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 Lódź University Press 2017, 97–121

DOI: http://dx.doi.org/10.18778/8088-922-4.15
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1. Introduction

Let K(X) = K(x0, . . . , xn−1) be the field of rational functions in n > 3
variables over a field K of characteristic zero. Let d be the cyclotomic derivation
of K(X), that is, d is the K-derivation of K(X) defined by

d(xj) = xj+1, for j ∈ Zn.
We denote by K(X)d the field of constants of d, that is, K(X)d = {f ∈
K(X); d(f) = 0}.

We are interested in algebraic descriptions of the field K(X)d. However, we
know that such descriptions are usually difficult to obtain. Fields of constants
appear in various classical problems; for details we refer to [2], [3], [12], [9] and
[11].

We already know (see [10]) that if K contains the n-th roots of unity, then
K(X)d is a field of rational functions over K and its transcendence degree over K
is equal to m = n − ϕ(n), where ϕ is the Euler totient function. In our proof of
this fact the assumption concerning n-th roots plays an important role. We do not
know if the same is true without this assumption. What happens, for example,
when K = Q ?

In this article we give a partial answer to this question, for arbitrary field K of
characteristic zero.

We introduce a class of special positive integers, and we prove (see Theorem 9.1)
that if n belongs to this class, then the mentioned result is also true for arbitrary
field K of characteristic zero, without the assumption concerning roots of unity.
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Moreover, we construct a set of free generators of K(X)d, which are polynomials
with integer coefficients. Thus, if the number n is special, then

K(X)d = K (F0, . . . , Fm−1) ,

for some, algebraically independent, polynomials F0, . . . , Fm−1 belonging to the
polynomial ring Z[X] = Z [x0, . . . , xn−1], and where m = n − ϕ(n). Note that in
the segment [3, 100] there are only 3 non-special numbers: 36, 72 and 100. We do
not know if the same is true for non-special numbers, for example when n = 36.

In our proofs we use classical properties of cyclotomic polynomials, and an im-
portant role play some results ([4], [5], [16], [17] and others) on vanishing sums of
roots of unity.

2. Notations and preparatory facts

Throughout this paper n > 3 is an integer, ε is a primitive n-th root of
unity, and Zn is the ring Z/nZ. Moreover, K is a field of characteristic zero,
K[X] = K[x0, . . . , xn−1] is the polynomial ring over K in variables x0, . . . , xn−1,
and K(X) = K(x0, . . . , xn−1) is the field of quotients of K[X]. The indexes of the
variables x0, . . . , xn−1 are elements of the ring Zn. The cyclotomic derivation d is
the K-derivation of K(X) defined by d(xj) = xj+1 for j ∈ Zn.

For every sequence α = (α0, α1, . . . , αn−1), of integers, we denote by Hα(t) the
polynomial from Z[t] defined by

Hα(t) = α0 + α1t
1 + α2t

2 + · · ·+ αn−1t
n−1.

An important role in our paper will play two subsets of Zn denoted by Gn and
Mn. The first subset is the set of all sequences α = (α0, . . . , αn−1) such that
α0, . . . , αn−1 are integers and

α0 + α1ε
1 + α2ε

2 + · · ·+ αn−1ε
n−1 = 0.

The second subset Mn is the set of all such sequences α = (α0, . . . , αn−1) which
belong to Gn and the integers α0, . . . , αn−1 are nonnegative, that is, they belong
to the set of natural numbers N = {0, 1, 2, . . . }. To be precise,

Gn = {α ∈ Zn; Hα(ε) = 0} , Mn = {α ∈ Nn; Hα(ε) = 0} = Gn ∩ Nn.

If α, β ∈ Gn, then of course α±β ∈ Gn, and if α, β ∈Mn, then α+β ∈Mn. Thus
Gn is an abelian group, and Mn is an abelian monoid with zero 0 = (0, . . . , 0).

Let us recall that ε is an algebraic element over Q, and its monic minimal
polynomial is equal to the n-th cyclotomic polynomial Φn(t). Recall also (see
for example [6] or [7]) that Φn(t) is a monic irreducible polynomial with integer
coefficients of degree ϕ(n), where ϕ is the Euler totient function. This implies the
following proposition.

Proposition 2.1. Let α ∈ Zn. Then α ∈ Gn if and only if there exists a polynomial
F (t) ∈ Z[t] such that Hα(t) = F (t)Φn(t).
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Put e0 = (1, 0, 0, . . . , 0), e1 = (0, 1, 0, . . . , 0), . . . , en−1 = (0, 0, . . . , 0, 1), and let

e =
∑n−1
i=0 ei = (1, 1, . . . , 1). Since

∑n−1
i=0 ε

i = 0, the element e belongs to Mn.

The monoidMn has an order >. If α, β ∈ Gn, the we write α > β, if α−β ∈ Nn,
that is, α > β ⇐⇒ there exists γ ∈ Mn such that α = β + γ. In particular,
α > 0 for any α ∈ Mn. It is clear that the relation > is reflexive, transitive and
antisymmetric. Thus Mn is a poset with respect to >.

Let α ∈ Mn. We say that α is a minimal element of Mn, if α 6= 0 and there is
no β ∈ Mn such that β 6= 0 and β < α. Equivalently, α is a minimal element of
Mn, if α 6= 0 and α is not a sum of two nonzero elements of Mn.

We denote by ζ, the rotation of Zn given by ζ(α) = (αn−1, α0, α1, . . . , αn−2) ,
for α = (α0, α1, . . . , αn−1) ∈ Zn. The mapping ζ is a Z-module automorphism of
Zn. Note that ζ−1(α) = (α1, . . . , αn−1, α0), for all α = (α0, α1, . . . , αn−1) ∈ Zn. If
a, b ∈ Z and a ≡ b (mod n), then ζa = ζb. Moreover, ζ(ej) = ej+1 for all j ∈ Zn,
and ζ(e) = e.

Let us recall from [10] some basic properties of Mn and Gn.

Proposition 2.2 ([10]).

(1) If α ∈ Gn, then there exist β, γ ∈Mn such that α = β − γ.

(2) The poset Mn is artinian, that is, if α(1) > α(2) > α(3) > . . . is a sequence
of elements from Mn, then there exists an integer s such that α(j) = α(j+1) for all
j > s.

(3) The set of all minimal elements of Mn is finite.

(4) For any 0 6= α ∈ Mn there exists a minimal element β such that β 6 α.
Moreover, every nonzero element of Mn is a finite sum of minimal elements.

(5) Let α ∈ Zn. If α ∈ Gn, then ζ(α) ∈ Gn. If α ∈ Mn, then ζ(α) ∈ Mn.
Moreover, α is a minimal element of Mn if and only if ζ(α) is a minimal element
of Mn.

Look at the cyclotomic polynomial Φn(t). Assume that Φn(t) = c0 + c1t+ · · ·+
cϕ(n)t

ϕ(n). All the coefficients c0, . . . , cϕ(n) are integers, and c0 = cϕ(n) = 1. Put
m = n− ϕ(n) and

γ0 =
(
c0, c1, . . . , cϕ(n), 0, . . . , 0︸ ︷︷ ︸

m−1

)
.

Note that γ0 ∈ Zn, and Hγ0(t) = Φn(t). Consider the elements γ0, γ1, . . . , γm−1
defined by γj = ζj(γ0), for j = 0, 1, . . . ,m− 1. Observe that Hγj (t) = Φn(t) · tj for
all j ∈ {0, . . . ,m− 1}. Since Φn(ε) = 0, we have Hγj (ε) = 0, and so, the elements
γ0, . . . , γm−1 belong to Gn. Moreover, we proved in [10], that they form a basis
over Z, which is the following theorem.

Theorem 2.3 ([10]). Gn is a free Z-module, and the elements γ0, . . . , γm−1, where
m = n− ϕ(n), form its basis over Z.
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3. Standard minimal elements

Assume that p is a prime divisor of n, and consider the sequences

m(p, r) =

p−1∑
i=0

er+inp ,

for r = 0, 1, . . . , np − 1. Observe that each m(p, r) is equal to ζr (m(p, 0)). Each

m(p, r) is a minimal element of Mn (see [10] for details). We say that m(p, r) is

a standard minimal element of Mn. In [10] we used the notation E
(p)
r instead of

m(p, r). It is clear that if r1, r2 ∈ {0, 1, . . . , np − 1} and r1 6= r2, then m(p, r1) 6=
m(p, r2).

If α = (α0, . . . , αn−1) ∈ Zn, then we denote by |α| the sum α0 + · · · + αn−1.
Observe that, for every r, we have |m(p, r)| = p. This implies, that if p 6= q are
prime divisors of n, then m(p, r1) 6= m(q, r2) for all r1 ∈ {0, . . . , np − 1}, r2 ∈
{0, 1, . . . , nq − 1}. Note the following two obvious propositions.

Proposition 3.1.

n
p−1∑
r=0

m(p, r) = (1, 1, . . . , 1) = e.

Proposition 3.2. If p is a prime divisor of n, then the standard elements m(p, 0),
m(p, 1), . . . , m(p, np − 1) are linearly independent over Z.

The following two propositions are less obvious and deserve a proof.

Proposition 3.3. Let n = pqN , where p 6= q are primes and N is a positive
integer. Then

p−1∑
k=0

m(q, kN) =

q−1∑
k=0

m(p, kN).

which, for any shift r, is easily extended to

p−1∑
k=0

m(q, kN + r) =

q−1∑
k=0

m(p, kN + r).

Proof. If m is a positive integer, then we denote by [m] the set {0, 1, . . . ,m − 1}.
First observe that

{
k + ip; k ∈ [p], i ∈ [q]

}
=
{
k + iq; k ∈ [q], i ∈ [p]

}
= [pq].

Hence,

p−1∑
k=0

m(q, kN) =

p−1∑
k=0

q−1∑
i=0

ekN+inq
=

p−1∑
k=0

q−1∑
i=0

eN(k+ip) =

pq−1∑
k=0

eNk;

q−1∑
k=0

m(p, kN) =

q−1∑
k=0

p−1∑
i=0

ekN+inp
=

q−1∑
k=0

p−1∑
i=0

eN(k+iq) =

pq−1∑
k=0

eNk.

Thus,
p−1∑
k=0

m(q, kN) =
pq−1∑
k=0

ekN =
q−1∑
k=0

m(p, kN). �
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Proposition 3.4. Let p be a prime divisor of n. Let 0 6 r < n
p , and a ∈ Z. Then

ζa
(
m(p, r)

)
= m(p, b), where b = (a+ r)

(
mod

n

p

)
Proof. Put w = n

p , and [p] = {0, 1, . . . , p − 1}. Let a + r = cw + b, where c, b ∈ Z

with 0 6 b < w. Observe that
{
b+ (c+ i)w (mod n); i ∈ [p]

}
=
{
b+ iw; i ∈ [p]

}
.

Hence,

ζa
(
m(p, r)

)
= ζa

(
p−1∑
i=0

er+iw

)
=

p−1∑
i=0

ζa (er+iw) =

p−1∑
i=0

ea+r+iw

=

p−1∑
i=0

eb+cw+iw =

p−1∑
i=0

eb+(c+i)w =

p−1∑
i=0

eb+iw = m(p, b),

and b = (a+ r) (mod w). �

We will apply the following theorem of Rédei, de Bruijn and Schoenberg.

Theorem 3.5 ([13], [1], [15]). The standard minimal elements of Mn generate
the group Gn.

Known proofs of the above theorem used usually techniques of group rings. Lam
and Leung [5] gave a new proof using induction and group-theoretic techniques.

We know (see for example [10]) that if n is divisible by at most two distinct
primes, then every minimal element ofMn is standard. It is known (see for example
[5], [17], [14]) that in all other cases always exist nonstandard minimal elements.

4. The sets Ij

Let n > 3 be an integer, and let n = pα1
1 · · · pαs

s , where p1, . . . , ps are distinct
primes and α1, . . . , αs are positive integers. Put nj = n

pj
for j = 1, . . . , s. Let

I1, . . . , Is be sets of integers defined as follows:

I1 =
{
r ∈ Z; 0 6 r < n1

}
,

I2 =
{
r ∈ Z; 0 6 r < n2, gcd(r, p1) = 1

}
,

I3 =
{
r ∈ Z; 0 6 r < n3, gcd(r, p1p2) = 1

}
,

...

Is =
{
r ∈ Z; 0 6 r < ns, gcd(r, p1p2 · · · ps−1) = 1

}
.

That is, I1 = {r ∈ Z; 0 6 r < n1} and Ij = {r ∈ Z; 0 6 r <
nj , gcd(r, p1 · · · pj−1) = 1} for j = 2, . . . , s. This definition depends of the fixed
succession of primes. We will say that the above I1, . . . , Is are the n-sets of type
[p1, . . . , ps].
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Let for example n = 12 = 223. Then I1 = {0, 1, 2, 3, 4, 5}, I2 = {1, 3} are the
12-sets of type [2, 3], and I1 = {0, 1, 2, 3}, I2 = {1, 2, 4, 5} are the 12-sets of type
[3, 2].

Example 4.1. The 30-sets of a a given type:

type I1 I2 I3
[2, 3, 5] {0, 1, 2, . . . , 14} {1, 3, 5, 7, 9} {1, 5}
[2, 5, 3] {0, 1, 2, . . . , 14} {1, 3, 5} {1, 3, 7, 9}
[3, 2, 5] {0, 1, 2, . . . , 9} {1, 2, 4, 5, 7, 8, 10, 11, 13, 14} {1, 5}
[3, 5, 2] {0, 1, 2, . . . , 9} {1, 2, 4, 5} {1, 2, 4, 7, 8, 11, 13, 14}
[5, 2, 3] {0, 1, 2, 3, 4, 5} {1, 2, 3, 4, 6, 7, 8, 9, 11, 12, 13, 14} {1, 3, 7, 9}
[5, 3, 2] {0, 1, 2, 3, 4, 5} {1, 2, 3, 4, 6, 7, 8, 9} {1, 2, 4, 7, 8, 11, 13, 14}

Now we calculate the cardinality of the sets I1, . . . , Is. We denote by |X| the
number of all elements of a finite set X. First observe that if a, b are relatively prime
positive integers, then in the set {1, 2, . . . , ab} there are exactly ϕ(a)b numbers
relatively prime to a. In fact, let u ∈ {1, 2, . . . , ab}. Then u = ka + r, where
0 6 k 6 b and 0 6 r < a, and gcd(u, a) = 1 ⇐⇒ gcd(r, a) = 1. Thus, every such
u, which is relatively prime to a, is of the form ka+ r with 1 6 r < a, gcd(r, a) = 1
and where k is an arbitrary number belonging to {0, 1, . . . , b− 1}. Hence, we have
exactly b such numbers k, and so, the number of integers in {1, . . . , ab}, relatively
prime to a, is equal to ϕ(a)b. As a consequence of this fact we obtain

Lemma 4.2. Let a > 2, b > 2 be relatively prime integers. Then there are exactly
ϕ(a)b such integers belonging to {0, 1, . . . , ab− 1} which are relatively prime to a.

Let us recall that ϕ(n) = n
(

1− 1
p1

)
· · ·
(

1− 1
ps

)
. Now we are ready to prove

the following proposition.

Proposition 4.3. |I1| = n1, and |Ij | = nj

(
1− 1

p1

)(
1− 1

p2

)
· · ·
(

1− 1
pj−1

)
, for

all j = 2, 3, . . . , s.

Proof. The case |I1| = n1 is obvious. Let j > 2, and put a = pα1
1 · · · p

αj−1

j−1 , b =

p
αj−1
j p

αj+1

j+1 · · · pαs
s . Then gcd(a, b) = 1, nj−1 = ab−1, and if r ∈ {0, 1, . . . , nj−1},

then r ∈ Ij ⇐⇒ gcd(r, a) = 1. Hence, by Lemma 4.2, we have

|Ij | = ϕ(a)b = pα1
1 · · · p

αj−1

j−1

(
1− 1

p1

)
· · ·
(

1− 1
pj−1

)
b

= pα1
1 · · · p

αj−1

j−1

(
1− 1

p1

)
· · ·
(

1− 1
pj−1

)
p
αj−1
j p

αj+1

j+1 · · · pαs
s

= n
pj

(
1− 1

p1

)
· · ·
(

1− 1
pj−1

)
= nj

(
1− 1

p1

)
· · ·
(

1− 1
pj−1

)
.

This completes the proof. �

Lemma 4.4. Consider some nonzero numbers z1, . . . , zs. Define w1 by w1 = 1
z1

and wj by wj = 1
zj

(
1− 1

z1

)(
1− 1

z2

)
· · ·
(

1− 1
zj−1

)
for j = 2, . . . , s. Then

w1 + w2 + · · ·+ ws = 1−
(

1− 1
z1

)(
1− 1

z2

)
· · ·
(

1− 1
zs

)
.
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Proof. The case s = 1 is obvious. Assume now that it is true for an integer s > 1,
and consider nonzero numbers z1, . . . , zs+1. Then we have

1−
(

1− 1
z1

)
· · ·
(

1− 1
zs+1

)
=
(

1−
(

1− 1
z1

)
· · ·
(

1− 1
zs

))
+ 1

zs+1

(
1− 1

z1

)
· · ·
(

1− 1
zs

)
= w1 + · · ·+ ws + ws+1.

�

Proposition 4.5. |I1|+ |I2|+ · · ·+ |Is| = n− ϕ(n).

Proof. We know, by Proposition 4.3, that |Ij | = nwj , for j = 1, . . . , s, where

w1 = 1
p1

and wj = 1
pj

(
1− 1

p1

)(
1− 1

p2

)
· · ·
(

1− 1
pj−1

)
for j = 2, . . . , s. Thus, by

Lemma 4.4,

|I1|+ |I2|+ · · ·+ |Is| = n (w1 + · · ·+ ws)

= n
(

1−
(

1− 1
p1

)(
1− 1

p2

)
· · ·
(

1− 1
ps

))
= n− n

(
1− 1

p1

)(
1− 1

p2

)
· · ·
(

1− 1
ps

)
= n− ϕ(n).

This completes the proof. �

Let us recall the following well-known lemma where ε is a primitive n-th root of
unity.

Lemma 4.6. Let c be an integer and let U =
n−1∑
r=0

(εc)
r
. If n - c then U is equal to

0, and in the other case, when n | c, this sum is equal to n.

Using this lemma we may prove the following proposition.

Proposition 4.7. If c ∈ Z then, for any j ∈ {1, . . . , s}, the sum Wj =
∑
r∈Ij

(εpjc)
r

is an integer.

Proof. First consider the case j = 1. Let η = εp1 . Then η is a primitive n1-th root

of unity, and W1 =
n1−1∑
r=0

(ηc)
r
. It follows from Lemma 4.6 that W1 is an integer.

Now assume that j > 2. Put X = {0, 1, . . . , nj − 1}, and Di = {r ∈ X; pi | r}
for i = 1, . . . , j − 1. Then Ij = X r (D1 ∪ · · · ∪Dj−1), and then Wj = U − V ,
where

U =
∑
r∈X

(εpjc)
r
, V =

∑
r∈D1∪···∪Dj−1

(εpjc)
r
.

Observe that U =
nj−1∑
r=0

(ηc)
r
, where η = εpj is a primitive nj-root of unity. Thus,

by Lemma 4.6, U is an integer. Now we will show that V is also an integer. For
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this aim first observe that

V =

j−1∑
k=1

(−1)k+1
∑

i1<···<ik

∑
r∈Di1...ik

(εpjc)
r
,

where the sum
∑

i1<···<ik
runs through all integer sequences (i1, . . . , ik) such that

1 6 i1 < · · · < ik 6 j − 1, and where Di1...ik = Di1 ∩ · · · ∩Dik .

Let 1 6 i1 < · · · < ik 6 j − 1 be a fixed integer sequence. Then we have∑
r∈Di1...ik

(εpjc)
r

=

u−1∑
r=0

(ηc)
r
,

where η = εpj ·pi1 ···pik , and u =
nj

pi1 ···pik
= n

pj ·pi1 ···pik
. Since η is a primitive u-th

root of unity, it follows from Lemma 4.6 that the last sum is an integer. Hence,
every sum of the form

∑
r∈Di1...ik

(εpjc)
r

is an integer, and consequently, V is an

integer. We already know that U is an integer. Therefore, Wj = U − V is an
integer. �

5. Special numbers

As in the previous section, let n = pα1
1 · · · pαs

s , where p1, . . . , ps are distinct
primes and α1, . . . , αs are positive integers. Put nj = n

pj
for j = 1, . . . , s. Assume

that [p1, . . . , pn] is a fixed type, and I1, . . . , Is are the n-sets of type [p1, . . . , ps].
If j ∈ {1, . . . , s} and 0 6 r < nj , then we have the standard minimal element

m(pj , r) =
∑pj−1
i=0 er+inj

. Let us recall that each m(pj , r) belongs to the monoid
Mn, and it is a minimal element of Mn. Moreover, nj = n

pj
for j = 1, . . . , s.

The main role in this section will play the sets A1, . . . ,As, which are subsets of
the monoid Mn. We define these subsets as follows

Aj =
{
m(pj , r); r ∈ Ij

}
,

for all j = 1, . . . , s. We denote by A the union A = A1 ∪ · · · ∪ As. Note that the
above setsA andA1, . . . ,As are determined by the fixed succession P = [p1, . . . , qn]
of the primes p1, . . . , ps. In our case we will say that A is the n-standard set of
type P .

Observe that the sets A1, . . . ,As are pairwise disjoint, and as a consequence of
Proposition 4.5 we have the equality |A| = n− ϕ(n).

Let us recall (see Theorem 2.3) that the group Gn is a free Z-module, and its
rank is equal to n−ϕ(n), so this rank is equal to |A|. We are interested in finding
conditions for A to be a basis of Gn. First we need A to be linearly independent
over Z.
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Special numbers will then be convenient to prove Theorem 9.1. We will say that
the number n is special of type P if the n-standard set A of type P is linearly
independent over Z. Moreover, we will say that the number n is special if there
exists a type P for which n is special of type P . We will say that the number n is
absolutely special if it is special with respect to any type P .

Example 5.1. Let n = 12 = 223 and consider the type [2, 3]. In this case we have:
s = 2, p1 = 2, p2 = 3, n1 = 6, n2 = 4, I1 = {0, 1, 2, 3, 4, 5} and I2 = {1, 3}. The
12-standard set A of type [2, 3] is the set of the following 8 sequences:

m(2, 0) = (1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0),
m(2, 1) = (0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0),
m(2, 2) = (0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0),
m(2, 3) = (0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0),
m(2, 4) = (0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0),
m(2, 5) = (0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1),
m(3, 1) = (0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0),
m(3, 3) = (0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1).

Observe that m(2, 1) +m(2, 3) +m(2, 5) = m(3, 1) +m(3, 3). Hence, the set A
is not linearly independent over Z. This means, that 12 is not a special number of
type [2, 3].

Now consider n = 12 and the type [3, 2]. In this case p1 = 3, p2 = 2, n1 = 4,
n2 = 6, I1 = {0, 1, 2, 3} and I2 = {1, 2, 2, 5}. The 12-standard set A of type [3, 2]
is in this case the set of the following 8 sequences:

m(3, 0) = (1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0),
m(3, 1) = (0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0),
m(3, 2) = (0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0),
m(3, 3) = (0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1),
m(2, 1) = (0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0),
m(2, 2) = (0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0),
m(2, 4) = (0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0),
m(2, 5) = (0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1).

It is easy to check that in this case the set A is linearly independent over Z. Thus,
12 is a special number of type [3, 2], and 12 is not a special number of type [2, 3].

�

We will prove that the number n is absolutely special if and only if either n is
square-free or n is a power of a prime number. Moreover, we will prove that the
number n is special if and only if n = p1p2 · · · ps−1pαs

s , where p1, . . . , ps are distinct
primes and αs > 1.

Proposition 5.2. Every power of a prime is an absolutely special number.
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Proof. Let n = pm, where p is a prime and m > 1. Then s = 1, n1 = pm−1,
I1 = {0, 1, . . . , pm−1 − 1} and there is only one type P = [p]. Thus, A = A1 and,
by Proposition 3.2, the set A is linearly independent over Z. �

Lemma 5.3. Let p be a prime number, and let N > 2 be an integer such that p - N .
Then, for every integer r, there exists a unique cr ∈ {0, 1, . . . , p− 1} such that the
number r + crN is divisible by p. Moreover, all numbers of the form r + crN with
0 6 r < N are pairwise different.

Proof. Let r ∈ Z. Consider the integers r, r + N, r + 2N, . . . , r + (p − 1)N , and
observe that these numbers are pairwise noncongruent modulo p. Thus, there
exists a unique cr ∈ {0, 1, . . . , p− 1} such that r+ crN = 0 (mod p). Assume that
r1 + cr1N = r2 + cr2N for some r1, r2 ∈ {0, 1, . . . , N − 1}. Then N | r1 − r2 and
so, r1 = r2. �

Despite the fact that we need the full Theorem 5.10 (A generates Gn), we first
state and prove the following Proposition (A is linearly independent over Z) for
a better understanding. This Proposition is not equivalent, as A could generate
a subgroup of Gn of finite index.

Proposition 5.4. Let n = p1 · · · ps−1 · pαs , where s > 2, α > 1, and p1, . . . , ps
are distinct primes. Then n is a special number of every type of the form[
pσ(1), . . . , pσ(s−1), ps

]
,where σ is a permutation of {1, . . . , s− 1}.

Proof. Let P be a fixed type with ps at the end. Without loss of generality, we
may assume that P = [p1, . . . , ps−1, ps]. Let I1, . . . , Is be n-sets of type P , and
assume that

(a)

s∑
j=1

∑
r∈Ij

γ(j)r m(pj , r)

 = (0, 0, . . . , 0),

where each γ
(j)
r is an integer. We will show that γ

(j)
r = 0 for all j, r.

Note, that every standard element u = m(pj , r) is a sequence (u0, u1, . . . , un−1),
where all u0, . . . , un−1 are integers belonging to {0, 1}. We will denote by S(u) the

support of u, that is, S(u) =
{
k ∈ {0, 1, . . . , n− 1}; uk = 1

}
.

Consider the case j = 1. Put p = p1 and N = n1 = n
p = p2p3 . . . ps−1 · pαs .

Observe that p - N , and all the numbers n2, . . . , ns are divisible by p. Let u =
m(pj , r) with r ∈ Ij , where j > 2. Then p - r, and

S(u) = {r, r + nj , r + 2nj , . . . , r + (pj − 1)nj},
and hence, all the elements of S(u) are not divisible by p.

Look at the support of m(p1, r) with r ∈ I1. We have S
(
m(p1, r)

)
=
{
r, r +

N, r+2N, . . . , r+(p−1)N
}
. It follows from Lemma 5.3 that in this support there

exists exactly one element divisible by p. Let us denote this element by r + crN .
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We know also from the same lemma, that all the elements r+ crN with r ∈ I1 are
pairwise different. These arguments imply, that in the equality (a) all the integers

γ
(1)
r , with r ∈ I1, are equal to zero.

Now let 2 6 j0 < s, and assume that we already proved the equalities γ
(j)
r = 0

for all j < j0 and r ∈ Ij . Then the equality (a) is of the form

(b)

s∑
j=j0

∑
r∈Ij

γ(j)r m(pj , r)

 = (0, 0, . . . , 0),

We will show that γ
(j0)
r = 0 for all r ∈ Ij0 .

Put p = pj0 and N = nj0 = n
p . Observe that p - N , and all the numbers nj with

j > j0 are divisible by p. Let u = m(pj , r) with r ∈ Ij , where j > j0. Then p - r,
and

S(u) = {r, r + nj , r + 2nj , . . . , r + (pj − 1)nj},
and hence, all the elements of S(u) are not divisible by p.

Look at the support of m(pj0 , r) with r ∈ Ij0 . We have S
(
m(pj0 , r)

)
=
{
r, r+

N, r+2N, . . . , r+(p−1)N
}
. It follows from Lemma 5.3 that in this support there

exists exactly one element divisible by p. Let us denote this element by r + crN .
We know also from the same lemma, that all the elements r+ crN with r ∈ Ij0 are
pairwise different. These arguments imply, that in the equality (b) all the integers

γ
(j0)
r , with r ∈ Ij0 , are equal to zero.

Hence, by the induction hypothesis, the equality (b) reduces to the equality∑
r∈Is

γ(s)r m(ps, r) = (0, 0, . . . , 0),

where each γr(s) is an integer. Now we use Proposition 3.2 and we have γr(s) = 0
for all r ∈ Is. Thus, we proved that in the equality (a) all the integers of the
form γjr , where j ∈ {1, . . . , s} and r ∈ Ij , are equal to zero. This means that the
n-standard set A of type P is linearly independent over Z. Therefore, n is a special
number of type P . �

Using the above proposition for α = 1 we obtain

Proposition 5.5. Every square-free integer n > 2 is absolutely special.

Lemma 5.6. Let n = pα1
1 · · · pαs

s , where s > 2, p1, . . . , ps are distinct prime num-
bers and α1, . . . , αs are positive integers. Let P = [p1, . . . , ps]. If α1 > 2, then n is
not a special number of type P .

Proof. Put p = p1, q = p2, u = n
p2 , v = n

pq , a =
u−1∑
k=0

m(p, pk+ 1), b =
v−1∑
k=0

m(q, pk+

1). Observe that a is a sum of elements from A1, and b is a sum of elements from
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A2. Moreover, n1 = n
p = pu, n2 = n

q = pv,

a =

u−1∑
k=0

p−1∑
i=0

epk+1+in1 =

u−1∑
k=0

p−1∑
i=0

epk+1+ipu =

u−1∑
k=0

p−1∑
i=0

ep(k+iu)+1 =

n1−1∑
j=0

epj+1,

b =

v−1∑
k=0

q−1∑
i=0

epk+1+in2
=

v−1∑
k=0

q−1∑
i=0

epk+1+ipv =

v−1∑
k=0

q−1∑
i=0

ep(k+iv)+1 =

n1−1∑
j=0

epj+1.

Hence, a =

n1−1∑
j=0

epj+1 = b. This implies that the n-standard set A of type P is not

linearly independent over Z. Thus, n is not a special number of type P . �

Lemma 5.7. Let n = pα1
1 · · · pαs

s , where s > 2, p1, . . . , ps are distinct prime num-
bers and α1, . . . , αs are positive integers. Let P = [p1, . . . , ps]. If there exists
j0 ∈ {1, 2, . . . , s− 1} such that αj0 > 2, then n is not a special number of type P .

Proof. If j0 = 1 then the assertion follows from Lemma 5.6. Assume that j0 > 2,
and let A1, . . . ,As be the n-standard sets of type P . Put N = pα1

1 · · · p
αj0−1

j0−1 ,

p = pj0 , q = pj0+1, u = n
Np2 , v = n

Npq , w = n
pN , a =

u−1∑
k=0

m(p, pNk + 1), and

b =
v−1∑
k=0

m(q, pNk + 1). Observe that a is a sum of elements from Aj0 , and b is

a sum of elements from Aj0+1. Moreover, nj0 = n
p = pNu, nj0+1 = n

q = pNv,

a =

u−1∑
k=0

p−1∑
i=0

epNk+1+inj0
=

u−1∑
k=0

p−1∑
i=0

epNk+1+ipNu

=

u−1∑
k=0

p−1∑
i=0

epN(k+iu)+1 =

w−1∑
j=0

epNj+1,

b =

v−1∑
k=0

q−1∑
i=0

epNk+1+inj0+1 =

v−1∑
k=0

q−1∑
i=0

epNk+1+ipNv

=

v−1∑
k=0

q−1∑
i=0

epN(k+iv)+1 =

w−1∑
j=0

epNj+1.

Hence, a =

w−1∑
j=0

epNj+1 = b, where w = n
pN . This implies that the n-standard set

A of type P is not linearly independent over Z. Thus, n is not a special number of
type P . �

As a consequence of the above facts we obtain the following theorems.

Theorem 5.8. An integer n > 2 is special if and only if n = p1p2 · · · ps−1pαs
s ,

where p1, . . . , ps are distinct primes and αs > 1.
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Theorem 5.9. An integer n > 2 is absolutely special if and only if either n is
square-free or n is a power of a prime number.

The smallest non-special positive integer n > 2 is n = 36. In the segment [2, 100]
there are 3 non-special numbers: 36, 72 and 100.

Let us recall that if n is a special number, then its n-standard set A is linearly
independent over Z. Now we will show that, in this case, the set A is a basis of
Gn. Let us denote by A the subgroup of Gn generated by A. Every element of A
is a finite combination over Z of some elements of A.

We already know (see Theorem 3.5) that the group Gn is generated by all the
standard minimal elements of Mn. Thus, for a proof that A is a basis of Gn, it
suffices to prove that every standard minimal element of Mn belongs to A.

Theorem 5.10. Let n = p1 · · · ps−1pαs , where s > 1, α > 1, and p1, . . . , ps are
pairwise different primes. Let P = [p1, . . . , ps], and let A be the n-standard set of
type P . Then every standard minimal element of Mn belongs to A.

Proof. First, all p1-standard elements m(p1, r) with 0 6 r < n
p1

belong to A1 and

thus to A.

To go further, for j > 1, we will use the relations given in Proposition 3.3 and
we define therefore the height of a pj-standard element (that may not belong to
Aj) as the number of primes among {p1, · · · , pj−1} that divide r and denote it by
h(m(pj , r)). Elements of Aj have height 0. A pj-standard element has an height
at most j − 1.

By definition all standard elements of height 0 belong to A and thus to A.

To achieve the proof by induction, we use the following fact.

Key fact. For j > 1, let m(pj , r) be a pj-standard element with a non-zero height.
Then some of the pi, 1 ≤ i < j divide r. Let then denote by p one of them and pj
by q.

As all prime factors but the last have exponent 1 in the decomposition of n, when
we apply Proposition 3.3, N = n/pq is coprime with p and a multiple of all pl, 1 ≤
l < j, l 6= i.

For any k, 1 ≤ k ≤ p − 1, r + kN is coprime with p and keeps the same other
divisors among the other pl, 1 ≤ l < j, l 6= i : the height h(m(pj , r + lN)) is then
h(m(pj , r))− 1.

Whence the following relation we get from Proposition 3.3

m(q, r) =

q−1∑
k=0

m(p, kN + r)−
p−1∑
k=1

m(q, kN + r).
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which means

m(pj , r) =

q−1∑
k=0

m(pi, kN + r)−
p−1∑
k=1

m(pj , kN + r).

and m(pj , r) is a Z-linear combination of some m(pj , r
′) with a strictly smaller

height and of some m(pi, r
′′) for an index i < j.

The proof is now a double induction with the following steps.

Let j > 1 and suppose that all m(pi, r) have been proven to belong to A for all
i < j.

All m(pj , r) with a 0 height belong to Aj and then to A.

For any h′, 1 ≤ h′ < j, if we know that all m(pj , r) with h(m(pj , r)) < h′ belong

to A, then the same is true for all m(pj , r) with h(m(pj , r)) = h′ according to the
previous key fact. �

6. The cyclotomic derivation d

Throughout this section n > 3 is an integer, K is a field of characteristic zero,
K[X] = K[x0, . . . , xn−1] is the polynomial ring over K in variables x0, . . . , xn−1,
and K(X) = K(x0, . . . , xn−1) is the field of quotients of K[X]. We denote by Zn
the ring Z/nZ. The indexes of the variables x0, . . . , xn−1 are elements of Zn. We
denote by d the cyclotomic derivation of K[X], that is, d is the K-derivation of
K[X] defined by

d(xj) = xj+1, for j ∈ Zn.

We denote also by d the unique extension of d to K(X). We denote by K[X]d and
K(X)d the K-algebra of constants of d and the field of constants of d, respectively.
Thus,

K[X]d = {F ∈ K[X]; d(F ) = 0}, K(X)d = {f ∈ K(X); d(f) = 0}.

Now we recall from [10] some basic notions and facts concerning the derivation
d. As in the previous sections, we denote by ε a primitive n-th root of unity, and
first we assume that ε ∈ K.

The letters % and τ we book for two K-automorphisms of the field K(X), defined
by

%(xj) = xj+1, τ(xj) = εjxj for all j ∈ Zn.
Observe that %d%−1 = d. We denote by u0, u1, . . . , un−1 the linear forms, belonging
to K[X], defined by

uj =

n−1∑
i=0

(
εj
)i
xi, for j ∈ Zn.
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Then we have the equalities

xi =
1

n

n−1∑
j=0

(
ε−i
)j
uj ,

for all i ∈ Zn. Thus, K[X] = K[u0, . . . , un−1], K(X) = K(u0, . . . , un−1), and the
forms u0, . . . , un−1 are algebraically independent over K. Moreover,

τ(uj) = uj+1, %(uj) = ε−juj , d(uj) = ε−juj ,

for all j ∈ Zn.

It follows from the last equality that d is a diagonal derivation of the polynomial
ring K[U ] = K[u0, . . . , un−1] which is equal to the ring K[X].

If α = (α0, . . . , αn−1) ∈ Zn, then we denote by uα the rational monomial
uα0
0 · · ·u

αn−1

n−1 . Recall (see Section 2) that Hα(t) is the polynomial α0 + α1t
1 +

· · ·+ αn−1t
n−1 belonging to Z[t]. Since d(uj) = ε−juj for all j ∈ Zn, we have

d(uα) = Hα(ε−1)uα, for all α ∈ Zn.

Note that ε−1 is also a primitive n-th root of unity. Hence, by Proposition 2.1, we
have the equivalence Hα(ε−1) = 0 ⇐⇒ Hα(ε) = 0, and so, we see that if α ∈ Zn,
then d(uα) = 0 ⇐⇒ α ∈ Gn, and if α ∈ Nn, then d(uα) = 0 ⇐⇒ α ∈ Mn.

Moreover, if F = b1u
α(1)

+ · · ·+ bru
α(r)

, where b1, . . . , br ∈ K and α(1), . . . , α(r) are

pairwise different elements of Nn, then d(F ) = 0 if and only if d
(
biu

α(i)
)

= 0 for

every i = 1, . . . , r. In [10] we proved the following proposition.

Proposition 6.1 ([10]). If the primitive n-th root ε belongs to K, then:

(1) the ring K[X]d is generated over K by all elements of the form uα with
α ∈Mn;

(2) the ring K[X]d is generated over K by all elements of the form uβ, where β
is a minimal element of the monoid Mn;

(3) the field K(X)d is generated over K by all elements of the form uγ with
γ ∈ Gn;

(4) the field K(X)d is the field of quotients of the ring K[X]d.

Let m = n − ϕ(n), and let γ0, . . . , γm−1 be the elements of Gn introduced in
Section 2. We know (see Theorem 2.3) that these elements form a basis of the
group Gn. Consider now the rational monomials w0, . . . , wm−1 defined by

wj = uγj for j = 0, 1, . . . ,m− 1.

It follows from Proposition 6.1, that these monomials belong to K(X)d and they
generate the field K(X)d. We proved in [10] that they are algebraically independent
over K. Moreover, in [10] proved the following theorem.
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Theorem 6.2. If the primitive n-th root ε belongs to K, then the field of constants
K(X)d is a field of rational functions over K and its transcendental degree over K
is equal to m = n− ϕ(n), where ϕ is the Euler totient function. More precisely,

K(X)d = K
(
w0, . . . , wm−1

)
,

where the elements w0, . . . , wm−1 are as above.

7. The polynomials Sp,m

In this section we use the notations from the previous section, and we again
assume that K is a field of characteristic zero containing ε. Let us recall that if p
is a prime divisor of n and 0 6 r 6 n

p − 1, then m(p, r), is the standard minimal

element of the monoidMn defined by m(p, r) =
p−1∑
i=0

er+inp . Observe that if a, b are

integers such that a ≡ b (mod n
p ), then

p−1∑
i=0

ea+inp =
p−1∑
i=0

eb+inp . Thus, we may define

m(p, a) :=

p−1∑
i=0

ea+inp , for a ∈ Z.

Note, that if a ∈ Z, then m(p, a) = m(p, r), where r is the remainder of division of a

by n
p . Moreover, ζ

n
p

(
m(p, b)

)
= m(p, b) for b ∈ Z, and more general, ζa

(
m(p, b)

)
=

m(p, a+ b) for all a, b ∈ Z (see Proposition 3.4).

For every integer a, we define

Sp,a := um(p,a) =

p−1∏
i=0

ua+inp .

Observe that Sp,a = Sp,r, where r is the remainder of division of a by n
p . Each Sp,a

is a monomial belonging to K[U ] = K[u0, . . . , un−1]. Since m(p, a) ∈ Mn ⊂ Gn,
each Sp,a belongs to the constant field K(X)d.

Recall (see Section 6) that % is the K-automorphism of the field K(X), defined
by

%(xj) = xj+1, for j ∈ Zn.
We have %(uj) = ε−juj for j ∈ Zn. In particular, %(u0) = u0. The proof of the
following proposition is an easy exercise.

Proposition 7.1. If a ∈ Z, then % (Sp,a) = ε−bSp,a, where b = pa + (p−1)n
2 . In

particular, if p is odd then % (Sp,a) = ε−apSp,a. If p = 2, then n is even and

% (S2,a) = ε−(2a+n
2 )S2,a.

Recall the following well known lemma, which appears in many books of linear
algebra.
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Lemma 7.2. For any integer n > 2,

u0u1 . . . un−1 =

∣∣∣∣∣∣∣∣∣
x0 x1 · · · xn−1
xn−1 x0 · · · xn−2

...
...

...
x1 x2 · · · x0

∣∣∣∣∣∣∣∣∣ .
In particular, the product u0u1 . . . un−1 is a polynomial belonging to Z[X].

Using this lemma we obtain the following proposition.

Proposition 7.3. The polynomial Sp,0 belongs to Z[X].

Proof. Put b = n
p , η = εb, and vi = uib, yi =

b−1∑
j=0

xi+jp for all i = 0, 1, . . . , p−1, Then

η is a primitive p-th root of unity, and vi =
p−1∑
k=0

(
ηi
)k
yk, for all i = 0, 1, . . . , p− 1.

Now we use Lemma 7.2, and we have

Spj ,0 = v0v1 · · · vp−1 =

∣∣∣∣∣∣∣∣∣
y0 y1 · · · yp−1
yp−1 y0 · · · yp−2

...
...

...
y1 y2 · · · y0

∣∣∣∣∣∣∣∣∣ .
Thus, Spj ,0 ∈ Z[X]. �

Let n = pα1
1 · · · pαs

s , where p1, . . . , ps are distinct primes and α1, . . . , αs are
positive integers. Let nj = n

pj
for j = 1, . . . , s. Assume that P = [p1, . . . , pn] is

a fixed type, and I1, . . . , Is are the n-sets of type P .

For every j ∈ {1, . . . , s} we denote by Vj the K-subspace of K[U ] generated by
all the monomials Spj ,r with r ∈ Ij . Let us remember

Vj =
〈
Spj ,r; r ∈ Ij

〉
, for j = 1, . . . , s.

We will say that V1, . . . ,Vs are n-spaces of type P . As a consequence of Propositions
4.3 and 4.5 we obtain the following proposition.

Proposition 7.4. If V1, . . . ,Vs are n-spaces of type P = [p1, . . . , ps], then

dimK V1 = n1, and dimK Vj = nj

(
1− 1

p1

)(
1− 1

p2

)
· · ·
(

1− 1
pj−1

)
, for all j =

2, 3, . . . , s. Moreover,

dimK (V1 ⊕ · · · ⊕ Vs) = n− ϕ(n).

Let A be the n-standard set of type P . Let us recall (see Section 5) that
A = A1 ∪ · · · ∪ As, where Aj = {p(pj , r); r ∈ Ij} for j = 1, . . . , s. Hence, for each
j we have the equality Vj = 〈ua; a ∈ Aj〉. Let S the set of all the monomials ua

with a ∈ A, that is,

S =
{
Spj ,r; j ∈ {1, . . . , s}, r ∈ Ij

}
.
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Proposition 7.5. If the number n is special of type P , then the above set S is
algebraically independent over K, and K(X)d = K (S).

Proof. Assume that n is special of type P . Let γ0, . . . , γm−1 be the elements
of Gn defined in Section 2, and let wi = uγi for i = 0, . . . ,m − 1. Recall that
m = n − ϕ(n). Put Γ = {γ0, . . . , γm−1}, and W = {w0, . . . , wm−1}. We know
(see Theorem 2.3) that Γ is a basis of Gn. Since n is special, the set A is also
a basis of Gn. This implies that K (S) = K(W ). But, by Theorem 6.2, the set W is
algebraically independent over K and K(W ) = K(X)d. Moreover, |S| = |W | = m
Hence, the set S is also algebraically independent over K, and we have the equality
K(X)d = K (S). �

In the above proposition we assumed that n is special of type P . This as-
sumption is very important. Consider for example n = 12 and P = [2, 3]. We
know (see Example 5.1) that 12 is not special of type P . In this case the set S
is not algebraically independent over K. In fact, we have the polynomial equality
S2,1S2,3S2,5 = S3,1S3,3.

8. The polynomials Tp,m

Let n = pα1
1 · · · pαs

s , where p1, . . . , ps are distinct prime numbers and
α1, . . . , αs are positive integers. Let nj = n

pj
for j = 1, . . . , s. Assume that

P = [p1, . . . , pn] is a fixed type, and I1, . . . , Is are the n-sets of type P .

Now assume that j is a fixed element from the set {1, . . . , s}, and a is an integer.
Put

Tpj ,a =
∑
r∈Ij

(
ε−apj

)r
Spj ,r.

Observe that Tpj ,a = Tpj ,m, where m is the remainder of division of a by nj . Let
us recall that ε ∈ K. Thus, every Tpj ,a is a polynomial from K[U ] belonging to
the subspace Vj .

Proposition 8.1. For every j = 1, . . . , s, all the polynomials Tpj ,m with 0 6 m <
nj, generate the K-space Vj.

Proof. Let q ∈ Ij and consider the sum H =
nj−1∑
m=0

(εqpj )
m
Tpj ,m. Put η = εpj . Then

η is a primitive nj-th root of unity, and we have

H =
nj−1∑
m=0

(εqpj )
m

( ∑
r∈Ij

εrpjmSpj ,r

)
=
∑
r∈Ij

(
nj−1∑
m=0

ε(q−r)pjm

)
Spj ,r

=
∑
r∈Ij

(
nj−1∑
m=0

η(q−r)m

)
Spj ,r = njSpj ,q.
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In the last equality we used Lemma 4.6. Thus, if q ∈ Ij , then Spj ,q =

1
nj

nj−1∑
m=0

(εqpj )
m
Tpj ,m. But ε ∈ K, so now it is clear that all Tpj ,m with 0 6 m < nj ,

generate the K-space Vj . �

Now we will prove that every polynomial Tpj ,a belongs to the ring Z[X]. For
this aim first recall (see Section 6) that τ is a K-automorphism of K(X) defined
by

τ(xj) = εjxj for all j ∈ Zn.

Since τ(ui) = ui+1 for all i ∈ Zn, we have

Spj ,r = τ r
(
Spj ,0

)
for j ∈ {1, . . . , s} and r ∈ Z (in particular, for r ∈ Ij). We say (us in [10]) that
a rational function f ∈ K(X) is τ -homogeneous, if f is homogeneous in the ordinary
sense and τ(f) = εcf for some c ∈ Zn. In this case we say that c is the τ -degree of
f and we write degτ (f) = c. Note that degτ (f) is an element of Zn. Every rational
monomial xα = xα0

0 · · ·x
αn−1

n−1 , where α = (α0, . . . , αn−1) ∈ Zn, is τ -homogeneous

and its τ -degree is equal to
n−1∑
i=0

iαi (mod n).

Let j be a fixed number from {1, . . . , s} and consider the polynomial Spj ,0.
We know by Proposition 7.3 that this polynomial belongs to Z[X]. Hence, we
have the unique determined polynomials B0, . . . , Bn−1 ∈ Z[X] such that Spj ,0 =
B0 + · · ·+Bn−1, and each Bi is τ -homogeneous of τ -degree i.

Put Ci = τnj (Bi), for all i = 0, . . . , n − 1. Since τ(Bi) = εiBi, we have Ci =
εinjBi, and this implies that τ(Ci) = εiCi. In fact,

τ(Ci) = τ (τnj (Bi)) = τ
(
εinjBi

)
= εinjτ(Bi) = εinj · εiBi = εi · εinjBi = εiCi.

Thus, every polynomial Ci is τ -homogeneous of τ -degree i. Observe that

τnj
(
Spj ,0

)
= Spj ,0.

But τnj
(
Spj ,0

)
=

n−1∑
i=0

Ci, so Ci = τnj (Bi) = Bi and so, εinjBi = Bi, for all

i = 0, . . . , n− 1. Thus, if Bi 6= 0, then n | inj . But n = pjnj so, if Bi 6= 0, then i
is divisible by pj . Therefore,

Spj ,0 =

nj−1∑
k=0

Bkpj ,
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where each Bkpj is τ -homogeneous polynomial from Z[X] of τ -degree kpj . Hence,
for every m ∈ {0, . . . , n− 1}, we have

Tpj ,m =
∑
r∈Ij

ε−rpjmSpj ,r =
∑
r∈Ij

ε−rpjmτ r
(
Spj ,0

)
=

∑
r∈Ij

ε−rpjmτ r

(
nj−1∑
k=0

Bkpj

)
=
∑
r∈Ij

ε−rpjm

(
nj−1∑
k=0

τ r(Bkpj )

)

=
∑
r∈Ij

ε−rpjm

(
nj−1∑
k=0

εkpjrBkpj

)
=
nj−1∑
k=0

Bkpj

( ∑
r∈Ij

εrpj(k−m)

)
.

Observe that, by Proposition 4.7, every sum
∑
r∈Ij

εrpj(k−m) is an integer. Moreover,

every polynomial Bkpj belongs to Z[X]. Hence, Tpj ,m ∈ Z[X].

Recall that Tpj ,a = Tpj ,m, where m is the remainder of division of a by nj . Thus,
we proved the following proposition.

Proposition 8.2. For any j ∈ {1, . . . , s} and a ∈ Z, the polynomial Tpj ,m belongs
to the polynomial ring Z[X].

Now we will prove some additional properties of the polynomials Tpj ,a.

Proposition 8.3. Assume that s > 2, and let i, j ∈ {1, . . . , s}, i < j. Then

pi−1∑
k=0

Tpj , k n
pipj

= 0.

Proof. Put p = pi, q = pj , and N = n
pq . Then we have

pi−1∑
k=0

Tpj , k n
pipj

=
p−1∑
k=0

Tq, kN =
p−1∑
k=0

∑
r∈Ij

(
ε−kNq

)r
Sq,r =

∑
r∈Ij

(
p−1∑
k=0

(
ε−

n
p r
)k)

Sq,r.

Let η = ε−
n
p . Then η is a primitive p-th root of unity. If r ∈ Ij , then p - r and, by

Lemma 4.6, we have
p−1∑
k=0

(
ε−

n
p r
)k

=

p−1∑
k=0

ηrk = 0.

Thus,
pi−1∑
k=0

Tpj , k n
pipj

=
∑
r∈Ij

(
p−1∑
k=0

(
ε−

n
p r
)k)

Sq,r. =
∑
r∈Ij

0 · Sq,r = 0. �

Proposition 8.4. For any integer a, we have

%
(
Tpj , a

)
=

{
Tpj , a+1, when pj 6= 2,

−Tpj , a+1, when pj = 2.
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Proof. First assume that pj is odd. In this case (see Proposition 7.1), %
(
Spj r

)
=

ε−pjrSpj r for any r ∈ Z. Hence,

%
(
Tpj , a

)
=

∑
r∈Ij

(ε−apj )
r
%
(
Spj r

)
=
∑
r∈Ij

(ε−apj )
r
ε−pjrSpj r

=
∑
r∈Ij

(
ε−(a+1)pj

)r
Spj r = Tpj , a+1.

Now let pj = 2. Then, by Proposition 7.1, %
(
Spj r

)
= ε−(pjr+n

2 )Spj , r for any

r ∈ Z. Moreover, ε−
n
2 = −1. Thus, we have

%
(
Tpj , a

)
=

∑
r∈Ij

(ε−apj )
r
%
(
Spj r

)
=
∑
r∈Ij

(ε−apj )
r
ε−(pjr+n

2 )Spj , r

=
∑
r∈Ij

ε−
n
2

(
ε−(a+1)pj

)r
Spj r = −

∑
r∈Ij

(
ε−(a+1)pj

)r
Spj r = −Tpj , a+1.

This completes the proof. �

Proposition 8.5. Assume that s > 2. Let i, j ∈ {1, . . . , s}, i < j, and let a ∈ Z.
Then

Tpj , a = −
pi−1∑
k=1

Tpj , a+k n
pipj

.

Proof. It follows from Proposition 8.4 that Tpj , a = (−1)pj−1%a
(
Tpj , 0

)
. Hence,

using Proposition 8.3, we obtain

Tpj , a = (−1)pj−1%a
(
Tpj , 0

)
= (−1)pj−1%a

(
−
pi−1∑
k=1

Tpj , k n
pipj

)
= (−1)pj

pi−1∑
k=1

%a
(
Tpj , k n

pipj

)
= (−1)pj

pi−1∑
k=1

(−1)pj−1Tpj , a+k n
pipj

= −
pi−1∑
k=1

Tpj , a+k n
pipj

.

This completes the proof. �

For any j ∈ {1, . . . , s}, let us denote by Wj the Z-module generated by all the
polynomials Tpj , r with r ∈ Ij . It is clear that every polynomial Tp1, a, for arbitrary
integer a, belongs to W1.

Theorem 8.6. If the number n is special, then for all j ∈ {1, . . . , s} and a ∈ Z,
the polynomial Tpj , a belongs to Wj.

Proof. Let n = p1 · · · ps−1 · pαs , where s > 1, α > 1, and p1, . . . , ps are distinct
primes. Let nj = n

pj
for j = 1, . . . , s. Assume that P = [p1, . . . , pn] is a fixed type,

and I1, . . . , Is are the n-sets of type P .

Let j be a fixed element from {1, . . . , s}. If s = 1 or j = 1, then we are done.
Assume that s > 2, j > 2, and a is an integer. Since Tpj , a = Tpj ,m, where m is
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the remainder of division of a by nj , we may assume that 0 6 a < nj . We use the
following notations:

M := {p1, p2, . . . , pj−1} , q := pj , Bc := Tpj , c for c ∈ Z.
We will show that Ba ∈ Wj . If gcd(a, p1 · · · pj−1) = 1, then a ∈ Ij and so,
Ba ∈ Wj . Now let gcd(a, p1 · · · pj−1) > 2. In this case, a is divisible by some
primes belonging to M .

Step 1. Assume that a is divisible by exactly one prime number pi belonging
to M . Then i < j and, by Proposition 8.5, we have the equality

Ba = −
pi−1∑
k=1

Ba+k n
piq
.

Let k ∈ {1, . . . , pi − 1}, and consider c := a+ k n
piq

. Since n is special, the number

k n
piq

is not divisible by pi. But pi | a, so pi - c. If p ∈M and p 6= pi, then p - a and

p | k n
piq

, so p - c. Hence, the numbers c and p1 · · · pj−1 are relatively prime. This

implies that the element c (mod nj) belongs to Ij , and so, Bc ∈ Wj . Therefore, by
the above equality, Ba ∈ Wj .

We see that if s = 2 or j = 2, then we are done. Now suppose that s > 3 and
j > 3.

Step 2. Let 1 6 t 6 j − 2, and assume that we already proved that Bc ∈ Wj

for every integer c which is divisible by exactly t primes belonging to M . Assume
that a is divisible by exactly t+ 1 distinct primes m1, . . . ,mt+1 from M . We have:
mi | a for i = 1, . . . , t+ 1, and m - a for m ∈M r {m1, . . . ,mt+1}. Put p = mt+1.
It follows from Proposition 8.5, that have the following equality:

Ba = −
p−1∑
k=1

Ba+k n
pq
.

Let k ∈ {1, . . . , p − 1}, and consider c := a + k n
pq . Since n is special, the number

k n
pq is not divisible by p. But p | a, so p - c, and consequently, mt+1 - c. It is clear

that mi | c for all i = 1, . . . , t, and m - c for all m ∈M r{m1, . . . ,mt}. This means
that c is divisible by exactly t primes from M . Thus, by our assumption, Bc ∈ Wj .
Therefore, by the above equality, Ba ∈ Wj .

Now we use a simple induction and, by Steps 1 and 2, we obtain the proof of
our theorem. �

9. The main theorem

Assume that n > 3 is a special number of a type P . Let I1, . . . , Is be the
n-sets of type P , let A be the n-standard set of type P , and let

S =
{
Spj ,r; j ∈ {1, . . . , s}, r ∈ Ij

}
, T =

{
Tpj ,r; j ∈ {1, . . . , s}, r ∈ Ij

}
.
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Since n is special, we have the following sequence of important properties.

(1) A is a basis of the group Gn (Theorems 5.8, 3.5 and 5.10).

(2) S is algebraically independent over K, and K(X)d = K (S) (Proposition
7.5).

(3) K (S) = K (T ) (Proposition 8.1 and Theorem 8.6).

We know also (see Proposition 8.2) that each element of T is a polynomial
belonging to Z[X]. Moreover, |T | = |S| = |A| = n − ϕ(n). In particular, the
set T is algebraically independent over K. Put an order on the set T . Let
T = {F0, F1, . . . , Fm−1} where m = n − ϕ(n). Thus, if the number n is special,
then K(X)d = K(F0, . . . , Fm−1), where F0, . . . , Fm−1 are polynomials belonging
to Z[X], and these polynomials are algebraically independent over Q.

Let us recall, that K is a field of characteristic zero containing ε (where ε is
a primitive n-th root of unity). But the polynomials F0, . . . , Fm−1 have integer
coefficients, and they are constants of d. They are not dependent from the field
K. Since the polynomials d(x0), . . . , d(xn−1) belong to Z[X], we see that we may
assume that K is a field of characteristic zero, without the assumption concerning
ε. Thus, we proved the following theorem.

Theorem 9.1. Let K be an arbitrary field of characteristic zero, n > 3 an integer,
and K[X] = K [x0, . . . , xn−1] the polynomial ring in n variables over K. Let
d : K[X] → K[X] be the cyclotomic derivation, that is, d is a K-derivation of
K[X] such that

d(xi) = xi+1 for i ∈ Zn.

Assume that n = p1p2 · · · ps−1pαs , where s > 1, α > 1 and p1, . . . , ps are distinct
primes. Let m = n− ϕ(n), where ϕ is the Euler totient function. Then

K(X)d = K (F0, . . . , Fm−1) ,

where F0, . . . , Fm−1 are algebraically independent over Q polynomials belonging to
Z[X].

More exactly, {F0, F1, . . . , Fm−1} =
{
Tpj , r; j ∈ {1, . . . , s}, r ∈ Ij

}
, where

I1, . . . , Is are the n-sets of type [p1, . . . , ps].

We end this article with several examples illustrating the above theorem.

Example 9.2. If n = 4, then K(X)d = K (F0, F1), where F0 = x20 − 2x1x3 + x22,
and F1 = %(F0).

Example 9.3. If n = 8, then K(X)d = K (F0, F1, F2, F3), where F1 = %(F0),
F2 = %2(F0), F3 = %3(F0) and F0 = x20 + x24 − 2x3x5 − 2x7x1 + 2x2x6.
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Example 9.4. If n = 9, then K(X)d = K (F0, F1, F2), where F1 = %(F0),
F2 = %2(F0),

F0 = 3x1x
2
4 + 3x28x2 + 3x8x

2
5 − 3x0x4x5 − 3x1x0x8 − 3x2x4x3 − 3x2x7x0

−3x8x6x4 + 3x22x5 + 3x27x4 + 3x21x7 + x36 + x30 − 3x1x3x5 + 6x0x6x3
−3x8x7x3 − 3x2x1x6 − 3x5x7x6 + x33.

Example 9.5. If n = 6 and P = [2, 3], then K(X)d = K (F0, F1, F2, F3), where

F0 = x20 − 2x1x5 + 2x2x4 − x23,
F3 = (x21 + x4x3 − 2x1x4 + x0x1 + x25 − x5x3 + x2x3 − 2x2x5 + x0x5

−2x0x3 − x0x2 − x4x0 + x24 − x1x3 + x22 + x4x5 + x1x2 + x20
−x1x5 − x4x2 + x23)(x0 − x1 + x2 − x3 + x4 − x5),

and F1 = %(F0), F2 = %2(F0).

Example 9.6. If n = 6 and P = [3, 2], then K(X)d = K (F0, F1, F2, F3), where

F0 = x30 + x32 + x34 + 3x0x
2
3 + 3x2x

2
5 + 3x4x

2
1 − 3x0x2x4 − 3x5x0x1

−3x1x2x3 − 3x3x4x5,

F2 = 2x21 + x22 − x23 − 2x24 − x25 + x20
−2x1x3 + 2x2x4 + 4x3x5 + 2x4x0,−2x5x1 − 4x2x0.

and F1 = %(F0), F3 = %(F2).

Example 9.7. If n = 12, then K(X)d = K (F0, . . . , F7), where

F0 = −3x6x2x4 − 3x6x8x10 − 3x4x0x8 + x30 + 3x26x0 − 3x1x8x3 + 3x23x6
+3x29x6 + x38 − 3x1x11x0 + 6x5x11x8 − 3x1x5x6 + 3x27x10 + 3x210x4
+3x211x2 + 3x21x10 + 3x25x2 + 3x22x8 + 6x3x0x9 + 6x1x7x4 − 3x7x11x6
−3x7x5x0 − 3x10x11x3 − 3x10x5x9 − 3x4x11x9 − 3x4x5x3 − 3x1x2x9
−3x7x2x3 − 3x7x8x9 + x34 − 3x10x2x0,

F4 = 4x6x8 + x23 − 2x10x8 + 2x7x3 + 2x7x11 − 2x10x0 − 2x4x2 − 2x4x6
+2x1x9 + 2x1x5 + 4x0x2 − 2x0x6 − 4x3x11 − 2x21 + x211 + x25 + 4x4x10
−2x2x8 − 2x27 + x29 − 4x9x5,

and F1 = %(F0), F2 = %2(F0), F3 = %3(F0), F5 = %(F4), F6 = %3(F4), F7 = %4(F4).
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