Analytic and Algebraic Geometry 2

Łódź University Press 2017, 97-121
DOI: http://dx.doi.org/10.18778/8088-922-4.15

RATIONAL CONSTANTS OF CYCLOTOMIC DERIVATIONS

JEAN MOULIN OLLAGNIER AND ANDRZEJ NOWICKI

1. Introduction

Let $K(X)=K\left(x_{0}, \ldots, x_{n-1}\right)$ be the field of rational functions in $n \geqslant 3$ variables over a field K of characteristic zero. Let d be the cyclotomic derivation of $K(X)$, that is, d is the K-derivation of $K(X)$ defined by

$$
d\left(x_{j}\right)=x_{j+1}, \quad \text { for } \quad j \in \mathbb{Z}_{n} .
$$

We denote by $K(X)^{d}$ the field of constants of d, that is, $K(X)^{d}=\{f \in$ $K(X) ; d(f)=0\}$.

We are interested in algebraic descriptions of the field $K(X)^{d}$. However, we know that such descriptions are usually difficult to obtain. Fields of constants appear in various classical problems; for details we refer to [2], [3], [12], [9] and [11].

We already know (see [10]) that if K contains the n-th roots of unity, then $K(X)^{d}$ is a field of rational functions over K and its transcendence degree over K is equal to $m=n-\varphi(n)$, where φ is the Euler totient function. In our proof of this fact the assumption concerning n-th roots plays an important role. We do not know if the same is true without this assumption. What happens, for example, when $K=\mathbb{Q}$?

In this article we give a partial answer to this question, for arbitrary field K of characteristic zero.

We introduce a class of special positive integers, and we prove (see Theorem 9.1) that if n belongs to this class, then the mentioned result is also true for arbitrary field K of characteristic zero, without the assumption concerning roots of unity.

[^0]Moreover, we construct a set of free generators of $K(X)^{d}$, which are polynomials with integer coefficients. Thus, if the number n is special, then

$$
K(X)^{d}=K\left(F_{0}, \ldots, F_{m-1}\right),
$$

for some, algebraically independent, polynomials F_{0}, \ldots, F_{m-1} belonging to the polynomial ring $\mathbb{Z}[X]=\mathbb{Z}\left[x_{0}, \ldots, x_{n-1}\right]$, and where $m=n-\varphi(n)$. Note that in the segment $[3,100]$ there are only 3 non-special numbers: 36,72 and 100 . We do not know if the same is true for non-special numbers, for example when $n=36$.

In our proofs we use classical properties of cyclotomic polynomials, and an important role play some results ([4], [5], [16], [17] and others) on vanishing sums of roots of unity.

2. Notations and preparatory facts

Throughout this paper $n \geqslant 3$ is an integer, ε is a primitive n-th root of unity, and \mathbb{Z}_{n} is the ring $\mathbb{Z} / n \mathbb{Z}$. Moreover, K is a field of characteristic zero, $K[X]=K\left[x_{0}, \ldots, x_{n-1}\right]$ is the polynomial ring over K in variables x_{0}, \ldots, x_{n-1}, and $K(X)=K\left(x_{0}, \ldots, x_{n-1}\right)$ is the field of quotients of $K[X]$. The indexes of the variables x_{0}, \ldots, x_{n-1} are elements of the ring \mathbb{Z}_{n}. The cyclotomic derivation d is the K-derivation of $K(X)$ defined by $d\left(x_{j}\right)=x_{j+1}$ for $j \in \mathbb{Z}_{n}$.

For every sequence $\alpha=\left(\alpha_{0}, \alpha_{1}, \ldots, \alpha_{n-1}\right)$, of integers, we denote by $H_{\alpha}(t)$ the polynomial from $\mathbb{Z}[t]$ defined by

$$
H_{\alpha}(t)=\alpha_{0}+\alpha_{1} t^{1}+\alpha_{2} t^{2}+\cdots+\alpha_{n-1} t^{n-1}
$$

An important role in our paper will play two subsets of \mathbb{Z}^{n} denoted by \mathcal{G}_{n} and \mathcal{M}_{n}. The first subset is the set of all sequences $\alpha=\left(\alpha_{0}, \ldots, \alpha_{n-1}\right)$ such that $\alpha_{0}, \ldots, \alpha_{n-1}$ are integers and

$$
\alpha_{0}+\alpha_{1} \varepsilon^{1}+\alpha_{2} \varepsilon^{2}+\cdots+\alpha_{n-1} \varepsilon^{n-1}=0
$$

The second subset \mathcal{M}_{n} is the set of all such sequences $\alpha=\left(\alpha_{0}, \ldots, \alpha_{n-1}\right)$ which belong to \mathcal{G}_{n} and the integers $\alpha_{0}, \ldots, \alpha_{n-1}$ are nonnegative, that is, they belong to the set of natural numbers $\mathbb{N}=\{0,1,2, \ldots\}$. To be precise,

$$
\mathcal{G}_{n}=\left\{\alpha \in \mathbb{Z}^{n} ; H_{\alpha}(\varepsilon)=0\right\}, \quad \mathcal{M}_{n}=\left\{\alpha \in \mathbb{N}^{n} ; H_{\alpha}(\varepsilon)=0\right\}=\mathcal{G}_{n} \cap \mathbb{N}^{n} .
$$

If $\alpha, \beta \in \mathcal{G}_{n}$, then of course $\alpha \pm \beta \in \mathcal{G}_{n}$, and if $\alpha, \beta \in \mathcal{M}_{n}$, then $\alpha+\beta \in \mathcal{M}_{n}$. Thus \mathcal{G}_{n} is an abelian group, and \mathcal{M}_{n} is an abelian monoid with zero $0=(0, \ldots, 0)$.

Let us recall that ε is an algebraic element over \mathbb{Q}, and its monic minimal polynomial is equal to the n-th cyclotomic polynomial $\Phi_{n}(t)$. Recall also (see for example [6] or [7]) that $\Phi_{n}(t)$ is a monic irreducible polynomial with integer coefficients of degree $\varphi(n)$, where φ is the Euler totient function. This implies the following proposition.

Proposition 2.1. Let $\alpha \in \mathbb{Z}^{n}$. Then $\alpha \in \mathcal{G}_{n}$ if and only if there exists a polynomial $F(t) \in \mathbb{Z}[t]$ such that $H_{\alpha}(t)=F(t) \Phi_{n}(t)$.

Put $e_{0}=(1,0,0, \ldots, 0), e_{1}=(0,1,0, \ldots, 0), \ldots, e_{n-1}=(0,0, \ldots, 0,1)$, and let $e=\sum_{i=0}^{n-1} e_{i}=(1,1, \ldots, 1)$. Since $\sum_{i=0}^{n-1} \varepsilon^{i}=0$, the element e belongs to \mathcal{M}_{n}.

The monoid \mathcal{M}_{n} has an order \geqslant. If $\alpha, \beta \in \mathcal{G}_{n}$, the we write $\alpha \geqslant \beta$, if $\alpha-\beta \in \mathbb{N}^{n}$, that is, $\alpha \geqslant \beta \Longleftrightarrow$ there exists $\gamma \in \mathcal{M}_{n}$ such that $\alpha=\beta+\gamma$. In particular, $\alpha \geqslant 0$ for any $\alpha \in \mathcal{M}_{n}$. It is clear that the relation \geqslant is reflexive, transitive and antisymmetric. Thus \mathcal{M}_{n} is a poset with respect to \geqslant.

Let $\alpha \in \mathcal{M}_{n}$. We say that α is a minimal element of \mathcal{M}_{n}, if $\alpha \neq 0$ and there is no $\beta \in \mathcal{M}_{n}$ such that $\beta \neq 0$ and $\beta<\alpha$. Equivalently, α is a minimal element of \mathcal{M}_{n}, if $\alpha \neq 0$ and α is not a sum of two nonzero elements of \mathcal{M}_{n}.

We denote by ζ, the rotation of \mathbb{Z}^{n} given by $\zeta(\alpha)=\left(\alpha_{n-1}, \alpha_{0}, \alpha_{1}, \ldots, \alpha_{n-2}\right)$, for $\alpha=\left(\alpha_{0}, \alpha_{1}, \ldots, \alpha_{n-1}\right) \in \mathbb{Z}^{n}$. The mapping ζ is a \mathbb{Z}-module automorphism of \mathbb{Z}^{n}. Note that $\zeta^{-1}(\alpha)=\left(\alpha_{1}, \ldots, \alpha_{n-1}, \alpha_{0}\right)$, for all $\alpha=\left(\alpha_{0}, \alpha_{1}, \ldots, \alpha_{n-1}\right) \in \mathbb{Z}^{n}$. If $a, b \in \mathbb{Z}$ and $a \equiv b(\bmod n)$, then $\zeta^{a}=\zeta^{b}$. Moreover, $\zeta\left(e_{j}\right)=e_{j+1}$ for all $j \in \mathbb{Z}_{n}$, and $\zeta(e)=e$.

Let us recall from [10] some basic properties of \mathcal{M}_{n} and \mathcal{G}_{n}.
Proposition 2.2 ([10]).
(1) If $\alpha \in \mathcal{G}_{n}$, then there exist $\beta, \gamma \in \mathcal{M}_{n}$ such that $\alpha=\beta-\gamma$.
(2) The poset \mathcal{M}_{n} is artinian, that is, if $\alpha^{(1)} \geqslant \alpha^{(2)} \geqslant \alpha^{(3)} \geqslant \ldots$ is a sequence of elements from \mathcal{M}_{n}, then there exists an integer s such that $\alpha^{(j)}=\alpha^{(j+1)}$ for all $j \geqslant s$.
(3) The set of all minimal elements of \mathcal{M}_{n} is finite.
(4) For any $0 \neq \alpha \in \mathcal{M}_{n}$ there exists a minimal element β such that $\beta \leqslant \alpha$. Moreover, every nonzero element of \mathcal{M}_{n} is a finite sum of minimal elements.
(5) Let $\alpha \in \mathbb{Z}^{n}$. If $\alpha \in \mathcal{G}_{n}$, then $\zeta(\alpha) \in \mathcal{G}_{n}$. If $\alpha \in \mathcal{M}_{n}$, then $\zeta(\alpha) \in \mathcal{M}_{n}$. Moreover, α is a minimal element of \mathcal{M}_{n} if and only if $\zeta(\alpha)$ is a minimal element of \mathcal{M}_{n}.

Look at the cyclotomic polynomial $\Phi_{n}(t)$. Assume that $\Phi_{n}(t)=c_{0}+c_{1} t+\cdots+$ $c_{\varphi(n)} t^{\varphi(n)}$. All the coefficients $c_{0}, \ldots, c_{\varphi(n)}$ are integers, and $c_{0}=c_{\varphi(n)}=1$. Put $m=n-\varphi(n)$ and

$$
\gamma_{0}=(c_{0}, c_{1}, \ldots, c_{\varphi(n)}, \underbrace{0, \ldots, 0}_{m-1}) .
$$

Note that $\gamma_{0} \in \mathbb{Z}^{n}$, and $H_{\gamma_{0}}(t)=\Phi_{n}(t)$. Consider the elements $\gamma_{0}, \gamma_{1}, \ldots, \gamma_{m-1}$ defined by $\gamma_{j}=\zeta^{j}\left(\gamma_{0}\right)$, for $j=0,1, \ldots, m-1$. Observe that $H_{\gamma_{j}}(t)=\Phi_{n}(t) \cdot t^{j}$ for all $j \in\{0, \ldots, m-1\}$. Since $\Phi_{n}(\varepsilon)=0$, we have $H_{\gamma_{j}}(\varepsilon)=0$, and so, the elements $\gamma_{0}, \ldots, \gamma_{m-1}$ belong to \mathcal{G}_{n}. Moreover, we proved in [10], that they form a basis over \mathbb{Z}, which is the following theorem.

Theorem 2.3 ([10]). \mathcal{G}_{n} is a free \mathbb{Z}-module, and the elements $\gamma_{0}, \ldots, \gamma_{m-1}$, where $m=n-\varphi(n)$, form its basis over \mathbb{Z}.

3. Standard minimal elements

Assume that p is a prime divisor of n, and consider the sequences

$$
m(p, r)=\sum_{i=0}^{p-1} e_{r+i \frac{n}{p}}
$$

for $r=0,1, \ldots, \frac{n}{p}-1$. Observe that each $m(p, r)$ is equal to $\zeta^{r}(m(p, 0))$. Each $m(p, r)$ is a minimal element of \mathcal{M}_{n} (see [10] for details). We say that $m(p, r)$ is a standard minimal element of \mathcal{M}_{n}. In [10] we used the notation $E_{r}^{(p)}$ instead of $m(p, r)$. It is clear that if $r_{1}, r_{2} \in\left\{0,1, \ldots, \frac{n}{p}-1\right\}$ and $r_{1} \neq r_{2}$, then $m\left(p, r_{1}\right) \neq$ $m\left(p, r_{2}\right)$.

If $\alpha=\left(\alpha_{0}, \ldots, \alpha_{n-1}\right) \in \mathbb{Z}^{n}$, then we denote by $|\alpha|$ the sum $\alpha_{0}+\cdots+\alpha_{n-1}$. Observe that, for every r, we have $|m(p, r)|=p$. This implies, that if $p \neq q$ are prime divisors of n, then $m\left(p, r_{1}\right) \neq m\left(q, r_{2}\right)$ for all $r_{1} \in\left\{0, \ldots, \frac{n}{p}-1\right\}, r_{2} \in$ $\left\{0,1, \ldots, \frac{n}{q}-1\right\}$. Note the following two obvious propositions.
Proposition 3.1. $\sum_{r=0}^{\frac{n}{p}-1} m(p, r)=(1,1, \ldots, 1)=e$.
Proposition 3.2. If p is a prime divisor of n, then the standard elements $m(p, 0)$, $m(p, 1), \ldots, m\left(p, \frac{n}{p}-1\right)$ are linearly independent over \mathbb{Z}.

The following two propositions are less obvious and deserve a proof.
Proposition 3.3. Let $n=p q N$, where $p \neq q$ are primes and N is a positive integer. Then

$$
\sum_{k=0}^{p-1} m(q, k N)=\sum_{k=0}^{q-1} m(p, k N)
$$

which, for any shift r, is easily extended to

$$
\sum_{k=0}^{p-1} m(q, k N+r)=\sum_{k=0}^{q-1} m(p, k N+r)
$$

Proof. If m is a positive integer, then we denote by $[m]$ the set $\{0,1, \ldots, m-1\}$. First observe that $\{k+i p ; k \in[p], i \in[q]\}=\{k+i q ; k \in[q], i \in[p]\}=[p q]$. Hence,

$$
\begin{aligned}
& \sum_{k=0}^{p-1} m(q, k N)=\sum_{k=0}^{p-1} \sum_{i=0}^{q-1} e_{k N+i \frac{n}{q}}=\sum_{k=0}^{p-1} \sum_{i=0}^{q-1} e_{N(k+i p)}=\sum_{k=0}^{p q-1} e_{N k} \\
& \sum_{k=0}^{q-1} m(p, k N)=\sum_{k=0}^{q-1} \sum_{i=0}^{p-1} e_{k N+i \frac{n}{p}}=\sum_{k=0}^{q-1} \sum_{i=0}^{p-1} e_{N(k+i q)}=\sum_{k=0}^{p q-1} e_{N k}
\end{aligned}
$$

Thus, $\sum_{k=0}^{p-1} m(q, k N)=\sum_{k=0}^{p q-1} e_{k N}=\sum_{k=0}^{q-1} m(p, k N)$.

Proposition 3.4. Let p be a prime divisor of n. Let $0 \leqslant r<\frac{n}{p}$, and $a \in \mathbb{Z}$. Then

$$
\zeta^{a}(m(p, r))=m(p, b), \quad \text { where } \quad b=(a+r)\left(\bmod \frac{n}{p}\right)
$$

Proof. Put $w=\frac{n}{p}$, and $[p]=\{0,1, \ldots, p-1\}$. Let $a+r=c w+b$, where $c, b \in \mathbb{Z}$ with $0 \leqslant b<w$. Observe that $\{b+(c+i) w(\bmod n) ; i \in[p]\}=\{b+i w ; i \in[p]\}$. Hence,

$$
\begin{aligned}
\zeta^{a}(m(p, r)) & =\zeta^{a}\left(\sum_{i=0}^{p-1} e_{r+i w}\right)=\sum_{i=0}^{p-1} \zeta^{a}\left(e_{r+i w}\right)=\sum_{i=0}^{p-1} e_{a+r+i w} \\
& =\sum_{i=0}^{p-1} e_{b+c w+i w}=\sum_{i=0}^{p-1} e_{b+(c+i) w}=\sum_{i=0}^{p-1} e_{b+i w}=m(p, b)
\end{aligned}
$$

and $b=(a+r)(\bmod w)$.
We will apply the following theorem of Rédei, de Bruijn and Schoenberg.
Theorem 3.5 ([13], [1], [15]). The standard minimal elements of \mathcal{M}_{n} generate the group \mathcal{G}_{n}.

Known proofs of the above theorem used usually techniques of group rings. Lam and Leung [5] gave a new proof using induction and group-theoretic techniques.

We know (see for example [10]) that if n is divisible by at most two distinct primes, then every minimal element of \mathcal{M}_{n} is standard. It is known (see for example [5], [17], [14]) that in all other cases always exist nonstandard minimal elements.

4. The sets I_{j}

Let $n \geqslant 3$ be an integer, and let $n=p_{1}^{\alpha_{1}} \cdots p_{s}^{\alpha_{s}}$, where p_{1}, \ldots, p_{s} are distinct primes and $\alpha_{1}, \ldots, \alpha_{s}$ are positive integers. Put $n_{j}=\frac{n}{p_{j}}$ for $j=1, \ldots, s$. Let I_{1}, \ldots, I_{s} be sets of integers defined as follows:

$$
\begin{aligned}
I_{1} & =\left\{r \in \mathbb{Z} ; 0 \leqslant r<n_{1}\right\} \\
I_{2} & =\left\{r \in \mathbb{Z} ; 0 \leqslant r<n_{2}, \operatorname{gcd}\left(r, p_{1}\right)=1\right\} \\
I_{3} & =\left\{r \in \mathbb{Z} ; 0 \leqslant r<n_{3}, \operatorname{gcd}\left(r, p_{1} p_{2}\right)=1\right\} \\
& \vdots \\
I_{s} & =\left\{r \in \mathbb{Z} ; 0 \leqslant r<n_{s}, \operatorname{gcd}\left(r, p_{1} p_{2} \cdots p_{s-1}\right)=1\right\} .
\end{aligned}
$$

That is, $I_{1}=\left\{r \in \mathbb{Z} ; 0 \leqslant r<n_{1}\right\}$ and $I_{j}=\{r \in \mathbb{Z} ; 0 \leqslant r<$ $\left.n_{j}, \operatorname{gcd}\left(r, p_{1} \cdots p_{j-1}\right)=1\right\}$ for $j=2, \ldots, s$. This definition depends of the fixed succession of primes. We will say that the above I_{1}, \ldots, I_{s} are the n-sets of type $\left[p_{1}, \ldots, p_{s}\right]$.

Let for example $n=12=2^{2} 3$. Then $I_{1}=\{0,1,2,3,4,5\}, I_{2}=\{1,3\}$ are the 12-sets of type $[2,3]$, and $I_{1}=\{0,1,2,3\}, I_{2}=\{1,2,4,5\}$ are the 12 -sets of type [3, 2].
Example 4.1. The 30 -sets of a a given type:

type	I_{1}	I_{2}	I_{3}
$[2,3,5]$	$\{0,1,2, \ldots, 14\}$	$\{1,3,5,7,9\}$	$\{1,5\}$
$[2,5,3]$	$\{0,1,2, \ldots, 14\}$	$\{1,3,5\}$	$\{1,3,7,9\}$
$[3,2,5]$	$\{0,1,2, \ldots, 9\}$	$\{1,2,4,5,7,8,10,11,13,14\}$	$\{1,5\}$
$[3,5,2]$	$\{0,1,2, \ldots, 9\}$	$\{1,2,4,5\}$	$\{1,2,4,7,8,11,13,14\}$
$[5,2,3]$	$\{0,1,2,3,4,5\}$	$\{1,2,3,4,6,7,8,9,11,12,13,14\}$	$\{1,3,7,9\}$
$[5,3,2]$	$\{0,1,2,3,4,5\}$	$\{1,2,3,4,6,7,8,9\}$	$\{1,2,4,7,8,11,13,14\}$

Now we calculate the cardinality of the sets I_{1}, \ldots, I_{s}. We denote by $|X|$ the number of all elements of a finite set X. First observe that if a, b are relatively prime positive integers, then in the set $\{1,2, \ldots, a b\}$ there are exactly $\varphi(a) b$ numbers relatively prime to a. In fact, let $u \in\{1,2, \ldots, a b\}$. Then $u=k a+r$, where $0 \leqslant k \leqslant b$ and $0 \leqslant r<a$, and $\operatorname{gcd}(u, a)=1 \Longleftrightarrow \operatorname{gcd}(r, a)=1$. Thus, every such u, which is relatively prime to a, is of the form $k a+r$ with $1 \leqslant r<a, \operatorname{gcd}(r, a)=1$ and where k is an arbitrary number belonging to $\{0,1, \ldots, b-1\}$. Hence, we have exactly b such numbers k, and so, the number of integers in $\{1, \ldots, a b\}$, relatively prime to a, is equal to $\varphi(a) b$. As a consequence of this fact we obtain
Lemma 4.2. Let $a \geqslant 2, b \geqslant 2$ be relatively prime integers. Then there are exactly $\varphi(a) b$ such integers belonging to $\{0,1, \ldots, a b-1\}$ which are relatively prime to a.

Let us recall that $\varphi(n)=n\left(1-\frac{1}{p_{1}}\right) \cdots\left(1-\frac{1}{p_{s}}\right)$. Now we are ready to prove the following proposition.
Proposition 4.3. $\left|I_{1}\right|=n_{1}$, and $\left|I_{j}\right|=n_{j}\left(1-\frac{1}{p_{1}}\right)\left(1-\frac{1}{p_{2}}\right) \cdots\left(1-\frac{1}{p_{j-1}}\right)$, for all $j=2,3, \ldots, s$.

Proof. The case $\left|I_{1}\right|=n_{1}$ is obvious. Let $j \geqslant 2$, and put $a=p_{1}^{\alpha_{1}} \cdots p_{j-1}^{\alpha_{j-1}}, \quad b=$ $p_{j}^{\alpha_{j}-1} p_{j+1}^{\alpha_{j+1}} \cdots p_{s}^{\alpha_{s}}$. Then $\operatorname{gcd}(a, b)=1, n_{j}-1=a b-1$, and if $r \in\left\{0,1, \ldots, n_{j}-1\right\}$, then $r \in I_{j} \Longleftrightarrow \operatorname{gcd}(r, a)=1$. Hence, by Lemma 4.2, we have

$$
\begin{aligned}
\left|I_{j}\right| & =\varphi(a) b=p_{1}^{\alpha_{1}} \cdots p_{j-1}^{\alpha_{j-1}}\left(1-\frac{1}{p_{1}}\right) \cdots\left(1-\frac{1}{p_{j-1}}\right) b \\
& =p_{1}^{\alpha_{1}} \cdots p_{j-1}^{\alpha_{j-1}}\left(1-\frac{1}{p_{1}}\right) \cdots\left(1-\frac{1}{p_{j-1}}\right) p_{j}^{\alpha_{j}-1} p_{j+1}^{\alpha_{j+1}} \cdots p_{s}^{\alpha_{s}} \\
& =\frac{n}{p_{j}}\left(1-\frac{1}{p_{1}}\right) \cdots\left(1-\frac{1}{p_{j-1}}\right)=n_{j}\left(1-\frac{1}{p_{1}}\right) \cdots\left(1-\frac{1}{p_{j-1}}\right) .
\end{aligned}
$$

This completes the proof.
Lemma 4.4. Consider some nonzero numbers z_{1}, \ldots, z_{s}. Define w_{1} by $w_{1}=\frac{1}{z_{1}}$ and w_{j} by $w_{j}=\frac{1}{z_{j}}\left(1-\frac{1}{z_{1}}\right)\left(1-\frac{1}{z_{2}}\right) \cdots\left(1-\frac{1}{z_{j-1}}\right)$ for $j=2, \ldots, s$. Then

$$
w_{1}+w_{2}+\cdots+w_{s}=1-\left(1-\frac{1}{z_{1}}\right)\left(1-\frac{1}{z_{2}}\right) \cdots\left(1-\frac{1}{z_{s}}\right) .
$$

Proof. The case $s=1$ is obvious. Assume now that it is true for an integer $s \geqslant 1$, and consider nonzero numbers z_{1}, \ldots, z_{s+1}. Then we have

$$
\begin{aligned}
& 1-\left(1-\frac{1}{z_{1}}\right) \cdots\left(1-\frac{1}{z_{s+1}}\right) \\
& =\left(1-\left(1-\frac{1}{z_{1}}\right) \cdots\left(1-\frac{1}{z_{s}}\right)\right)+\frac{1}{z_{s+1}}\left(1-\frac{1}{z_{1}}\right) \cdots\left(1-\frac{1}{z_{s}}\right) \\
& =w_{1}+\cdots+w_{s}+w_{s+1} .
\end{aligned}
$$

Proposition 4.5. $\left|I_{1}\right|+\left|I_{2}\right|+\cdots+\left|I_{s}\right|=n-\varphi(n)$.
Proof. We know, by Proposition 4.3, that $\left|I_{j}\right|=n w_{j}$, for $j=1, \ldots, s$, where $w_{1}=\frac{1}{p_{1}}$ and $w_{j}=\frac{1}{p_{j}}\left(1-\frac{1}{p_{1}}\right)\left(1-\frac{1}{p_{2}}\right) \cdots\left(1-\frac{1}{p_{j-1}}\right)$ for $j=2, \ldots, s$. Thus, by Lemma 4.4,

$$
\begin{aligned}
& \left|I_{1}\right|+\left|I_{2}\right|+\cdots+\left|I_{s}\right|=n\left(w_{1}+\cdots+w_{s}\right) \\
& =n\left(1-\left(1-\frac{1}{p_{1}}\right)\left(1-\frac{1}{p_{2}}\right) \cdots\left(1-\frac{1}{p_{s}}\right)\right) \\
& =n-n\left(1-\frac{1}{p_{1}}\right)\left(1-\frac{1}{p_{2}}\right) \cdots\left(1-\frac{1}{p_{s}}\right)=n-\varphi(n) .
\end{aligned}
$$

This completes the proof.
Let us recall the following well-known lemma where ε is a primitive n-th root of unity.

Lemma 4.6. Let c be an integer and let $U=\sum_{r=0}^{n-1}\left(\varepsilon^{c}\right)^{r}$. If $n \nmid c$ then U is equal to 0 , and in the other case, when $n \mid c$, this sum is equal to n.

Using this lemma we may prove the following proposition.
Proposition 4.7. If $c \in \mathbb{Z}$ then, for any $j \in\{1, \ldots, s\}$, the sum $W_{j}=\sum_{r \in I_{j}}\left(\varepsilon^{p_{j} c}\right)^{r}$ is an integer.

Proof. First consider the case $j=1$. Let $\eta=\varepsilon^{p_{1}}$. Then η is a primitive n_{1}-th root of unity, and $W_{1}=\sum_{r=0}^{n_{1}-1}\left(\eta^{c}\right)^{r}$. It follows from Lemma 4.6 that W_{1} is an integer.

Now assume that $j \geqslant 2$. Put $X=\left\{0,1, \ldots, n_{j}-1\right\}$, and $D_{i}=\left\{r \in X ; p_{i} \mid r\right\}$ for $i=1, \ldots, j-1$. Then $I_{j}=X \backslash\left(D_{1} \cup \cdots \cup D_{j-1}\right)$, and then $W_{j}=U-V$, where

$$
U=\sum_{r \in X}\left(\varepsilon^{p_{j} c}\right)^{r}, \quad V=\sum_{r \in D_{1} \cup \cdots \cup D_{j-1}}\left(\varepsilon^{p_{j} c}\right)^{r} .
$$

Observe that $U=\sum_{r=0}^{n_{j}-1}\left(\eta^{c}\right)^{r}$, where $\eta=\varepsilon^{p_{j}}$ is a primitive n_{j}-root of unity. Thus, by Lemma 4.6, U is an integer. Now we will show that V is also an integer. For
this aim first observe that

$$
V=\sum_{k=1}^{j-1}(-1)^{k+1} \sum_{i_{1}<\cdots<i_{k}} \sum_{r \in D_{i_{1} \ldots i_{k}}}\left(\varepsilon^{p_{j} c}\right)^{r},
$$

where the sum $\sum_{i_{1}<\cdots<i_{k}}$ runs through all integer sequences $\left(i_{1}, \ldots, i_{k}\right)$ such that $1 \leqslant i_{1}<\cdots<i_{k} \leqslant j-1$, and where $D_{i_{1} \ldots i_{k}}=D_{i_{1}} \cap \cdots \cap D_{i_{k}}$.

Let $1 \leqslant i_{1}<\cdots<i_{k} \leqslant j-1$ be a fixed integer sequence. Then we have

$$
\sum_{r \in D_{i_{1} \ldots i_{k}}}\left(\varepsilon^{p_{j} c}\right)^{r}=\sum_{r=0}^{u-1}\left(\eta^{c}\right)^{r},
$$

where $\eta=\varepsilon^{p_{j} \cdot p_{i_{1}} \cdots p_{i_{k}}}$, and $u=\frac{n_{j}}{p_{i_{1} \cdots} \cdots p_{i_{k}}}=\frac{n}{p_{j} \cdot p_{i_{1}} \cdots p_{i_{k}}}$. Since η is a primitive u-th root of unity, it follows from Lemma 4.6 that the last sum is an integer. Hence, every sum of the form $\sum_{r \in D_{i_{1} \ldots i_{k}}}\left(\varepsilon^{p_{j} c}\right)^{r}$ is an integer, and consequently, V is an integer. We already know that U is an integer. Therefore, $W_{j}=U-V$ is an integer.

5. Special numbers

As in the previous section, let $n=p_{1}^{\alpha_{1}} \cdots p_{s}^{\alpha_{s}}$, where p_{1}, \ldots, p_{s} are distinct primes and $\alpha_{1}, \ldots, \alpha_{s}$ are positive integers. Put $n_{j}=\frac{n}{p_{j}}$ for $j=1, \ldots, s$. Assume that $\left[p_{1}, \ldots, p_{n}\right]$ is a fixed type, and I_{1}, \ldots, I_{s} are the n-sets of type $\left[p_{1}, \ldots, p_{s}\right]$. If $j \in\{1, \ldots, s\}$ and $0 \leqslant r<n_{j}$, then we have the standard minimal element $m\left(p_{j}, r\right)=\sum_{i=0}^{p_{j}-1} e_{r+i n_{j}}$. Let us recall that each $m\left(p_{j}, r\right)$ belongs to the monoid \mathcal{M}_{n}, and it is a minimal element of \mathcal{M}_{n}. Moreover, $n_{j}=\frac{n}{p_{j}}$ for $j=1, \ldots, s$.

The main role in this section will play the sets $\mathcal{A}_{1}, \ldots, \mathcal{A}_{s}$, which are subsets of the monoid \mathcal{M}_{n}. We define these subsets as follows

$$
\mathcal{A}_{j}=\left\{m\left(p_{j}, r\right) ; r \in I_{j}\right\}
$$

for all $j=1, \ldots, s$. We denote by \mathcal{A} the union $\mathcal{A}=\mathcal{A}_{1} \cup \cdots \cup \mathcal{A}_{s}$. Note that the above sets \mathcal{A} and $\mathcal{A}_{1}, \ldots, \mathcal{A}_{s}$ are determined by the fixed succession $P=\left[p_{1}, \ldots, q_{n}\right]$ of the primes p_{1}, \ldots, p_{s}. In our case we will say that \mathcal{A} is the n-standard set of type P.

Observe that the sets $\mathcal{A}_{1}, \ldots, \mathcal{A}_{s}$ are pairwise disjoint, and as a consequence of Proposition 4.5 we have the equality $|\mathcal{A}|=n-\varphi(n)$.

Let us recall (see Theorem 2.3) that the group \mathcal{G}_{n} is a free \mathbb{Z}-module, and its rank is equal to $n-\varphi(n)$, so this rank is equal to $|\mathcal{A}|$. We are interested in finding conditions for \mathcal{A} to be a basis of \mathcal{G}_{n}. First we need \mathcal{A} to be linearly independent over \mathbb{Z}.

Special numbers will then be convenient to prove Theorem 9.1. We will say that the number n is special of type P if the n-standard set \mathcal{A} of type P is linearly independent over \mathbb{Z}. Moreover, we will say that the number n is special if there exists a type P for which n is special of type P. We will say that the number n is absolutely special if it is special with respect to any type P.

Example 5.1. Let $n=12=2^{2} 3$ and consider the type [2,3]. In this case we have: $s=2, p_{1}=2, p_{2}=3, n_{1}=6, n_{2}=4, I_{1}=\{0,1,2,3,4,5\}$ and $I_{2}=\{1,3\}$. The 12 -standard set \mathcal{A} of type [2,3] is the set of the following 8 sequences:

$$
\begin{aligned}
m(2,0) & =(1,0,0,0,0,0,1,0,0,0,0,0), \\
m(2,1) & =(0,1,0,0,0,0,0,1,0,0,0,0), \\
m(2,2) & =(0,0,1,0,0,0,0,0,1,0,0,0), \\
m(2,3) & =(0,0,0,1,0,0,0,0,0,1,0,0), \\
m(2,4) & =(0,0,0,0,1,0,0,0,0,0,1,0), \\
m(2,5) & =(0,0,0,0,0,1,0,0,0,0,0,1), \\
m(3,1) & =(0,1,0,0,0,1,0,0,0,1,0,0), \\
m(3,3) & =(0,0,0,1,0,0,0,1,0,0,0,1) .
\end{aligned}
$$

Observe that $m(2,1)+m(2,3)+m(2,5)=m(3,1)+m(3,3)$. Hence, the set \mathcal{A} is not linearly independent over \mathbb{Z}. This means, that 12 is not a special number of type [2, 3].

Now consider $n=12$ and the type $[3,2]$. In this case $p_{1}=3, p_{2}=2, n_{1}=4$, $n_{2}=6, I_{1}=\{0,1,2,3\}$ and $I_{2}=\{1,2,2,5\}$. The 12-standard set \mathcal{A} of type [3,2] is in this case the set of the following 8 sequences:

$$
\begin{aligned}
m(3,0) & =(1,0,0,0,1,0,0,0,1,0,0,0), \\
m(3,1) & =(0,1,0,0,0,1,0,0,0,1,0,0), \\
m(3,2) & =(0,0,1,0,0,0,1,0,0,0,1,0), \\
m(3,3) & =(0,0,0,1,0,0,0,1,0,0,0,1), \\
m(2,1) & =(0,1,0,0,0,0,0,1,0,0,0,0), \\
m(2,2) & =(0,0,1,0,0,0,0,0,1,0,0,0), \\
m(2,4) & =(0,0,0,0,1,0,0,0,0,0,1,0), \\
m(2,5) & =(0,0,0,0,0,1,0,0,0,0,0,1) .
\end{aligned}
$$

It is easy to check that in this case the set \mathcal{A} is linearly independent over \mathbb{Z}. Thus, 12 is a special number of type [3, 2], and 12 is not a special number of type [2, 3].

We will prove that the number n is absolutely special if and only if either n is square-free or n is a power of a prime number. Moreover, we will prove that the number n is special if and only if $n=p_{1} p_{2} \cdots p_{s-1} p_{s}^{\alpha_{s}}$, where p_{1}, \ldots, p_{s} are distinct primes and $\alpha_{s} \geqslant 1$.

Proposition 5.2. Every power of a prime is an absolutely special number.

Proof. Let $n=p^{m}$, where p is a prime and $m \geqslant 1$. Then $s=1, n_{1}=p^{m-1}$, $I_{1}=\left\{0,1, \ldots, p^{m-1}-1\right\}$ and there is only one type $P=[p]$. Thus, $\mathcal{A}=\mathcal{A}_{1}$ and, by Proposition 3.2, the set \mathcal{A} is linearly independent over \mathbb{Z}.

Lemma 5.3. Let p be a prime number, and let $N \geqslant 2$ be an integer such that $p \nmid N$. Then, for every integer r, there exists a unique $c_{r} \in\{0,1, \ldots, p-1\}$ such that the number $r+c_{r} N$ is divisible by p. Moreover, all numbers of the form $r+c_{r} N$ with $0 \leqslant r<N$ are pairwise different.

Proof. Let $r \in \mathbb{Z}$. Consider the integers $r, r+N, r+2 N, \ldots, r+(p-1) N$, and observe that these numbers are pairwise noncongruent modulo p. Thus, there exists a unique $c_{r} \in\{0,1, \ldots, p-1\}$ such that $r+c_{r} N=0(\bmod p)$. Assume that $r_{1}+c_{r_{1}} N=r_{2}+c_{r_{2}} N$ for some $r_{1}, r_{2} \in\{0,1, \ldots, N-1\}$. Then $N \mid r_{1}-r_{2}$ and so, $r_{1}=r_{2}$.

Despite the fact that we need the full Theorem $5.10\left(\mathcal{A}\right.$ generates $\left.\mathcal{G}_{n}\right)$, we first state and prove the following Proposition $(\mathcal{A}$ is linearly independent over $\mathbb{Z})$ for a better understanding. This Proposition is not equivalent, as \mathcal{A} could generate a subgroup of \mathcal{G}_{n} of finite index.
Proposition 5.4. Let $n=p_{1} \cdots p_{s-1} \cdot p_{s}^{\alpha}$, where $s \geqslant 2$, $\alpha \geqslant 1$, and p_{1}, \ldots, p_{s} are distinct primes. Then n is a special number of every type of the form $\left[p_{\sigma(1)}, \ldots, p_{\sigma(s-1)}, p_{s}\right]$, where σ is a permutation of $\{1, \ldots, s-1\}$.

Proof. Let P be a fixed type with p_{s} at the end. Without loss of generality, we may assume that $P=\left[p_{1}, \ldots, p_{s-1}, p_{s}\right]$. Let I_{1}, \ldots, I_{s} be n-sets of type P, and assume that

$$
\begin{equation*}
\sum_{j=1}^{s}\left(\sum_{r \in I_{j}} \gamma_{r}^{(j)} m\left(p_{j}, r\right)\right)=(0,0, \ldots, 0) \tag{a}
\end{equation*}
$$

where each $\gamma_{r}^{(j)}$ is an integer. We will show that $\gamma_{r}^{(j)}=0$ for all j, r.
Note, that every standard element $u=m\left(p_{j}, r\right)$ is a sequence $\left(u_{0}, u_{1}, \ldots, u_{n-1}\right)$, where all u_{0}, \ldots, u_{n-1} are integers belonging to $\{0,1\}$. We will denote by $S(u)$ the support of u, that is, $S(u)=\left\{k \in\{0,1, \ldots, n-1\} ; u_{k}=1\right\}$.

Consider the case $j=1$. Put $p=p_{1}$ and $N=n_{1}=\frac{n}{p}=p_{2} p_{3} \ldots p_{s-1} \cdot p_{s}^{\alpha}$. Observe that $p \nmid N$, and all the numbers n_{2}, \ldots, n_{s} are divisible by p. Let $u=$ $m\left(p_{j}, r\right)$ with $r \in I_{j}$, where $j \geqslant 2$. Then $p \nmid r$, and

$$
S(u)=\left\{r, r+n_{j}, r+2 n_{j}, \ldots, r+\left(p_{j}-1\right) n_{j}\right\}
$$

and hence, all the elements of $S(u)$ are not divisible by p.
Look at the support of $m\left(p_{1}, r\right)$ with $r \in I_{1}$. We have $S\left(m\left(p_{1}, r\right)\right)=\{r, r+$ $N, r+2 N, \ldots, r+(p-1) N\}$. It follows from Lemma 5.3 that in this support there exists exactly one element divisible by p. Let us denote this element by $r+c_{r} N$.

We know also from the same lemma, that all the elements $r+c_{r} N$ with $r \in I_{1}$ are pairwise different. These arguments imply, that in the equality (a) all the integers $\gamma_{r}^{(1)}$, with $r \in I_{1}$, are equal to zero.

Now let $2 \leqslant j_{0}<s$, and assume that we already proved the equalities $\gamma_{r}^{(j)}=0$ for all $j<j_{0}$ and $r \in I_{j}$. Then the equality (a) is of the form

$$
\begin{equation*}
\sum_{j=j_{0}}^{s}\left(\sum_{r \in I_{j}} \gamma_{r}^{(j)} m\left(p_{j}, r\right)\right)=(0,0, \ldots, 0) \tag{b}
\end{equation*}
$$

We will show that $\gamma_{r}^{\left(j_{0}\right)}=0$ for all $r \in I_{j_{0}}$.
Put $p=p_{j_{0}}$ and $N=n_{j_{0}}=\frac{n}{p}$. Observe that $p \nmid N$, and all the numbers n_{j} with $j>j_{0}$ are divisible by p. Let $u=m\left(p_{j}, r\right)$ with $r \in I_{j}$, where $j>j_{0}$. Then $p \nmid r$, and

$$
S(u)=\left\{r, r+n_{j}, r+2 n_{j}, \ldots, r+\left(p_{j}-1\right) n_{j}\right\}
$$

and hence, all the elements of $S(u)$ are not divisible by p.
Look at the support of $m\left(p_{j_{0}}, r\right)$ with $r \in I_{j_{0}}$. We have $S\left(m\left(p_{j_{0}}, r\right)\right)=\{r, r+$ $N, r+2 N, \ldots, r+(p-1) N\}$. It follows from Lemma 5.3 that in this support there exists exactly one element divisible by p. Let us denote this element by $r+c_{r} N$. We know also from the same lemma, that all the elements $r+c_{r} N$ with $r \in I_{j_{0}}$ are pairwise different. These arguments imply, that in the equality (b) all the integers $\gamma_{r}^{\left(j_{0}\right)}$, with $r \in I_{j_{0}}$, are equal to zero.

Hence, by the induction hypothesis, the equality (b) reduces to the equality

$$
\sum_{r \in I_{s}} \gamma_{r}^{(s)} m\left(p_{s}, r\right)=(0,0, \ldots, 0)
$$

where each $\gamma_{r}(s)$ is an integer. Now we use Proposition 3.2 and we have $\gamma_{r}(s)=0$ for all $r \in I_{s}$. Thus, we proved that in the equality (a) all the integers of the form γ_{r}^{j}, where $j \in\{1, \ldots, s\}$ and $r \in I_{j}$, are equal to zero. This means that the n-standard set \mathcal{A} of type P is linearly independent over \mathbb{Z}. Therefore, n is a special number of type P.

Using the above proposition for $\alpha=1$ we obtain
Proposition 5.5. Every square-free integer $n \geqslant 2$ is absolutely special.
Lemma 5.6. Let $n=p_{1}^{\alpha_{1}} \cdots p_{s}^{\alpha_{s}}$, where $s \geqslant 2, p_{1}, \ldots, p_{s}$ are distinct prime numbers and $\alpha_{1}, \ldots, \alpha_{s}$ are positive integers. Let $P=\left[p_{1}, \ldots, p_{s}\right]$. If $\alpha_{1} \geqslant 2$, then n is not a special number of type P.

Proof. Put $p=p_{1}, q=p_{2}, u=\frac{n}{p^{2}}, v=\frac{n}{p q}, a=\sum_{k=0}^{u-1} m(p, p k+1), b=\sum_{k=0}^{v-1} m(q, p k+$ $1)$. Observe that a is a sum of elements from \mathcal{A}_{1}, and b is a sum of elements from
\mathcal{A}_{2}. Moreover, $n_{1}=\frac{n}{p}=p u, n_{2}=\frac{n}{q}=p v$,

$$
\begin{aligned}
& a=\sum_{k=0}^{u-1} \sum_{i=0}^{p-1} e_{p k+1+i n_{1}}=\sum_{k=0}^{u-1} \sum_{i=0}^{p-1} e_{p k+1+i p u}=\sum_{k=0}^{u-1} \sum_{i=0}^{p-1} e_{p(k+i u)+1}=\sum_{j=0}^{n_{1}-1} e_{p j+1}, \\
& b=\sum_{k=0}^{v-1} \sum_{i=0}^{q-1} e_{p k+1+i n_{2}}=\sum_{k=0}^{v-1} \sum_{i=0}^{q-1} e_{p k+1+i p v}=\sum_{k=0}^{v-1} \sum_{i=0}^{q-1} e_{p(k+i v)+1}=\sum_{j=0}^{n_{1}-1} e_{p j+1} .
\end{aligned}
$$

Hence, $a=\sum_{j=0}^{n_{1}-1} e_{p j+1}=b$. This implies that the n-standard set \mathcal{A} of type P is not linearly independent over \mathbb{Z}. Thus, n is not a special number of type P.

Lemma 5.7. Let $n=p_{1}^{\alpha_{1}} \cdots p_{s}^{\alpha_{s}}$, where $s \geqslant 2, p_{1}, \ldots, p_{s}$ are distinct prime numbers and $\alpha_{1}, \ldots, \alpha_{s}$ are positive integers. Let $P=\left[p_{1}, \ldots, p_{s}\right]$. If there exists $j_{0} \in\{1,2, \ldots, s-1\}$ such that $\alpha_{j_{0}} \geqslant 2$, then n is not a special number of type P.

Proof. If $j_{0}=1$ then the assertion follows from Lemma 5.6. Assume that $j_{0} \geqslant 2$, and let $\mathcal{A}_{1}, \ldots, \mathcal{A}_{s}$ be the n-standard sets of type P. Put $N=p_{1}^{\alpha_{1}} \cdots p_{j_{0}-1}^{\alpha_{j_{0}-1}}$, $p=p_{j_{0}}, q=p_{j_{0}+1}, u=\frac{n}{N p^{2}}, v=\frac{n}{N p q}, w=\frac{n}{p N}, a=\sum_{k=0}^{u-1} m(p, p N k+1)$, and $b=\sum_{k=0}^{v-1} m(q, p N k+1)$. Observe that a is a sum of elements from $\mathcal{A}_{j_{0}}$, and b is a sum of elements from $\mathcal{A}_{j_{0}+1}$. Moreover, $n_{j_{0}}=\frac{n}{p}=p N u, n_{j_{0}+1}=\frac{n}{q}=p N v$,

$$
\begin{aligned}
a & =\sum_{k=0}^{u-1} \sum_{i=0}^{p-1} e_{p N k+1+i n_{j_{0}}}=\sum_{k=0}^{u-1} \sum_{i=0}^{p-1} e_{p N k+1+i p N u} \\
& =\sum_{k=0}^{u-1} \sum_{i=0}^{p-1} e_{p N(k+i u)+1}=\sum_{j=0}^{w-1} e_{p N j+1}, \\
b & =\sum_{k=0}^{v-1} \sum_{i=0}^{q-1} e_{p N k+1+i n_{j_{0}+1}}=\sum_{k=0}^{v-1} \sum_{i=0}^{q-1} e_{p N k+1+i p N v} \\
& =\sum_{k=0}^{v-1} \sum_{i=0}^{q-1} e_{p N(k+i v)+1}=\sum_{j=0}^{w-1} e_{p N j+1} .
\end{aligned}
$$

Hence, $a=\sum_{j=0}^{w-1} e_{p N j+1}=b$, where $w=\frac{n}{p N}$. This implies that the n-standard set \mathcal{A} of type P is not linearly independent over \mathbb{Z}. Thus, n is not a special number of type P.

As a consequence of the above facts we obtain the following theorems.
Theorem 5.8. An integer $n \geqslant 2$ is special if and only if $n=p_{1} p_{2} \cdots p_{s-1} p_{s}^{\alpha_{s}}$, where p_{1}, \ldots, p_{s} are distinct primes and $\alpha_{s} \geqslant 1$.

Theorem 5.9. An integer $n \geqslant 2$ is absolutely special if and only if either n is square-free or n is a power of a prime number.

The smallest non-special positive integer $n \geqslant 2$ is $n=36$. In the segment $[2,100]$ there are 3 non-special numbers: 36,72 and 100 .

Let us recall that if n is a special number, then its n-standard set \mathcal{A} is linearly independent over \mathbb{Z}. Now we will show that, in this case, the set \mathcal{A} is a basis of \mathcal{G}_{n}. Let us denote by $\overline{\mathcal{A}}$ the subgroup of \mathcal{G}_{n} generated by \mathcal{A}. Every element of $\overline{\mathcal{A}}$ is a finite combination over \mathbb{Z} of some elements of \mathcal{A}.

We already know (see Theorem 3.5) that the group \mathcal{G}_{n} is generated by all the standard minimal elements of \mathcal{M}_{n}. Thus, for a proof that \mathcal{A} is a basis of \mathcal{G}_{n}, it suffices to prove that every standard minimal element of \mathcal{M}_{n} belongs to $\overline{\mathcal{A}}$.

Theorem 5.10. Let $n=p_{1} \cdots p_{s-1} p_{s}^{\alpha}$, where $s \geqslant 1, \alpha \geqslant 1$, and p_{1}, \ldots, p_{s} are pairwise different primes. Let $P=\left[p_{1}, \ldots, p_{s}\right]$, and let \mathcal{A} be the n-standard set of type P. Then every standard minimal element of \mathcal{M}_{n} belongs to $\overline{\mathcal{A}}$.

Proof. First, all p_{1}-standard elements $m\left(p_{1}, r\right)$ with $0 \leqslant r<\frac{n}{p_{1}}$ belong to \mathcal{A}_{1} and thus to $\overline{\mathcal{A}}$.

To go further, for $j>1$, we will use the relations given in Proposition 3.3 and we define therefore the height of a p_{j}-standard element (that may not belong to \mathcal{A}_{j}) as the number of primes among $\left\{p_{1}, \cdots, p_{j-1}\right\}$ that divide r and denote it by $h\left(m\left(p_{j}, r\right)\right)$. Elements of \mathcal{A}_{j} have height 0 . A p_{j}-standard element has an height at most $j-1$.

By definition all standard elements of height 0 belong to \mathcal{A} and thus to $\overline{\mathcal{A}}$.

To achieve the proof by induction, we use the following fact.
Key fact. For $j>1$, let $m\left(p_{j}, r\right)$ be a p_{j}-standard element with a non-zero height. Then some of the $p_{i}, 1 \leq i<j$ divide r. Let then denote by p one of them and p_{j} by q.
As all prime factors but the last have exponent 1 in the decomposition of n, when we apply Proposition $3.3, N=n / p q$ is coprime with p and a multiple of all $p_{l}, 1 \leq$ $l<j, l \neq i$.
For any $k, 1 \leq k \leq p-1, r+k N$ is coprime with p and keeps the same other divisors among the other $p_{l}, 1 \leq l<j, l \neq i$: the height $h\left(m\left(p_{j}, r+l N\right)\right)$ is then $h\left(m\left(p_{j}, r\right)\right)-1$.
Whence the following relation we get from Proposition 3.3

$$
m(q, r)=\sum_{k=0}^{q-1} m(p, k N+r)-\sum_{k=1}^{p-1} m(q, k N+r) .
$$

which means

$$
m\left(p_{j}, r\right)=\sum_{k=0}^{q-1} m\left(p_{i}, k N+r\right)-\sum_{k=1}^{p-1} m\left(p_{j}, k N+r\right)
$$

and $m\left(p_{j}, r\right)$ is a \mathbb{Z}-linear combination of some $m\left(p_{j}, r^{\prime}\right)$ with a strictly smaller height and of some $m\left(p_{i}, r^{\prime \prime}\right)$ for an index $i<j$.

The proof is now a double induction with the following steps.
Let $j>1$ and suppose that all $m\left(p_{i}, r\right)$ have been proven to belong to $\overline{\mathcal{A}}$ for all $i<j$.
All $m\left(p_{j}, r\right)$ with a 0 height belong to \mathcal{A}_{j} and then to $\overline{\mathcal{A}}$.
For any $h^{\prime}, 1 \leq h^{\prime}<j$, if we know that all $m\left(p_{j}, r\right)$ with $h\left(m\left(p_{j}, r\right)\right)<h^{\prime}$ belong to $\overline{\mathcal{A}}$, then the same is true for all $m\left(p_{j}, r\right)$ with $h\left(m\left(p_{j}, r\right)\right)=h^{\prime}$ according to the previous key fact.

6. The cyclotomic derivation d

Throughout this section $n \geqslant 3$ is an integer, K is a field of characteristic zero, $K[X]=K\left[x_{0}, \ldots, x_{n-1}\right]$ is the polynomial ring over K in variables x_{0}, \ldots, x_{n-1}, and $K(X)=K\left(x_{0}, \ldots, x_{n-1}\right)$ is the field of quotients of $K[X]$. We denote by \mathbb{Z}_{n} the ring $\mathbb{Z} / n \mathbb{Z}$. The indexes of the variables x_{0}, \ldots, x_{n-1} are elements of \mathbb{Z}_{n}. We denote by d the cyclotomic derivation of $K[X]$, that is, d is the K-derivation of $K[X]$ defined by

$$
d\left(x_{j}\right)=x_{j+1}, \quad \text { for } \quad j \in \mathbb{Z}_{n}
$$

We denote also by d the unique extension of d to $K(X)$. We denote by $K[X]^{d}$ and $K(X)^{d}$ the K-algebra of constants of d and the field of constants of d, respectively. Thus,

$$
K[X]^{d}=\{F \in K[X] ; d(F)=0\}, \quad K(X)^{d}=\{f \in K(X) ; d(f)=0\}
$$

Now we recall from [10] some basic notions and facts concerning the derivation d. As in the previous sections, we denote by ε a primitive n-th root of unity, and first we assume that $\varepsilon \in K$.

The letters ϱ and τ we book for two K-automorphisms of the field $K(X)$, defined by

$$
\varrho\left(x_{j}\right)=x_{j+1}, \quad \tau\left(x_{j}\right)=\varepsilon^{j} x_{j} \quad \text { for all } \quad j \in \mathbb{Z}_{n}
$$

Observe that $\varrho d \varrho^{-1}=d$. We denote by $u_{0}, u_{1}, \ldots, u_{n-1}$ the linear forms, belonging to $K[X]$, defined by

$$
u_{j}=\sum_{i=0}^{n-1}\left(\varepsilon^{j}\right)^{i} x_{i}, \quad \text { for } \quad j \in \mathbb{Z}_{n}
$$

Then we have the equalities

$$
x_{i}=\frac{1}{n} \sum_{j=0}^{n-1}\left(\varepsilon^{-i}\right)^{j} u_{j}
$$

for all $i \in \mathbb{Z}_{n}$. Thus, $K[X]=K\left[u_{0}, \ldots, u_{n-1}\right], K(X)=K\left(u_{0}, \ldots, u_{n-1}\right)$, and the forms u_{0}, \ldots, u_{n-1} are algebraically independent over K. Moreover,

$$
\tau\left(u_{j}\right)=u_{j+1}, \quad \varrho\left(u_{j}\right)=\varepsilon^{-j} u_{j}, \quad d\left(u_{j}\right)=\varepsilon^{-j} u_{j}
$$

for all $j \in \mathbb{Z}_{n}$.
It follows from the last equality that d is a diagonal derivation of the polynomial ring $K[U]=K\left[u_{0}, \ldots, u_{n-1}\right]$ which is equal to the ring $K[X]$.

If $\alpha=\left(\alpha_{0}, \ldots, \alpha_{n-1}\right) \in \mathbb{Z}^{n}$, then we denote by u^{α} the rational monomial $u_{0}^{\alpha_{0}} \cdots u_{n-1}^{\alpha_{n-1}}$. Recall (see Section 2) that $H_{\alpha}(t)$ is the polynomial $\alpha_{0}+\alpha_{1} t^{1}+$ $\cdots+\alpha_{n-1} t^{n-1}$ belonging to $\mathbb{Z}[t]$. Since $d\left(u_{j}\right)=\varepsilon^{-j} u_{j}$ for all $j \in \mathbb{Z}_{n}$, we have

$$
d\left(u^{\alpha}\right)=H_{\alpha}\left(\varepsilon^{-1}\right) u^{\alpha}, \quad \text { for all } \alpha \in \mathbb{Z}^{n} .
$$

Note that ε^{-1} is also a primitive n-th root of unity. Hence, by Proposition 2.1, we have the equivalence $H_{\alpha}\left(\varepsilon^{-1}\right)=0 \Longleftrightarrow H_{\alpha}(\varepsilon)=0$, and so, we see that if $\alpha \in \mathbb{Z}^{n}$, then $d\left(u^{\alpha}\right)=0 \Longleftrightarrow \alpha \in \mathcal{G}_{n}$, and if $\alpha \in \mathbb{N}^{n}$, then $d\left(u^{\alpha}\right)=0 \Longleftrightarrow \alpha \in \mathcal{M}_{n}$. Moreover, if $F=b_{1} u^{\alpha^{(1)}}+\cdots+b_{r} u^{\alpha^{(r)}}$, where $b_{1}, \ldots, b_{r} \in K$ and $\alpha^{(1)}, \ldots, \alpha^{(r)}$ are pairwise different elements of \mathbb{N}^{n}, then $d(F)=0$ if and only if $d\left(b_{i} u^{\alpha^{(i)}}\right)=0$ for every $i=1, \ldots, r$. In [10] we proved the following proposition.

Proposition 6.1 ([10]). If the primitive n-th root ε belongs to K, then:
(1) the ring $K[X]^{d}$ is generated over K by all elements of the form u^{α} with $\alpha \in \mathcal{M}_{n}$;
(2) the ring $K[X]^{d}$ is generated over K by all elements of the form u^{β}, where β is a minimal element of the monoid \mathcal{M}_{n};
(3) the field $K(X)^{d}$ is generated over K by all elements of the form u^{γ} with $\gamma \in \mathcal{G}_{n}$;
(4) the field $K(X)^{d}$ is the field of quotients of the ring $K[X]^{d}$.

Let $m=n-\varphi(n)$, and let $\gamma_{0}, \ldots, \gamma_{m-1}$ be the elements of \mathcal{G}_{n} introduced in Section 2. We know (see Theorem 2.3) that these elements form a basis of the group \mathcal{G}_{n}. Consider now the rational monomials w_{0}, \ldots, w_{m-1} defined by

$$
w_{j}=u^{\gamma_{j}} \quad \text { for } \quad j=0,1, \ldots, m-1 .
$$

It follows from Proposition 6.1, that these monomials belong to $K(X)^{d}$ and they generate the field $K(X)^{d}$. We proved in [10] that they are algebraically independent over K. Moreover, in [10] proved the following theorem.

Theorem 6.2. If the primitive n-th root ε belongs to K, then the field of constants $K(X)^{d}$ is a field of rational functions over K and its transcendental degree over K is equal to $m=n-\varphi(n)$, where φ is the Euler totient function. More precisely,

$$
K(X)^{d}=K\left(w_{0}, \ldots, w_{m-1}\right)
$$

where the elements w_{0}, \ldots, w_{m-1} are as above.

7. The polynomials $S_{p, m}$

In this section we use the notations from the previous section, and we again assume that K is a field of characteristic zero containing ε. Let us recall that if p is a prime divisor of n and $0 \leqslant r \leqslant \frac{n}{p}-1$, then $m(p, r)$, is the standard minimal element of the monoid \mathcal{M}_{n} defined by $m(p, r)=\sum_{i=0}^{p-1} e_{r+i \frac{n}{p}}$. Observe that if a, b are integers such that $a \equiv b\left(\bmod \frac{n}{p}\right)$, then $\sum_{i=0}^{p-1} e_{a+i \frac{n}{p}}=\sum_{i=0}^{p-1} e_{b+i \frac{n}{p}}$. Thus, we may define

$$
m(p, a):=\sum_{i=0}^{p-1} e_{a+i \frac{n}{p}}, \quad \text { for } \quad a \in \mathbb{Z}
$$

Note, that if $a \in \mathbb{Z}$, then $m(p, a)=m(p, r)$, where r is the remainder of division of a by $\frac{n}{p}$. Moreover, $\zeta^{\frac{n}{p}}(m(p, b))=m(p, b)$ for $b \in \mathbb{Z}$, and more general, $\zeta^{a}(m(p, b))=$ $m(p, a+b)$ for all $a, b \in \mathbb{Z}$ (see Proposition 3.4).

For every integer a, we define

$$
S_{p, a}:=u^{m(p, a)}=\prod_{i=0}^{p-1} u_{a+i \frac{n}{p}} .
$$

Observe that $S_{p, a}=S_{p, r}$, where r is the remainder of division of a by $\frac{n}{p}$. Each $S_{p, a}$ is a monomial belonging to $K[U]=K\left[u_{0}, \ldots, u_{n-1}\right]$. Since $m(p, a) \in \mathcal{M}_{n} \subset \mathcal{G}_{n}$, each $S_{p, a}$ belongs to the constant field $K(X)^{d}$.

Recall (see Section 6) that ϱ is the K-automorphism of the field $K(X)$, defined by

$$
\varrho\left(x_{j}\right)=x_{j+1}, \quad \text { for } \quad j \in \mathbb{Z}_{n} .
$$

We have $\varrho\left(u_{j}\right)=\varepsilon^{-j} u_{j}$ for $j \in \mathbb{Z}_{n}$. In particular, $\varrho\left(u_{0}\right)=u_{0}$. The proof of the following proposition is an easy exercise.
Proposition 7.1. If $a \in \mathbb{Z}$, then $\varrho\left(S_{p, a}\right)=\varepsilon^{-b} S_{p, a}$, where $b=p a+\frac{(p-1) n}{2}$. In particular, if p is odd then $\varrho\left(S_{p, a}\right)=\varepsilon^{-a p} S_{p, a}$. If $p=2$, then n is even and $\varrho\left(S_{2, a}\right)=\varepsilon^{-\left(2 a+\frac{n}{2}\right)} S_{2, a}$.

Recall the following well known lemma, which appears in many books of linear algebra.

Lemma 7.2. For any integer $n \geqslant 2$,

$$
u_{0} u_{1} \ldots u_{n-1}=\left|\begin{array}{cccc}
x_{0} & x_{1} & \cdots & x_{n-1} \\
x_{n-1} & x_{0} & \cdots & x_{n-2} \\
\vdots & \vdots & & \vdots \\
x_{1} & x_{2} & \cdots & x_{0}
\end{array}\right| .
$$

In particular, the product $u_{0} u_{1} \ldots u_{n-1}$ is a polynomial belonging to $\mathbb{Z}[X]$.
Using this lemma we obtain the following proposition.
Proposition 7.3. The polynomial $S_{p, 0}$ belongs to $\mathbb{Z}[X]$.
Proof. Put $b=\frac{n}{p}, \eta=\varepsilon^{b}$, and $v_{i}=u_{i b}, y_{i}=\sum_{j=0}^{b-1} x_{i+j p}$ for all $i=0,1, \ldots, p-1$, Then η is a primitive p-th root of unity, and $v_{i}=\sum_{k=0}^{p-1}\left(\eta^{i}\right)^{k} y_{k}$, for all $i=0,1, \ldots, p-1$. Now we use Lemma 7.2, and we have

$$
S_{p_{j}, 0}=v_{0} v_{1} \cdots v_{p-1}=\left|\begin{array}{cccc}
y_{0} & y_{1} & \cdots & y_{p-1} \\
y_{p-1} & y_{0} & \cdots & y_{p-2} \\
\vdots & \vdots & & \vdots \\
y_{1} & y_{2} & \cdots & y_{0}
\end{array}\right| .
$$

Thus, $S_{p_{j}, 0} \in \mathbb{Z}[X]$.
Let $n=p_{1}^{\alpha_{1}} \cdots p_{s}^{\alpha_{s}}$, where p_{1}, \ldots, p_{s} are distinct primes and $\alpha_{1}, \ldots, \alpha_{s}$ are positive integers. Let $n_{j}=\frac{n}{p_{j}}$ for $j=1, \ldots, s$. Assume that $P=\left[p_{1}, \ldots, p_{n}\right]$ is a fixed type, and I_{1}, \ldots, I_{s} are the n-sets of type P.

For every $j \in\{1, \ldots, s\}$ we denote by \mathcal{V}_{j} the K-subspace of $K[U]$ generated by all the monomials $S_{p_{j}, r}$ with $r \in I_{j}$. Let us remember

$$
\mathcal{V}_{j}=\left\langle S_{p_{j}, r} ; r \in I_{j}\right\rangle, \quad \text { for } \quad j=1, \ldots, s
$$

We will say that $\mathcal{V}_{1}, \ldots, \mathcal{V}_{s}$ are n-spaces of type P. As a consequence of Propositions 4.3 and 4.5 we obtain the following proposition.

Proposition 7.4. If $\mathcal{V}_{1}, \ldots, \mathcal{V}_{s}$ are n-spaces of type $P=\left[p_{1}, \ldots, p_{s}\right]$, then $\operatorname{dim}_{K} \mathcal{V}_{1}=n_{1}$, and $\operatorname{dim}_{K} \mathcal{V}_{j}=n_{j}\left(1-\frac{1}{p_{1}}\right)\left(1-\frac{1}{p_{2}}\right) \cdots\left(1-\frac{1}{p_{j-1}}\right)$, for all $j=$ $2,3, \ldots, s$. Moreover,

$$
\operatorname{dim}_{K}\left(\mathcal{V}_{1} \oplus \cdots \oplus \mathcal{V}_{s}\right)=n-\varphi(n)
$$

Let \mathcal{A} be the n-standard set of type P. Let us recall (see Section 5) that $\mathcal{A}=\mathcal{A}_{1} \cup \cdots \cup \mathcal{A}_{s}$, where $\mathcal{A}_{j}=\left\{p\left(p_{j}, r\right) ; r \in I_{j}\right\}$ for $j=1, \ldots, s$. Hence, for each j we have the equality $\mathcal{V}_{j}=\left\langle u^{a} ; a \in \mathcal{A}_{j}\right\rangle$. Let \mathcal{S} the set of all the monomials u^{a} with $a \in \mathcal{A}$, that is,

$$
\mathcal{S}=\left\{S_{p_{j}, r} ; j \in\{1, \ldots, s\}, r \in I_{j}\right\} .
$$

Proposition 7.5. If the number n is special of type P, then the above set \mathcal{S} is algebraically independent over K, and $K(X)^{d}=K(\mathcal{S})$.

Proof. Assume that n is special of type P. Let $\gamma_{0}, \ldots, \gamma_{m-1}$ be the elements of \mathcal{G}_{n} defined in Section 2, and let $w_{i}=u^{\gamma_{i}}$ for $i=0, \ldots, m-1$. Recall that $m=n-\varphi(n)$. Put $\Gamma=\left\{\gamma_{0}, \ldots, \gamma_{m-1}\right\}$, and $W=\left\{w_{0}, \ldots, w_{m-1}\right\}$. We know (see Theorem 2.3) that Γ is a basis of \mathcal{G}_{n}. Since n is special, the set \mathcal{A} is also a basis of \mathcal{G}_{n}. This implies that $K(\mathcal{S})=K(W)$. But, by Theorem 6.2 , the set W is algebraically independent over K and $K(W)=K(X)^{d}$. Moreover, $|\mathcal{S}|=|W|=m$ Hence, the set \mathcal{S} is also algebraically independent over K, and we have the equality $K(X)^{d}=K(\mathcal{S})$.

In the above proposition we assumed that n is special of type P. This assumption is very important. Consider for example $n=12$ and $P=[2,3]$. We know (see Example 5.1) that 12 is not special of type P. In this case the set \mathcal{S} is not algebraically independent over K. In fact, we have the polynomial equality $S_{2,1} S_{2,3} S_{2,5}=S_{3,1} S_{3,3}$.

8. The polynomials $\mathrm{T}_{p, m}$

Let $n=p_{1}^{\alpha_{1}} \cdots p_{s}^{\alpha_{s}}$, where p_{1}, \ldots, p_{s} are distinct prime numbers and $\alpha_{1}, \ldots, \alpha_{s}$ are positive integers. Let $n_{j}=\frac{n}{p_{j}}$ for $j=1, \ldots, s$. Assume that $P=\left[p_{1}, \ldots, p_{n}\right]$ is a fixed type, and I_{1}, \ldots, I_{s} are the n-sets of type P.

Now assume that j is a fixed element from the set $\{1, \ldots, s\}$, and a is an integer. Put

$$
T_{p_{j}, a}=\sum_{r \in I_{j}}\left(\varepsilon^{-a p_{j}}\right)^{r} S_{p_{j}, r} .
$$

Observe that $T_{p_{j}, a}=T_{p_{j}, m}$, where m is the remainder of division of a by n_{j}. Let us recall that $\varepsilon \in K$. Thus, every $T_{p_{j}, a}$ is a polynomial from $K[U]$ belonging to the subspace \mathcal{V}_{j}.

Proposition 8.1. For every $j=1, \ldots, s$, all the polynomials $T_{p_{j}, m}$ with $0 \leqslant m<$ n_{j}, generate the K-space \mathcal{V}_{j}.

Proof. Let $q \in I_{j}$ and consider the sum $H=\sum_{m=0}^{n_{j}-1}\left(\varepsilon^{q p_{j}}\right)^{m} T_{p_{j}, m}$. Put $\eta=\varepsilon^{p_{j}}$. Then η is a primitive n_{j}-th root of unity, and we have

$$
\begin{aligned}
H & =\sum_{m=0}^{n_{j}-1}\left(\varepsilon^{q p_{j}}\right)^{m}\left(\sum_{r \in I_{j}} \varepsilon^{r p_{j} m} S_{p_{j}, r}\right)=\sum_{r \in I_{j}}\left(\sum_{m=0}^{n_{j}-1} \varepsilon^{(q-r) p_{j} m}\right) S_{p_{j}, r} \\
& =\sum_{r \in I_{j}}\left(\sum_{m=0}^{n_{j}-1} \eta^{(q-r) m}\right) S_{p_{j}, r}=n_{j} S_{p_{j}, q} .
\end{aligned}
$$

In the last equality we used Lemma 4.6. Thus, if $q \in I_{j}$, then $S_{p_{j}, q}=$ $\frac{1}{n_{j}} \sum_{m=0}^{n_{j}-1}\left(\varepsilon^{q p_{j}}\right)^{m} T_{p_{j}, m}$. But $\varepsilon \in K$, so now it is clear that all $T_{p_{j}, m}$ with $0 \leqslant m<n_{j}$, generate the K-space \mathcal{V}_{j}.

Now we will prove that every polynomial $T_{p_{j}, a}$ belongs to the ring $\mathbb{Z}[X]$. For this aim first recall (see Section 6) that τ is a K-automorphism of $K(X)$ defined by

$$
\tau\left(x_{j}\right)=\varepsilon^{j} x_{j} \quad \text { for all } \quad j \in \mathbb{Z}_{n} .
$$

Since $\tau\left(u_{i}\right)=u_{i+1}$ for all $i \in \mathbb{Z}_{n}$, we have

$$
S_{p_{j}, r}=\tau^{r}\left(S_{p_{j}, 0}\right)
$$

for $j \in\{1, \ldots, s\}$ and $r \in \mathbb{Z}$ (in particular, for $r \in I_{j}$). We say (us in [10]) that a rational function $f \in K(X)$ is τ-homogeneous, if f is homogeneous in the ordinary sense and $\tau(f)=\varepsilon^{c} f$ for some $c \in \mathbb{Z}_{n}$. In this case we say that c is the τ-degree of f and we write $\operatorname{deg}_{\tau}(f)=c$. Note that $\operatorname{deg}_{\tau}(f)$ is an element of \mathbb{Z}_{n}. Every rational monomial $x^{\alpha}=x_{0}^{\alpha_{0}} \cdots x_{n-1}^{\alpha_{n-1}}$, where $\alpha=\left(\alpha_{0}, \ldots, \alpha_{n-1}\right) \in \mathbb{Z}^{n}$, is τ-homogeneous and its τ-degree is equal to $\sum_{i=0}^{n-1} i \alpha_{i}(\bmod n)$.

Let j be a fixed number from $\{1, \ldots, s\}$ and consider the polynomial $S_{p_{j}, 0}$. We know by Proposition 7.3 that this polynomial belongs to $\mathbb{Z}[X]$. Hence, we have the unique determined polynomials $B_{0}, \ldots, B_{n-1} \in \mathbb{Z}[X]$ such that $S_{p_{j}, 0}=$ $B_{0}+\cdots+B_{n-1}$, and each B_{i} is τ-homogeneous of τ-degree i.

Put $C_{i}=\tau^{n_{j}}\left(B_{i}\right)$, for all $i=0, \ldots, n-1$. Since $\tau\left(B_{i}\right)=\varepsilon^{i} B_{i}$, we have $C_{i}=$ $\varepsilon^{i n_{j}} B_{i}$, and this implies that $\tau\left(C_{i}\right)=\varepsilon^{i} C_{i}$. In fact,

$$
\tau\left(C_{i}\right)=\tau\left(\tau^{n_{j}}\left(B_{i}\right)\right)=\tau\left(\varepsilon^{i n_{j}} B_{i}\right)=\varepsilon^{i n_{j}} \tau\left(B_{i}\right)=\varepsilon^{i n_{j}} \cdot \varepsilon^{i} B_{i}=\varepsilon^{i} \cdot \varepsilon^{i n_{j}} B_{i}=\varepsilon^{i} C_{i} .
$$

Thus, every polynomial C_{i} is τ-homogeneous of τ-degree i. Observe that

$$
\tau^{n_{j}}\left(S_{p_{j}, 0}\right)=S_{p_{j}, 0} .
$$

But $\tau^{n_{j}}\left(S_{p_{j}, 0}\right)=\sum_{i=0}^{n-1} C_{i}$, so $C_{i}=\tau^{n_{j}}\left(B_{i}\right)=B_{i}$ and so, $\varepsilon^{i n_{j}} B_{i}=B_{i}$, for all $i=0, \ldots, n-1$. Thus, if $B_{i} \neq 0$, then $n \mid i n_{j}$. But $n=p_{j} n_{j}$ so, if $B_{i} \neq 0$, then i is divisible by p_{j}. Therefore,

$$
S_{p_{j}, 0}=\sum_{k=0}^{n_{j}-1} B_{k p_{j}}
$$

where each $B_{k p_{j}}$ is τ-homogeneous polynomial from $\mathbb{Z}[X]$ of τ-degree $k p_{j}$. Hence, for every $m \in\{0, \ldots, n-1\}$, we have

$$
\begin{aligned}
T_{p_{j}, m} & =\sum_{r \in I_{j}} \varepsilon^{-r p_{j} m} S_{p_{j}, r}=\sum_{r \in I_{j}} \varepsilon^{-r p_{j} m} \tau^{r}\left(S_{p_{j}, 0}\right) \\
& =\sum_{r \in I_{j}} \varepsilon^{-r p_{j} m} \tau^{r}\left(\sum_{k=0}^{n_{j}-1} B_{k p_{j}}\right)=\sum_{r \in I_{j}} \varepsilon^{-r p_{j} m}\left(\sum_{k=0}^{n_{j}-1} \tau^{r}\left(B_{k p_{j}}\right)\right) \\
& =\sum_{r \in I_{j}} \varepsilon^{-r p_{j} m}\left(\sum_{k=0}^{n_{j}-1} \varepsilon^{k p_{j} r} B_{k p_{j}}\right)=\sum_{k=0}^{n_{j}-1} B_{k p_{j}}\left(\sum_{r \in I_{j}} \varepsilon^{r p_{j}(k-m)}\right) .
\end{aligned}
$$

Observe that, by Proposition 4.7, every sum $\sum_{r \in I_{j}} \varepsilon^{r p_{j}(k-m)}$ is an integer. Moreover, every polynomial $B_{k p_{j}}$ belongs to $\mathbb{Z}[X]$. Hence, $T_{p_{j}, m} \in \mathbb{Z}[X]$.

Recall that $T_{p_{j}, a}=T_{p_{j}, m}$, where m is the remainder of division of a by n_{j}. Thus, we proved the following proposition.

Proposition 8.2. For any $j \in\{1, \ldots, s\}$ and $a \in \mathbb{Z}$, the polynomial $T_{p_{j}, m}$ belongs to the polynomial ring $\mathbb{Z}[X]$.

Now we will prove some additional properties of the polynomials $T_{p_{j}, a}$.
Proposition 8.3. Assume that $s \geqslant 2$, and let $i, j \in\{1, \ldots, s\}, i<j$. Then

$$
\sum_{k=0}^{p_{i}-1} T_{p_{j}, k \frac{n}{p_{i} p_{j}}}=0 .
$$

Proof. Put $p=p_{i}, q=p_{j}$, and $N=\frac{n}{p q}$. Then we have

$$
\sum_{k=0}^{p_{i}-1} T_{p_{j}, k \frac{n}{p_{i} p_{j}}}=\sum_{k=0}^{p-1} T_{q, k N}=\sum_{k=0}^{p-1} \sum_{r \in I_{j}}\left(\varepsilon^{-k N q}\right)^{r} S_{q, r}=\sum_{r \in I_{j}}\left(\sum_{k=0}^{p-1}\left(\varepsilon^{-\frac{n}{p} r}\right)^{k}\right) S_{q, r} .
$$

Let $\eta=\varepsilon^{-\frac{n}{p}}$. Then η is a primitive p-th root of unity. If $r \in I_{j}$, then $p \nmid r$ and, by Lemma 4.6, we have

$$
\sum_{k=0}^{p-1}\left(\varepsilon^{-\frac{n}{p} r}\right)^{k}=\sum_{k=0}^{p-1} \eta^{r k}=0
$$

Thus, $\sum_{k=0}^{p_{i}-1} T_{p_{j}, k \frac{n}{p_{i} p_{j}}}=\sum_{r \in I_{j}}\left(\sum_{k=0}^{p-1}\left(\varepsilon^{-\frac{n}{p} r}\right)^{k}\right) S_{q, r}=\sum_{r \in I_{j}} 0 \cdot S_{q, r}=0$.
Proposition 8.4. For any integer a, we have

$$
\varrho\left(T_{p_{j}, a}\right)=\left\{\begin{aligned}
T_{p_{j}, a+1}, & \text { when } p_{j} \neq 2 \\
-T_{p_{j}, a+1}, & \text { when } p_{j}=2 .
\end{aligned}\right.
$$

Proof. First assume that p_{j} is odd. In this case (see Proposition 7.1), $\varrho\left(S_{p_{j} r}\right)=$ $\varepsilon^{-p_{j} r} S_{p_{j} r}$ for any $r \in \mathbb{Z}$. Hence,

$$
\begin{aligned}
\varrho\left(T_{p_{j}, a}\right) & =\sum_{r \in I_{j}}\left(\varepsilon^{-a p_{j}}\right)^{r} \varrho\left(S_{p_{j} r}\right)=\sum_{r \in I_{j}}\left(\varepsilon^{-a p_{j}}\right)^{r} \varepsilon^{-p_{j} r} S_{p_{j} r} \\
& =\sum_{r \in I_{j}}\left(\varepsilon^{-(a+1) p_{j}}\right)^{r} S_{p_{j} r}=T_{p_{j}, a+1} .
\end{aligned}
$$

Now let $p_{j}=2$. Then, by Proposition 7.1, $\varrho\left(S_{p_{j} r}\right)=\varepsilon^{-\left(p_{j} r+\frac{n}{2}\right)} S_{p_{j}, r}$ for any $r \in \mathbb{Z}$. Moreover, $\varepsilon^{-\frac{n}{2}}=-1$. Thus, we have

$$
\begin{aligned}
\varrho\left(T_{p_{j}, a}\right) & =\sum_{r \in I_{j}}\left(\varepsilon^{-a p_{j}}\right)^{r} \varrho\left(S_{p_{j} r}\right)=\sum_{r \in I_{j}}\left(\varepsilon^{-a p_{j}}\right)^{r} \varepsilon^{-\left(p_{j} r+\frac{n}{2}\right)} S_{p_{j}, r} \\
& =\sum_{r \in I_{j}} \varepsilon^{-\frac{n}{2}}\left(\varepsilon^{-(a+1) p_{j}}\right)^{r} S_{p_{j} r}=-\sum_{r \in I_{j}}\left(\varepsilon^{-(a+1) p_{j}}\right)^{r} S_{p_{j} r}=-T_{p_{j}, a+1} .
\end{aligned}
$$

This completes the proof.
Proposition 8.5. Assume that $s \geqslant 2$. Let $i, j \in\{1, \ldots, s\}, i<j$, and let $a \in \mathbb{Z}$. Then

$$
T_{p_{j}, a}=-\sum_{k=1}^{p_{i}-1} T_{p_{j}, a+k \frac{n}{p_{i} p_{j}}} .
$$

Proof. It follows from Proposition 8.4 that $T_{p_{j}, a}=(-1)^{p_{j}-1} \varrho^{a}\left(T_{p_{j}, 0}\right)$. Hence, using Proposition 8.3, we obtain

$$
\begin{aligned}
T_{p_{j}, a} & =(-1)^{p_{j}-1} \varrho^{a}\left(T_{p_{j}, 0}\right)=(-1)^{p_{j}-1} \varrho^{a}\left(-\sum_{k=1}^{p_{i}-1} T_{p_{j}, k \frac{n}{p_{i} p_{j}}}\right) \\
& =(-1)^{p_{j}} \sum_{k=1}^{p_{i}-1} \varrho^{a}\left(T_{p_{j}, k \frac{n}{p_{i} p_{j}}}\right)=(-1)^{p_{j}} \sum_{k=1}^{p_{i}-1}(-1)^{p_{j}-1} T_{p_{j}, a+k \frac{n}{p_{i} p_{j}}} \\
& =-\sum_{k=1}^{p_{i}-1} T_{p_{j}, a+k \frac{n}{p_{i} p_{j}}}
\end{aligned}
$$

This completes the proof.
For any $j \in\{1, \ldots, s\}$, let us denote by \mathcal{W}_{j} the \mathbb{Z}-module generated by all the polynomials $T_{p_{j}, r}$ with $r \in I_{j}$. It is clear that every polynomial $T_{p_{1}, a}$, for arbitrary integer a, belongs to \mathcal{W}_{1}.

Theorem 8.6. If the number n is special, then for all $j \in\{1, \ldots, s\}$ and $a \in \mathbb{Z}$, the polynomial $T_{p_{j}, a}$ belongs to \mathcal{W}_{j}.

Proof. Let $n=p_{1} \cdots p_{s-1} \cdot p_{s}^{\alpha}$, where $s \geqslant 1, \alpha \geqslant 1$, and p_{1}, \ldots, p_{s} are distinct primes. Let $n_{j}=\frac{n}{p_{j}}$ for $j=1, \ldots, s$. Assume that $P=\left[p_{1}, \ldots, p_{n}\right]$ is a fixed type, and I_{1}, \ldots, I_{s} are the n-sets of type P.

Let j be a fixed element from $\{1, \ldots, s\}$. If $s=1$ or $j=1$, then we are done. Assume that $s \geqslant 2, j \geqslant 2$, and a is an integer. Since $T_{p_{j}, a}=T_{p_{j}, m}$, where m is
the remainder of division of a by n_{j}, we may assume that $0 \leqslant a<n_{j}$. We use the following notations:

$$
M:=\left\{p_{1}, p_{2}, \ldots, p_{j-1}\right\}, \quad q:=p_{j}, \quad B_{c}:=T_{p_{j}, c} \quad \text { for } c \in \mathbb{Z}
$$

We will show that $B_{a} \in \mathcal{W}_{j}$. If $\operatorname{gcd}\left(a, p_{1} \cdots p_{j-1}\right)=1$, then $a \in I_{j}$ and so, $B_{a} \in \mathcal{W}_{j}$. Now let $\operatorname{gcd}\left(a, p_{1} \cdots p_{j-1}\right) \geqslant 2$. In this case, a is divisible by some primes belonging to M.

Step 1. Assume that a is divisible by exactly one prime number p_{i} belonging to M. Then $i<j$ and, by Proposition 8.5 , we have the equality

$$
B_{a}=-\sum_{k=1}^{p_{i}-1} B_{a+k \frac{n}{p_{i} q}} .
$$

Let $k \in\left\{1, \ldots, p_{i}-1\right\}$, and consider $c:=a+k \frac{n}{p_{i} q}$. Since n is special, the number $k \frac{n}{p_{i} q}$ is not divisible by p_{i}. But $p_{i} \mid a$, so $p_{i} \nmid c$. If $p \in M$ and $p \neq p_{i}$, then $p \nmid a$ and $p \left\lvert\, k \frac{n}{p_{i} q}\right.$, so $p \nmid c$. Hence, the numbers c and $p_{1} \cdots p_{j-1}$ are relatively prime. This implies that the element $c\left(\bmod n_{j}\right)$ belongs to I_{j}, and so, $B_{c} \in \mathcal{W}_{j}$. Therefore, by the above equality, $B_{a} \in \mathcal{W}_{j}$.

We see that if $s=2$ or $j=2$, then we are done. Now suppose that $s \geqslant 3$ and $j \geqslant 3$.

Step 2. Let $1 \leqslant t \leqslant j-2$, and assume that we already proved that $B_{c} \in \mathcal{W}_{j}$ for every integer c which is divisible by exactly t primes belonging to M. Assume that a is divisible by exactly $t+1$ distinct primes m_{1}, \ldots, m_{t+1} from M. We have: $m_{i} \mid a$ for $i=1, \ldots, t+1$, and $m \nmid a$ for $m \in M \backslash\left\{m_{1}, \ldots, m_{t+1}\right\}$. Put $p=m_{t+1}$. It follows from Proposition 8.5, that have the following equality:

$$
B_{a}=-\sum_{k=1}^{p-1} B_{a+k \frac{n}{p q}} .
$$

Let $k \in\{1, \ldots, p-1\}$, and consider $c:=a+k \frac{n}{p q}$. Since n is special, the number $k \frac{n}{p q}$ is not divisible by p. But $p \mid a$, so $p \nmid c$, and consequently, $m_{t+1} \nmid c$. It is clear that $m_{i} \mid c$ for all $i=1, \ldots, t$, and $m \nmid c$ for all $m \in M \backslash\left\{m_{1}, \ldots, m_{t}\right\}$. This means that c is divisible by exactly t primes from M. Thus, by our assumption, $B_{c} \in \mathcal{W}_{j}$. Therefore, by the above equality, $B_{a} \in \mathcal{W}_{j}$.

Now we use a simple induction and, by Steps 1 and 2, we obtain the proof of our theorem.

9. The main theorem

Assume that $n \geqslant 3$ is a special number of a type P. Let I_{1}, \ldots, I_{s} be the n-sets of type P, let \mathcal{A} be the n-standard set of type P, and let

$$
\mathcal{S}=\left\{S_{p_{j}, r} ; j \in\{1, \ldots, s\}, r \in I_{j}\right\}, \quad \mathcal{T}=\left\{T_{p_{j}, r} ; j \in\{1, \ldots, s\}, r \in I_{j}\right\} .
$$

Since n is special, we have the following sequence of important properties.
(1) \mathcal{A} is a basis of the group \mathcal{G}_{n} (Theorems 5.8, 3.5 and 5.10).
(2) \mathcal{S} is algebraically independent over K, and $K(X)^{d}=K(\mathcal{S})$ (Proposition 7.5).
(3) $K(\mathcal{S})=K(\mathcal{T})$ (Proposition 8.1 and Theorem 8.6).

We know also (see Proposition 8.2) that each element of \mathcal{T} is a polynomial belonging to $\mathbb{Z}[X]$. Moreover, $|\mathcal{T}|=|\mathcal{S}|=|\mathcal{A}|=n-\varphi(n)$. In particular, the set \mathcal{T} is algebraically independent over K. Put an order on the set \mathcal{T}. Let $\mathcal{T}=\left\{F_{0}, F_{1}, \ldots, F_{m-1}\right\}$ where $m=n-\varphi(n)$. Thus, if the number n is special, then $K(X)^{d}=K\left(F_{0}, \ldots, F_{m-1}\right)$, where F_{0}, \ldots, F_{m-1} are polynomials belonging to $\mathbb{Z}[X]$, and these polynomials are algebraically independent over \mathbb{Q}.

Let us recall, that K is a field of characteristic zero containing ε (where ε is a primitive n-th root of unity). But the polynomials F_{0}, \ldots, F_{m-1} have integer coefficients, and they are constants of d. They are not dependent from the field K. Since the polynomials $d\left(x_{0}\right), \ldots, d\left(x_{n-1}\right)$ belong to $\mathbb{Z}[X]$, we see that we may assume that K is a field of characteristic zero, without the assumption concerning ε. Thus, we proved the following theorem.

Theorem 9.1. Let K be an arbitrary field of characteristic zero, $n \geqslant 3$ an integer, and $K[X]=K\left[x_{0}, \ldots, x_{n-1}\right]$ the polynomial ring in n variables over K. Let $d: K[X] \rightarrow K[X]$ be the cyclotomic derivation, that is, d is a K-derivation of $K[X]$ such that

$$
d\left(x_{i}\right)=x_{i+1} \quad \text { for } \quad i \in \mathbb{Z}_{n} .
$$

Assume that $n=p_{1} p_{2} \cdots p_{s-1} p_{s}^{\alpha}$, where $s \geqslant 1, \alpha \geqslant 1$ and p_{1}, \ldots, p_{s} are distinct primes. Let $m=n-\varphi(n)$, where φ is the Euler totient function. Then

$$
K(X)^{d}=K\left(F_{0}, \ldots, F_{m-1}\right)
$$

where F_{0}, \ldots, F_{m-1} are algebraically independent over \mathbb{Q} polynomials belonging to $\mathbb{Z}[X]$.

More exactly, $\left\{F_{0}, F_{1}, \ldots, F_{m-1}\right\}=\left\{T_{p_{j}, r} ; j \in\{1, \ldots, s\}, r \in I_{j}\right\}$, where I_{1}, \ldots, I_{s} are the n-sets of type $\left[p_{1}, \ldots, p_{s}\right]$.

We end this article with several examples illustrating the above theorem.
Example 9.2. If $n=4$, then $K(X)^{d}=K\left(F_{0}, F_{1}\right)$, where $F_{0}=x_{0}^{2}-2 x_{1} x_{3}+x_{2}^{2}$, and $F_{1}=\varrho\left(F_{0}\right)$.

Example 9.3. If $n=8$, then $K(X)^{d}=K\left(F_{0}, F_{1}, F_{2}, F_{3}\right)$, where $F_{1}=\varrho\left(F_{0}\right)$, $F_{2}=\varrho^{2}\left(F_{0}\right), F_{3}=\varrho^{3}\left(F_{0}\right)$ and $F_{0}=x_{0}^{2}+x_{4}^{2}-2 x_{3} x_{5}-2 x_{7} x_{1}+2 x_{2} x_{6}$.

Example 9.4. If $n=9$, then $K(X)^{d}=K\left(F_{0}, F_{1}, F_{2}\right)$, where $F_{1}=\varrho\left(F_{0}\right)$, $F_{2}=\varrho^{2}\left(F_{0}\right)$,

$$
\begin{aligned}
F_{0}= & 3 x_{1} x_{4}^{2}+3 x_{8}^{2} x_{2}+3 x_{8} x_{5}^{2}-3 x_{0} x_{4} x_{5}-3 x_{1} x_{0} x_{8}-3 x_{2} x_{4} x_{3}-3 x_{2} x_{7} x_{0} \\
& -3 x_{8} x_{6} x_{4}+3 x_{2}^{2} x_{5}+3 x_{7}^{2} x_{4}+3 x_{1}^{2} x_{7}+x_{6}^{3}+x_{0}^{3}-3 x_{1} x_{3} x_{5}+6 x_{0} x_{6} x_{3} \\
& -3 x_{8} x_{7} x_{3}-3 x_{2} x_{1} x_{6}-3 x_{5} x_{7} x_{6}+x_{3}^{3} .
\end{aligned}
$$

Example 9.5. If $n=6$ and $P=[2,3]$, then $K(X)^{d}=K\left(F_{0}, F_{1}, F_{2}, F_{3}\right)$, where

$$
\begin{aligned}
F_{0}= & x_{0}^{2}-2 x_{1} x_{5}+2 x_{2} x_{4}-x_{3}^{2} \\
F_{3}= & \left(x_{1}^{2}+x_{4} x_{3}-2 x_{1} x_{4}+x_{0} x_{1}+x_{5}^{2}-x_{5} x_{3}+x_{2} x_{3}-2 x_{2} x_{5}+x_{0} x_{5}\right. \\
& -2 x_{0} x_{3}-x_{0} x_{2}-x_{4} x_{0}+x_{4}^{2}-x_{1} x_{3}+x_{2}^{2}+x_{4} x_{5}+x_{1} x_{2}+x_{0}^{2} \\
& \left.-x_{1} x_{5}-x_{4} x_{2}+x_{3}^{2}\right)\left(x_{0}-x_{1}+x_{2}-x_{3}+x_{4}-x_{5}\right)
\end{aligned}
$$

and $F_{1}=\varrho\left(F_{0}\right), F_{2}=\varrho^{2}\left(F_{0}\right)$.
Example 9.6. If $n=6$ and $P=[3,2]$, then $K(X)^{d}=K\left(F_{0}, F_{1}, F_{2}, F_{3}\right)$, where

$$
\begin{aligned}
F_{0}= & x_{0}^{3}+x_{2}^{3}+x_{4}^{3}+3 x_{0} x_{3}^{2}+3 x_{2} x_{5}^{2}+3 x_{4} x_{1}^{2}-3 x_{0} x_{2} x_{4}-3 x_{5} x_{0} x_{1} \\
& -3 x_{1} x_{2} x_{3}-3 x_{3} x_{4} x_{5}, \\
F_{2}= & 2 x_{1}^{2}+x_{2}^{2}-x_{3}^{2}-2 x_{4}^{2}-x_{5}^{2}+x_{0}^{2} \\
& -2 x_{1} x_{3}+2 x_{2} x_{4}+4 x_{3} x_{5}+2 x_{4} x_{0},-2 x_{5} x_{1}-4 x_{2} x_{0} .
\end{aligned}
$$

and $F_{1}=\varrho\left(F_{0}\right), F_{3}=\varrho\left(F_{2}\right)$.
Example 9.7. If $n=12$, then $K(X)^{d}=K\left(F_{0}, \ldots, F_{7}\right)$, where

$$
\begin{aligned}
F_{0}= & -3 x_{6} x_{2} x_{4}-3 x_{6} x_{8} x_{10}-3 x_{4} x_{0} x_{8}+x_{0}^{3}+3 x_{6}^{2} x_{0}-3 x_{1} x_{8} x_{3}+3 x_{3}^{2} x_{6} \\
& +3 x_{9}^{2} x_{6}+x_{8}^{3}-3 x_{1} x_{11} x_{0}+6 x_{5} x_{11} x_{8}-3 x_{1} x_{5} x_{6}+3 x_{7}^{2} x_{10}+3 x_{10}^{2} x_{4} \\
& +3 x_{11}^{2} x_{2}+3 x_{1}^{2} x_{10}+3 x_{5}^{2} x_{2}+3 x_{2}^{2} x_{8}+6 x_{3} x_{0} x_{9}+6 x_{1} x_{7} x_{4}-3 x_{7} x_{11} x_{6} \\
& -3 x_{7} x_{5} x_{0}-3 x_{10} x_{11} x_{3}-3 x_{10} x_{5} x_{9}-3 x_{4} x_{11} x_{9}-3 x_{4} x_{5} x_{3}-3 x_{1} x_{2} x_{9} \\
& -3 x_{7} x_{2} x_{3}-3 x_{7} x_{8} x_{9}+x_{4}^{3}-3 x_{10} x_{2} x_{0}, \\
F_{4}= & 4 x_{6} x_{8}+x_{3}^{2}-2 x_{10} x_{8}+2 x_{7} x_{3}+2 x_{7} x_{11}-2 x_{10} x_{0}-2 x_{4} x_{2}-2 x_{4} x_{6} \\
& +2 x_{1} x_{9}+2 x_{1} x_{5}+4 x_{0} x_{2}-2 x_{0} x_{6}-4 x_{3} x_{11}-2 x_{1}^{2}+x_{11}^{2}+x_{5}^{2}+4 x_{4} x_{10} \\
& -2 x_{2} x_{8}-2 x_{7}^{2}+x_{9}^{2}-4 x_{9} x_{5},
\end{aligned}
$$

and $F_{1}=\varrho\left(F_{0}\right), F_{2}=\varrho^{2}\left(F_{0}\right), F_{3}=\varrho^{3}\left(F_{0}\right), F_{5}=\varrho\left(F_{4}\right), F_{6}=\varrho^{3}\left(F_{4}\right), F_{7}=\varrho^{4}\left(F_{4}\right)$.

References

[1] N.G. de Bruijn, On the factorization of cyclic groups, Indag. Math. 15 (1953), 370-377.
[2] A. van den Essen, Polynomial Automorphisms and the Jacobian Conjecture, Progress in Mathematics vol. 190, 2000.
[3] G. Freudenburg, Algebraic Theory of Locally Nilpotent Derivations, Encyclopedia of Mathematical Sciences 136, Springer, 2006.
[4] T.Y. Lam and K.H. Leung, On the cyclotomic polynomial $\Phi_{p q}(x)$, American Mathematical Monthly, 103(7) (1996), 562-564.
[5] T.Y. Lam and K.H. Leung, On vanishing sums of roots of unity, J. Algebra, 224 (2000), 91-109,
[6] S. Lang, Algebra, Second Edition, Addison-Wesley Publishing Company, 1984.
[7] S. Lang, Undergraduate Algebra, Second Edition, Springer, 1990.
[8] J. Moulin Ollagnier and A. Nowicki, Derivations of polynomial algebras without Darboux polynomials, J. Pure Appl. Algebra, 212 (2008), 1626-1631.
[9] J. Moulin Ollagnier and A. Nowicki, Monomial derivations, Communications in Algebra, 39 (2011), 3138-3150.
[10] J. Moulin Ollagnier and A. Nowicki, Constants of cyclotomic derivations, J. Algebra 394 (2013), 92-119.
[11] A. Nowicki, Polynomial derivations and their rings of constants, N. Copernicus University Press, Toruń, 1994.
[12] A. Nowicki and M. Nagata, Rings of constants for k-derivations in $k\left[x_{1}, \ldots, x_{n}\right]$, J. Math. Kyoto Univ., 28 (1988), 111-118.
[13] L. Rédei, Ein Beitrag zum Problem der Faktorisation von endlichen Abelschen Gruppen, Acta Math. Hungar, 1 (1950), 197-207.
[14] A. Satyanarayan Reddy, The lowest 0,1-polynomial divisible by cyclotomic polynomial, arXiv: 1106.127 v 2 [math.NT] 15Nov 2011.
[15] I.J. Schoenberg, A note on the cyclotomic polynomial, Mathematika, 11 (1964), 131-136.
[16] J.P. Steinberger, The lowest-degree polynomial with nonnegative coefficients divisible by the n-th cyclotomic polynomial, The electronic journal of combinatorics 19(4) (2012), \#P1
[17] J.P. Steinberger, Minimal vanishing sums of roots of unity with large coefficients, Proc. Lond. Math. Soc. (3) 97 (2008), 689-717.
(Jean Moulin Ollagnier) Laboratoire LIX, École Polytechnique, F 91128 Palaiseau Cedex, France

E-mail address: Jean.Moulin-Ollagnier@polytechnique.edu
(Andrzej Nowicki) Nicolaus Copernicus University, Faculty of Mathematics and Computer Science, ul. Chopina $12 / 18,87-100$ Toruń, Poland

E-mail address: anow@mat.uni.torun.pl

[^0]: 2010 Mathematics Subject Classification. Primary 12H05; Secondary 13N15.
 Key words and phrases. Derivation, cyclotomic polynomial, Darboux polynomial, Euler totient function, Euler derivation, factorisable derivation, Jouanolou derivation, Lotka-Volterra derivation.

