of equation (8 , then — 75 0. Of course, the resultant p of polynomials
Q(R) and Q is the same and we make the conclusion that & 75 0 (see formula (8.14)).

Thus we can correctly determine 2 o from equation (8 and put its value in 1D
Then we easily determine g 2 from 8 31)). This determination is also correct because

the coefficient in front of 2 12% is also dQR
3

Then we put the obtalned values for the derivatives of R in the expression for E(R)
and obtain that D(R) has a non-zero factor 8/3R and denominator (%)3. We note

§(R) = () D(R)
8I3R ’

where §(R) is a polynomial of R of degree five with coeflicients which are polynomials of
w1, we, wz and ;. It is clear that the equation ﬁ(R) = 0 is equivalent to 6(R) = 0.

We know that if Q(R) = 0, then if in addition some supplementary first integral
F(w1,ws,71) of system exists, then also §(R) = 0. Thus all assumptions of Proposi-
tion are fulfilled. Consequently in polynomial ring K[z], where K = Alg(w, ws,ws, 1),
the polynomial Q(x) divides the polynomial §(z).

Using MAPLE command rem we divide § by @ and obtain a remainder which is a
polynomial r of the form:

Idws
oW
r(z) = (apx + a1)
2,2, 72, 2 J
Tsws + I5ws
where ag and a; are polynomials of wi, wy, wg and ;.
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According to Proposition we know that if R is a root of equation (8.3), then ag
and a; should be identically equal to zero. We use ag only because it turns out to be
sufficient for our purposes.

Polynomial ag has 81 coefficients. Thus we should equate to zero all of them. In
this way we obtain a system of 81 equations for parameters Zc, U; and Us,. After two
consecutive simplifications we obtain the reduced system which is very simple:

c3 =0, (I1 = I3)eq = 0, (I — I3)ey = 0.
The solutions are obvious:
{c1 =0, c2 =0, ¢3 =0}, Uy, U, I;, Iz and I3 are parameters,
{Is =13, cg =0, ¢ =0}, Uy, Us, I, I3 and ¢; are parameters,
{lL =13, ¢1 =0, ¢c3 =0}, Uy, Us, Is, I3 and ¢ are parameters,
{lL =I5, I = I3, ¢c3 =0}, Uy, Us, I3, c; and ¢y are parameters.

It is easily seen that these solutions lead to the Euler, Lagrange and kinetic symmetry
cases, respectively. Thus the sought partial first integral of type 2 cannot exist.

Type 4. Finally let us investigate the possibilities for the existence of a first integral
of type 4, F(ws,ws, 1), i.e. when it does not depend on wy.
As F'is a first integral of system (8.5)) we have

dF 1 oF
—=—|U3—1T R - —
I T [( 3 — I1)wiws + 1 6371] Do
+ ! [L(I — L)wws + Liciwim + Lreow —I—IcwR—cU]a—F
IQI3w221 2)W1Wy 1C1W171 2C2W27Y1 3C1Ws3 11(%)3
+ L [ — Lwiwsy, — (IQWQ + Igw?)R +W3U1] 8i =0
Irws 2 8 om ’
or equivalently
dF
IQI?,CUQE = Yl(F) = O, (832)

where Y7 is the corresponding vector field defined on 2.

Equation should be an identity with respect to all four variables (w1, w2, ws,y1).
As in the previous considerations taking into account that F' does not depend on w1, dif-
ferentiating identity with respect to w; we obtain again a linear partial differential
equation for function F'

o1 (F) OR OF
OJwy swz |(Is s + 1 Owy | Ows
OR| OF
+ {12(11 - IZ)WS +liciy + 1361W38w1:| ng,
OR | OF
_ _ 2, 7 2y 00t _ _
+IS{ Lwsy — (law; +ISW3)3M] E Y2(F) =0, (8.33)

where Y5 is the corresponding vector field defined on ).
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We differentiate identity (8.33]) with respect to wy and obtain

1 9Y>(F) O°R OF oF oF
il = il I I =Y3(F)=0 8.34
Ig 6w1 &uf c1wz 8w2 Ty (9(,93 ( 20.12 + 3w3)8’}/1 3( ) ’ ( )
where Y3 is the corresponding vector field defined on €.
9°R

Let us first suppose that -5 # 0. In such a case, if first integral F exists then the
1

system (8.32)—(8.34]) has a non-zero solution grad F'. This is possible if and only if the
determinant D of the coefficients of this system is identically equal to zero.
Let us compute D. We have

D,

D:IQIgw ajj
? 0w

where
.5 = 12(11 — IQ)ngg’)/l — 12(11 — Ig)CQ(U%LL)g")/l —+ I3(I1 — IQ)CgWQU}?z)’}/l
+ (I — I3)ey Uywows + Treycawas — Is(Iy — I3)eawiy — Ticieaviws.

As Iglgw2 o R £ 0 we use D instead D.

Polynomlal D has 7 coefficients. Equating to zero all of them we obtain a system of 7
equations for parameters Zc and U;. After two consecutive simplifications we obtain the
reduction (see Sec. |3]) of this system that consists of 6 equations as follows:

C1C3 = 0, (Il — IQ)Cg = 0, C1C2 = 0, (Il — Ig)CQ = 0,
(IQ - 13)6283 = O, (IQ - Ig)ClUl =0.

A simple case analysis leads to a set of six solutions that the MAPLE command solve
gives in the following way:

{Ul = 07 Il = -[1) -[2 = I27 IB = 137 i =C, C2 = 07 c3 = 0}7

{U1=U, =1, Iy=1I3, I3=13, ¢ = ¢, c2 =0, c3 =0},

{U=U, h=1I3, Iy =13, I3 =13, ¢ =0, ca = ¢z, c3 = c3},

{U1=U, h =13, Iy =13, I3 =13, c1 =0, c2 = ¢z, c3 =0},

{U=Uy, =1, =1, I3 =13, ¢c; =0, c2 =0, c3 = c3},

{U1=Uy, =1, Ir=13, I3=13, c; =0, c2=0, c3 =0}.
This list should be understood as follows. If an equation U; = U; or I; = I; or ¢; = ¢,
1 < ¢ < 3, appears we should consider the corresponding parameter as an arbitrary
complex number. For example, let us consider the third row. There Uy, I3, co and c3 are
arbitrary complex numbers but I, I and ¢; have fixed values. Some of these fixed values
can depend on the chosen value of some arbitrary parameter like in this example I; and
I depend on the arbitrary fixed value of I3.

We remove the solutions that lead to the Euler, Lagrange and kinetic symmetry cases
and obtain only one new solution

{U1=0, L =1, Iy =15, I3 =13, ¢ =c¢1, c2 =0, c3 =0}

Let us study this solution. Therefore we have U; = 0, ¢o = ¢3 = 0 and I; # 0,
1 <4 < 3, and ¢y are arbitrary parameters. In this case D = 0. Thus vector fields

(8.35)
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Y #0,1<i<3, (see (8.32)—(8.34)) are linearly dependent. More precisely the following
equation

OR
Yi == (.L)1Y2 + I3 (R w1 — > Y3
Owr
holds.
We remove vector field Y; because it is a linear combination of Y5 and Y3 and compute

the Lie bracket Z = [Y3, V3]
0’R e 0’R e 0’R
Ow10M1 Ow10ws Ow10ws
0’R 0’R O’R
Bt i O oty

0
7 = I301w2 |:(IQCU§ + Igwg) + (Il - I3)(U3:| 87(*}2
+c1 {Igw:s [(Izwg + Izw3)

0
+ I§w§ + 1113w§ + Ilcl%}ﬁwg

0’R O*R O*R
— Ig{(IQLd% + Igwg) |:(Igw§ + Igwg)m — C1Ww2 6&}18(,02 — C1Wws awlawg}

0
+ IQ([l - 2]2 + 2]3)60%603 + Iljgwg + Ilclw;g’}/l } W
1
As we have already known if a first integral F' of the sought type exists, then it should
satisfy the following system

Ya(F) = Ya(F) = Z(F) = 0

and the determinant of the coefficients of that system should be identically equal to zero.
We compute the determinant and obtain the following expression

—1213(12 — 13)01WSW3 [Igwg(?)ll — 2]2) + I3w§(311 — 2[3) + 4]101’}/1} .

It is easily seen that this expression can be identically equal to zero only if Iy = I3
or if ¢; = 0. The first possibility leads to the Lagrange case and the second one - to the
Euler case.
2°R

W

Thus if we suppose that $-7 # 0, then a first integral of type 4, i.e. F(wa,ws,y1) does
1

not exist.

Let us suppose now that gzéi = 0. In such a case we have
1

R = f(wa,ws, 11)w1 + g(wa, w3, 1), (8.36)
where f and g are arbitrary smooth functions not depending on wy.
We put the value of R from (8.36) in ) and obtain
Q= [(12% + Sws)f2 + 211]340371f + IT7]w?
+2[(I3w3 + Lw3)gf — IiUws f + L Izwsyig — LUy |wr
+ (I3w3 + I w3)g + Iwin? — Ugwi — 213U wsg + I3UF = 0,

that is @ is a polynomial of second degree of w; with coefficients depending on ws, w3
and ;. As @ = 0, then its three coefficients should be zeros.
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We equate to zero the coefficient of @ in front of w? and determine f from the obtained
equation. We have
,[1 (iEIQwQ — Igwg)’}/l
I3w3 + [2w3

=

)

where € = +1.
With this value of f we equate to zero the coefficient of @) in front of w; and determine
g as follows
. iUy (IQWQ + iIgEUJg,)’yl
T (w3 + wd)

Using these values of f and g and having in mind that €2 = 1, we equate to zero the
constant term of polynomial @) developed in powers of wy, that is the value of polynomial
@ when w; = 0 and obtain

Bwi (3w + I3w3)(vi — Us)

=0.
I3w2 + I3w3

Taking into account that I3w3, I3w3 + [3w3 and vi — Uz never vanish identically, we
conclude that the last equality cannot be fulfilled.
Thus a first integral of type 4, i.e. F'(wa,ws,v1) does not exist also in the case when

R _
aw% — 0.

8.2.2. Elimination of w; and -;. We eliminate variables w; and +; from equations
H, =U;, Hy = U, and obtain the following solution:

I I - U
wy = 2w +2 JWSZS L =1/ =3+ Us. (8.37)
L= =73 + U2

Further to simplify the formulas we note

I'=y/= =13+ U2

As all our considerations are local we can restrict ourselves to some suitable open set
Q C C*(wa,w3,72,73)-

We put the values of w; and v, from in the Euler-Poisson equations and
remove the first and fourth equations. In this way we obtain the following system of four
equations in unknowns ws, ws, y2 and vs:

d(.dg (Il — Ig)(IQWQ’YQ + I3(,d3’}/3 — Ul)W3 — 1103F2 + Ilcwgf

dt LI,T ’
dws (I — I)(Taw2 + Iswsys — Un)ws — LieoT? + 9ol

it RLT (5.38)
dya _ (Tawzys + Iswsys — Ur)ys + LiwsD

dt nr ’

dys _ (Tawzye + Tswyys — Ui)ya + LiweT™

dt LT '

Here we study whether system (8.38]) has a first integral that depends on at most
three variables among the variables (w2, ws,¥2,73) and that is functionally independent
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of Hj restricted to invariant manifold (8.1)). Thus we should investigate the following four
types of a new first integral:

1. F(wz2,ws,72), (case (iii))
2. F(w2,ws,73), (case (iii))
3. F(w2,72,73), (case (iv))
4. F(ws,v2,73)- (case (iv))

As local partial first integrals belonging to case (iii) were already excluded in Sec.
we will now study if the function of type 3, belonging to case (iv) can be a local
partial first integral of the Euler-Poisson equations (|1.1).

Type 3. Let us study the existence of a first integral F of type 3, i.e. F = F(w2,v2,73)-
F being a first integral of system (8.38]) satisfies the following equation

E _ (Il — Ig)Wg(IQ(Ug’YQ + IgUJg’)/g — Ul) — Ilch‘2 + Ilclfygfﬁi

dt I, I,T Ows

V3(Tawzye + Lwsys — Ur) + LiwsD® OF
nr 072

"}/2([2&}2")/2 + Igw:),"}/g — Ul) + I1LLJ2F2 oF -

+ _— =
nr 073

or equivalently
dF
IlfgI‘d— =Y(F)=0, (8.39)

where Y is the corresponding vector field defined on 2.
The left hand side of equation (8.39)), i.e. Y(F), is a polynomial of ws of degree two
with coefficients depending on parameters Ze, Uy, Uy and variables (w2, v2,73).
Let us write Y (F') as follows
Y(F) = Yi(F)wj + Ya(F)ws + Y3(F),

where Y;, 1 < ¢ < 3, are the following vector fields:

0
Y1 = I3ys(1 — 13)8702’

0 0 0
Yo = (I — I3) (Toways — U1)37 + I | I17s + (I — — I1U2] P Iﬂ?ﬁz’st,
2 3

0 0
Y3 = I (c375 + c373 + 13l — C3U2)67 — Ipy3(Toways — Ul)ia,y
2 2

0
-1 [(Il — I)wos + Lwavys — I1Usws + Uﬂ’z] By
defined on €.

Y (F) should be identically equal to zero with respect to all four variables wa, w3, 2
and 3. As Y;(F), 1 <i < 3, do not depend on w3 we have the following three equations:

Y1 (F) = Ya(F) = Y3(F) = 0. (8.40)
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If a first integral F = F(wa,v2,73) exists then system (8.40)) has a non-zero solution
grad F'. We know that this is possible if and only if the determinant D of system (8.40)
is identically equal to zero. We compute D and obtain

D = LIZI5(I1 — I3)vs? | (I — L)wavys + (It — I3)wavys — I1Usws + ngl} =0.
One can easily see that D = 0 if and only if
I = Is. (8.41)

Let us study this case. Now Y; = 0 but simple computations show that vector fields
Y2 and Y3 are always linearly independent. We compute Lie bracket Z = [Ya, Y3]/(I213)
and obtain

0 0
Z = 2I37oT(c17y3 — C3F)0Tjg + I (I,Upwy — U1’Y2)’Y387,y2

0
+ 12{ (I3 — L)T? — LUsways — Urvs + Ule} }8773
Second and third equations (8.40)) imply that Z(F') = 0 and we come to the following
system for first integral F':

Ya(F) = Ys(F) = Z(F) = 0. (8.42)

As above we should study when determinant D of system 1} is identically equal
to zero. We compute D and obtain D = dydads, where
dy = I3I3T?,
dz = (c173 — e3)T,
ds = (Is — Iy)w2vs — (21 + I3)Uswayz + 2U175 + UpUs.

It is clear that d; never vanishes identically. If dy vanishes then it follows that ¢; =
c3 = 0 which together with condition (8.41]) leads to the Lagrange case. The third factor
dsz = 0 if and only if Iy = I3 and U; = Us = 0. But taking into account (8.41)) this is a
particular case of the kinetic symmetry case. Thus a partial first integral of type 3 does
not exist.

It only remains to study the functions belonging to the cases (v) and (vi).

8.2.3. Elimination of w; and ~». Solving equations H; = Uy, Hy = Us with respect
to wy and 7, we obtain:

Lwor/—2 — 73 4+ Uz + Iswsys — Uy 5 5
= — =4/—7 - Us. 8.43
w1 Iim ) Y1 Y1 — 75+ U2 ( )

To simplify the formulas we note

I'=1\/-% - + U2

As till now we restrict ourselves to some suitable open set  C C*(wa, w3, v1,73)-

We put the values of wy and 7, from (8.43)) in the Euler-Poisson equations (|1.1)) and
remove the first and fifth equations. In this way we obtain the following system of four
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equations in unknowns ws, ws, 7y1 and 7y3:

dws (11 — I3)(I3wsys 4 Towol' — Up)ws — (T1ezy1 — Liciys)mn

E LIy ’

dws (11 — Ib)({3wsys + Lowol' — Un)ws — (licoyn — Lieall)n

dt 11]3’)/1 ' (844)
an =w3l' —w

dt 3 273,

dys  (I17: + LI?)wy + IswsysT — Uy T

dt ILim '

Here we look for first integrals of system (8.44)) of the following four types:

F(wa,ws,y1), case(ii)
F(w27w3773)7 C&SG(”.
F(wa,v1,73), case

F(ws,71,73), case

iii)
v)

=W o=

(
(iv)

requiring in addition that they are functionally independent of Hj restricted to invariant
manifold (8.1). The functions from cases (ii), (iii) and (iv) was already examined. There
remains only to examine case (v).

Type 3. Let us study the existence of a partial first integral of type 3 F(wa,v1,73)
belonging to case (v). Then we have
dF (I = Is)(Iswsys 4 Tawel" = Ur)ws — (hicsyy — hieays)y OF
dt I1I2’71 80.)2
8F (11712 + IQFQ)UJQ + I3w3’}/3r — Ull_‘@i -

+ (w3l —w — + =
(s 273) o Iy 3

0,

or equivalently
dF
Lilyy1— =Y (F)=0,
1427 dt (F)
where Y is the corresponding vector field defined on €.
Y (F) is a polynomial of w3 of degree two with coefficients depending on parameters
Zc, Uy, Uy and variables wy, 71 and 7s.

Let us write Y (F) in the following way
Y(F) = Yi(F)w} + Ya(F)ws + Ys(F),

where Y;, 1 <14 < 3, are:

0
Y1 = I3( - 13)7357)27

0 0 0
}/2 = (Il — Ig)(IQWQF — Ul)@ =+ 11[2’}/11—‘87’71 =+ 1213731—‘87’73’
i—nw i+I (IT% + 17w —Uri
Do 142W27Y173 (971 2| (42 171 )W2 1 (’“)73'

Y (F) should be identically equal to zero with respect to all four variables wq, w3, v2

Yz = Liyi(ciys — e3n)
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and v3. As Y;(F), 1 <14 < 3, do not depend on w3 we have
Y1(F) =Y3(F) =Y3(F) =0. (8.45)
If a first integral F' = F'(wa, v2,73) exists then the determinant D of system is
identically equal to zero. We compute D and obtain
D= LII(I - 13)7173F{w2[(11 — L)Y} + (Is — I2)7; + IUs] — UlF} =0.
It is easily seen that D vanishes identically if either
L =13 (8.46)

or the expression in the curly brackets vanishes. This expression is a linear function of
wo and we should require that its two coefficients vanish. But this leads to the kinetic
symmetry case with the additional restriction U; = Uy = 0.

Thus we study only the case . Now Y; = 0 but simple computations show that
outside of the particular case (U; = Uy = 0) of the kinetic symmetry vector fields Ya and
Y3 are always linearly independent. We compute Lie bracket Z = [Y3, Y3] and obtain

% = 21371 (c173 — cm)r?a% + Iy1ysT [(I2 — Is)wel — Uh] 8%1
+ LT [wol (I3} — T2y} — IUz) — Ury3 + UrUs] ai%
Second and third equations imply that Z(F') = 0 and thus
Z2(F) = % —
In this way we come to the following system for first integral F":
Ya(F) = Y3(F) = Z(F) = 0. (8.47)

As above we should find the cases when determinant D of system (8.47) is identically
equal to zero. We compute D and obtain D = d;ds, where

di = I3137i (c1ys — e3m1)I2,
dy = [(I3 — I)7; + (I3 — I2)73 + 3LUs]wol’ — U1 (202 4 Us).

It is clear that d; vanishes identically only when ¢; = ¢3 = 0 which together with
condition leads to the Lagrange case. As dp is a linear function of wy equation
dy = 0 is fulfilled if and only if its two coefficients with respect to wo vanish identically.
Thus I, = I3 and U; = U, = 0. Taking into account this is a particular case of the
kinetic symmetry case. Thus a partial first integral of type 3 does not exist.

8.2.4. First integrals F'(71,72,73). Finally it remains to study the existence of the
partial first integral F'(y1,72,73), that cannot be studied by elimination of variables like
above.

We have Hy = 7% + 73 + 73 = Us, thus 73 = \/—75 — 73 + Uz and then

F(y1,72,73) = F(\/ =73 — 73 + U2,72,73) = ﬁ(%ﬁz’,)-
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Our problem now is reduced to the study of partial first integrals of the form F =
F(vy2,73) on the submanifold {H; = U;}. Absence of these partial first integrals fol-
lows from Sec. where the absence of partial first integrals of more general form

F(wi,y2,73), ¢ = 2,3, is proved for all U; and Us.

8.3. Invariant manifold {H,=U;, H3=Us}. Here we study the existence of a par-
tial first integral of the Euler-Poisson equations restricted to the complex four-
dimensional level manifold

{H, =Uy, H3 = Us}, (8.48)
supposing that this partial first integral depends on at most three variables and that is
functionally independent of Hs.

8.3.1. Elimination of w; and w,. In the same way as in Sec. [8:2.1] we express w; and

wo from the equations H; = U; and H3 = Us and obtain the following solution:

IRy + Izwsys — Us
I

. wa=R, (8.49)

wy =
where R is a root of equation
Q(z)=Az®> + Bz +C =0,
that is
Q(R)=AR*+ BR+C =0. (8.50)
Here the functions A = A(v1,72), B = B(ws,¥2,73) and C = C(ws,¥y1,72,73) are the
following polynomials:
A= LI} + I273), B = 2Iyy;(I3wsvs — Ur),
C = L w3y} + w32 — 213U w33 + 211y + 21 coys (8.51)
+ 2@ c3v?y3 — LUy + UL

We put the values of w; and ws from (8.49) in the Euler-Poisson equations (|1.1)) and
remove the first and second equations. In this way we have the following system of four
equations in unknowns ws, 1, Y2 and vs:

dwy (I — I)(I27eR 4 Iywsys —Un) R — Li(yica — civ2)n

dt I I3 '
d
% = w32 — V3R,
8.52
dyy _ (IsRv2 + Iswsys — Ur)ys + Liwsy? (8.52)
dt Iim 7
dvs _ (17 4 Iy3) R+ (Iswsys — Ur)ye
dt Il'}/l '

Now we study the existence of a first integral of system that depends on at most
three variables among the variables (ws,71,72,v3) and that is functionally independent
of Hy restricted to invariant manifold . Thus we should investigate the following
four types of a first integral:

1. F(ws,71,72), (case (iv))
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2. F(ws,71,73), (case (iv))
3. F(ws,72,73), (case (iv))
4. F(v1,72,73). (case (vi))

Then, like in Sec. [5]it suffices to examine the functions of types 1 and 4 respectively.

Type 1. Let us consider the existence of a first integral F' of system ({8.52)) which is
of type 1, i.e. F' = F(w3,71,72). Thus

dF (I — L)(I272R + Izwsys — Un)R — Ii(yac2 — c1ye)n1 OF

dt I I3 dws
oF LR I - U 1 2 OF
+ (wyye — y3R) 25— (IaRy2 + I3ws7s 1)7s + Liwsyi OF —o.
oM ILm 02
We rewrite the above equation as follows
F
IlL%’YlE =Y (F) =0, (8.53)

where Y7 is the corresponding vector field defined on some suitable open set  C
(C4(W3, Y1572, 73)

We differentiate identity (8.53) with respect to 73 and obtain a linear partial differ-
ential equation for function F'

8};17(5) = (L —I2) [—21272R§R — Iyws R — (Iswsys — Ul)g,i:| %
—nLizm (R +73 gi) %
—1I3 [213w3’73 + I>v2 (R + 7332) - } % =Y5(F) =0, (8.54)
where Y5 is the corresponding vector field defined on Q.
After differentiating identity with respect to 3 we obtain
8};2,55) = (L —I2) [ - QIz’YzRgi? — 2Dy <§f3>2
- 213003% — (lswsys — Ul)?;y } gi;
R\ OF
i (25, + 958 ) 7
—1I3 (QIQ’YQSf + Ixy2y3 giR + 213w3> 352 Y3(F) =0, (8.55)

where Y3 is the corresponding vector field defined on Q.
If a first integral F’ exists, then the linear system (8.53)—(8.55)) has a non-zero solution

grad F' = (g—j;, %’ 6%2)7 which is possible if and only if the determinant D of the
coeflicients of this system is identically equal to zero.

We compute D. It has a non-zero factor Illgfyl and that is why we work with
D

oD
L3y
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The expression for D is

OR 9’R OR\? OR
=a R? RZ— RZ—= R? R(— R—
=a + as O3 + as 3%2’ + a4 " + as 93 + ag 97s
9’R OR\* OR OR 9’R
R=— R — - 8.56
+ar 072 + ag i+ ag (373) + a1 (373) +a118 3+a1287§’ ( )

where

ay = =20 13(11 — I)wsys, as = —2I3(I1 — Is)y2(U; — 3I3w373),
ag = —Ip(Iy — Ip)v2(—2ws7ih — 2w3y5 12 + 3U1),  ag = 2I3(1 — I2)Uyws,
as = 2(I1 — Iy) Iyya(—w3nihy — weys Iy — 3l3ws; + 29301),
ag = 2(I — Iy)(—22Izw3y3 — 23U w3y + UT),
ar = (I — L) (~Uwsyi 1 — 3wsys LUy — Iswsy3 Uy + Uiy 4 4lsw3vsv3 I2),
ag = —2l3w3(—I3w3Ixye + Lwi iy — [ivice + ciyelim),
ag = —2I3(I — Iy)yays(—ws il — wsv3 Ta — Tsws s + v3Uh),
aro = —2(I; — L)(~Uiwsyil — 2Lw3ysvsla — IawsyaUs + Uinys),
a1y = 2(—=hiealsysws + LII3wiysya — crvalimUs + civalim Isysws
+ hfelUs — LIFwivsye),
a1y = (Uy — 2I3wsy3) (—Ur lowsya + Ur hiwsye — c1v2liyys — Iswi 17372
+ 1y eays + IswiIrysys).

gf 8.50|) with respect

to 3 two times. Taking into account that polynomlal A from (8.51]) does not depend on
73 we obtain

BR

To determine the derivatives and

oQ 0B oC  dQ OR
Ovys 073 Ovs  dROvs (857

and
0?’Q 0°B 9B OR 9*C 0 ( Q) OR dQO’R
X" R+ = T+ =Sz =0 8.58
ng 03 Oz dys O3 O dvs  dR 03 (8:58)

By Proposition we prove that if R is a root of equation 1) then % # 0. For
the purpose we consider the resultant p = A(4AC — B?) of polynomials Q(R) and % and
prove that p # 0. As A never vanishes identically we do not consider p but p = 4AC — B2.
Putting in p the expressions for A, B and C (see (8.51)) we obtain

p=ALLY; [Iwi (I + 173 + Isys) + 2(1i77 + 1273) (cima + cav2 + 373)
— 2]3U1W3’73 — Ugjl’yf — IQUS’Y% + U12]7

which never vanishes identically at least because contains a monomial 417 15T3w3v1.

Thus @ # 0 and 812 can be correctly determined from equation 1-) Then by
equation 8.58 we determine ‘gﬁ and put the obtained values for the derivatives of R
3
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in the expression for D (see (8.56)). In this way we obtain
~ 8L,6(R
b(r) = S0
(5)
R

where 0(R) is a polynomial of R of degree six with coefficients depending on ws, 71, 72
and ~s.

It is clear that the equation D(R) = 0 is equivalent to §(R) = 0. We know that if
Q(R) = 0, then if in addition some supplementary first integral F'(ws,71,72) of system
(8.52)) exists, then also §(R) = 0. Thus all assumptions of Proposition are fulfilled.
Consequently in polynomial ring K|[z], where K = Alg(ws, v1,y2,73), the polynomial Q(x)
divides the polynomial 6(z).

By the MAPLE command rem we compute remainder r from the division of polynomial

0(z) by polynomial Q(z). The remainder is of the form:
LEsats

r(R) = Lot + I3
where ag and a; are polynomials of ws, 1, 72 and 3.

According to Proposition if R is a root of equation , then ag and a; should
be identically equal to zero. We shall use a; only.

Polynomial a; has 210 coefficients. Thus we should equate to zero all of them. In this
way we obtain a system of 210 equations for parameters Zc, U; and Us. The reduced
system (see Sec. [3)) that is obtained after two consecutive simplifications is very simple:

01:0, 02:0, _[1_[2:0.

(apx + a1),

These equations lead to the Lagrange case. Thus the sought partial first integral of
type 1 does not exist.

Type 4. The study of the existence of a first integral of type 4 is considerably different.
Indeed, let us suppose that F' = F(y1,72,73) is a first integral of system (8.52)). Then we
have

dF OF  (IoRys + Izwsys — Ur)vys + Liwsyi OF
— = (w372 —3R) 7 — — —
dt oM Iim 02
. (It + Bg) R+ (Twsys — Uh)ye OF _
Iim 073 '
which we rewrite as follows P
I = Yi(F) =0, (8.59)

where Y7 is the corresponding vector field defined on (2.
After differentiation identity (8.59)) with respect to ws one obtains again a linear
partial differential equation for function F

aY;1 (F) AR\ OF OR ) ,\ OF
.y ot ) L (Lyeys et £ L2+ 92 ) o
B 72— s 2w ) o 272773 Drs + I35 + iy 972

OR oF
+ [(wa + Iy73) Dvs + 137273} Fe Y2(F) =0, (8.60)
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where Y5 is deﬁned on (.

System (8.59 - has one solution. This is first integral Hs. In order to have one
more solutlon thls system should consist of dependent equations. Let us study when this
is possible.

We compute determinant Ds3 corresponding to the square matrix obtained from the
2 x 3 matrix of the coefficients of system 7 by crossing out its first column.
The result is

OR OR
Dos =Ly |(IWW + L2+ I573) ([ R—wy— | = U — = 1.
23 17 (s + Tays + Is7v;) w38w3 1 {72 W?’&ug

The expresswn for Dyg depends on derivative aR We determine it by dlfferentlatmg

equation (8 with respect to ws. Polynomial A does not depend on w3 (see (8 ) and
therefore

0Q _ 9B, 0C  dQOR

- = + —=— =
Ows  Ows Ows  dR Ows
As in the studying of a first integral of type 1, using Proposition we prove that if
R is a root of equation 1) then % # 0 and obtain from the above equation
OR I3 [v3(I2Ry2 — Uy) 4+ ws (173 + I373)]
Ows L[R(IA] + Iv3) + va2(Iswsys — Ur)]

f@R

We put this value o Do in the expression for Doz and obtain

IW%

ﬁ237
L[R(I17} + I73) + v2(Iswsys — Uy)]

Dy3 =

where ]323 is
Dos = LI} + 173 + 133) (117} + 1293) R? + 272(Iswsys — Us)R]
+ I(LAT + 1293 + I393) (1] + I3n3)ws — 2U1nsws] + U (Iavs + I373).-
It is clear that Dy3 = 0 is equivalent to
Das = 0. (8.61)

If first integral F = F(y1,72,73) exists then equation is fulfilled. Thus R
is simultaneously a root of equations and . In such a case D23 and @ as
polynomials of R should have a zero resultant.

Let us denote the resultant with p and compute it. We obtain

p = LIV (17 + 1295)°0%,
where
P = (2e1m + 2cav2 + 2e373 + Us)(If + 1275 + Is73) + UYL
Equation p = 0 implies p = 0. It is easily seen that this happens only if ¢; = ¢5 =

c3 =0 and Uy = Uz =0, i.e. a particular case of the Euler case. Thus a new first integral
of type 4 does not exist.
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8.3.2. Elimination of w; and ~;. Here we should study two cases: when ¢; # 0 and
when ¢; = 0. This is necessary because when we express y; from equation Hy; = U; we

obtain
_ Tawyys + Tzwsys — Un

Ilwl
independently of ¢;. But putting v; from (8.62)) in equation Hs = Us, two different case
for determining wy arises. When ¢; # 0 the equation for w; is of degree three while when
c1 = 0 it is of degree two. That is why, to avoid any confusion, we consider separately

(8.62)

71 =

two cases.
Case A. ¢; # 0. In the same way as in Sec. [8:2.1] taking into account the value of v,
from (8.62)) we solve equation Hs = Us with respect to wy and obtain

w1 = R,
where R is a root of equation
Q(z) = I}2® + Az + B =0,

that is
QR)=I!R*+ AR+ B =0 (8.63)

and A = A(ws,ws,¥2,73) and B = B(ws,ws, ¥2,73) are the following polynomials:
A= Il(.[gwg + Igwg + 2¢cov2 + 2¢37y3 — Ug),

(8.64)
B = —c1(2Ihway2 + 2[3w3y3 — 2U7).
In this way we come to the following values of the eliminated variables:
I I -U
wi =R, 7= — 2W2Y2 + 13W373 1 (8.65)

LR

We put the values of wy and v; from (8.65) in the Euler-Poisson equations (1.1)),
remove the first and fourth equations and obtain the following system of four equations
in unknowns ws, ws, 2 and 3:

dwy  Li(I — B)wsR? — Lieiys R — e3(lowaya + Twsys — Uh)

dt I1IoR ’
% _ 11(11 — IQ)UJQRQ — 1161’}/2R — CQ(IQCUQ’}/Q + 13(.4.23’}/3 — Ul)

dt LIsR ’ (8.66)
dy2 _ NysR? + ws(lowaye + Tswsys — Uh)

dt LR ’

dys 172 R? + wa(lawaye + Iswsys — Ut)

dt LR '

Case B. ¢; = 0. We solve equation Hs = Uz with respect to w; at the value of v
given from (8.62) and obtain w; = R, where R is a root of equation

Q(a:) = 111‘2 + B,

that is
Q(R) = LR*> + B, (8.67)
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and B(wa, ws,¥2,73) is the following polynomial:
B = IQCU% + Igwg + 202’)/2 + 203"}/3 - Ug.

In fact the values of the eliminated variables are determined as in Case A, i.e. by
formula (8.65) but R is a root of different equation.
The restricted Euler-Poisson equations are

dwy (I — I3)w3R? — c3(Towzye + Izwsys — Un)

dt LR ’

dwy  Li(I1 — I2)wa R? — ca(Toways + Iawzys — Uh)

dt L3R ’ (8.68)
dy2 L3 R? + w3 (loways + Izwsys — Un)

dt LR ’

dys 1172 R? + wa(lweye + Iswsys — Uh)

dt LR '

To study the existence of a first integrals of systems (8.66)) and (8.68]) that depend on
at most three variables among the variables ws, w3, 72 and -3 and that are functionally
independent of Hj restricted to invariant manifold (8.48]) we should consider the following
four types of a first integral:

1. F(wa,ws,¥2), (case (iii))

2. F(w2aw37'y3)7 (Ca‘se (111))

3. F(wa,72,73), (case (iv))
4. F(w3a’72773)' (Case (IV))
Thus we should study the first integral of type 1 only.

Case A.1. We consider a first integral of type 1, i.e. F' = F(wo,ws,72). Thus
dF  L(L - I3)wsR? — I1c1ys R — c3(lawaye + Iswsys — U) OF

E Ilng 8&)2
4 11(11 — IQ)(U2R2 — 1161’}/2R — CQ(IQ(JJQ’)/Q + 13(.4.)3’}/3 — Ul) Ol
IlldR 80.)3
L1y R? + ws(lowaya + Tswsys — Up) OF
+ - =0,
IlR 672
which is equivalent to
dF
LI IR— = Yi(F) = 0. (8.69)

Y7 from (8.69) is the corresponding vector field defined on some suitable open set 2 C
(C4(w2a w3, 72, 73)

We differentiate identity (8.69)) with respect to v3 and obtain again a linear partial
differential equation for function F

Y1 (F) OR OR oF
=13 |=2I1(I; — I R— +LctR+1T — + 1 —_—
93 3 (I 3)w3 s +hear+ hieys s + I3c3ws3 D
OR OR oF
+ 1> {211(11 - Iz)szai% - 1161’7257’)/3 - 13020J3} 5703
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OF

72

where Y5 is the corresponding vector field defined on Q.
After differentiating identity with respect to 3 we obtain

+ IQI3 <11R2 + 2]1’}/3R§R + 13w3) = YQ(F) = 07 (870)

dYs(F) R R\
873 211]3 —2([1 —I3)(U3R87’y§ —2([1 —13)(,«)3 37’}/3
+2 + O°R) OF
Cons M 0Z |
0’R OR O’R] OF
+ 11]2 |:2(Il — IQ)WQRT’Y% + 2([1 - 12)(.4]2 ((973) C1Y2 == 873 :| 8(,03

O’R OR\? OR] OF
oL, I I it 2 Ya(F) = 71
2 Ry (F0) +2RE| S = =0, @)

where Y3 is the corresponding vector field defined on Q.

If a first integral F' exists, system (8.69)—(8.71)) has a non-zero solution grad F =

OF 9F OF
Ows ? Ows ? 02
identically equal to zero.

), which is possible if and only if the determinant D of its coefficients is

We compute D. It has a non-zero factor I2I313 and that is why we note

D

D=——0.
FEIENE

The expression for Dis
5 OR O*R R\ OR O*R
4 4 3 3 3
=a1R 78 s + asR a 2 + asR <873> + ay R 8 3 +asR 8’}/3%
8R)2 OR a2R <8R>2 OR
agR

+aR2< +arR*—— +asR*——
6\ O3 a 63 33

+a R82R+a (971“2 +a aﬁ
U002 T\ 0 P\ 0

a1 = —2heiws (I — Iz), ag = Iici[(—=11 + Ia)ways + (11 — I3)wsyal,
as = —2[161[(—.[1 + 12)W273 + (Il - IB)W3’72}7
Ay = 2[2[3(]2 — I)cswows + 2I5(11 — 13)02W§ + 110572],
a5 = —2I5(I1 — Iy)cswive + 2L (—Is + 11 ) cawawsye — 213(I1 — Iz)cwawsys
+ 2([1 — 12)C3U1(UQ + 2]3(7[3 + Il)ngg’}/g — 2(713 + 11)02U1W3 + Ilc%"}/g’}/g,
ag = 6[(12 — In)cswz + (It — I3)caws)(—Tawzy2 — Iswsys + Ut),
ar = 7261(713([1 — IQ)(UQW% — CQIQWQ’)/Q — 263]3&)3’}/2 -+ CQUl),

where

ag — —C1 [—2[2(11 — Ig)wgwy}/g — 13(11 — IQ)LUQUJ?%’Y?, + 2([1 — IQ)UlbUQw;J,
— Ireswa s — Lcawayays — Is(—I3 + I )wive — 2I3cswsyays + calUiyz + c2Ur7s),
ag = 2¢y [—Ig([l — Ig)wgw:;’m — 2]3([1 — IQ)UJQW%’Y:’) + Ul(Il — IQ)UJQWg — 203[2(.4}2’)/3
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+ Lcawayays + I3(— I3 + I w3y — Iscswsy2ys + 2¢3U172 — c2Urvs),
ajp = —2-736%&1;%"/2, air = C?ws’h(—fzwz’h — I3w3ys + Ul),
a1z = 2¢1[(Iz — It )wawsys + (=13 + I1)w3ye + cayeys — cov3](—Taways — Izways + Uy),
a3 = —2ciws Yo (—waye — Iswsys + Ur).
The first and second derivatives of R with respect to 3 appear in D. To determine
them we differentiate equation (8.63)) with respect to 3 two times and obtain
0 0A dB  dQ OR
0Q 94, 0B dJOR _ (8.72)
Ovs O3 Ovs  dR O3
and
02 0%A 0A OR 0*B o [d OR dQ O’R
?=2R++2+(Q> +fQ—2=O. (8.73)
03 03 073 O3 073 073 Ovs dR 0v3
We prove that if R is a root of equation l| then % # 0. For the purpose we
consider the resultant p = I7(4A3 + 2712 B?) of polynomials Q(R) and dQ =3IR*+ A
and prove that p # 0. Indeed, putting in p the expressions for A and B from (18.64) we
obtain a polynomial which we do not give here but it never vanishes identically as it has
a monomial 473 I3w§
Thus, by Proposition % # 0 and g—,i can be correctly determined from equa-

tion (8.72). Then by equation (8.73) we determine 2

put the obtained values for the

9 2 ’
derivatives of R in the expression for ﬁ(R) and obtaln

S - @)

= ng’
dR

where L = 4(Iyc3 R—I5ciws) and §(R) is a polynomial of R of degree eight with coefficients
depending on wsy, w3, y2 and 3.

We prove that expression L does not vanish identically provided that R is a root of
. Indeed, if c3 = 0 then L = —413cjws and as ¢; # 0 L could not vanish identically. If
c3 # 0 and we suppose that L = 0 then we have R = Igclwg/(h c3). Simple computations
show that this value of R cannot be a root of (8 . Thus we can work with D instead
of D because L and dg are Non-zeros.

Thus the equation D(R) = 0 is equivalent to §(R) = 0. We know that if Q(R) =
then if in addition some supplementary first integral F'(ws,ws,y2) of system exists,
then also §(R) = 0. Thus all assumptions of Proposition are fulfilled. Consequently
in polynomial ring K[z], where K = Alg(ws, w3, ¥2,73), the polynomial Q(z) divides the
polynomial §(z).

By the MAPLE command rem we compute remainder 7 from the division of polynomial
4(z) by polynomial Q(z). The remainder is of the form:

’I“($) = 2[101@0,@2 +aix + 401(—[2&)2’72 — Iswsvys + Ul)az,

where the coefficients ag, a1 and as are polynomials of ws, w3, 72 and 3.
According to Proposition [4.2]if R is a root of equation (8.63), then, as 21 ¢; is not zero
and 4cy (—Iaweys — I3wsys + Uy) does not vanish identically, we have ag = a1 = as =0
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identically. We use only the last equation as = 0.

as is a polynomial with 51 monomials and therefore with 51 coefficients. We equate
them to zeros and apply simplification on the obtained system. After three consecutive
simplifications we come to the reduced system that consists of only one equation 1=0.
Thus a first integral of type 1, F' = F(ws,ws,y2) does not exist when ¢; # 0.

Case B.1. Here we consider Case B, i.e. ¢; = 0 and study the existence of a first
integral of system (8.68]) which is of type 1, F'(wa,ws, ¥2)-
In the same way as in Case A we obtain a system

Y1(F) = Ya(F) = Y3(F) = 0, (8.74)

where vector fields Y;, 1 < ¢ < 3, are defined on ).

System (8.74]) coincides with system (8.69)—(8.71]) if we substitute in the last one

c1 = 0. As we know the existence of the sought first integral is possible if and only if the
determinant D of the coefficients of system (8.74) is identically equal to zero.
Let us compute this determinant. We obtain

D(R) = 2} I3I3R?[(I> — I )esws + (I — I3)caws| D(R), (8.75)
where
. R OR\? OR
D(R) = (IQWQ’}/Q + ]3&13’)/3 — U1) RT"@ -3 (6’)/3) + 2[3W3R8—73,

Taking into account that now R = 0 cannot be a root of equation and that
¢1 = 0 we easily see that the factor before D(R) in can vanish identically only in the
Euler, Lagrange and kinetic symmetry cases. Thus the equation D(R) = 0 is equivalent
to the equation D(R) = 0.

We compute the derivatives of R (see ) with respect to v3 and obtain

OR ¢ PR G
9y LR 0y LR

and determine D(R) as follows

c 11[3w3R2 + 203([2002’)/2 + Igwg")/g — Ul)
3

D(R) = -2 i

Let us suppose that cg # 0. It is clear that now ﬁ(R) never vanishes identically and
consequently the sought partial first integral does not exist.

Let ¢3 = 0. In such a case D = 0 and therefore equations are linearly dependent.
More precisely Y3 = 0 because when ¢z = 0 then R does not depend on -3 but every item

. . 2 . .
of Y3 contains either %E:i or gﬂfj (see (8.71)) under condition ¢; = 0).
3

Thus we have only two partial differential equations for first integral F'. They are
Yi(F) =0, Ya(F)=0. (8.76)

FEasy computations show that these equations are independent unless co = 0 which
leads to the Euler case or Iy = I3 - Lagrange case.
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We compose the Lie bracket Z = [Y7, Ya]. Equations (8.76]) imply that

oF

Z(F) = 3(I1 — I3) I, I cows (Iow3 + Isw; + 2co7y2 — UB)&T)Q

— 1221362 [Igllwg + Ig([]_ — IQ)WQOJ?%
oF
+ 62(211 — IQ)LUQ’)/Q — I1Uzwsy + CgUl] 87
w3
+ L Iws[ — I(211 — I — 2I3)w) — 2I5(11 — I3)wows

OF
— ea(4ly — Ir — ALs)wayo + (211 — Ir — 2I3)Usws + c2Us | e 0. (8.77)

Determinant § composed from the coefficients of equations (8.76) and (8.77)) should
be identically equal to zero. We compute it and obtain
6 = 6109,
where
01 = 12313?([1 — Ig)ngg(Igwg + Igwg + 202’}/2 — U3)2,
0p = —Ip(21) = 3Ip)w) — 203(11 — I3)waw] — 2¢2(211 — Ip)wn
+ U3(211 - SIQ)LL)Q + 4CQU1.
It is easily seen that d; can vanish identically only in the Euler and Lagrange cases.
The expression for dy contains a monomial 215(I; — Ig)(dgwg and therefore the minimal

requirement for do to vanish identically is Iy = I3 - the Lagrange case.

Thus a new first integral of type 1 does not exist also when ¢; = 0.

8.3.3. Elimination of w; and ~3. In the same way as in Sec. we solve equations
H, = U; and H3 = Us with respect to w; and 72 and obtain

_Il’le + IgWg’Yg — U1

wi=R, 7= o , (8.78)
where R is a root of equation
Q(z) = Az®> + Bx +C =0,
that is
Q(R)=AR*+ BR+C =0. (8.79)

Functions A = A(wz), B = B(v) and C = C(wa,ws,¥1,73) are given by the following
polynomials:

A= Il.[QCUQ, B = 72]102’}/1,
C = I%wg + IQI3LU2(A)§ + 2Isc1way1 + 215c3ways (880)
— IQUS(UQ — 2[3620.)3’73 + 202U1.

We put the values of wy and 7, from (8.78]) in the Euler-Poisson equations (|1.1)) and
remove its first and fifth equations. In this way we obtain the following system of four
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equations in unknowns we, ws, 7y1 and 7y3:

dwy (L — Is)wsR — 193 + csm

dt Iy

dws _ (I = I)wi R+ Iacowani + ci(lim R + Lwsys — Un)

dt I Isws ’ (8.81)
dyi  LwsnR+ Iwdys — Uiws + Lhwdys

dt Trwsy ’

dys  Dwivi + (R + Liwgys — U)R

dt Tyw,

We consider the following four possible types of a first integral of system (8.81)) that
depends on at most three variables among the variables wo, w3, 1 and ~3:

( ), (case (ii))
(w2, ws,73), (case (iii))
(w2,71,73), (case (v))
( (iv))

As we have already studied cases (iii) and (iv) now we should consider the first
integrals of types 1 and 3.

w2,wWs,71), (case

F
F
F
F

W=

w3, V1, 73) (Case

We suppose that the studied partial first integral is functionally independent of Hy
restricted to invariant manifold (8.48]).

Type 1. Let us start with a first integral of type 1, F' = F'(wa,ws,y1). We have
dF (I — )wsR — a1z + s OF

dt I Ouwn

N Iy (I — I)w3R + Ircawayr + 1 (It R + Izwsys — Uy) or
IQI?,WQ 80.)3

_ hwsy R+ Izw3vys — Uws + Ihw3vys or 0

Towo omn ’

which is equivalent to
dF
IQIg(A)QE = Yl(F) =0. (882)

Y7 from the above equation is the corresponding vector field defined on some suitable
open set Q C C*(wa, ws3,71,73)-
We differentiate identity with respect to 3 and obtain again a linear partial
differential equation for function F
oY1 (F)
O3

OR
=13 [(13 — I)wows —— + 1w

] oF
073

Ows

OR OR F
+ {12([1 - 12)w§8—% + 1101716773 + 1301W3:| e

OR oF
— Ig (IIUJB’Yl@’}@, + IQUJS + Idwg) 87’}/1 = YQ(F) =0. (883)
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We differentiate Yo(F') with respect to 3 and obtain

Y (F 0’R oF oF
82*53 ) = o2 {—73(—73 - Il)wzwsaTuz + (I1 Iowi — w3 + 110171)6703
oF
- 11[3(.03’)/18] = Yg(F) = O, (884)
71

where Y5 and Y3 are the corresponding vector fields defined on Q.

If a first integral F' = F(wq,ws, 1) exists, system (8.82)—(8.84) has a non-zero solu-
tion grad F' = (6671;’ gTi’ 3751) . This is possible if and only if the determinant D of its
coeflicients is identically equal to zero.

We compute D and obtain

9%R
D(R) = *12130038772 ,
3

where

A= (Ig — 13)C1U1W2(U3 + 1101’}/12(03(,02 - ng3)
+ (IQCU% + Igwg)[(ll — IQ)CgOJQ — (Il — I3)CQLU3]’}/1.

Let us first suppose that
0’R
—5 # 0. 8.85
In such a case D(R) = 0 if and only if A = 0. Polynomial A has seven coefficients and
they should be zeros, i.e. we have a system of seven equations for the parameters Zc and
U;.
After two consecutive simplifications we come to the reduced system that consists of
the following six equations:

C3C1 — O, (Il — 12)63 = 0, C1C2 = 0, (Il — Ig)CQ = 0,
(IQ — 13)0263 = 07 (IQ — Ig)ClUl =0.

The system obtained coincides with system (8.35) and therefore has the same six
solutions. After removing the solutions that lead to the Euler, Lagrange and kinetic
symmetry cases we obtain only one new solution

{Ul :Oa Il :Ila 122127 I3:I3a 1 = (1, 02207 0320}7

which is impossible because the condition ¢ = ¢3 = 0 contradicts to (8.85). Indeed,
equation has no root that depends on ~3 because the three its coefficients A, B
and C (see (8.80)) do not depend on 3 when ¢; = ¢3 = 0 and therefore R does not
depend too.
Thus a first integral of type 1 does not exist when condition is fulfilled.
Let us study what happens when
O’R 0

Er (8.86)
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Equation (8.86) implies that R = M (w2, ws,¥1)vs + N(w2,ws,71), where M and N
are some functions not depending on «3. Now equation (8.79) gives

Q = AM?~3 + M~3(2AN + B) + AN? + BN +C = 0.

Thus @ is a polynomial of 3 of degree two. The coefficient of 43 is AM?. As Q = 0 then
AM? = 0. As A cannot be zero (see (8.80) it remains the only possibility M = 0 and
equation (8.79) is transform in the form

Q= AN?+ BN +C =0,

i.e. Q is already a polynomial of v3 of degree one. Its leading coefficient is 2(Izczws —
I3cows) (see the expression for C' in ) This coefficient should be identically equal
to zero. Thus ¢y = c3 = 0.
As function B vanishes at this condition then R takes the following simple form
\/Il(ffgw% — Igw§ — 261’)/1 -+ Ug)
R= .
I
Now Y3(F) = 0 and equations Y;(F) = 0, 1 < i < 2, are obtained from and
where we put co = c3 =0 and g—,i =0, i.e.

(8.87)

oF
Y1(F) = —Izwa [(I1 — I3)ws R — c173] on
W2
9 oF
+ [12(11 — L)wsR+ c1(Iiy1 R+ Iswsys — Ul)] (970\13
9 9 oF
— I3 [(12w2 + 130.)3)’}/3 + (Il’le — Ul)w;),} 87’)/1 =0,
oF OF oF
Yo (F) = I — 41 —— — I3 (Lwi 4 [wi) — =0
2(F) :’,Clwzaw2 + Isciws s 3 (Tows + I3w3) o7 )
where R is taken from (8.87)).
Further we work with vector fields
[Z17ZZ]

Z1=Y1—Ys, Zy=Ys Z3= .
3

We compute Z3

0
3 = Ig([l — 13)01w2w3R7 +c [(122(,0% + 11[3w§ =+ [101’71)R — ClUl] —
8w2 aw:;

9
+ Iyws [(2L5w3 — 21 I3w3 — I1 Iw; — 1 I3w3 — Lieyyi)R + Uy v

In this way we obtain the following system of three equations for function F":
Zi(F)=0,1<:<3,

and we know that determinant § of the coefficients of this system should vanish identically
with respect to we, ws and ;. We compute é and obtain

]125 = 0109,
where

61 = 11]2132(12 - 13)C1wgw:g
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b2 = [I(2L5 — 3I1)wj + I3(213 — 311)wj — 41111 | (—Lows — Tsw] — 2¢17v1 + Us)

=+ 461U1 \/Il(—Igwg — Igw?% — 261’)/1 + Ug)

01 vanishes identically if Iy = I3 which leads to the Lagrange case or if ¢; = 0 which
leads to the Euler case. Thus we suppose that I # I3 and ¢; # 0 and should study when
do vanishes.

According to Proposition applied to V = I (—Iow3 — I3w? —2c1v1 +U3) we conclude
that U; = 0. Thus

(52 == [12(2.[2 — 3]1)&)% + 13(213 — 3[1)&)?2) — 4]101’)/1] (—Igwg - Igw?% - 201’}’1 + U3)

and it is easily seen that if ¢; # 0 then neither the first factor in the square brackets nor
the second one vanishes independently of the values of the moments of inertia.
Thus a new first integral of type 1, F'(wa,ws, 1) does not exist.

Type 3. We go to the consideration of a first integral of type 3, F(ws,71,73). Thus
dF (I — I3)wsR — c1y3 + esm OF

dt I Ouws
~ Lwgn R+ hwivys + [wiys — Uiws OF
IQ(UQ 8’)/1
n Lwim + (IR + wsys — U1 R OF 0
Trws 03 ,
which is equivalent to
dF

where Y7 is the corresponding vector field defined on a Q.
We differentiate (8.88)) with respect to w3 two times and obtain

oY (F) OR OF
&ug w2 (IS B Il) w3 8w3 + R 80.}2
OR OF
— 11'71 W37+R +2]3M3’Y3—U1 -
6(.(.)3 a"}/l
OR OR OR | OF
+ [13’73 (w‘jaa)g + R> + 211’71R87w3 — 1(9(,03:| 8’}/3 YQ(F) 0 (8.89)
and
OYa(F) 2R _OR\ OF
ows walls = ) \ waoe w3 * 28w3 Ows

0’R OR oF
- |:Il")/1 < +2> +2[3")/3:| _—

5902 77D o
R OR OR\*
+ [ 1373 < 592 +28) +2Lm <8wg)
0’°R] OF
+ 2LmR - Uy) &JJ Oy Y3(F) =0, (8.90)

where Y5 and Y3 are the corresponding vector fields defined on ).
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If a first integral F(w2,71,73) exists, system (8.88)—(8.90) has a non-zero solution
grad F' = (g—i, %7 g—i) . This is possible if and only if the determinant D(R) of its
coeflicients is identically equal to zero.

D(R) has a factor wy and we note

The expression for D(R) is

~ OR 02R OR\? O’R
D(R) = a1R3 + a2R27 + G3R2W + CL4R2 + CL5R () + G,6R?
3 -

aCU3 8w3 0 3
2R OR\° OR\* OR 2R
+CL7R87W§ +CL8R+6L9 <8wg) +CL10 <aw3) +a1187 +01287w?2), (891)

where

ar = 201 I3(11 — I3)n17s, az = 211 (I1 — I3)(—313w3vs + Ur)n,
az = Ii[—2L,(I) — I3)wivs 4+ Ui (11 — Is)ws + 211377 — 2Licimys)n,
ay = —2I3(Iy — I3)Urvs
as = 2 [Io(I1 — Is)w3ys + 3I5(1y — I3)wiys — 2U1 (I — Is)ws — Iicsyy + Lieimysin
ag = 4I3(Iy — I3)Urwsys — 41 Iscsyivs + 41 Iscimnys — 2(1 — I3)U7,
ar = Iy(Iy — I)Uywiys + I3(1 — I3)Uyw3vys + 41 Izcswsyiys — 411 Izciwsyivs
— (I, — I3)Ufws — 3I1c3U1y7 + 3I1c1Urn s,
as = 2I3y3[La(I1 — Is)wivi — Iscsmys + Isc13),
ag = 2Lwsm [~ L(I — I3)wiys — Is(ly — I3)wiys
+ (It = I3)Urws + Liesyi — Tieimivs),
a0 = —2I>(Iy — Is)Urwins — 213(1) — Is)Urwiys + 46 Iscswsyivs
— 4L Izciwsmns + 2(1h — I3)Utws,
ay = —2LI3(I) — I3)wiwsyiys + 20 (1) — I3)Uywiy, + 213?03w371'y§ — 2[§clw3’y§',
(Ur — 2L3wsys) [ (11 — Is)wiwsyr — Iscswsmiys + Isciwsys + csUim — erUrys).

a12

D(R) contains g—i and gjf;‘. We determine them by the same method we used for a

first integral of type 2 and obtain
37R _ _Is(fzwzws - 0273)
om I (Iowa R — camy)
62R IQIgLUQ 2 2 9 2152 2
=_ 51 — 2151 LIGR
07 T Tlon R ey )p 2 — 2alacaaens + Dy

— 2[1[262&)2"}/1]% + Ilcg’}/f + Igcg’)/g) .

We put these values of the derivatives of R in the expression (8.91]) and obtain
I3

ﬁ =
(®) 112([20-12]%— 0271)36(]%)’
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where §(R) is a polynomial of R of degree six with coefficients that are polynomials of
wa, w3, V1, v3 and parameters Zc¢ and U;.

It is clear that the equation D(R) = 0 is equivalent to 6(R) = 0. We know that if
Q(R) = 0, then if in addition some supplementary first integral F'(wa,71,73) of system
(8.81)) exists, then also 6(R) = 0. Thus all assumptions of Proposition are fulfilled.
Consequently in polynomial ring K[z], where K = Alg(ws,ws,71,73), the polynomial
Q(z) divides the polynomial é(x).

By the MAPLE command rem we compute remainder 7(z) from the division of poly-
nomial §(x) by polynomial Q(x). It is of the form:

1
r(z) = @(aox +ay),

where the coefficients ag and a; are polynomials of ws, w3, y1 and 73 and parameters Zc,
U, and Us.

According to Propositionif R is aroot of equation , then we have ag = a; =0
identically. Although polynomial ag has 84 coefficients we use a; which has 160 ones. This
is because if we use ayp = 0 then the reduced system has one solution U; = 0, co = 0
which should be studied separately whereas only two consecutive simplifications on the
system with 160 equations coming from a; = 0 lead to the reduced system

61:07 0320, 11—13207

which immediately implies the Lagrange case and leads to the conclusion that a new first
integral of type 3 does not exist.

8.3.4. Elimination of 5 and ~3. Like in Sec. we solve equations Hy; = U; and

Hj3 = Us with respect to 72 and 3 and obtain

N Igb.)g(]lw% + IQUJ% + 13(,0% + 201’}/1 - Ug) — 2[103W1’71 + 2C3U1

N 2(Izcgwe — I3cows)

7I2w2(11w% + Lw3 + Izw? + 2¢171 — Us) — 2@ cownyr + 2¢2Uy
2(Izc3wy — Izcaws) '

2

)

(8.92)

V3=

Let us note that the elimination of v, and 3 from equations H; = U; and H3z = Us
is possible only if

(c2,¢3) # (0,0). (8.93)

Further we suppose that this condition is fulfilled.

We put the values of 75 and ~y3 from in the Euler-Poisson equations and
remove its fifth and sixth equations. In this way we obtain the following system of four
equations in unknowns wi, ws, ws and ~;:

dwy 1

W - 2[1([203W2 — IgCng) [

+ I§C3w§ + 21sc1cowoy1 + 12(212 — I3)ng§w3 + 2I3c1c3W371

2 2 2 3
11[262(.01(.02 + 11[303W1W3 + 12 CoWq

— 13(12 — 2[3)02&)20.)% — IQCQUg(JJQ — IgCgUgw;g
— 2@ (c2 + cg)wwl +2(c2 + cg)Ul],
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dws 1
at 215(Iscawy — I3cows) [
+ 2@ ci1cowryr — 202 (11 — I3)cswiwows + 215¢oc3w371
+ 2I3(I) — I3)cowwi + IociUswy — 2I5(c2 4 ¢2)wayr — 20102U1], (8.94)
dws 1 [

— Ilfgclwfwg .[201(4}2 I2I301(AJ20.)§

— 11[361W%W3 — Ig[gclwgwg — 132610.)33:

dt - 2[3([2630.)2 — IgCQLdg)
+ 2L crcawimt + 2Lacacsways + 20o(11 — Ip)cswiw;
—2I3(1) — Iy)cowrwows + I3e1Usws — 213(cf + ¢3)wsy1 — 2c1e3U1],
d’yl 1

da LI I T204 19T Taw2002
dt 2(Izc3wo 7]3C2u}3)|: 1 2w1w2 +4h 3w1w3 + [5wy + 215 [3wiw3

+ I3ws — 2L cowrwayr — 2L cswiwsyr + 2laciwiyi + 2I3c1w3iy
— IgUgwg - 13U3w32, + 2coU w9 + 263U1W3] .

We consider the following four possible types of a first integral of system (8.94) that
depends on at most three variables among the variables wy, ws, w3 and ~1:

1. F(wy,ws,ws), (case (1))
2. F(wy,ws2,71), (case (iii))
3. F(wi,ws,71), (case (iii))
4. F(we,ws,y1). (case (ii))

The only not yet studied case for the invariant manifold ( - is case (i). Thus here
we should study the existence of a first integral of type 1 only.

We suppose that the studied partial first integral is functionally independent of Hs
restricted to invariant manifold .

Type 1. Let us consider a first integral of type 1, F(w;,ws,ws). Thus

dF
2[1[2[3([263W2 — IgCQ(Ug) = Z(F) = O7 (895)

dt
where Z is the corresponding vector field defined on some suitable open set Q C
C* (w1, w2, w3, 71)-

Note that the right-hand sides of equations (8.94)) are linear functions of v;. Thus, as F
does not depend on 71, Z(F) is also a linear function of v, i.e. Z(F) = 71 Y1(F) +Ya(F).
Equation (8.95)) which is an identity with respect to variables wy, ws, w3 and ~; implies
that coefficients Y1 (F) and Y3(F') should vanish. The vector fields Y7 and Y, are given
by the following expressions:

2, .2 9
Y =215 [120102(,02 + Izcic3ws — It (02 + 03)0\)1} (97
1
g
+ 2[1.[3 [1101620.)1 —+ IgCQCngg — IQ(C% —+ C%)WQ} %
2
9]
+ 2[1[2 [2[10163(.01 + 2[20263(.02 — 2[3(6% + Cg)(.ug] %,
3

Yo =113 [IQCQWQ(Ilw% + IQ(JJ%) —+ Igngg(Ilw% + Igwg) + 12(212 — 13)03(.4}%(.4)3
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6&11
—+ 11]3 [ — IQCle(IlW% =+ Igwg —+ Igwg) — 2]2(]1 — 13)030.)1(4)2&)3

— 13(12 — 2[3)62(4]2&)% — IQCQUgUJQ — I303U3(U3 + 2(6% + C%)Ul]

0
+ 2[3([1 — Ig)nglw?Q, + IQClUgwg - 201€2U1] 37602

+ 11I2 [ — Igclwg(Ilw% + IQUJ% + Igo.)g)) + 2[2([1 — 12)030.)1(.03
0
— 2[3([1 — IQ)CQWlUJQWg + I3c1Usws — 26103U1] 37
3
We compose the Lie bracket Y3 = —[Y7,Y3]/(2I11213). The expression for Y3 is long
and we do not write it here.

We consider equations

Yi(F)=0,1<i<3. (8.96)

If a first integral F'(wq,ws,ws) exists, system (8.96]) has a non-zero solution grad F' =

<88—F, g—F, g—F) . This is possible if and only if the determinant D of its coefficients is
w1 (0%5) w3
identically equal to zero.

The expression for D is very long to be given here but our computations show that
D= 4[1[213(1283(4}2 — I3CQW3)213.

As the factor in front of D never vanishes identically because of the condition ,
equation D = 0 is equivalent to D=0.Disa polynomial of wy, we and ws with 37
coefficients depending on parameters Zc, U; and Us.

Thus we should solve the system obtained by equating to zero the 37 coeflicients of
D. After four consecutive simplifications we obtain the following simple reduced system:

03(.[1 —12) :O, CQ(Il—Ig) :0, Cl(IQ—Ig) :0, 0263(12—_[3) :0

We solve this system by the MAPLE command solve and obtain the following five
solutions with arbitrary values of U; and Us:

{L=hL, =0, Is5=13, ¢ =0, c2 =0, ¢c3 =0}
{Lh=hL, =13, Is=13, ¢y =¢1, cg =0, ¢3 =0}
{h=h, h=1I, I3=13, ¢, =0, ¢ =0, ¢c3 =c3}
{Lh=Is =1, Is=13, ¢y =0, cag = ca, c3 =0}
{h =13, =135, Is=13, ¢c; =¢1, ca = o, €3 = C3}.
Taking into account condition , we remove the first and second solutions. The

remaining three solutions lead either to the Lagrange case or to the kinetic symmetry.
Thus the sought first integral of type 1 does not exist.

8.4. Invariant manifold {H>=U,, H3=Uj3}. Here we study the existence of a par-
tial first integral of the Euler-Poisson equations (L.1)) restricted to the complex four-
dimensional level manifold

{Hy = Us, Hs=1Us}, (8.97)
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supposing that this first integral depends on at most three variables and that is function-
ally independent of Hy. Us and Us are arbitrary complex numbers, fixed once and for
all.

Let us stress that the elimination of w; and ws is impossible on invariant manifold
(18.97)).

8.4.1. Elimination of w; and ~;. We express ; from the equation Hy = U, and

obtain
N =1/ -2 +Us. (8.98)

Then we put v; from (8.98) in the equation Hz = Us and like in Sec. solve it by the
MAPLE command solve. In this way we obtain

w; =R, (8.99)
where R is a root of equation
Q(z) = La®> + B =0, (8.100)
that is
Q@R)=LR*+B=0, (8.101)

where B = B(wa,ws, Y2,73) is the following function:

B = Iw3 + I3w3 + 2c11/ =73 — 73 + Uz + 2c272 + 2¢373 — Us. (8.102)

R and B are algebraic functions defined on C*(ws,ws,2,73). The equation (8.100) has
only simple roots because the function B does not vanish identically.
Further, to simplify the notations, we put

I'=y/= =13+ U2

We put the values of v, and wy from (8.98)) and (8.99) in the Euler-Poisson equations
(1.1), remove the first and fourth equations and obtain the following system of four
differential equations in unknowns ws, ws, v2 and ~3:

dwp _ 1 dr

i L (I3 = I)ws R + c1v3 — 317, i = 73R — wsl,
doe 1 p (8.103)
7; = 73 [(Il — IQ)LOQR — C172 =+ CQF] 5 % = —’}/QR + CUQF.

We want to study the existence of a first integral of system that depends on
at most three variables among the variables ws, w3, 72 and 3 and that is functionally
independent of H; restricted to invariant manifold (8.97). The following four types of a
first integral are possible:

F(wa,ws,y2), (case (iii)

F(W27w37’73)7 (C&SC (

F(wz,72,73), (case (iv)
(

F W3772»’73)- (Case( )

iii)

W=

)
)
)
)

Like in Sec. [5] we consider here only types 1 and 3.
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Type 1. Let us suppose that there exists a first integral of type 1, F (w2, ws,¥2). Then

dF
where Y] is the vector field

Y1 = I3[(I3 — I1)wsR + c17y3 — 31| m— 5ors

+ Iy [(I1 — Iy)wa R — c1y2 + coT] Drs

+ I3 [y3R — w3l 7
defined on C4(wQ, w3, Y2, 73)-

As function F' does not depend on +3, then if we differentiate identity (8.104) with
respect to 3 we obtain again a linear partial differential equation for function F’

LON(F) . [0R oF
3’)/3 =13 8’)/ (I3 — Il)wgf + I + C373 E
OR oF
+ 1y {373(11 — Iy)wol’ — 62’73] 9o
OR oF
+ I2I3 |:’)/3F + RT" + CU3’73:| — = YQ(F) — 0, (8105)
03 02

where Y3 is the corresponding vector field defined on C*(ws,ws, 2, 73).
After differentiating identity (8.105) with respect to 3 we obtain

Y, (F 0’R OR oF
r 2(F) =13 [ (I3 — I1)wsI? — 8773(13 — I)wsys — 13 + C?I} N

s 973
0’R OR oF
+ 1o [82<I — Ip)wol? — 5.7%(11 — Ix)wayz — Czr] Bos
0’R OR oF
+ Ix13 [8 53l + s (2T —~3) — Rys + wgl‘} o
= Y3(F) =0, (8.106)

where Y3 is the corresponding vector field defined on (C4(w2, W3,Y2,73)-
If a first integral F' exists, linear system m has a non-zero solution

grad F' = (g—fz, g—i, %) . This is possible if and only if the determinant D(R) of its

coefficients is identically equal to zero on C*(ws, w3, ¥2,73)-
The expression for D(R) is too long to be shown here. D(R) has a non-zero factor
I312 so we remove it and note

ﬁ(R) contains the partial derivatives %i and ?;;1; as well. To determine them we use
3

equation (8.101)) which we differentiate with respect to 73 two times and obtain two
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equations for the derivatives of R:

9Q(R) OR 0B

=2 Ro— 4 —— =0,
O3 Oyz O
82Q(R) ( OR ) PR 0B
=2L | — | +2LR—~ =0.
03 ' 8% o3 873

faB; an

The determination o
if 2I1 R # 0. It is clear that this is a%lways so because R = 0 is not a root of equation
(8.101)). Thus the derivatives of R can be found. We obtain the following expressions

OR - C173 — CgF

dvs LRI
PR _ (g + 30T — 213902 + hen B2 (0 — Up)
oz IZR3T3

We put the obtained values for the derivatives of R in the expression for determinant
D(R) and obtain
A 6(R)
B(R) = o
where § is a huge polynomial of R of degree five, whose coefficients are algebraic functions
of (w2, w3,72,73)- R
It is clear that D(R) = 0 is equivalent to 6(R) = 0. We know that if Q(R) = 0, then
if in addition some supplementary first integral F(ws,ws,y2) of system exists,
then also §(R) = 0. Thus all assumptions of Proposition are fulfilled. Consequently
in polynomial ring K[z], where K = Alg(ws, w3, ¥2,73), the polynomial Q(z) divides the
polynomial §(z).

Using the MAPLE command rem we compute the remainder r from the division of
polynomial §(x) by polynomial Q(x). We obtain
r(x) = apx + a1,
where a; = a;(w2,ws,¥2,73), ¢ =0, 1, depend linearly on I

According to Proposition .2} ag and a; should vanish identically with respect to wa,
ws, 72 and 3. We use only ag which suffices for our aims. We have

apg = boF + bl,
where by and b; are polynomials of variables wa, w3, 72 and ~s.

According to Proposition the coefficients by and b; should vanish identically be-
cause I' ¢ C(v2,73). Polynomial by has 30 coefficients and b; has 68. Equating to zero all
of them we obtain 98 equations for the parameters Zc, Us and Us.

After three consecutive simplifications we come to the reduced system that consists
of the following four equations:

C1 :O7 63(11 —]2) :07 C2(Il —13) :0, 0203(12—13) =0.

We solve this system by the MAPLE command solve and obtain four solutions all of
them with arbitrary values of Uy and Us:

Ii=I5L, =1 I3=1I3, c; =0, c2 =0, c3 =0;
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L=05L, Ih=10, I3=1I3, c1 =0, cg =0, ¢c3 = c3;
L=1I3, =1, I3=1I3, ¢, =0, ca =c2, c3 =0;
L=13, Ib=1I3 I3=1I3, ¢c1 =0, cg =c2, c3 =c3.

The first solution is the Euler case, the second and third ones are the Lagrange case
and the fourth solution is a particular cases of the kinetic symmetry case.
Thus a sought partial first integral of type 1 F'(wa,ws,7y2) does not exist.

Type 3. The study of a new first integral of type 3, F(ws, v2,73) follows the algorithm
already described in the considerations concerning a first integral of type 1. There are
some differences of course. For example, the computations of vector fields Y5 and Y3
require differentiation with respect to ws instead of 3. By the way, as it is seen below,
this considerably simplifies the computations because the differentiation does not affect
the function T'.

Let us suppose that there exists a first integral of type 3, F'(wa,¥2,73). Then we have

dF
Iy =Yi(F) =0, (8.107)

where Y7 is the vector field

0
— 12 (’}/QR — (.OQF) o)

0
Y1 =[(Is — I)wsR + c173 — 3] =— + Iz (73R — wal) 37

9
Ows 072

defined on C*(wy, w3, Y2,73)-
As in the study of a first integral of type 1, we differentiate identity (8.107) with
respect to ws and obtain

M(F) _ (Is — I) <3ng+R) 3—F+I2 <8R F> oF

awg 8w3 6w2 awg 3= 672
OR OF
—Ih—yp— =Y(F) = 1
2 505 2 93 2(F) =0, (8.108)

where Y5 is the corresponding vector field defined on C*(wa, w3, V2,73)-
After differentiating identity (8.108]) with respect to ws we obtain

OY>(F) 9°R OR1 OF R OF
(- 1) | Ly 22 2 O
Ows (I = 1) Ow? ws + Ows | Ows = Ow? s 02
0°R OF
—Igo——=v— =Y3(F) = 1
2502 293 3(F) =0, (8.109)

where Y3 is the corresponding vector field defined on C*(ws, w3, ¥2,73).

As in the investigation of a first integral of type 1, we require that the determinant
D(R) of the coefficients of system (8.107)—(8.109)) be identically equal to zero. Computing
it we see that it has a non-zero factor I3I'. We remove it and note

D(R) = 1;;1;).

In this way we obtain
2

~ 0“R OR 2
D(R) = — § [(I1 — I3)wows + c372] 7 + 2wa(l1 — I3) 57— ¢ T' + c17273
8w3 80.)3

2
ows
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OR OR\?> ©O°R
+ 272 (I1 — Is) R— + (way3 — w3y2)([1 — I3) |2 (&ug) - aT}gR

3w3

D(R) contains the partial derivatives 2& and PR

Bve 5o We use equation (8.101)) to deter-
3
mine them. For this aim we differentiate (8.101f) with respect to ws two times and obtain

two equations for the sought derivatives of R:

0Q R OB
92Q OR\? 9’R 0B

As we have mentioned studying the first integral of type 1, R = 0 cannot be a root of
equation and therefore the partial derivatives of R can be correctly determined
from the above equations. We put the value of B taken from in these equations
and solve them. The solution is

OR - I3ws 0’R . 13(I3w§ + IlRQ)

dws LR 0wl I2R3
We put the above values of g—i and gig in the expression for determinant E(R) and
obtain ’
5 (R) = I36(R)

IZR3
where J(R) is the following polynomial of R of degree three:
5(R) =-1 (Il — Ig)(?)w;;w — LUQ’)/g)RS + 1 [3([1 — Ig)bdzédgr + (C3F — 0173)’}/2] R2
— 3]3(]1 — Ig)wg(w;wg — LUQ’)/g)R + I3w§ [(Il — I3)w2w;3r + (03F — 01’73)’}/2] .

It is clear that D(R) = 0 is equivalent to §(R) = 0. We know that if Q(R) = 0, then
if in addition some supplementary first integral F'(wq,y2,73) of system (8.103)) exists,
then also §(R) = 0. Thus all assumptions of Proposition are fulfilled. Consequently
in polynomial ring K[z], where K = Alg(wa, w3, ¥2,73), the polynomial Q(z) divides the
polynomial §(z).

Using the MAPLE command rem we compute the remainder r from the division of
polynomial §(z) by polynomial Q(z). We obtain

r(z) = (a0 + bol)x + a1 + b1 T,
where
ap = (Is — I1) (Iaw3ys — 3Lawiwsys — 2L3wawiys + 2coway3Y2 + 2c3way3 — Usways
— 6eawsys — 6wscsy2ys + 3Uswsya),
bo = 2(Is — I)c1(ways — 3ws2),
a1 = c1[Lwiyays — 6¢1 (11 — Is)wowsl? + 2c373 + 2¢27373 + 4c37273
— Usyays — 2¢3U272),
by = —Ireswiye — (I — I3)(3Law) + 2I3w; + 62y + 6e3ys — 3Us)waws
= 2e20375 +2(¢] — ¢3) 7273 + c3Us.
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According to Proposition all the coefficients of the remainder r should vanish
identically with respect to ws, ws, v2 and 3. We use only the coefficient a; + ;1" which
is sufficient for our aims.

According to Proposition [£:3] the coefficients a; and by should vanish identically
because I' ¢ C(72,7v3). We use only by. It has nine coefficients. Equating to zero all of
them we obtain nine equations for the parameters Zc, U; and Us as follows:

2]3(]37[1) :0, 3[2(137]1) :0, 7[263 :0, 3([1 *Ig)Ug, CgUg :0,
20203 = 0, 2(6% — Cg) = O, 6([3 — Il)CQ = 0, 6([3 — 11)03 =0.
It is very easy to see that this equations imply that
01:07 C3:Oa 11_13207

which obviously leads to the Lagrange case.
Thus a sought partial first integral of type 3 does not exist.

8.4.2. Elimination of w; and ~5. Like in Sec. we express o from the equations

Hs = Us and obtain
Y2 =1/—7% — 73 + Ve (8.110)

Then we put 7, from (8.110f) in the equation H3 = Us and like in Sec. solve it by
the MAPLE command solve. In this way we obtain

wi; = R, (8.111)
where R is a root of equation
Q(z) = La®> + B =0, (8.112)
that is
Q(R)=1LR*+B=0, (8.113)

and B = B(wa,ws,71,73) is the following function:

B = Igwg —+ Igwg —+ 201"}/1 —+ 262\/ *"}/% — ’Y% + UQ + 203’)/3 — U3.

R and B are algebraic functions defined on C*(ws,ws,71,73). The equation (8.112) has
only simple roots because the function B does not vanish identically.
Further, to simplify the notations, we put

I'=y/——7+Us.

We put the values of 75 and w; from (8.110) and (8.111)) in the Euler-Poisson equa-
tions (L.1)), remove the first and fifth equations and obtain the following system of four
differential equations in unknowns ws, ws, 1 and ~s:

dw 1 d

== [(Is — [wsR + c17y3 — csm] o w3l — ways,

b dt (8.114)
dw 1 d :
7; = Tg [(Il - 12)W2R +cl' — 0271] ) % = weyy — RI.

We want to study the existence of a first integral of system (8.114) that depends on
at most three variables among the variables wo, w3, 71 and 3 and that is functionally
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independent of H; restricted to invariant manifold (8.97). The following four types of a
first integral are possible:

F(wa, w3, 1), (case (ii))

(w2,ws3,73), (case (iii))
(w2,71,73), (case (v))
(w3,71,73). (case (iv))

e

F
F
F

As the cases (iii) and (iv) were already examined, there remains only to examine cases
(ii) and (v).

Type 1. Let us suppose that there exists a first integral of type 1, F (w2, ws,y1). Then

dF
where Y7 is the vector field

0
Y1 = I3[(I3 — I1)ws R + c1y3 — c371] %

5]
+ I [(I1 = Ia)wa R + 1T — com] Dos + Io 13 (w3l — ways)

0
oy
defined on C*(wg, ws3,v1,73)-
As function F does not depend on +s, then if we differentiate identity with

respect to 3 we obtain again a linear partial differential equation for function F

oY1 (F) OR OF OR OF
T =13 |—(I3—1 N—+L|— (1 —1I r —
93 3 873( 3 — I)ws +c1 Do + 1 673( 1 — I)wol' + c173 Dos
oF
— 1213 [wQI‘ + W3"}/3] _— = YQ(F) = 0, (8116)
om
where Y3 is the corresponding vector field defined on C*(ws,ws,v1,73).
After differentiating identity (8.116)) with respect to -y3 we obtain
Y (F) 0°’R 5 OR OF
r =1 I3 —1 IM“——U3—1 — —
s 3 (97%( 3 1)ws 873( 3 1)wsys — €173 Do
0’R OR oF
+ IQ [5‘73?(]1 — IQ)WQFQ — 37’)/3([1 — IQ)Wg’yg + C1F:| 07(,(}3
oF
+ 12[3 (w2’73 - wgf) = Yg(F) = 07 (8117)

om

where Y3 is the corresponding vector field defined on C*(wa,ws,¥1,73)-

If a first integral F' exists, linear system (8.115)—(8.117)) has a non-zero solution

grad F' = (g—fz, 8%1’ %)' This is possible if and only if the determinant D(R) of its

coefficients is identically equal to zero on C*(wa, w3, ¥1,73)-
The expression for D(R) has a non-zero factor 1212 so we remove it and note

D(R) = ?2%(2)'
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In this way we obtain

= 9’R
D(R) = _87’)/2 [Cg([l — IQ)LUS’}/lF —C1 (IQ - Ig)bdg(,dg’}/% + 63(11 - IQ)szg’}/l"y3
3

R
- 8773% [es(Io — I )woyn — 1 (T2 — I3)ways + co(I1 — I3)wsy1 | (Us — 77)

— ¢1 [R(Iz — I3)wows + cswayy — cowsy1 | (Uz — 77)

D(R) contains the partial derivatives 2& and R

s o2 - 1o determine them we use equation
3
(8.113) which we differentiate with respect to 73 two times and in the same way as in

Sec. R.4.T] obtain
OR - C27Y3 — CgF

dvs LRI
PR (37 + 3T = 203730 + Lo R (77 — Ua)
;- IZR3T3 ‘

We put the obtained values for the derivatives of R in the expression for determinant

D(R) and obtain

S S5(R)

D(R) = o
where 4 is a long polynomial of R of degree four, whose coefficients are algebraic functions
of (w2, w3,71,73)-

The identity D(R) = 0 is equivalent to §(R) = 0. We know that if Q(R) = 0, then
if in addition some supplementary first integral F(ws,ws,y1) of system exists,
then also §(R) = 0. Thus all assumptions of Proposition are fulfilled. Consequently
in polynomial ring K[z], where K = Alg(wa,ws,Y1,73), the polynomial Q(z) divides the
polynomial §(x).

Using the MAPLE command rem we compute the remainder r from the division of
polynomial §(x) by polynomial Q(x). We obtain:

r(r) = apz + a1, (8.118)

where a; = a;(w2,ws,71,73), ¢ = 0,1, depend linearly on T.
According to Proposition ag and a1 should vanish identically with respect to ws,
w3, 71 and 3. We use only a; which suffices for our aims. We have

ay = bol' + by,
where by and b; are polynomials of variables ws, w3, v1 and ~3.

According to Proposition the coefficients by and b; should vanish identically be-

cause I ¢ C(v1,73)-

We use only polynomial by. It has 48 coefficients. Equating to zero all of them we
obtain a system of 48 equations for the parameters Zc, Uy and Us.

After four consecutive simplifications we come to the reduced system that consists of
the following four equations:

61(12—13) ZO, 02(11—13) =0 03(11—12) ZO7 6203(12—13) =0.
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We solve this system by the MAPLE command solve and obtain five solutions all of
them with arbitrary values of Us and Uj:
L=05,1,=1 I3=13, c1 =0, cg =0, c3 =0;
L=1, =13 I3=1I3, ¢t =c, ca =0, c3=0;
L =1 Iy =15, I3=13, ¢t =0, co =0, c3 = c3;
L=13, Ib=1s, I3=13, c1 =0, ¢c3 = ca, c3 =0;
L =135, Iy =13, I3=1I3, ¢y =1, ca =2, c3 = C3.
The first solution is the Euler case, the next three are the Lagrange case and the last

one is the kinetic symmetry case.
Thus a partial first integral of type 1 F(wa,ws,y1) does not exist.

Type 3. Let us suppose that there exists a first integral of type 3, F(wa,v1,73). The
independence of the first integral of w3 considerably simplifies the computations because
there is not need of differentiation of the function I.

So, let F'(w2,71,73) be a first integral of system . Then we have

dF
Iy = YA(F) =0, (8.119)

where Y7 is the vector field

0 0 0
Y1 =[(Is — I)wsR + c17v3 — e311] = + Iz (w3l — ways) =— + Iz (wey1 — RT) —,

Ows om 3
defined on C*(wg, ws3,v1,73)-
We differentiate identity (8.119) with respect to ws and obtain
oY1 (F) OR oF oF OR _OF
=(I3— 1)+ R)— 4+ LIl'— —L—TI— =Y5(F)=0, (8120
80.)3 ( 3 1) 80.)3 ws + 8w2 +1h (9’71 2(9(4)3 3’}/3 2( ) ’ ( )

where Y3 is the corresponding vector field defined on C*(wa,ws,v1,73)-
After differentiating identity (8.120[) with respect to w3 we obtain

OYy(F) 8’R OR\ OF _ O?R_OF
8(,03 —(137]1) m&)3+2 870\)27 287(*}%1_\87737

where Y3 is the corresponding vector field defined on C*(ws, ws,¥1,73)-

o Y3(F) =0, (8.121)

The existence of a first integral F(wa,v1,73) implies that the determinant D(R) of

the coeflicients of system (8.119)—(8.121) is identically equal to zero. Computing D(R)
we see that it has a non-zero factor I2T. We remove it and note

D(R) = l?é];)‘

In this way we obtain

2

D(R) = — {[(11 — I3)wsR — c371 + c173) Dz
3

2
= 2w3(ly = I5) (gR> +2(5 — IB)RaR} r

w3 6&)3
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2R OR\? OR
+wa(ly — I3) | (wsm + 733)37%% — 273 <8w3) + 2718703

D(R) contains the partial derivatives 2& and R

Bive 5oz We use equation (8.113)) to deter-
3

mine them. We differentiate (8.113) with respect to ws two times and in the same way

as in Sec. 8.4.1] obtain

OR - _Igwg 62R N I3(Igw?2, + 11R2)

Bws LR 8w I2R3
We put the above values of 66711 and ‘gig in the expression for determinant D(R) and
3
obtain
~ I36(R

IZR3
where ¢ is the following polynomial of R of degree three
§(R) = I1(I1 — I3)(3wsT — way3) R® + Iy [3(I5 — I1 )wawsy1 — (csm1 — c1vy3)T] R?
+ 3I5(I1 — I3)ws (w3l — wyys) R+ Iswi [(Is — It Jwawsyr — D(csy — c17s)]

whose coeflicients are algebraic functions of (wa, ws,v1,73).

The identity E(R) = 0 is equivalent to 6(R) = 0. We know that if Q(R) = 0, then
if in addition some supplementary first integral F(wa,~1,73) of system exists,
then also §(R) = 0. Thus all assumptions of Proposition are fulfilled. Consequently
in polynomial ring K[z], where K = Alg(ws,ws,71,73), the polynomial Q(z) divides the
polynomial §(x).

Using MAPLE we divide § by @ and obtain a remainder which is a polynomial r of
the form and coefficients a; = a;(wa,ws,v1,73), ¢ = 0,1, which depend linearly
on I

According to Proposition ap and a1 should vanish identically with respect to wa,
w3, 71 and 3. We use only a; which suffices for our aims. We have

ayp = b0F+b1,

where by and b; are polynomials of variables ws, w3, 71 and 3.
According to Proposition .3] the coefficients by and by should vanish identically be-

cause I' ¢ C(v1,73)-

We use only polynomial by. It has eight coefficients. Equating to zero all of them
we obtain a system of eight equations for the parameters Zc, Us and Us. These eight
equations are:

AA—c2=0, Les=0, I,c; =0 (I} —1I3)co =0,

c3Us3 =0, c3c1=0, c1U3=0, cic3=0.
After two consecutive simplifications we come to the reduced system that is
c1=0, ¢3=0, ([1—1I3)ca=0

and leads either to the Euler case or the Lagrange case.
Thus a partial first integral of type 3, F'(w2,7v1,73) does not exist.
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8.4.3. Elimination of «2 and ~3. Let us note that the elimination of v5 and 73 from
equations Ho = U and H3 = Us is possible only if

(ca,c3) # (0,0). (8.122)
Further we suppose that this condition is always fulfilled.
We start with the case co # 0 and c3 is arbitrary. The elimination is made in a similar
way like in Sec. [8.4.1] First we express v, from equation Hs = Us and put the obtained
value of 77 in equation Hy = Us from where we find 3. In this way we have:

Liw? + Lw? + I3w2 + 2 — U- 2c3R
Ny = — 1wy + lowsy + 30032: c171 3+ 2c3 7 s = R, (8.123)
2

where, if ¢ + ¢Z # 0, R is a root of equation
Q(z) = 4(c3 +c3)x* + Bz +C =0,
that is
Q(R) =4(c3+Z)R* + BR+C =0. (8.124)
If ¢3 + ¢ =0 R is a root of equation
Q(z)=Bx+C =0,
that is
Q(R)=BR+C =0. (8.125)
Functions B = B(wa,ws,¥1,73) and C = C(we,ws,¥1,73) are the following polyno-
mials:
B = 403(.[1&)% + IQ(U% + Igwg + 201"}/1 - Ug)
C = (Lw? 4 w3 + [3w3)? + dey (Lw? 4 Lws + Izwi)m (8.126)
—2U3(Lw} + Lws + I3w3) 4+ 4(c3 + c2)? — 4 Usy — 4caUs + U3,

Let us note that if ¢3 + 3 = 0 then c3 # 0 because if c3 = 0 the condition (8.122)) will
not be satisfied. Consequently B # 0 and therefore (8.125)) is well defined.

We put the values of v5 and 73 from (8.123)) in the Euler-Poisson equations (|1.1f) and
remove its fifth and sixth equations. In this way we obtain the following system of four
equations in unknowns wi, ws, ws and yp:

dwl 1
W — 21102 [* c;;([lwf + IQW% —+ Igwg) —+ 2([2 — Ig)CQCUQUJg
— 20163"}/1 — Q(C% + C%)R + CgUg],
dOJQ 1

dt I (I3 — I1)wiws + c1 R — e3m],

dw;g 1
W — @ [cl(Ilwf —+ Igwg =+ Igwg) —+ 2([1 — IQ)nglcUQ

+c1(2¢sR—Us) + Q(C% + c%)’yl],

(8.127)

d 1
% = 50 [(—Ilwf - Igwg — 13w§ —2c171 — 2c3R 4 Us)ws — QCQWQR:I.
2

We consider the following four possible types of a first integral of system (8.127)) that
depends on at most three variables among the variables wy, ws, w3 and ~1:
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F(wy,wsa,ws), (case(i))

F(wy,w2,71), (case(iii))
F(wy,ws,71), (case(iii))
F(wa,ws,71)- (case(iii))

= o=

We suppose that the sought first integral is functionally independent of H; restricted
to invariant manifold (8.97)). As the case (iii) was already examined, there remains only
to examine case (i).

Type 1. Let us consider a first integral of type 1, i.e. F(w1,ws,ws). We have

ar
2]1]2[362@ = Yl(F) = 0, (8128)

where the vector field Y7, defined on C*(wy,ws,ws, 1), is:

Y, =113 [ — 03(Ilwf + I2(.U§ + Igwg) + 2([2 — 13)820020.)3 — 2c1c3M1

0 0

—2(E+ AR+ c3U3} o +2hses [(13 ~ Ijwiws + R — e | 5
+ I1I2 [cl(hw% + IQW% + Igwg) + 2(]1 — IQ)CQCLJlOJQ

0

+c1(2c3R — Us) +2(c2 + c%)’yl} —
8&)3
We differentiate identity (8.128]) with respect to «; and obtain again a linear partial
differential equation for function F

10Y1(F) 9 9. OR oF OR oF
= =Dl — — + L1 — = —
3 o oI5 | (c3 +03)3’Y1 + cie3 Bon + Ii3ca | ¢ o7 c3 s
OR OF
+ L1, (0103871 +c2+ cg) Fee Y2(F) =0, (8.129)
where Y5 is the corresponding vector field defined on C*(wq,ws,ws,¥1)-

The derivative of Y3(F) with respect to 77 has a factor 215‘- Crude computations
1

show that for the two roots of equation (8.124)), i.e. when cZ + ¢Z # 0, and also for the
single root of equation (8.125), i.e. when 3 + ¢ = 0, one has

0’R
—5 # 0.
77"
In this way differentiating identity (8.129)) with respect to y; we obtain
<62R) oY, (F)
87% om

oF oF oF
= —LI3(c3 + cﬁ)a—wl + 1113016287@ + 1112610387‘)3

=Y3(F) =0, (8.130)
where Y3 is the corresponding vector field defined on C*(wy,ws, ws,v1).

Instead of vector field Y7 we consider Yy = Y7 — 2RY3 which implies that Y, (F) = 0.
‘We obtain

oF
Y4(F) =LI3| — 03(Ilwf + Igwg + Igwg) =+ 2([2 — Ig)Czwgw;g — 20163’}/1 + C3U3] 87
1
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oF
+ 2[1[362 (Ig — Il)wlwg — 03’}’1] — + I1I2 |:C1(I1(JJ% + IQ(U% + Igo.)g)

8&)2
OF
£ 2(11 — Ib)eawrws — e1Us + 2(¢2 + (;2)71} fo =0 (8.131)
Note that Y, does not depend on R.
Instead of vector field Y5 we consider Y; = Y5 — Ygg—ﬁ which also does not depend on
R. We have
Ys(F) = —Isy13cic3 gi — I113c5¢3 gF + 11]2(01 + 02)351 =0. (8132)
We compute the Lie bracket Y5 = [Y3, Ya]/(2111213). We know that Y5(F) = 0 so we
have
OF

Ow
[11(1103 — 202 — Ircd)cyw

}/G(F) = [1213(012), + C%)ngl =+ [2([2 — 2[3)010263W2 + Ig([gcg — Igcg 1203)01w3}

oF
— (1 — I3)ce {116103601 — Iz(c3 + c%)ws} Ows -

oF
+ 12(116% + IQC% — Ilcg + IQCS 1103)02002 + I2116163W3:| O =0. (8133)
w3

Thus we have obtained four linear homogeneous equations in unknowns grad F' =

g—i, g—i, g—i), that is system (8.130)—(8.133]). If a first integral F' exists, system (8.130])—
(8.133) has a non-zero solution. This is possible if and only if

rank M < 3, (8.134)
where M is the (4 x 3) matrix composed from the coefficients of system (8.130)—(8.133)).

Let us compute the determinant Ds45 that consists of the coefficients of Y3, Y, and
Y5. It should be identically zero because of requirement (8.134]).

We compute D345 and obtain

Dsys = =217 13153 [es (I — Ip)wiwa + co(Is — I wiws + 1 (Iz — I3)waws) G345,
where
0345 = C% + C% + C%.
The expression in the square brackets vanishes identically only in the kinetic symmetry
case and in the Lagrange case I = I3, ¢; = c¢3 = 0. The factor —2I?1212c3 # 0. Thus
D345 = 0 is equivalent to d345 = 0.

Now we compute the determinant D346 that consists of the coefficients of Y3, Yy and
Ys. It should be identically equal to zero too (see (8.134])). We have D346 = I1]2ISC§5346,
where

8346 = —I7ceacs (I — I3)wi
— 11[20163 [(11 - ]2)<211 — 3[3)(6% + C%) — Il(IQ — Ig) Q]W%OJQ
+ 11]36102 [(Il Ig)(?]l - 3]2)(62 + 63) + Il(IQ - Ig) ]W1W3
+ 11[2(3%8263(11]2 — 3[1[3 — 2]2 + 4[2]3)(,«)1602
+ 2[1[2[36% [(—I1 + 2.[2 - .[3)63 + (Il + I2 — 2]3)6%}(.&10.)20.}3
+ L1 Izcieacs (311 Iy — Iy I3 — 4lo I3 + 213 )wiw)
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— 2[12016203(0% + Cg =+ C%)(IQ — Ig)wwl + 112(]2 — I3)C§6263U3W1
— 1226163 [Ig([l — IQ)(C% + C%) — 11(12 — Ig)C%]wg)
— LIzeiea[(—30 1o + 200 I3 + 215 — II3)(c3 + c3) + L1(Iz — I3)c} Jwsw3
— I)I3¢cic3 [(3[1]3 — 20115 + Is13 — 2]:?)(03 + C%) + Il(IQ - Ig)cf]wgo.)g
— 2[263(0% + C% + C%) [Ig([l — IQ)(C% -+ Cg) — 11(12 — Ig)C{ILUQ"}/l
+ Iscic3U3 [13(11 — ]2)<C% + C%) -1 (12 — 13)0%]&)2
—+ 130162 [IQ(Il — 13)(63 —+ Cg) + Il(IQ — Ig)C%]wg
+ 2I3¢0(c 4 &5 + &3) [Io(I1 — I3) (5 + 3) + L1 (1> — I3)ci]wsm
— 13C162U3 [IQ(Il — Ig)(C% + Cg) + Il(IQ — Ig)C?]Wg.
As 11]21305 75 0 then D346 = 0 is equivalent to d346 = 0.

Thus we should find the conditions at which polynomials d345 and 346 vanish iden-
tically with respect to variables (wi,ws,ws,v1). This means to find the values of the
parameters Zc and Us at which all the coefficients of 345 and d346 are zero.

Polynomial d345 has only one coefficient and d34¢ has 16 coefficients. In this way we
obtain a system of 17 equations. To solve it we apply a simplification. At the fourth
consecutive simplification we obtain the reduced system:

c%—i—c%—i—c% =0, (IQ —13)(31 =0, (Il —13)01 =0,
(I = I3)(c3 +¢3) =0, (I — I3)(c3 + ¢) = 0.
The MAPLE command solve gives two solutions at an arbitrary value of Us:
{Lhi=0L, Ih=1), I3y=13, ¢; =0, ¢ = ca, c3 = RootOf(Z* + 1)c2}
{Ii =13, I, = I3, I3 = I3, ¢c; = RootOf(Z* 4+ c3 +c3), ca = ca, C3 = C3}.

The second solution is a particular case of the kinetic symmetry case so we remove
it. We have to consider the first solution. Thus

Cc1 = 0, C3 = €i62,

where € = +1. We consider here only the case ¢ = 1 because the final result is the same
also when ¢ = —1.

Let us study this case. Now Y3(F) and Yg(F) are identically zeros and therefore
condition is fulfilled. Y, (F) and Y;5(F) are:

OF
Ya(F) = —ilsIzc [Ilwf 4 Lw? + Lyw? + 2i(Is — I3)wows — Ug} o
1
. oF oF
— 20 I3¢o [(Il — I3)wiws + 26271} —— + 2111z [(11 — I)wiws + 0271} >
&ug ach3
oF oF
Y5(F) = —I1c2 (ils— — Io— ) .
5( ) 162 <Z 38&02 26&)3)

We compute

_ DA(E). V(P _ . oF
Y7(F) = 2[1[21362)’ = [12(12 - 2]3)(.02 - 213(13 - 2[2)(,03] awl
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oF | OF
_ Il(Il — IS)Wle + ZIl(Il - Ig)wlaiwg.

We compute the determinant A of the coefficients of equations Yi(F), Y5(F) and
Y7(F) and obtain A = I?I5I3c3w; A where

A =il?(Iy — I3)w? + ily (213 — ALy 15 — I, I, + 3131 w3
— 20,13(21; — I — I3)wows — il3(212 — ALy I3 — I3I; + 311 15)w3 — ily (Iy — I3)Us.

As the factor I2IyI3c3w; # 0, we require that A = 0. Looking at the coefficient of
wf in the expression for A we see that Iy, = I3 should be fulfilled. At this condition we
obtain

A =2I3(I — I3)(ws + iws)?.

Thus A = 0 only if Iy = I, = I3, i.e. we come to the kinetic symmetry case. Consequently
the sought integral of type 1 does not exist when ¢y # 0.

Let us consider the case co = 0. In this case, according to condition , cs # 0.
First we express 3 from equation H3 = Us and put the obtained value of 3 in equation
Hy = U, from where we find ~». In this way we have:

~

R _Ilw% + Iw3 + 3w + 2c171 — Us

= — = 8.135
72 263 ) 73 203 ( )
where R is a root of equation
Qz)=2+C =0,
that is
QR)=R*+C=0. (8.136)

Function C = é(wg, ws3,71,73) is the following polynomial:
C = (Lw? + Lw? + Lw?)? + 4cy (Lw? + Lw? + Lw?)m
— 2U3(Nw? + Lws + I3w3) 4+ 4(c3 4 c3)7F — 4e1Usyy — 43U + U3,
We put the values of 72 and 3 from in the Euler-Poisson equations and

remove its fifth and sixth equations. In this way we obtain the following system of four
equations in unknowns wi, we, ws and ~;:

dw _ 2([2 — I3)wows + E

dt 21,
dw2 1
ﬁ = —m [cl(hw% + 12(4)5 + Igwg) + 2([1 — I3)03W1W3
+2(c} + )1 — a1Us), (8.137)
% - 2([1 — IQ)ngl(JJQ - Clﬁ
dt o 2[303 ’
dn

X ~
b = [(hwd + Bwd + wd + 201m — Uslows + wafl].
3

Let ¢o = 0 and function F'(wy,ws,ws) be a first integral of type 1. We have

dr
2[1[2[363@ = Yl(F) = 0, (8138)
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where the vector field Y7, defined on C*(wy,wa,ws,y1), is:

~1 0
}/1 = 121363 |:2(12 — Ig)WzQ)g + R:| o
80.)1

0
+ 1115 |: — cl(llw% + Izwg + Igwg) + 203([3 — Il)wlwg — 2(0? + Cg))’yl +c1U3 (97
2

~1 0
+ .[1[2 [2([1 - IQ)CnglLUQ - ClR] .
6003
We differentiate identity (8.138]) with respect to ; and obtain again a linear partial
differential equation for function F’

dY1(F) OR OF 5 9 OF OR OF
=1 —— =241 — —hLhlhey—— =Y5(F)=0
o 243¢3 D1 O 113(cy +03)8w2 142¢1 ;O 2(F) )
where Y3 is the corresponding vector field defined on C*(wy,ws, ws,v1).

The derivative of Y2 (F') with respect to 1 has a factor Io ‘2;1; We have verified that for
1
the two roots of equation (8.136)) this derivative is not zero. Thus differentiating identity

(8.129) with respect to 7; we obtain
~\ —1
1 <a2R> 9> (F) OF OF

— = I3cs— — [1ci— =Y3(F) =0 8.139
I 87% 871 303(%}1 1C1 D 3( ) ) ( )

where Y3 is the corresponding vector field defined on C*(wy,ws,ws,¥1).
Instead of vector field Y we consider Yy = Y7 — I, RY3 which implies that Y;(F) = 0.
We obtain

OF
Y4(F) = 2]213(12 — 13)030.)2&}307 — 113 {Cl (Ilwf + [ng + I3w§)
1

oF
+ 2([1 — Ig)ngle + 2(0% + C%)’h — ClUg} 87(.4}2
oF
+ 2[1]2([1 - 12)03&)10(]27 =0. (8140)
8W3

Note that Y, does not depend on R.
Instead of vector field Y5 we consider

LY 5 Y

Ve —
5 21,15
which also does not depend on R. We have
oF
Y5(F) = (ci +c3)~—— =0. (8.141)
8w2
We compute the Lie bracket Y5 = [;/ZZ*] We know that Ys(F') = 0 so we have
F
Yo(F) = —Ix(I2 — 13)6103w2§%1
2 2 2 OF
+ |:Il(11 — 2]3)0103(4)1 + 13(1161 — 1163 + 1303)(,03 %
2
OF
+ I(I; — Iy)chws 0. (8.142)

s
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Thus we have obtained four linear homogeneous equations in unknowns grad F' =
gTF, g—F, g—F), that is system (8.139)—(8.142). If a first integral F exists, system (|8.139))—
1 w2 w3
(8.142]

.142)) has a non-zero solution. This is possible if and only if
rank M < 3, (8.143)

where M is the (4 x 3) matrix composed from the coefficients of system (8.139)—(8.142)).

Let us compute the determinant Dsy45 that consists of the coefficients of Y3, Y, and
Y5. It should be identically zero because of requirement (|8.143]).

We compute D345 and obtain

Dsys = —2I1 Iz I3csws [c3(I1 — Iz)wy + c1(lz — I3)ws ] dsas,
where
0345 = C% + CL«Q)).

As now co = 0 then according to (8.122), c¢s # 0. Thus the expression in the square
brackets vanishes identically only in the kinetic symmetry case and in the Lagrange case
I = I3, ¢4 = ¢ = 0. The factor —2I1I5I5¢3ws # 0. Thus Dsy5 = 0 is equivalent to
0345 = 0.

We compute also the determinant Ds4g that consists of the coefficients of Y3, Y, and

Ys. It should be identically equal to zero too (see (8.134])). We have Dsys = I1 I I5¢3w20346,
where

b3a6 = It [I1 (I — I3)c} — (211 — 3I3) (11 — Ib)c3|crwi — 20 I3(11 + I3 — 215) ¢} cawiws
+ L[I3(I — )3 + I (I — I3)ct | erws — Is[I (12 — I3)ci + I3 (31 — 213)c3
+ (I3 — 21) 3] crws + 2(cf + &3) [ (I — I3)ct + I3(Is — 1) c3]m
— [Tz = I3)c} + Is(Io — I1)c3 ) Us.

As I1IoI3c3w9 # 0 then D3y = 0 is equivalent to d346 = 0.

Thus we should find the conditions at which polynomials d345 and 346 vanish iden-
tically with respect to variables (wi,ws,ws,v1). This means to find the values of the
parameters Zc¢ and Us at which all the coefficients of d345 and d346 are zero.

Polynomial d345 has only one coefficient and d34¢ has six coefficients. In this way we
obtain a system of seven equations. To solve it we apply a simplification. At the third
consecutive simplification we obtain the reduced system:

IQ*I:;:O, 1171'3:0 c?Jrcg:O

This system obviously lead to the kinetic symmetry case. Thus the sought integral of
type 1 does not exist also when co = 0.

8.4.4. First integrals F(v1,7v2,73). Finally it remains to study the existence of the
partial first integral F(y1,72,73), that cannot be studied by elimination of variables like
above.

We proceed here in the same way as in Sec. [8:2.4]

F(y1,7v2,73) = 15(72,73). Our problem now is reduced to the study of partial first
integrals of the form F = F(v2,73) on the submanifold {H; = Us}. Absence of these
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partial first integrals follows from Sec. where the absence of partial first integrals of
more general form F'(w;,v2,73), ¢ = 2,3, is proved for all Uy and Us.
This concludes the description of the four-dimensional invariant manifolds.

9. Three-dimensional invariant manifold { H;=U;, H,=Us,,
Hy=Us}

9.1. Extraction procedure. In this section we study the existence of a local partial
first integral of the Euler-Poisson equations ([1.1]) restricted to the invariant complex
three-dimensional level manifold

{H, = Ui, Hy="U,, Hs="Us},

which depends on at most two variables.

According to ([2.5)
MUy, Uy,U3, U3, Ic) =
= {x € (C6; Hl((wa’}/)vz-c) = Uy, H2((W’7)7IC) = Uy, H3((OJ,’}/),IC) = U3}7

where (w,v) = (w1, ws, w3, 71, 72,73)-

We search all functions F' of two variables F' = F(s1, s2) where (s1,82) € (w,7), of
class C!, such that grad F does not vanish identically on each open subset of the manifold
MUy, Uy, Us, Us, Zc), which are local partial first integrals of the Euler-Poisson equations
restricted to this manifold.

As in Sec. the order of variables s;, 1 < i < 2, in F(sy, $2) is irrelevant for F to
be a first integral.

We have exactly 15 different two elements subsets of (w,7) and thus 15 cases of
functions of two elements to examine. We will describe now an extraction procedure
based on permutational symmetries which reduces the above 15 cases to only four.

These 15 functions of two variables (up to the order of variables) are shown in Table
This Table can be easily obtained directly like Table But it can be also easily
deduced from Table [5.1] and reciprocally.

Table 011

’ Functions ‘ Case ‘
[F(yi,7), 1<i<j<3 [ (O]
’ F wlvryl)v F(w2a72)a F LU3,’)/3) ‘ (ll) ‘

( (
F(W3ﬂ72)7 F(w2773)7 F(w17'73)7 (111)
Fwsz;m), Flwz2,m), Fwi,y2)
| Fwi,w;), 1<i<j<3 | (iv) |

Like in Sec. [§] let us stress that the permutational symmetries act on variables
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(w,7) and parameters Zc¢ but not on the constants Uy, Us, Us that define the mani-
fold ]\4([]07 Ul, UQ, U3,IC).

It is easy to see that under the group of permutational symmetries of the Euler-
Poisson equations for every case (i)—(iv) from Table the first function from the case
is consequently transformed into all remaining functions from the same case.

Thus in virtue of Theorem we can restrict ourselves to the study of only four
functions where every one belongs to a different case from Table[9.1]and is chosen arbitrary
from the functions of this case.

Like in Secs. [5| and [8) we will call such four functions F;, 1 < i < 4, (up to the order
of variables) a basis.

9.2. Elimination of wj,ws,y1. Here we study the existence of a partial first integral of
the Euler-Poisson equations (1.1 after expressing variables wq, wo and «y; from equations

H;=U;, 1<i<3. (9.1)

First we express 7, from second equation of (9.1) and obtain

M =4/~ + V. (9-2)

Further, to simplify the notations, we put

I'=1/-% - + U2

Then, using the MAPLE command solve, we express w; and ws from first and third
equations of (9.1) and obtain the following solution:

_IlRF + Iswsys — Uz

=R = 9.3
wi =R, w Tovs : (9.3)
where R = R(ws,2,73) is a root of equation
Q(x) = Ax®> + Bz +C =0,
that is
Q(R) = AR* + BR+C =0. (9.4)

Here A = A(vy2,73), B = B(ws,v2,73) and C = C(ws,y2,73) are the following functions:

A=1[(I2— ) — 1173 + LUs]
B =2LT(Izwsvys — Uy),
C = Iswi (1273 + I373) — 2[3wsv3Us
+ 173 (2c272 + 2e373 + 2011 — Us) + UL
R, A, B and C are algebraic functions defined on C3(ws, v2,73)-

We put the values of 1, w; and we from (9.2) and (9.3)) in the Euler-Poisson equations
(1.1) and remove the first, second and fourth equations. In this way we have the following
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system of three equations in unknowns ws, 2 and ~ys:

dw 1
=3 = {11(12 — I)TR? + (I, — I)(I3wsys — U1) R + Ly (cal — 01’72)}7
dt Iy 137y,
dyz
— ~vaR — wal 9.6
dt V3 wsl, ( )
dys

1
=— {(11722 — Iy + L1y — LU2)R — T'(Izwzys — U1)]-
dt IQ’}/Q

Now we study whether system has a first integral that depends on at most two

variables among the variables (ws,v2,v3). Thus we should investigate the following three
types of a first integral:

L F(y2,73), (case (1))
2. F(ws;3), (case (ii))

3. F(ws,72). (case (iii))

Then, like in Secs. [f] and [8] we should examine the three types given above because
they belong to different cases (see Table .

Let us fix Uy € C. Let us consider some suitable open set Q C C3(ws, 72,73) belonging
to the domain of definition of F'.

From the now we consider system and the first integral F' only on €. System
restricted to © has C! right-hand sides.

We always suppose that the considered first integrals are not constant on any open
subset of their domain of definition. As we consider C* first integrals, this means that
their gradients do not vanish identically on any open subset of their domain of definition.

Type 1. Let us consider the existence of a first integral F' of system which is of
type 1, i.e. F = F(v2,73). Thus we have
dF  dvys OF  dyz OF
dt  dt 9y, | dt Bz
where Y7 is the corresponding vector field defined on €.
Equation should be an identity with respect to all the three variables (ws, 2, ¥3)-
As function F' does not depend on ws then its partial derivatives will not depend on wsg
too. Thus if we differentiate identity with respect to ws we shall obtain again a
linear partial differential equation for function F.
OYi(F) 0 (dy\ OF 0 (dys\ OF
Ows _60%<dt>872 8w3<dt>8’73_
where Y5 is the corresponding vector field defined on €.
Equations and can be considered as a system of two homogeneous linear
algebraic equations with unknowns grad F' = ( oF ' OF

Yi(F) =0, (9.7)

Yo(F) =0, (9.8)

072 Ovs
because F' is non-constant on any open subset 01’ its domain of definition.

Thus, if first integral F exists, system (9.7)-(9.8) has a non-zero solution grad F.
This is possible if and only if determinant A of this linear system satisfies identity A =0
provided that R is a root of equation .

), which do not vanish identically,
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We compute this determinant and obtain
dya 0 (dy3 dys 0 (dy2
AR)=—— | — | ——— | —
() dt Ows ( dt dt Ows \ dt
T
Irys

As we are interested in case A = 0 we remove the denominator Iy and the non-zero
factor I' and note

0

OR R
{[(Il — 12)’)/% + (Il — 13)’}/3% — 11U2:| <R—W3aw3) + []1’)/367“)3 — U1F}

r

A(R) = s

o(R),

where

OR OR
5(R) = [(Il - IQ)’Y% + (Il — Ig)’Yg — IlUQ] (R — w33w3> — Ul’}/387w3 + U1F (99)

As §(R) contains g—i we should determine this derivative. For the purpose we use

equation (9.4). We differentiate it with respect to w3 and, as A does not depend on ws
(see (9.5)), obtain

99 _ gy 28y OB g 9C

— =0. 1
ng 8w3 8w3 0 (9 0)

8&)3

The determination of gTi from the last equation is possible only if d%g) =2AR+B #
0. Using Proposition we prove that if R is a root of equation (9.4)) then 2AR+ B =0
only in a very particular case

11:.[2:[3, 01262263:0, U1:U2:U3:0. (911)

Indeed, let us compute the resultant p of Q(R) and 2AR + B with respect to R. We
obtain
p = A(4AC — B?).

As we are interested only in the cases when p vanishes identically with respect to ws,
72 and 73 and as A never vanishes identically we consider p = 4AC — B? instead of p.
We compute p with values of A, B and C from (9.5) and obtain
Z)\: 4[1[2’}/3 (aoF + al) ,

where

apg = 261([2’)/5 — 11722 — 11732 + IlUg),

a1 = —I3(I — L)w3ys — Is(I — Is)w3ns + N IsUswf — 2I3U1wsys
—2(I — I)eays — 2(I — L)esvavs + (I — I)Uss — 2L1ca727;
+ 2L coUsy2 — 211c373 4+ TUsY3 + 2LhcsUpys + Uy — [LUUs.

According to Proposition [4.3] if p = 0 then ag = a; = 0 because I' ¢ C(72,73). ap = 0
is possible if and only if ¢; = 0. One immediately sees that a; = 0 will be true if and
onlyif I = Iy =I3,¢co =¢c3 =0and U; = Uy = U3 = 0, i.e. we come to condition ((9.11)).
Thus out of this case equations Q(R) = 0 and 2AR 4+ B = 0 have no common roots, i.e.
if Q(R) = 0 then 2AR + B # 0.
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Thus the determination of (%23 from 1l is possible and we obtain

IR __Ge R+
dws  24AR+ B

and put it in the expression for 6(R). The non-zero expression 2AR + B appears as
a denominator of §(R) and we note

_ AR
o(R) = 2AR+ B’
where

~ 0B oC
§(R) = [(I1 — )73 + (1 — Is)y3 — [iUs] |(2AR+ B)R+ w3 | R— + -—
6&)3 80.}3

0B oC

+ Ul’}/g R—+— )+ U1(2AR + B)F
80.)3 8w3

After substituting A, B and C with their values from ((9.5) we obtain

I(R) = 2{ (I — L)vs + (I — Is)v; — [LUs] [Il(hUz + Iy; — 173 — [173)R?

+ 20 (Iwsys — UﬁRP} + LI(I — L)wiys + I3(L I + I I3 — 215 I3)wiy3y3
— L b IsUswi~3 + I3 — I3)wivys — [ 12Uswins — 2I3(11 — L) Uiwsyays
— 2I3(I) — Is)Urwsvs 4 20 13U Uswsys + LU + (I — I3)Uy2 — IlU%Uz}.

Let us note the following observation. The expression in square brackets above, i.e.
L(LU; + I3 — 173 — [172)R? + 211 (Iswsys — Uy)RT = AR* + BR=Q(R) — C
and, as Q(R) =0 (cf. (9.4)), we replace this expression with —C'. In this way we obtain

§ as a function that does not depend on R as follows:
6= bol" + b1,
where
bo = —4lrc173 [(11 — D)3+ (I — I3)v; — 11U2]7
by = 21573 [202(-72 — )y + 2¢3(Ta — [ )V5ys + 2c2(Is — 1) y273 + 2c3(Is — 1 )3
+ (I = I)Us; + (I — I3)Us"3 + 2I1coUsys + 2I1c3Usvys + Ut — I1U2U3]

According to Proposition if 0 = 0 then by = by = 0 because I' & C(72,73). bp = 0
is possible either if Iy = I = I3 and Us; = 0 which is a particular case of the kinetic
symmetry or when ¢; = 0.

Let ¢; = 0. We consider b; = 0. As ¢; = 0 we should have (¢g,c¢3) # (0,0) to avoid the
Euler case. First let us suppose that ¢ # 0. Then the annulment of the coefficients of 3
and Y273 of by leads to the kinetic symmetry case. Let us suppose now that cz # 0. Then
the coefficients of 73 and 723 lead to the same case. Consequently the sought partial
first integral of type 1 does not exist.
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Type 2. Let us study the existence of a first integral of type 2. That means to look
for a first integral of system which does not depend on 7, i.e. F(ws,v3).

In fact the investigations go along the same lines but, of course, the expressions are
different. Now we have

dF do.)g oF d’)/3 OF
E a dt awg dt 8’}/3
where Y7 is the corresponding vector field defined on €.

Equation should be an identity with respect to all three variables (ws,y2,73).
As function F' does not depend on v, then its partial derivatives will not depend on ~9
too. Thus if we differentiate identity with respect to 72 we shall obtain again a
linear partial differential equation for function F'.

i (F) 0 <dUJ3> oF n 0 <d73> oF
872 N 6’}/2 8&)3 872 6’)/3
where Y5 is the corresponding vector field defined on 2.

Equations ((9.12)) and (9.13) can be considered as a system of two homogeneous linear

algebraic equations with unknowns grad F' = (g—j;, g—};), which do not vanish identically,

=Y (F) =0, (9.12)

= Y,(F) =0, (9.13)

because F' is non-constant on any open subset of its domain of definition.

Thus, if integral F exists, system (9.12] - ) has a non-zero solution grad F'. This
is possible if and only if determinant A( ) composed of the coefficients of this system
satisfies identity A(R) = 0 provided that R is a root of equation (9.4)).

We compute this determinant and obtain a long expression which we do not show
here. We only mention that A(R) has a non-zero denominator /31372 and we note
A(R)

A8 = pror

Thus A(R) = 0 is equivalent to A(R) = 0.

K(R) depends on 68712. To determine this derivative we use the same steps as in the
case of the first integral of type 1 and obtain

OR gWAz R? + B R + 372

O 2AR+B

We put it in the expression for A(R) After this substitution the non-zero expression
2AR + B appears as a denominator of A(R) and we note
A A(R)
AR) = ————.
() 2AR+ B
The identity E(R) = 0 is equivalent to A(R) = 0 but A(R) depends on the functions A,

B and C from ) and their derivatives with respect to 72. We put these functions in
the expression for A(R) and obtain that A(R) has a denominator I'. We note

The identity A(R) = 0 is equivalent to §(R) = 0. We know that if Q(R) = 0,
then if in addition some supplementary first integral F'(ws,7s) of system exists,
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then also §(R) = 0. Thus all assumptions of Proposition are fulfilled. Consequently
in polynomial ring K|z], where K = Alg(ws,2,73), the polynomial Q(x) divides the
polynomial §(x).

Using MAPLE we divide § by @ and obtain a remainder which is a polynomial r of

the form
rox + 71

(Iz — I1)v3 — [1v3 + LU,J?

r =

where

ro =ro1l + ro2 and r1 = r11I" + 110,

Here rg1, ro2, 711 and r12 are polynomials of variables ws, 72, v3 and parameters Zc¢ and
U;, 1 <i<3.

According to Propositions [£:2] we have 79 = 71 = 0. Then by Propositions [{.3] we
conclude that rg; = rg2 = r11 = 112 = 0 because I' ¢ C(v2,73). It turns out that for
our aims equation r1; = 0 is sufficient. Equation r1; = 0 will be identically satisfied
if and only if all the coefficients of polynomial 717 are zero. The coefficients of r1; are
109. We should find all values of the parameters Zc and U;, 1 < ¢ < 3, for which the
109 coefficients are zero. At the fourth consecutive simplification we obtain the reduced
system of only three very simple equations:

11—12:0, 0120, CQZO

and the values of U;, 1 < i < 3, I, I3 and c3 are arbitrary. It is clear that this is the
Lagrange case.
Thus the sought partial first integral of type 2, F'(ws,73) does not exist.

Type 3. Let us consider the existence of a first integral of type 3, i.e. F(ws,72). Now

we have
dF o dW3 8l d"}’g 8i o

E o W 8w3 E 8’}/2 o
where Y7 is the corresponding vector field defined on Q.

Equation should be an identity with respect to all three variables (ws,y2,73).
As function F' does not depend on 3 then its partial derivatives will not depend on ~3
too. Thus if we differentiate identity with respect to 3 we shall obtain again a
linear partial differential equation for function F'.

OV(F) _ 0 (dun) OF | 0 (da) OF _
8’}/2 N 6’}/3 dt 8&)3 873 dt 6’}/2 N

where Y5 is the corresponding vector field defined on 2.
Equations ((9.14)) and (9.15) can be considered as a system of two homogeneous linear

algebraic equations with unknowns grad F' = ( OF OF

Y1(F) =0, (9.14)

Ya(F) =0, (9.15)

Owsz ? Ova
because F' is non-constant on any open subset of its’ydomain of definition.

Thus, if integral F exists, system (9.14)-(9.15)) has a non-zero solution grad F. This
is possible if and only if determinant A(R) composed of the coefficients of this system
satisfies identity A(R) = 0 provided that R is a root of equation (9.4).

), which do not vanish identically,
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We compute this determinant and obtain

A(R

amy = S0
IPYEQTIN

where

~ OR OR
A(R) = —2[1(11 — Ig)wgl“Qa—’ng — 1201’73’)/38773 + (Il — IQ)U1R2 — IQCl’Y%R I

OR OR
+ (L — I2)73F267%R2 + T2 [I3(I — I)wiys + (I — T2)Urws + Tacay27s] P

+ [I3(1 = L)wiys — (I — I2)Usw3 + (I — Ia)Urwsys + Tacoya(—73 + Us)] R
— Il(Il — .[2)(—’7% + U2)R3 - 1261“)37373'

Thus A(R) = 0 is equivalent to A(R) = 0.
A(R) depends on g%. To determine this derivative we use the same steps as in the
case of the first integral of type 1 and obtain
0A p2 0B oC
873 2AR + B

We put it in the expression for A(R) After this substitution the non-zero expression
2AR + B appears as a denominator of A(R) and we note

~ A(R)

AR =drr B
The identity A(R) = 0 is equivalent to A(R) = 0 but A(R) depends on the functions A,
B and C from (9.5) and their derivativesNWith respect to 3. We put these functions in
the expression for A(R) and obtain that A(R) has a denominator I". We note

where 0(R) is a polynomial of R of degree four.

The identity A(R) = 0 is equivalent to §(R) = 0. We know that if Q(R) = 0,
then if in addition some supplementary first integral F(ws,~3) of system exists,
then also §(R) = 0. Thus all assumptions of Proposition are fulfilled. Consequently
in polynomial ring K|z], where K = Alg(ws,~2,73), the polynomial Q(x) divides the
polynomial §(x).

Using MAPLE we divide § by @ and obtain a remainder which is a polynomial r of

the form
rox + 11

(I — I1)v3 — L1y + LU’

T =

where
ro =roil’ + 792 and r1 = 111" + 710,
Here 791, ro2, 711 and 712 are polynomials of variables ws, 72, 73 and parameters Zc and
U;, 1<i<3.
According to Propositions [£:2] we have 79 = 71 = 0. Then by Propositions [{.3] we
conclude that rg; = rg2 = r11 = r12 = 0 because I' ¢ C(v2,73). It turns out that for
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our aims equation 717 = 0 is sufficient. Equation r1; = 0 will be identically satisfied
if and only if all the coefficients of polynomial 11 are zero. The coefficients of r; are
179. We should find all values of the parameters Zc and U;, 1 < i < 3, for which the
179 coefficients are zero. At the three consecutive simplification we obtain the reduced
system of seven equations:

.[1 — IQ = 0, CoC3 — 0, (.[2 — Ig)CQ = 0, CQU3 = 0,
Uy =0, U =0, ¢&42c2=0.
We solve this system by the MAPLE command solve and obtain two solutions. The
first of them gives the Lagrange case Iy = I, ¢; = 0, co = 0 and the second - a particular

case of the kinetic symmetry case.
Thus the sought partial first integral of type 3, F'(ws,y2) does not exist.

9.3. Elimination of ~1,v2,73. Using the MAPLE command solve we determine vari-
ables 71 and 7, from equations H; = U; and Hz = Us (see (9.1))). Then we put the
obtained values of 7; and 7, in the equation Hy = Us from where we determine 3. In
this way we obtain the following solution:

IQ(,L}Q(I]_W% + Igwg + [3&)% — Ug) + 2cU7 + 2([203&)2 — IgCQUJg)R

m= 2([102&)1 — 1261(.02) ’
Ilwl(Ilw% + IQ(U% + Igwg — U3) + 261U1 + 2([1630.}1 — 1301LU3)R (916)
V2= ’
2(Ilc2w1 — IQClWQ)
V3 = Ra

where R = R(w,ws,ws) is a root of equation
Q(z) = Az®> + Bz +C =0,
that is
Q(R) = AR*+ BR+C =0, (9.17)
and A = A(wi,ws,w3), B = B(wj,ws,w3) and C = C(wy,ws2,w3) are the following
polynomials:
A= 4]1 (02 + 03)w1 8I11sc1cowiwe — 81113¢1c3wiws
+ 413(c3 + 3)wi — 8Ix[3cocswows + 415 (¢t + c3)w3,
B = 4l csw} — A Izciwiws 4 41 I (1) + Ip)csw?ws — 411 Ir Izcowiwaws
+ 4[1 13C3w1w3 — 4[1]213clw1w2LU3 — 4]1]3 clw1w3 + 412 63w2
— 4[221'302w§’w3 + 4122I303w§w3 4I2I3 CQWQUJS 4[1 C3U3w1
+ 41, I3¢1 Uswiws — 412 c3Usws 4 41513coUswows
+ 8T c1c3Uhwy + 8IzeacsUrws — 813(ch + c2)Uyws,
C = I1W8 + B L 21 + L)wiwi + 213 zwiws + .71]2 (I + 213)w?wy (9.18)
+ 20 LI3(1 + L)wiwiw? + IRTawiws + I3wS 4 213 Tzwiw? + T3 T2wiws
— 23 Uswi — 20 Iy (1) + Io)Uswiws — 217 [3Uswiw? — 213Uswy
— 2[5 [3Uswiw; + 4l Uywi + 41 IycoUywiwg + Al Ihey Uywywi
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+ 41 Izc1 Uy wi 4 A coUsws + 4l IscoUywow? — I3 (4c3Us — U)W}
+ 8.[1[261C2U20J1(U2 - 122(46%[]2 - Ug)wg
— 461U Uswy — 415U Uswo + 4(6% + C%)Ulz

Putting the values of v1, 72 and ~3 from ((9.16]) in the Euler-Poisson equations (|1.1])
and removing the last three equations we obtain the following system of three equations
in unknowns wy, ws and ws:

dwi - Mi

dt o 217;(]162&)1 — Igclw2)7
where M7, My and Ms are polynomials of wj, v;, I;, ¢, U;, 1 <4 < 3, and of R. The
system ({9.19) is correctly defined only if

(c1,c2) # (0,0). (9.20)

Let us suppose first that the condition is satisfied.

As we are going to study the first integrals of system we can multiply its right-
hand sides by the non-zero factor 217 IoI3(11cows — Iaciws). In this way we come to the
following system:

1<i<3, (9.19)

% = —I2I3{2[Il(c§ + cg)wl — Ireicowy — IgClcg(JJg]R
+ IPesw? 4+ L Leswiwi — 211 (Iy — I3) cowrwows + I Iscswiw?
420 (Is — I3)erwiws — LieaUswr + 20163U1},
@:II {2[Ic cow — Ir(c] + ¢3)wa + I3cacsws| R
7 113 1¢1cow1 — La(c] + c5)wa + Izcacsws
— 11[203w%w2 —20(I — Ig)CgW%Wg + 20 (11 — I3)ciwiwaws (9.21)
— I2203w§ - IgIgnggwg + Irc3Uswy — 20203U1},
%:II {Q[Ic cswy + Ireacaws — I3(cf + c3)ws]| R
7t 112 1€1C3w1 + lacaczwa — I3(c + ¢3)ws

+ 11261(,0% + 11(211 — IQ)ng%wg — 12(11 — 2]2)81(411&)3 + 11[3610.)1(4}%
+ .[2202003 + IQIgCQ(UQW% - IlclUgoJl - IQCQUgLL)Q + 2(6% + Cg)Ul}
We study the existence of a first integral of system (9.21]) that depends on at most

two variables among the variables (wi,ws,ws). There are three possible types of such a
first integral:

1. F(wy,ws), (case(iv))
2. F(w1,ws), (case(iv))
3. F(wa,ws). (case(iv))

As all the three types of first integrals belong to case (iv) it suffices to study only the
first type.

Type 1. We consider a first integral F' of system (9.21)) of type 1, i.e. F(wy,w2). We
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have
dF dwl oF d(UQ oF

o _ &2 9 _y(F)=0 9.22
dt — dt Ow, | dt Ows 1(F) =0, (9-22)

where dcﬁl and d are taken from and Y7 is the corresponding vector field defined
on C3(w1,w2,w3)

This equation should be identically equal to zero with respect to variables w1, ws and
ws. As function F' does not depend on ws then its partial derivatives will not depend on
w3 too. Thus if we differentiate identity with respect to ws we obtain again a linear
partial differential equation for F

ovi(F) 0 (dw1> OF 0 (d@)@F

80.13 n 87003 8&)2

awl 8&)3

= Y,(F) =0, (9.23)

where Y5 is the corresponding vector field defined on C3(wq,ws,ws).

Equations ((9.22)) and (9.23) can be considered as a system of two homogeneous linear

algebraic equations with unknowns grad F' = (g—i, g—i). This linear system admits a
non-zero solution if and only if its determinant A(R) vanishes identically with respect to

variables wy, we and ws provided that R is a root of equation (9.17]).

We compute A(R), remove its non-zero factor 217 Io13 (I caw; — Iaciws) and obtain

A(R)
2[1[2[%([102&)1 — 1261(U2)

- [Il(ﬂgcg — 2613 — 2113 + 3I3¢3)wi + 2211 I — 11 I3 — Ix13) ¢ cowiwo

A(R) = = —2I3¢3(c2 + ¢ + 2)R?
3

— 2@ I3cic3wiws + Io(203¢3 — 215¢3 — 215c3 + 313¢35)wi

— 2I515¢oc3waw3 — Igc3w3 1303U3] R

- {Ifclcgwf + I Irepeswiws + 11 (211 ¢5 — 213¢3 + 211 ¢3 — I3c3)wiws

+ 1112c1c;3w1w§ =220 I — 115 — Iz15)c1 cowywaws

— I3(I) — 2I3)cicaw w3 + T2cacsws (9.24)
+ (2L} — 2I3¢2 + 215¢3 — I3c3)wiws

+ I3(215 — 12)0203w2w3 + I3cgw3 Iic1e3Uswy — IzeocsUswo

OR
Ows

+es [112(11 L)t L+ I — 2130w — LI(1 — I3)w?w?
+ 12(Iy — I3)wh — I I3(Iy — I3)wiws — I, (I — I3)Usw?
— IQ(IQ — 13)U3w2 + 2([1 — 13)01U1w1 + 2(]2 — I3)CQU10J2 — 2]303U1w3]

— I3¢3Usws + 2¢3(c3 4 ¢ + c3)U1}

Like in Sec. 9.2 we should obtain A(R) as a polynomial of R that is we should deter-

mine g—R as a function of R. For the purpose we use equation 1b where polynomials
A(wy,wa,ws), Blwy,ws,ws) and C(wy,ws,ws) are taken from (9.18]). We differentiate
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(19.17) with respect to ws and obtain

0Q(R) 0A , OB d@ OR
= — — = . 2
8w3 8w3R + 8w3R + (9&)3 + dR 6w3 =0 (9 5)
The determination of R from is possible if and only if dQ =2AR+ B is not

zero when R is a root of polynomlal Q Then we obtain

OR GAR2 BR+30J3

60.)3

dws 2AR + B

dQ
Let us prove that %

is not zero. We use Proposition Let R be a root of equation
Q(R) = 0. We consider the resultant p of @ and % and prove that it can never be

identically zero with respect to w1, wo and ws. We have
= A(4AC — B?)

and as A never vanishes identically we do not consider p but p = 4AC — B? instead.
Putting in p the expressions for A, B and C from ((9.18) we obtain

ﬁ: 16([162&)1 - 1261(.U2)2ﬁ.

As we consider the case , then the first factor never vanishes identically. The second
one, i.e. p is a long polynomial of w1, wy and ws that has 35 monomials. Among them
is the monomial I}w$ and therefore p never vanishes identically. Consequently p never
vanishes identically elther

We put the value of obtalned from equatlon in and find A (R). After

this substitution the non-zero expression 2AR + B appears as a denommator of A(R)
and we note 5(R)

AR = o4k + B’
where §(R) is a polynomial of R of degree three.

It is clear that A(R) = 0 is equivalent to §(R) = 0. We know that if Q(R) = 0,
then if in addition some supplementary first integral F(w;,ws) of system exists,
then also §(R) = 0. Thus all assumptions of Proposition are fulfilled. Consequently
in polynomial ring K[z], where K = Alg(wy,ws,ws), the polynomial Q(z) divides the
polynomial §(z).

Using the MAPLE command rem we compute the remainder of the division of poly-
nomial § by @ and obtain a remainder r of the form:

4([162601 — Igclwg)

r(x) = (rox +11),

(Ilcgwl — 1201LU2)2 + (Ilcgwl — 1301w3)2 + (IgCgOJQ — ISCQUJ3>2
where g and rq are polynomials of wy, wy and ws.

It is easily seen that when (c1, ¢2) # (0,0) the fraction in the above equality is non-zero
on open dense subset of C3(wy,ws,ws).

Thus rg = r1 = 0 identically with respect to wy, we and ws. Below we consider only
ro = 0 which turns out sufficient for our needs.

As rg has a non-zero factor I3 we remove it. The obtained polynomial has 74 co-
efficients. To find all values of the parameters Zc and U;, 1 < i < 3, for which these
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coefficients are zero we apply simplification and after four consecutive simplifications we
obtain the reduced system of five equations:

CoC3 — 07 C1C3 — 0, (Il - I2)03 = O, (Il — Ig)Cg = 0, (IQ — Ig)Cl = 0
Solving it by the MAPLE command solve we obtain the following five solutions:

c1 =0, co =0, cg =0 with arbitrary I, Iy, Is, Uy, Us, Us,

I =1, c1 =0, cg =0 with arbitrary I, I3, c3, Uy, Us, Us,
Iy =13, co =0, cg = 0 with arbitrary Iy, I3, c¢1, Uy, Us, Us,
I = I3, ¢ =0, c3 =0 with arbitrary Iy, I3, co, Uy, Uz, Us,
I, =13, I, = I3, c3 =0 with arbitrary I3, c¢1, ca, Uy, Us, Us.

As (c1,¢2) # (0,0) we remove the first and second solutions. Third and fourth solutions
give the Lagrange case and fifth one — the kinetic symmetry case. Thus the sought partial
first integral of type 1, i.e. F(w1,ws) does not exist when (c1,¢z) # (0,0).

Let us suppose now that (9.20) is not fulfilled, i.e. (¢1,¢c2) = (0,0). To avoid the Euler
case we suppose that c3 # 0. Solving equations (9.1) with respect to 71, 2 and ~3 by
the MAPLE command solve we obtain

. 11[3(4}%(,03 + Ig]gwgw;g + Igwg’ — I3Usws3 + 2¢3U1 — 21w R

4!

)

e (9.26)
R Ilwl + IQWQ + I3UJ3 - Ug
Y2 =), Y3 = — )
c3 2c3
where R = R(w,we,ws) is a root of equation
Q(z) = Az + Bz +C =0,
that is
Q(R) = AR* + BR+C =0. (9.27)

Here A = A(w1,ws), B = B(wy,ws,ws) and C = C(wy,ws,ws) are the following polyno-
mials:
A = A(T7w? + 13w3),
B = —4Lwo(I1 zwiws + Ly Izwiws + Iiws — I3Usws + 2c3U71),
C = I} + 213 Lwiw? + T313(214 + I3)wiw? + [P T3ww;
+ 2L LI3(1 + I3)wiwiw? + LI2(1 4 213)wiws + I3 2wiw? (9.28)
+ 2L Iiwiws + Iws — 213 Usw] — 217 Uswiws — 211 I3(1h + I3)Uswiw?
— 20, I2Uswiw? — 213Usws + 411 Izc3Uywiws + 4loIzcsUrwiws

+4I3c3Uyws — I3 (4c3Us — U)wi + 13U3w3 — Al3c3U,Usws + 4Ufcs.

After substitution of v, 2 and 3 from (9.26) in the first three Euler-Poisson equa-
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tions (1.1) we obtain the following system for wy, ws and ws:
@ o R+ (IQ - Ig)w2w3

dt I

@ 2w R—11(21) — I3)wiws — Iy Izwiws — I3ws + I3Usws — 2c3U4 (9.29)
dt 21 Irw ’ '
dws (11 — I)wiws

dat I '

Like in case (9.20) we examine only the type 1 of first integrals of system ((9.29).

Type 1 As in the case when (cl, c2) # (0,0) we deﬁne the vector fields Y; and Y3 by
Yi(F) =% (see ) and Y(F) = a}(;l“f) (see ) but now d“’l and d‘*’z are taken
from .

Determinant A(R) of linear system and should vanish identically with
respect to variables wy, we and w3 provided that R is a root of equation .

We compute A(R). It has a non-zero denominator 217 Iow;. We note

A(R) = 21 un A(R) = = |20 — L)} + B 21 — )l + 315w] — L,Us| R
R
Ows
— 2(]2 - Ig)(Igwg - U163)UJ2. (930)

+ [11(211 — Ig)w%w;g + 12(212 — Ig)wgwg + I§w3 13U3W3 + 2U163}

In order to obtain E(R) as a polynomial of R we determine g £ ysing equation 1)

where polynomials A(wy,ws), B(wy,ws,ws) and C(wq,ws, ws) are taken from (9.28)). After
differentiating (9.27]) with respect to w3 we obtain

0Q 0B oC  dQ OR
P 7R R _—— = O. 9.31
8(.«)3 8w3 + ng + dR awg ( )
In the same way as in the case (cl, cz) # (0,0) we prove by Proposmon that % s
not zero and determine BR from . Then we put it in and find A( ). After

this substitution the non-zero expression 2AR + B appears as a denominator of A(R)
and we note
0(R)
2AR+ B’
where §(R) is a polynomial of R of degree two.

It is clear that A(R) = 0 is equivalent to 6(R) = 0. We know that if Q(R) = 0,
then if in addition some supplementary first integral F(w;,ws) of system (9.29)) exists,
then also §(R) = 0. Thus all assumptions of Proposition are fulfilled. Consequently
in polynomial ring K[z], where K = Alg(w;,ws,ws), the polynomial Q(z) divides the
polynomial §(z).

A(R) =

The remainder r(z) of the division of polynomial §(z) by polynomial Q(x) is a poly-
nomial of x of degree one

r(x) = roz + 1,

where 7 and 71 are polynomials of wy, wy and w3 which, by Proposition [£.2] should be
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identically equal to zero. We consider only the leading coefficient of r(z)
To = 78]1[3([1 — IQ)W%WQ(I%W% — CgUl) = 0

It is easily seen that rg vanish identically if and only if I; = I which together with
restriction ¢; = co = 0 considered now leads to the Lagrange case. Thus the sought
partial first integral of type 1, F'(wy,w2) does not exist.

This concludes our study.
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