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Introduction

Throughout this paper n > 3 is an integer, k is a field of characteristic zero containing the
n-th roots of unity. We denote by 7Z, the ring Z/nZ and consider the two polynomial rings
k[X1=k[xo,...,xn—1] and k[Y]=Kk[yo, ..., yn—1] over k in n variables; the indexes of the variables
X0,...,Xp—1 and Yo, ..., yn—1 are elements of Zj.

We denote by k(X) =k(xo, ...,x;—1) and k(Y) =k(yo, ..., yn—1) the fields of quotients of k[X] and
k[Y], respectively.

We then call cyclotomic derivations the following two derivations d and A:

i) d is the derivation of k[X] defined by d(x;) =x;11, for j € Zp,

ii) A is the derivation of k[Y] defined by A(yj) =y;j(¥j+1 — ¥;), for j € Z.
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We denote also by d and A the unique extension of d to k(X) and the unique extension of A to
k(Y), respectively. We will show that there are some important relations between d and A. In this
paper we study polynomial and rational constants of these derivations.

In general, if § is a derivation of a commutative k-algebra A, then we denote by A® the k-algebra
of constants of §, that is, A° = {a € A; §(a) = 0}. For a given derivation § of k[X], we are interested in
some descriptions of k[X]® and k(X)?. However, we know that such descriptions are usually difficult
to obtain. Rings and fields of constants appear in various classical problems; for details we refer
to [5,6,26,24]. The mentioned problems are already difficult for factorisable derivations. We say that a
derivation § : k[ X] — k[X] is factorisable if

n—1

SXi) =Xi ) aijX;

j=0

for all i € Zy, where each a;; belongs to k. Such factorisable derivations and factorisable systems of
ordinary differential equations were intensively studied from a long time; see for example [8,7,22,25].
Our derivation A is factorisable, and the derivation d is monomial, that is, all the polynomials
d(xp), ...,d(x,—1) are monomials. With any given monomial derivation § of k[X] we may associate,
using a special procedure, the unique factorisable derivation D of k[Y] (see [16,27,21], for details),
and then, very often, the problem of descriptions of k[X]® or k(X)? reduces to the same problem for
the factorisable derivation D.

Consider a derivation § of k[X] given by §(x;) = xjﬂ for j € Z,, where s is an integer. Such § is
called a Jouanolou derivation [10,22,16,33]. The factorisable derivation D, associated with this §, is a
derivation of k[Y] defined by D(y;) =y;(syj+1 — yj), for j € Z,. We proved in [16] that if s > 2 and
n >3 is prime, then the field of constants of § is trivial, that is, k(X)® = k. In 2003 H. Zotadek [33]
proved that for s > 2, it is also true for arbitrary n > 3; without the assumption that n is prime. The
central role, in his and our proofs, is played by some extra properties of the associated derivation D.
Indeed, for s > 2, the differential field (k(X), d) is a finite algebraic extension of (k(Y), §).

Our cyclotomic derivation d is the Jouanolou derivation with s =1, and the cyclotomic derivation A
is the factorisable derivation of k[Y] associated with d. In this case s =1, the differential field (k(X), d)
is no longer a finite algebraic extension of (k(Y),d); the relations between d and A are thus more
complicated.

We present some algebraic descriptions of the domains k[X]%, k[Y]?, and the fields k(X)?, k(Y)A.
Note that these rings are nontrivial. The cyclic determinant

X0 X1 --- Xp—1
Xn—1 X0 -+ Xn-2
w =

x-l x2 cee XO

is a polynomial belonging to k[X]¢, and the product yoy; --- yn—1 belongs to k[Y]2. In this paper we
prove, among others, that k(X)¢ is a field of rational functions over k in n — @(n) variables, where
@ is the Euler totient function (Theorem 2.9), and that k(X1 is a polynomial ring over k if and
only if n is a power of a prime (Theorem 3.7). The field k(X)? is in fact the field of quotients of
k[X]¢ (Proposition 2.5). We denote by £(n) the sum me %, where p runs through all prime divisors

of n, and we prove that the number of a minimal set of generators of k[X]¢ is equal to &(n) if and
only if n has at most two prime divisors (Corollary 3.13). In particular, if n = piq/, where p # q are
primes and i, j are positive integers, then the minimal number of generators of k[X]¢ is equal to
gm) =p'~1¢/~1(p + q) (Corollary 3.11).

The ring of constants k[Y]* is always equal to k[v], where v = ygy1,..., yn_1 (Theorem 4.2)
and, if n is prime, then k(Y)2 = k(v) (Theorem 5.6). If n = p°, where p is prime and s > 2, then
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k(Y)2 =k(v, f1,..., fm_1) with m = p*~1, where fi,..., fm_1 € k(Y) are homogeneous rational func-
tions such that v, fq,..., fm—1 are algebraically independent over k (Theorem 7.1). A similar theorem
we prove for n = pq (Theorem 7.5).

In our proofs we use classical properties of cyclotomic polynomials, and some results ([11,12,31,
32] and others) play an important role on vanishing sums of roots of unity.

1. Notations and preparatory facts

Recall that Z, is the ring Z/nZ and that the indexes of the variables xg, ..., x;—1 and yo, ..., ¥n-1
of the polynomial rings k[X] and k[Y], that we are interested in, are elements of Z,. This means in
particular that, if i, j are integers, then x; =x; <= i=j (mod n). Throughout this paper ¢ is a
primitive n-th root of unity, and we assume that € € k, where the field k has characteristic 0.

We fix the notations d and A for the derivations of the polynomial rings k[X] = k[xo, ..., Xn—1]
and k[Y]=k[yo, ..., yn_1l, respectively, defined by

dxj) =xj11,  AWY)=yjyj1—yj) forjeZny.
We denote also by d and A the unique extension of d to k(X) = k(xo,...,X;—1) and the unique

extension of A to k(Y) =k(yo,...,Yn—1), respectively.
The letters ¢ and t we book for two k-automorphisms of the field k(X), defined by

o(Xj) =Xj1, r(xj)zijj forall j € Z,.
We denote by ug, uq, ..., up—1 the linear forms in k[X], defined by
n-1
uj= Z(sf)lxi, for j € Zy.
i=0

If r is an integer and n{r, then the sum Z'};g(sr)f is equal to 0, and in the other case, when n |r,
this sum is equal to n. As a consequence of this fact, we obtain that

1 n—1 o )
Xi= Z(e Nu; foralli e Zn.
Jj=0
Thus, k[X]=k[ug, ..., un—1], k(X) =k(uo, ..., uy—1), and the forms uo, ..., u,_q are algebraically in-

dependent over k. Moreover, we have the following equalities.
Lemma 1.1. T (uj) = ujiq, 0(uj) = effujfor all j € Zn.

Proof.

n—1 n—1 n
‘L’(LU)—T( (s’)xl)zz sixi:Z(eer )x,_uﬁ],

i=0 i= i=1

n— 1 n—1 n i
Q(u]):Q< ) Z 5] Xl+1 Z(Sj)l_ Xi

i=0 i=0 i=1

n n—1

zsij(sj)ixl‘ =8*j2(sj)ix1 =eJu;. O
i=1 i
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For every sequence o = (ap, o1, ...,ay—1) of integers, we denote by Hy (t) the polynomial in Z[t]
defined by

Ho(t) = o+ aqt! +oot? + -+ op_q1t" L.

Two subsets of Z" which we denote by G, and M, play an important role in our paper. The first

subset G, is the set of all sequences o = (tg, ..., 0n—1) € Z" such that oo + a1l + o262 + -+ +
an_1€""1 = 0. The second subset M, is the set of all such sequences o = («p, ..., dn—1) which
belong to G, and the integers «y, ..., ®;—1 are nonnegative, that is, they belong to the set of natural

numbers N=1{0, 1, 2,...}. Let us remember:
Gn={a€Z" Hy(e) =0},  Mp={aeN"; Hy(e) =0} =G, NN".

If a, B € Gy, then of course o + 8 € Gy, and if «, B € M, then o + B € M. Thus G, is an abelian
group, and M, is an abelian monoid with zero 0= (0, ..., 0).

The primitive n-th root ¢ is an algebraic element over Q, and its monic minimal polynomial is
equal to the n-th cyclotomic polynomial @,(t). Recall (see for example: [23,13]) that @,(t) is a monic
irreducible polynomial with integer coefficients of degree ¢(n), where ¢ is the Euler totient function.

This implies the following proposition.

Proposition 1.2. Let « € Z". Then o € G,, ifand only if there exists a polynomial F (t) € Z[t] such that Hy (t) =
F(t) D, (t).

Put eg = (1,0,0,...,0), 1 =(0,1,0,...,0), ..., ep—1 = (0,0,...,0,1), and let e = ?:_(}ei =
(1,1,...,1). Since Z?:_Ol &l =0, the element e belongs to M,,.

Proposition 1.3. If o € Gy, then there exist 8,y € M, suchthata =8 —y.

Proof. Let o = (ap,...,0n—1) € Gy, and let r = min{«g, ...,op—1}. If r > 0, then @ € M,;, and then
o =p —y, where g =a, y =0. Assume that r = —s, where 1 <seN. Put B =«a + se and y = se.
Then B,y e My,anda=8—y. O

The monoid M, has an order >. If o, B € M,, then we write o > 8, if « — 8 € N, that is,
o > B <= there exists y € M, such that « =8+ y. In particular, @ > 0 for any o € M,. It is clear
that the relation > is reflexive, transitive and antisymmetric. Thus M, is a poset with respect to >.

Proposition 1.4. The poset My, is artinian, that is, if «V > «® > «® > ... is a sequence of elements
from My, then there exists an integer s such that o) = aU*D forall j > s.

Proof. Given an element o = («,...,¥n—1) € My, we put |&| =ap + --- + ay—1. Observe that if
o, €M, and o > 8, then |x| > ||. Suppose that there exists an infinite sequence o > o¢® >
a® > ... of elements from M,, and let s = |a‘|. Then we have an infinite sequence s > |a®| >
@@ | > ... >0, of natural numbers; a contradiction. O

Let o € M,. We say that « is a minimal element of M, if o # 0 and there is no 8 € M, such
that 8 #0 and B < «. Equivalently, o is a minimal element of M,, if & # 0 and « is not a sum of
two nonzero elements of M,. It follows from Proposition 1.4 that for any 0 # « € M, there exists
a minimal element B such that 8 < «. Moreover, every nonzero element of M, is a finite sum of
minimal elements.

Proposition 1.5. The set of all minimal elements of M, is finite.
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Proof. We use classical noetherian arguments. Consider the polynomial ring R = Z[zy, ..., zn—1]. If
o = (g, ...,¥,_1) is an element from M, then we denote by z% the monomial zg‘oz‘l"1 ~~-zﬁf’1. Let
S be the set of all minimal elements of My, and consider the ideal A of R generated by all elements
of the form z% with « € S. Since R is noetherian, A is finitely generated; there exist ™, ... a® e S
such that A = (z"‘m, .. .,z“(”). Let a be an arbitrary element from S. Then z* € A, and then there
exist je{1,....r} and y € N" such that 2% = 27 - 2%” = zv+¢?_ This implies that & =y + a0,
Observe that y =a —a¥) € G, NN", and G, NN" = M,, so y belongs to M. But o is minimal, so
y =0, and consequently o = o). This means that S is a finite set equal to {a®,...,a®}. O

We denote by ¢, the rotation of Z" given by
{(@) = (an—1, 0, A1, ..., Un—2),

for a = (g, a1, ..., 0n—1) € Z". We have for example: ¢(ej) =ejq for all j € Z,, and ¢(e) =e. The
mapping ¢ : Z" — Z" is obviously an automorphism of the Z-module Z".

Lemma 1.6. Let o € Z". If « € Gy, then ¢(«) € Gy. If @ € My, then ¢ () € M. Moreover, « is a minimal
element of M,, if and only if ¢ () is a minimal element of M.

Proof. Assume that o = (atg, ..., 0tn—1) € Gn. Then g +ar1€ + - - - +ap_16"' = 0. Multiplying it by e,
we have 0 =ope + 0162+ -+ ap_16". But e" =1, 50 otp_1 + o€ + 182 + -+ - + Ap_26""2 =0, and
so ¢(«) € Gy. This implies also, that if o € M,, then ¢ () € M,,.

Assume now that ¢ is a minimal element of M, and suppose that ¢{(«) = 8 + y, for some B,y €
M. Then we have = ¢" (@) ="' (¢(@)) =¢"1(B) +¢"1(y) =B + ', where g/ =¢""1(B) and
y' =¢""1(y) belong to M,. Since « is minimal, 8’ =0 or ' =0, and then 8 =0 or y =0. Thus
if o is a minimal element of M, then ¢(«) is also a minimal element of M,. Moreover, if ¢ () is
minimal, then « is minimal, because o = ¢"~1(¢ (). O

2. The derivation d and its constants

Let us recall that d : k[X] — k[X] is a derivation such that d(x;) =x;1, for j € Zp.
Proposition 2.1. For each j € Zy, the equality d(u ;) = sffuj holds.
Proof. See the proof of Lemma 1.1. O

This means that d is a diagonal derivation of the polynomial ring k[U] = k[ug, ..., up—1] which
is equal to the ring k[X]. It is known (see for example [24]) that the algebra of constants of every
diagonal derivation of k[U] = k[X] is finitely generated over k. Therefore, k[X]? is finitely generated
over k. We would like to describe a minimal set of generators of the ring k[X]d, and a minimal set of
generators of the field k(X)<.

If = (g, ...,ap—1) € Z", then we denote by u® the rational monomial ug‘) - -~ug"_’l‘. Recall (see
the previous section) that Hy (t) is the polynomial g 4+ a1t + - - 4+ ap—1t" ! belonging to Z[t]. As a
consequence of Proposition 2.1 we obtain

Proposition 2.2. d(u®) = Hy (¢~ u® forall o € Z".

Note that ¢~! is also a primitive n-th root of unity. Hence, by Proposition 1.2, we have the
equivalence Hy(s~!') =0 <= Hy(e) =0, and so, by the previous proposition, we see that if
a eZ" then du%) =0 < «a € G, and if @ € N, then d(u%) =0 < «a € M,. Moreover, if
F=bu*" +...4bu®", where by,....brekand oV, ... & are pairwise distinct elements of N",
then d(F) =0 if and only if d(b,-u"‘“)) =0 for every i =1,...,r. Hence, k[X]? is generated over k by
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all elements of the form u® with o € M. We know (see the previous section), that every nonzero
element of M, is a finite sum of minimal elements of M. Thus we have the following proposition.

Proposition 2.3. The ring of constants k[X]¢ is generated over k by all the elements of the form u?, where 8
is a minimal element of the monoid M,,.

In the next section we will prove some additional facts on the minimal number of generators of
the ring k[X]9. Now, let us look at the field k(X)“.

Proposition 2.4. The field of constants k(X)? is generated over k by all elements of the form u¥ with y € Gy.

Proof. Let L be the subfield of k(X) generated over k by all elements of the form u? with y € G,.
It is clear that L € k(X)4. We will prove the reverse inclusion. Assume that 0 £ f € k(X)%. Since
k(X) =k(U), we have f = A/B, where A, B are coprime polynomials in k[U]. Put

A= Zaau“, B= Zbﬂuﬂ,

aeSy BES2

where all ay, bg are nonzero elements of k, and Sy, S; are some subsets of N". Since d(f) =0,
we have the equality Ad(B) =d(A)B. But A, B are relatively prime, so d(A) = AA, d(B) = AB for some
A € k[U]. Comparing degrees, we see that A € k. Moreover, by Proposition 2.2, we deduce that d(u®) =
au? for all o € Sy, and also d(uf) = au? for all B € S,. This implies that if 81,8, € S; U Sy, then
d®=%) = 0. In fact, d®=%) = d(%) = 5 @d@hu® —uhd®)) = — utu® — aud1u®) = 0,
This means, that if §1,8, € S1 U Sy, then §; — 82 € G,,. Fix an element § from S U Sy. Then all o — 6,
B — &8 belong to G, and we have

f A Yagu® ulY au® Y agu®?

B Y bguf  u=dY bguf S bgubf~d’

and hence, fel. O

Let us recall (see Proposition 1.3) that every element of the group G, is a difference of two ele-
ments from the monoid M. Using this fact and the previous propositions we obtain

Proposition 2.5. The field k(X)? is the field of quotients of the ring k[ X]¢.
Now we will prove that k(X)? is a field of rational functions over k, and its transcendental degree
over k is equal to n — ¢(n), where ¢ is the Euler totient function. For this aim look at the cyclotomic

polynomial @,(t). Assume that

Dp(t)y=co+cit+--- +C¢(n)f¢(").

All the coefficients co, ..., Cypm) are integers, and co = Cyn) = 1. Put m=n — ¢(n) and
Yo= (CO’C17"'7C(0(T1)1 0,...,0).
N— —
m—1

Note that yp € Z", and Hy, (t) = @,(t). Consider the elements yg, 1, ..., Ym—1 defined by

yi=cl(u), forj=0,1,...,m—1.
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Observe that Hy;(t) = &n(t) - t/ for all j €{0,...,m —1)}. Since ®,(g) =0, we have Hy,(e) =0, and
so, the elements )y, ..., ¥m—1 belong to Gy.

Lemma 2.6. The elements yq, ..., Ym—1 generate the group Gp.

Proof. Let a € G,. It follows from Proposition 1.2, that H (t) = F(t)®;(t), for some F(t) € Z[t]. Then
obviously deg F(t) <m. Put F(t) =bg + byt +--- +by_1t™1, with bg, ..., bn_1 € Z. Then we have

He (6) = bo(@n(Dt°) + b1 (@n(0)) + -+ + b1 (Ba ()™ ")
= bOH)/o(t) +---+ bmleym_1 (t),

and this implies that « =boyo +b1y1 + - - +bm—1¥Ym—1. O

Consider now the rational monomials wy, ..., wy_1 defined by
Vi O
wj=ut= u0+1”1+1u2+1 Upmy+j
for j=0,1,...,m — 1, where m =n — ¢(n). Each w; is a rational monomial with respect to
U, ...,Up—1 of the same degree equal to @,(1) =co + 1 + - + Cyn). It is known (see for exam-

ple [13]) that @,(1) = p if n is power of a prime number p, and @,(1) =1 in all other cases. As each
uj is a homogeneous polynomial in k[X] of degree 1, we have:

Proposition 2.7. The elements wy, ..., Wy_1 are homogeneous rational functions with respect to variables
X0, ..., Xn—1, 0f the same degree r. If n is a power of a prime number p, thenr = p, and r = 1 in all other cases.

As an immediate consequence of Lemma 2.6 and Proposition 2.4, we obtain the equality k(X)? =
k(wo, ..., Wn_1).

Lemma 2.8. The elements wy, ..., Wn_1 are algebraically independent over k.

Proof. Let A be the nxm Jacobi matrix [a;;], where a;j = -+ I fori=0,1, n—1,j=0,1, -1.

It is enough to show that rank(A) =m (see for example [9]). Observe that Zj,‘;"" = coug" 1u§1
;“’(Z'; #0 (because co=1), and ™ — 0 for j = 1. Moreover, Z?W‘ #0 and 2 — 0 for j>2, and

in general, au L =0 and Bu) =0 for all i,j=0,...,m—1 with j > i. Thls means, that the upper

m x m matrix of Ais a trlangular matrix with a nonzero determinant. Therefore, rank(A) =m. O
Thus, we proved the following theorem.

Theorem 2.9. The field of constants k(X) is a field of rational functions over k and its transcendental degree
over k is equal to m =n — @(n), where @ is the Euler totient function. More precisely,

k(X)* =k(wo, ..., Win_1),
where the elements wy, ..., Wy—1 are as above.
Now we will describe all constants of d which are homogeneous rational functions of degree zero.
Let us recall that a nonzero polynomial F is homogeneous of degree r, if all its monomials are of

the same degree r. We assume that the zero polynomial is homogeneous of arbitrary degree. Ho-
mogeneous polynomials are also homogeneous rational functions, which are defined in the following
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way. Let f = f(xo,...,%—1) € k(X). We say that f is homogeneous of degree s € Z, if in the field
k(t,xo,...,X,_1) the equality f(txo,tx1,...,txn_1) =1t f(xo,...,%n—1) holds. The characteristic plays
no role in the previous definition whereas it is easy to prove (see for example [24, Proposition 2.1.3])
the following equivalent formulations of homogeneous rational functions when the characteristic of k
is 0.

Proposition 2.10. Let k be a field of characteristic 0. Let F, G be nonzero coprime polynomials in k[X] and let
f =F/G. Let s € Z. The following conditions are equivalent.

(1) The rational function f is homogeneous of degree s.

(2) The polynomials F, G are homogeneous of degrees p and q, respectively, where s = p —q.

(3)X0%+"'+Xn—l 2 —sf.

0Xn—1

Equality (3) is called the Euler formula. In this paper we denote by E the Euler derivation of k(X),
that is, E is a derivation of k(X) defined by E(xj) =x; for all j € Zy. As usual, we denote by k(X)E
the field of constants of E. Observe that, by Proposition 2.10, a rational function f € k(X) belongs
to k(X)E if and only if f is homogeneous of degree zero. In particular, the set of all homogeneous

rational functions of degree zero is a subfield of k(X). It is obvious that the quotients i—é X;:

belong to k(X)E, and they are algebraically independent over k. Moreover, k(X)E = k(ﬁ—(‘),..., X’;(—;])

Therefore, k(X)E is a field of rational functions over k, and its transcendence degree over k is equal

ton—1. Put gj = Xi—:’] for all j € Zy. In particular, q,—1 = X;‘—f] The elements qo, ..., qn—1 belong to

X

k(X)E and moreover, T

=qoq1---qj—1 for j=1,...,n—1. Thus we have the following equality.

Proposition 2.11. k(X)F = k(% %2 ool X0y

X0’ X1’ Xn—2’ Xn—1

Now consider the field k(X)4-E = k(X)? Nk(X)E.

Lemma 2.12. Let dq, dy : k(X) — k(X) be two derivations. Assume that K(X)9' = k(c, b1, ..., bs), where
¢, b1, ..., bs are algebraically independent over k elements from k(X) such that d(b1) = --- =d(bs) =0
and dy(c) # 0. Then k(X)4 Nk(X)%2 = k(b1, ..., bs).

Proof. Put L =k(by, ..., bs). Observe that k(X)% = L(c), and c is transcendental over L. Let 0 f
k(X)4 Nk(X)%. Then f = %, where F(t), G(t) are coprime polynomials in L[t]. We have: d3(F(c)) =
F'(c)dy(c), d2(G(c)) = G'(c)dz(c), where F'(t), G'(t) are derivatives of F(t), G(t), respectively. Since
d>(f) =0, we have

0=d>(F(c))G(c) — d2(G(c)) F(c) = (F'(c)G(c) — G'(c)F(0))d2(c),

and so, (F'G —G’F)(c) =0, because dy(c) # 0. Since c is transcendental over L, we obtain the equality
F'(t)G(t) = G'(t)F(t) in L[t], which implies that F(t) divides F’(t) and G(t) divides G’(t) (because
F(t), G(t) are relatively prime), and comparing degrees we deduce that F'(t) = G’(t) = 0, that is,
F(t) € L and G(t) € L. Thus the elements F(c), G(c) belong to L and so, f = ] belongs to L. There-

CoO
fore, k(X)© Nk(X)%2 C L. The reverse inclusion is obvious. O

Let us return to the rational functions wp, ..., win—1. We know (see Proposition 2.7) that they are
homogeneous of the same degree. Put: d; =d, d =E, c=wp and bj = V";—é for j=1,...,m—1, then,
as a consequence of Lemma 2.12. We obtain the following proposition.

) d,E _ w Wn—
Proposition 2.13. k(X)®F = k(L. ..., =o=t).
Since wo, ..., Wn—1 are algebraically independent over k (see Lemma 2.8), the quotients
w1 Wmn-1

Wore ot Twg are also algebraically independent over k. Thus, k(X)?E is a field of rational functions
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and its transcendental degree over k is equal to n — ¢ (n) — 1, where ¢ is the Euler totient function.
Since n is prime if and only if n — @(n) — 1 =0, we obtain:

Corollary 2.14. k(X)“E =k <= n is a prime number.

3. Numbers of minimal elements

Let F be the set of all the minimal elements of the monoid M,, and denote by v(n) the cardi-
nality of F. We know, by Proposition 1.5, that v(n) < co. We also know (see Proposition 2.3) that the
ring k[X]¢ is generated over k by all the elements of the form uf, where g € F. But k[X] is equal to
the polynomial ring k[U] = k[uo, ..., up—1], SO k[X]d is generated over k by a finite set of monomials
with respect to the variables uo, ..., up_1.

It is clear that if 8, y are distinct elements from 7, then uf fu? and u? {uf. This implies that no
monomial u?, 8 € F belongs to the algebra generated by other u”,y e F,u? fuf. Thus, {uf; g e F)
is a minimal set of generators of k[X]%.

Moreover, {uf; B e F} is a set of generators of k[X]? with the minimal number of elements
according to the following proposition.

Proposition 3.1. Let fi, ..., fs be polynomials in k[X]. IFK[X19 = k[ f1, ..., fs], then s = v(n).

Proof. Let M be the maximal ideal of k[X]? of all f e k[X]? such that f(0) =0. All uf with g €
M; \ {0} belong to M; their set is a basis of the k-vector space M whereas the subset {u? g <
M\ {0}, B ¢ F} of it is a basis of M2, The image of {uf, 8 € F} in M/M? then constitutes a basis of
the k-vector space M/M? whose finite _dimension is thus v(n).

Now, for any f € k[X]%, denote by f the difference f f — f(0), which belongs to M.

If {f1,..., fs} generates the algebra k[X]%, the same is true for the set f1,.. fs} of elements
of M. As a k-vector space, M is then generated by all products ]_[ , where the «; are natural
numbers with > ¢; > 1. All such products with Y «; > 2 then belong to M? and the images of
f fS in M/M? generate the k-vector space M/M?. So we have: s > v(n). O

In this section we prove, among others, that k[X]¢ is a polynomial ring over k if and only if
n is a power of a prime number. Moreover, we present some additional properties of the number
v(n), which are consequences of known results on vanishing sums of roots of unity; see for example
[12,29,31,32], where many interesting facts and references on this subject can be found.

We denote by &(n) the sum Zmn , where p runs through all prime divisors of n. Note that if a, b
are positive coprime integers, then é(ab) =a&(b) + &(a)b.

First we show that the computation of v(n) can be reduced to the case when n is square-free.
For this aim let us denote by ng the largest square-free factor of n, and by n’ the integer n/ng. Then
@(n) =n'p(ng) and &(n) =n'é(ng). Moreover, it is not difficult to prove that @;,(t) = &y, (¢"). Indeed,
observe that @y, (t"') is a monic polynomial of degree ¢(ng)n’ = ¢(n). Since e is a primitive ng-th
root of unity, we have &y, (e") = 0. Hence, ®,(t) divides Pn, (t"), and thus equals to Pn, ".

Assume now that n = mc, where m > 2, ¢ > 2 are integers. For a given sequence y =
(Yo, ---»Ym—-1) € Z™, consider the sequence

Y =u0,0,...,0,1,0,...,0,...,Ym-1,0,...,0).
—— ——

c—1 c—1 c—1
This sequence is an element of Z", and it is easy to prove the following lemma.

Lemma32. Yy €G, < vy eGp andy e My, < y € My. Moreover, y is a minimal element of
M, <= y is a minimal element of Mp,.
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Using the above notations, we have:

Proposition 3.3. v(n) =n'v(ng), foralln > 3.

Proof. If n’ =1 then this is clear. Assume that n’ > 2. Let « = («g, ..., n—1) be an element of M.
For every j€{0,1,...,n" — 1}, let us denote:
no—1 no—1
L ) .
Fi© =" it =t Y " it Bj= @owyjs G- Xng— 1y )-
i=0 i=0

Note that fj(t) € Z[t] and B; € N". Consider the elements fg, B1, ..., By_1, introduced before
Lemma 3.2 for m =ng and ¢ =n’. Observe that

a=PBo+tBN+2B)+ -+ Bu1) (%)

where ¢ is the rotation of Z", as in Section 1. Denote also by f(t) the polynomial Hy (t) = oo + a1t +
coo 4ot L that s, f(E) = 27:01 f;(@®. It follows from Proposition 1.2, that f(t) = g(t)@n(t) for
some g(t) € Z[t].

For every j€{0,1,...,n" — 1}, denote by A; the set of polynomials F(t) € Z[t] such that the
degrees of all nonzero monomials of F(t) are congruent to j modulo n’. We assume that the zero
polynomial also belongs to Aj. It is clear that each A; is a Z-module, A;jA; C Ajy; for i, j € Zy, and
Z[t] = @Bjez,, Aj- Thus, we have a gradation on Z[t] with respect to Z,. We will say that it is the
n’-gradation, and the decompositions of polynomials with respect to this gradation we will call the
n’-decompositions.

Let g(t) = go(t) + g1 (t) + - - - + gv—1(t) be the n’-decomposition of g(t); each g;(t) belongs to Aj;.
Since @y (t) = Py, (t"), we have @, (t) € Ag. Hence,

f() =8o®)Pn() + g1 (O Pu(t) + -+ + -1 (O Pn(t)

is the n’-decomposition of f(t). But the previous equality f(t) =" f;(t) is also the n’-decomposition
of f(t), so we have f;(t) = g;({t)@n(t) for all j € Zy.
Put n= &". Then 7 is a primitive ng-th root of unity and, for every j € Z,/, we have

np—1
Y i n' =7l fi(e) =& gj(e)Pu(e) =£ I gj(e) - 0=0.
i=0

The equality says that HB; (¢) =0, and so B]- € My. Hence, g; is an element of My, by Lemma 3.2.

Assume now that the above « is a minimal element of M,,. Then, by (x), we have o = ;j(,B_j) for
some j€{0,...,n" —1}. Then /8_] =" J() and so, ,B_j is (by Lemma 1.6) a minimal element of M,
and this implies, by Lemma 3.2, that g; is a minimal element of My, . Thus, every minimal element o
of M, is of the form o = ¢7(B), where j€{0,...,n'—1} and 8 is a minimal element of My, and it
is clear that this presentation is unique. This means, that v(n) <n’ - v(ng).

Assume now that 8 is a minimal element of Mp,. Then we have n’ pairwise distinct sequences
B,2(B), ¢%(B), ..., "~ 1(B), which are (by Lemmas 1.6 and 3.2) minimal elements of M,. Hence,
v(n) >n’-v(ng). Therefore, v(n) =n"-v(ng). O

If p is prime, then v(p) = 1; the constant sequence e = (1,1, ..., 1) is the unique minimal element
of M. In this case k[X1¢ is the polynomial ring k[w], where w =g ... up_1 is the cyclic determinant
of the variables xo, ..., xp_1 (see the Introduction). In particular, if p =3, then k[xo, x1,%]% = k[xg +

x? + x% — 3xpx1X2]. Using Proposition 3.3 and its proof we obtain:



102 J. Moulin Ollagnier, A. Nowicki / Journal of Algebra 394 (2013) 92-119

Proposition 3.4. Let n = p°, where s > 1 and p is a prime number. Then v(n) = £(n) = p*~!, and the ring of
constants k[ X]% is a polynomial ring over k in pS~" variables.

Assume now that p is a prime divisor of n. Denote by n, the integer n/p, and consider the se-
quences

p—1
(p) _ o
E; —E €itjnp»
j=0

fori=0,1,...,np — 1. Recall that g = (1,0,...,0), ..., e,-1 =(0,0,...,0,1) are the basic elements
of Z". Observe that each E;p) is equal to ¢'(E{"’), where ¢ is the rotation of Z". Observe also that

Egp) = ¢, where in this case e = (1,1,...,1) € ZP and é is the element of Z" introduced before
Lemma 3.2 for m = p and ¢ =np. But e is a minimal element of M, so we see, by Lemmas 3.2

and 1.6, that each EEP) is a minimal element of M, . We will call such Efp) a standard minimal
element of M. It is clear that if i, j € {0,1,...,n, — 1} and i # j, then Elﬁp) #* E;p). Observe also that,

for every i, we have |E§p)| = p. This implies, that if p # q are prime divisors of n, then Efp) + E;‘”
forallie{0,...,n, —1}, je{0,1,...,ny — 1}. Assume that pq,..., ps are all the prime divisors of
n. Then, by the above observations, the number of all standard minimal elements of M, is equal to
np, +---+np, =&(). Hence, we proved the following proposition.

Proposition 3.5. v(n) > &(n), foralln > 3.
For a proof of the next result we need the following lemma.
Lemma 3.6. If n is divisible by two distinct primes, then &(n) + ¢ (n) > n.

Proof. Since &(n) =n'&(ng), ¢(n) =n’@(ng) and n =n’'ng we may assume that n is square-free. Let n =
p1---DPs, Where s > 2 and pq, ..., ps are distinct primes. If s =2, then the equality is obvious. Assume
that s > 3, and that the equality is true for s — 1. Put p = ps, m = py--- ps—1. Then m is square-free,
n=mp, gcd(m, p) =1, £&(m) + ¢(m) > m by induction assumption and moreover, ¢(m) < m. Hence,
§m) + @) = p§(m) +&(p)m+@(p)p(m) = p§(m) +m+ (p — De(m) > p§(m) + pe(m) > pm=n. O

Theorem 3.7. The ring of constants k[X)? is a polynomial ring over k if and only if n is a power of a prime
number.

Proof. Assume that n is divisible by two distinct primes, and suppose that k[X]? is a polynomial
ring of the form k[ fy, ..., fs], where fy,..., fs € k[X] are algebraically independent over k. Then, by
Proposition 3.1, we have s > v(n). The polynomials fi, ..., fs belong to the field k(X)¢, and we know,
by Theorem 2.9, that the transcendental degree of this field over k is equal to n — ¢(n). Hence, s <n—
@(n). But v(n) > &(n) (Proposition 3.5) and &£(n) > n — ¢(n) (Lemma 3.6), so we have a contradiction:
s> v(n) = &(n) >n— f(n). This means, that if n is divisible by two distinct primes, then k[X]¢ is not
a polynomial ring over k. The “if” part follows from Proposition 3.4. O

It is well known (see for example [2]) that all coefficients of the cyclotomic polynomial &;(t) are
nonnegative if and only if n is a power of a prime. Thus, we proved that k[X]¢ is a polynomial ring
over k if and only if all coefficients of &, (t) are nonnegative.

In our next considerations we will apply the following theorem of Rédei, de Bruijn and Schoenberg.

Theorem 3.8. (See [28,4,30].) The standard minimal elements of M, generate the group G.

Known proofs of the above theorem usually use techniques of group rings. Lam and Leung [12]
gave a new proof using induction and group-theoretic techniques.
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Now, let us assume that n = pq, where p # q are primes. In this case, Lam and Leung [12] proved
that v(n) = p + q. We will give a new elementary proof of this fact. Note that in this case n, =q

and ng = p. Put PizEfq) fori=0,1,...,p—1, and Qj:Eﬁ.”) for j=0,...,q—1. We have p +q
elements Pg, ..., Py_1, Qo, ..., Qg—1, which are the standard minimal elements of M.

Lemma 3.9. For every f € M, there exist nonnegative integers ao, ...,ap_1, bo, ..., bg_1 such that g =
aoPo +---+ap—1Pp_1+boQo+---+bg—1Qq-1.

Proof. Let 8 € Myq. Then B € Gpq and, by Theorem 3.8, we have an equality 8 =) a;P; + > b;Q;,

for some integers ao,...,ap_1,bo,...,bg—1. Since Zf:_()] Pi=¢e = ‘]7.;(1) Qj, we may assume that
-1 . -1 .
bq—1 = 0. Let us recall that P; = Z‘}:O ejpyi for i=0,...,p—1, and Q; = Z,P:O eig+j for j=
0,...,q — 1. Thus, we have
p—1g—1
B=D_ (@ejpsi+bjeig)).
i=0 j=0

By the Chinese Remainder Theorem, the map

{0,....pg—1} 51— (A, u)) €{0,...,p—1} x {0,...,q — 1}

is a bijection, where A(l) and w(l) are remainders of [ divided by p and g, respectively. Hence, we
have

p-1g-1 pg-1
B=> ) @ejpsi+bjeigsj)= > (@ +bun)er.
i=0 j=0 1=0

Since 8 is an element of M, C NP9, it follows that
ai+bj>0 forallie{0,...,p—1}, je{0,...,q—1}. (%)

Let s €{0,...,q — 1} be such that bs = min{bo, ...bg_1}. Since Zf’:_O] Pi=e= Z‘};(l) Qj, we can ex-
press

p—1 q—1 p—1 q—1
B=> aiPi+) bjQj=Y (@+bs)Pi+ Y (bj—bs)Qj,
i=0 j=0 i=0 j=0

in which a; 4 bs > 0 for each i by (%), and bj — bs > 0 for each j by the minimality of b;. O

Theorem 3.10. (See [12].) Let n = piq, where p = q are primes and i, j are positive integers. Then v(n) =
£(n) = p'~1qi=1(p + q). In other words, the monoid M, has exactly p'~'qi=1(p 4 q) minimal elements, and
all its minimal elements are standard.

Proof. Let n=pq, and B={Po,...,Py_1,Qo,..., Qq—1}. Then B is contained in F. By Lemma 3.9,
we have B = F. Hence, we get v(pq) = #F = #B = p + q = §(pq). This implies, by the equality
&£(n) =n’&(ng) and Proposition 3.3, that v(n) =& (n) for all n of the form p'q/. O

As a consequence of Theorem 3.10 and Proposition 3.1 we obtain:
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Corollary 3.11. Let n = piqJ, where p + q are primes and i, j are positive integers. Then the minimal number
of generators of the ring of constants k[ X1% is equal to £(n) = p*~ ¢/~ (p + q).

We already know that if n is divisible by at most two distinct primes, then every minimal element
of M, is standard. It is well known (see for example [12,32,29]) that in all other cases there always
exist nonstandard minimal elements. For instance, Lam and Leung [12] proved that if n is divisible
by three primes p; < pz < p3, then the equality aja; + a3 =0, where a; = Zf’:ll_l & for j=1,2,3,
is of the form H,(g) =0, where « is a nonstandard minimal element of M. There are also other

examples. Assume that n = p; --- ps, where p1, ..., ps are distinct primes, and denote by U the set of
all numbers from {1, 2,...,n — 1} which are relatively prime to n. If s > 3 is odd, then
y=eo+ ) ey
uel

is a nonstandard minimal element of M,. This element y belongs to M,;, because the sum of
all primitive n-th roots of unity is equal to w(n), where w is the Mdbius function (see for exam-
ple [15,19]). The minimality of y follows from the known fact (see for example [3]) that if n is
square-free, then all the primitive n-th roots of unity form a basis of Q(¢) over Q. Observe also that
lYl=@Mm)+1#p;foralli=1,...,s, so y is nonstandard.

If s >4 is even, then put p=ps, n’ = p1---ps_1, and let U’ be the set of all numbers from
{1,2,...,n" — 1} which are relatively prime to n’. Then &P is a primitive n’-th root of unity and, using
similar arguments, we see that

V/290+Zevp

vel’

is a nonstandard minimal element of M. Now we use Lemma 3.2 and Proposition 3.3, and we obtain
the following result of Lam and Leung.

Theorem 3.12. (See [12].) If n > 3 is an integer, then v(n) = £(n) if and only if n has at most two prime
divisors.

Now, as a consequence of the previous considerations, we obtain:

Corollary 3.13. The number of a minimal set of generators of k[ X]¢ is equal to £ (n) if and only if n has at most
two prime divisors.

Note that in our examples all nonzero coefficients of the minimal (standard or nonstandard)
elements of M, were equal to 1. Recently, John P. Steinberger [32] gave the first explicit construc-
tions of nonstandard minimal elements of M, (for some n) with coefficients greater than 1 (indeed
containing arbitrary large coefficients). He gave at the same time an answer to an old question of
H.W. Lenstra Jr. [14] concerning this subject.

4. Polynomial constants of A

Let us recall that A is the derivation of k[Y] given by A(y;) =y;(yj+1 — y;) for j € Zs, where
k[Y]=klyo, ..., yn—1]. It is a homogeneous derivation, that is, all the polynomials A(yg), ..., A(Y¥n-1)
are homogeneous of the same degree. Put v = yoy1--- yn_1. Observe that v e k[Y]2. In this section
we will prove that k[Y]® = k[v]. For this aim we first study Darboux polynomials of A.

We say that a nonzero polynomial F € k[Y] is a Darboux polynomial of A, if F is homogeneous and
there exists a polynomial A € k[Y] such that A(F) = AF. Such a polynomial A is uniquely determined
and we say that A is the cofactor of F. Some basic properties of Darboux polynomials of arbitrary
homogeneous derivations one can find for example in [22,20] or [24]. Note that if F, G € k[Y] and
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FG is a Darboux polynomial of A, then F, G are also Darboux polynomials of A [22,24]. It is obvious
that in our case each cofactor A is of the form Aoyo +X1y1 + -+ An—1Y¥n—1, where the coefficients
A0, ..., An—1 belong to k. We say that a Darboux polynomial is strict if it is not divisible by any of the
variables yo, ..., yn—1. The following important proposition is a special case of Proposition 3 from our
paper [17]. For the sake of completeness we repeat its proof.

Proposition 4.1. Let F € k[Y] \ k be a strict Darboux polynomial of A and let A = oYo + -+ 4+ An—1¥n—1
be its cofactor. Then all A; are integers and they belong to the interval [—r, 0], where r = deg F. Moreover, at
least two of the A;’s are nonzero.

Proof. As F is strict, for any i, the polynomial F; = F|y,—o (that we get by evaluating F in y; =0) is
a nonzero homogeneous polynomial with the same degree r in n — 1 variables (all but y;). Evaluating
the equality A(F) = AF at y,—1 =0 we obtain

n-3 n—2
aFn—l 2 8Fn—]
. . . . — = )\, i F —1-
;zo}’l(J/lJrl yi) 3y yn723yn—2 (;zo 1}’1) n-1 (%)

Let ro be the degree of F,_; with respect to yo. Then obviously 0 < ro < r. Consider now F,_q as
a polynomial in k[yq,..., Yyn—2][yo]. Balancing monomials of degree ry 4+ 1 in the equality (x) gives
Ao = —1¢. The same results hold for all coefficients of the cofactor A.

We have already proved that all A; are integers and —r < A; < 0. Moreover, we have proved that
[xi| is the degree of F;_1 with respect to y; (for any i € Z;). Thus A; = 0 means that the variable
Yi—1 appears in every monomial of F in which y; appears. Then, if all A; vanish, the product of all
variables divides the nonzero polynomial F, a contradiction with the fact that F is strict. In the same
way, if all A; but one vanish, the variable corresponding to the nonzero coefficient divides F, once
again a contradiction. O

Theorem 4.2. The ring of constants k[Y 12 is equal to k[v], where v = yoy1..., Yn—1.

Proof. The inclusion k[v] C k[Y]? is obvious. We will prove the reverse inclusion. For every Darboux
polynomial F of A, we denote by A(F) the cofactor of F. Then we have A(F)= A(F)-F, and A(F) =
AoYo + -+ + An—1¥Yn—1, Where the coefficients Ag, ..., Ap_1 are uniquely determined. In this case we
denote by I'(F) the sum Ag + A1 + --- + Ap—1. In particular, the variables yg, ..., yp—1 are Darboux
polynomials of A, and A(yj) =yj+1 —yj, I'(yj) =0, for any j € Zy. It follows from Proposition 4.1
that if a Darboux polynomial F is strict and F ¢ k, then I"(F) is an integer, and I"(F) < —2. Note also
that if F, G are Darboux polynomials of A, then FG is a Darboux polynomial of A, and then

A(FG)=A(F)+ A(G) and I'(FG)=T(F)+ I'(G).
Assume now that F is a nonzero polynomial belonging to k[Y]*. We will show that F € k[v]. Since

the derivation A is homogeneous we may assume that F is homogeneous. Thus F is a Darboux
polynomial of A and its cofactor is equal to 0. Let us write this polynomial in the form

F :ygoy/fl ”‘yﬁn—l el

n—1
where fo, ..., Br—1 are nonnegative integers, and G is a nonzero polynomial from K[Y] which is not
divisible by any of the variables yg,..., yp—1 i.e. a strict Darboux polynomial of A. Let us suppose

that G ¢ k. Then I'(G) < —2 (by Proposition 4.1), and we have a contradiction:

n—1 n—1

0=r(F)=) BIryp+I G =Y Bj-0+I'G)=IG)<-2.
j=0 j=0
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Thus F is a monomial of the form byf = bygoyf‘ ~-~yf”_‘11, with some nonzero b € k. But A(F) =0,
s0 fo(¥1 —Yo) +B1(¥y2 —y1) + -+ + fn—1(¥o — ¥n—1) =0, and so fo =By =--- = fr—1 =, for some
ceN.

Now we have F =by? =b(yg---yn_1)¢ =bvF, and hence F ek[v]. O

5. The mappings @ and 7

In this section we show that the derivations d and A have certain additional properties, and we
present some specific relations between these derivations.
Let us fix the following two notations:

X1 X2 Xn-1 Xo
a=(—,—,..., , and v=yoy1-- Yn-1.
X0 X1 Xn—2 Xn—1

We already know, by Proposition 2.11 and Theorem 4.2, that k(X)E = k(a) and k[Y]2 = k[v].
Lemma 5.1. Let F € k[Y]. If F(a) = 0, then there exists a polynomial G € k[Y] such that F = (v — 1)G.

Proof. First note that if b = (bo,...,by—1) is an element of k" such that the product bgbq ---bs_1
equals 1, then b is of the form b = (% % E::; Cncfl), for some nonzero elements co, ..., Cp_1
from k. In fact, put: co =1, ¢1 =bo, ¢c2 =bob1,...,cn—1 =bob1---bp_3. B

Let P=v — 1, and let A be the ideal of k[Y]=k[yoq, ..., yn—_1] generated by P, where k is the
algebraic closure of k. Observe that, for any b € k", if P(b) = 0, then (by the assumption and the above
note) F(b) = 0. This means, by the Nullstellensatz, that some power of F belongs to the ideal A. But
A is a prime ideal, so F € A and so, there exists a polynomial G € k[Y] such that F = (v — 1)G. Since
F,v — 1 belong to k[Y], it is obvious that G also belongs to k[Y]. O

Lemma 5.2. If F is a nonzero homogeneous polynomial in k[Y], then F(a) # 0.

Proof. Suppose that F(a) = 0. Then, by Lemma 5.1, F = (v — 1)G, for some G € k[Y]. As F is homo-
geneous, the polynomials v — 1 and G are also homogeneous; but it is a contradiction, because v — 1
is not homogeneous. O

Let us denote by S the multiplicative subset {F € k[Y]; F(a) # 0} and consider the quotient ring
A=S"Tk[Y].

Every element of this ring is of the form F/G, where F,G € k[Y] and G(a) # 0. It is a local ring
with the unique maximal ideal I = {g c€A; F(a) = 0}. It follows from Lemma 5.1 that I = (v — 1) A.
Observe that A(A) €A and A(I) €1, so A is a derivation of A and I is a differential ideal of A. By
Lemma 5.2, every homogeneous element of k(Y) belongs to A.

If fe A, then f(a) is well-defined, and it is a homogeneous rational function of degree zero, that
is, f(a) € k(X)E. Thus we have a k-algebra homomorphism from A to k(X)E. This homomorphism we
will denote by @. So we have:

@:A—>k(X)E, @)= f@ forfeA.

In particular, @(v) =1, and @(y;) = X;—tl for j € Z,. These equalities imply that @ is surjective. Note

also that ker @ = I, so the field k(X)E is isomorphic to the factor ring .A/I. Moreover, as a consequence
of Lemma 5.2 we have:

Proposition 5.3. If f € k(Y) is homogeneous and @(f) =0, then f =0.
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Note also the next important proposition.
Proposition 5.4.d o @ = @ o A, that is, d(f (a)) = (A(f))(a) for f € A.

Proof. It is enough to prove that the above equality holds in the case when f =y; with j € Z,. Let
f=Yj, j €Zy. Then:

e a2
i(f @) =d(XjJT1> _ A& —dX)xj1 _ Xi2X X X (Xj+2 B Xj+1>

2 = 2 “\ % .
Xj Xj Xj Xj \Xj+1  Xj

J j
=Y —yp)@ = (Ayp)@ = (AH)@.

This completes the proof. O
Corollary 5.5. Let f € A. If A(f) =0, thend(@(f)) =0.
Proof. d(@(f)) = @(A(f)) = @(0) =0 (by Proposition 5.4). O
Now we are ready to prove the following theorem.
Theorem 5.6. If n is a prime number, then k(Y)® = k(v), where v = yoy1 - -+ Yn_1.

Proof. Put P =v — 1. Note that A(P) =0. Let 0# f = % € k(Y), where F, G are nonzero, coprime
polynomials in k[Y], and assume that A(f) = 0. We will show, using an induction with respect to
deg F + degG, that f € k(v).

If degF +degG =0, then f €k, so f € k(v). Assume that degF + degG =r > 0.

If P divides F, then F = F'P, for some F’ € k[Y], and then A(L) = LA(L) =0 with degF' +
deg G < r. Then, by induction, % € k(v) and this implies that % € k, because g = P% and P € k(v).
We use the same argument in the case when P divides G.

Now we may assume that P{F and P tG. In this case, by Lemma 5.1, the quotient g belongs
to A, and @(%) # 0. Moreover, we may assume that deg F > deg G (in the opposite case we consider
G/F instead of F/G).

Since A(f) =0, we have (by Corollary 5.5) @(f) € k(X)4 Nk(X)E = k(X)%E. But n is prime so, by
Corollary 2.14, k(X)4E =k. Therefore, @(£) =, for some nonzero ¢ € k. Thus we have

(F) (F ) (F—cG) @(F —cG)
0=@|—=)—c=0@| =—-c|=@ = ,
G G G @(G)

and hence, @ F — cG) =0. If F —cG =0, then g = € k(v). Assume that F — cG # 0. Then, by
Lemma 5.1, F — cG = H - P, for some nonzero H € k[Y]. As gcd(F,G) =1, we have gcd(H, G) = 1.
Observe that A(£)=0. In fact, A(£) = FA(EE) = FA(EEL) = FA(E — ) = FA(£) = 0. Since
degF > deg F and deg P > 0, we have degF > deg(F — cG) =deg HP > deg H, and so (by induction)
the quotient % belongs to k(v). But

f=== c +c—F_CG+c—PH+c
TG e G 7

so f € k(v). We have proved that k(Y)2 C k(v). The reverse inclusion is obvious. O
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Let us recall (see Theorem 4.2), that the ring of constants k[Y]® is always equal to k[v]. Thus, if
n is prime, then k(Y)2 is the field of quotients of k[Y]*. In a general case a similar statement is not
true. For example, if n =4, then the rational function

2Y0Y2 — Y2¥3 — Yoy1
3
Y1y2 +Yoy3 —2y1y3

y1y

belongs to k(Y)2 and it is not in k(v). We will check it later in Example 7.2.
Let us recall (see Section 1) that t is an automorphism of k(X) defined by

T(xj) =¢&lx; forall j € Zy.

We say that a rational function f € k(X) is t-homogeneous, if f is homogeneous in the ordinary
sense and t(f) =&’ f for some s € Z,. In this case we say that s is the t-degree of f and we write
deg, (f) =s. Note that deg, (f) is an element of Z,.

Let o = (xp, ..., ®n_1) € Z". As usual, we denote by x* the rational monomial xgo . Angf, and
by |a| the sum «g + - - - + op—1. Moreover, we denote by o («) the element from Z, defined by

o(x) =00+ 1oy + 202 +---+ (n— Dapy_1  (modn).

Let us recall (see Section 1) that @ : k(X) — k(X) is a field automorphism, defined by ¢(x;) =x;11 for
all j € Zy. It is very easy to check that:

Lemma 5.7. Every rational monomial x*, where « € Z", is T-homogeneous and its T-degree is equal to o («).
Moreover, if 0 # f € k(X) and f is t-homogeneous, then o(f) is also T-homogeneous, and deg, o(f) =
deg, f + deg f (mod n).

The derivation d has the following additional properties.
Lemma 5.8. td7 ' = ed.

Proof. It is enough to show that td(xj) = ed(t(x;)) for j € Zjy. Let us verify: td(xj) = T(xj11) =
eIt =6 - eld(xj) = ed(eixj) = ed(z (xj)). O

Lemma 5.9. Let f € k(X). If f is T-homogeneous, then d(f) is T-homogeneous and deg, d(f) =1+ deg; f.

Proof. Assume that f is T-homogeneous and s = deg, f. Since the derivation d is homogeneous and
f is homogeneous in the ordinary sense, d(f) is also homogeneous in the ordinary sense. More-
over, by the previous proposition, we have: t(d(f)) = ed(t(f)) = ed(ef) = &5t1d(f), so d(f) is
T-homogeneous and deg, d(f)=s+1. O

Proposition 5.10. Let F € k[X] be a Darboux polynomial of d. If F is t-homogeneous, then d(F) = 0.

Proof. Assume that d(F) = bF with b € k[X], F is homogeneous in the ordinary sense, and 7 (F) =
&5F for some s € Z,. Then b € k, and we have ed(F) = ¢ %ed(e°F) = ¢ Sed(t(F)) = ¢St (d(F)) =
e 5t(bF) =beSt(F) =be5e¢5F =bF =d(F). Hence, (¢ —1)d(F)=0.But ¢ #1,s0 d(F)=0. O
Proposition 5.11. Let f = %, where P, Q are nonzero coprime polynomials in k[X]. If f is T-homogeneous,
then P, Q are also T-homogeneous, and deg, f = deg, P — deg, Q. Moreover, if f is T-homogeneous and
d(f)=0, thend(P)=d(Q) =0.
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Proof. Assume that f is T homogeneous and deg; f =s. Then f is homogeneous in the ordinary
sense and then, by Proposition 2.10, the polynomials P, Q are also homogeneous in the ordinary
sense. Since r(%) = ssg, we have 7(P)Q =¢&*Pt(Q) and this implies that T(P) =aP, 1(Q) =bQ,
for some a,b € k[X] (because P, Q are relatively prime). Comparing degrees, we deduce that a,b €
k ~. {0}. But t" is the identity map, so P =t"(P) =a"P and Q =t"(Q)=b"Q and so, a, b are n-th
roots of unity. Since ¢ is a primitive n-root, we have a = %1, b = ¢%2, for some s1, s € Z,. Thus, the
polynomials P, Q are t-homogeneous, and it is clear that s =57 —s; (mod n).

Assume now that f is T-homogeneous and d(f) = 0. Then P, Q are t-homogeneous Darboux
polynomials of d (with the same cofactor) and, by Proposition 5.10, we have d(P) =d(Q)=0. O

Note also the following proposition.
Proposition 5.12. If f e k(Y) is homogeneous, then @( f) is T-homogeneous, and deg, @(f) = deg f (modn).

Proof. First assume that f = F is a nonzero homogeneous polynomial in k[Y] of degree s and
consider all the monomial of F. Every nonzero monomial is of the form by%*, where 0 # b €k,
and o € N" with || =s. For each such y*, we have @(y®) = x#, where 8 = (B, ..., Bn_1) =
(ap_1 — g, g — Q1,1 — A2, ...,0p_2 — 0y_1), and then

n—1
o) =) jBj=lal—nay 1 =s—na 1,

j=0

so o (B8) =s (mod n). This means that t(x?) = &5xf. Thus, for every nonzero monomial P which
appears in F, we have T(@(P)) = &5@(P). This implies that t(@(f)) = &°@(f). But @(F) is also homo-
geneous in the ordinary sense (because @(F) € k(X)E), so @(F) is T-homogeneous, and deg, @(F) =
deg F (mod n).

Now let 0 # f € k(Y) be an arbitrary homogeneous rational function. Let f = % with F, G e k[Y]~
{0} and gcd(F, G) = 1. Then F, G are homogeneous (by Proposition 2.10), and @(f) = %. Thus, by
the above proof for polynomials, @(f) is T-homogeneous, and deg, @(f) =deg f (mod n). O

Proposition 5.13. Let f, g € k(Y) be homogeneous rational functions. If @(f) = @(g), then f = vg, for
some ¢ € Z.

Proof. Assume that @(f) = @(g). Then, by Proposition 5.12, deg f = deg, @(f) = deg, @(g) =
deg g (mod n), so there exists ¢ € Z such that deg f =nc + degg. Then f and vg are homogeneous
of the same degree, so f — v°g is homogeneous. Observe that @(f — v°g) = @(f) — @(v)‘@(g) =
@(f) — @(g) =0. Hence, by Proposition 5.3, we have f=v‘g. O

Let us assume that g is a T-homogeneous rational function belonging to the field k(X)4-£. We will
show that then there exists a homogeneous (in the ordinary sense) rational function f € k(Y) such
that A(f) =0 and @(f) = g. This fact will play a key role in our description of the structure of the
field k(Y)2. For a proof of this fact we need to prove some lemmas and propositions.

Let us recall from Section 1, that the elements eq, ..., e,—1 € Z" are defined by: eg = (1,0,0,...,0),
e1=(0,1,0,...,0), ...,e,-1=1(0,0,...,0,1). In particular, we have

@ . _x1+1 _ yeijr1—€j .
)= e =x5+17% for jeZy.
J

Lemma 5.14. Let o € Z". Assume that || = 0 and1a(oc) = 0 (mod n). Then there exists a sequence f =
(Bos---»Bn1) € Z" such that || =0and a = Z'};O Biejr1 —ej).
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Proof. Since o (o) =0 (mod n), there exists an integer r such that nap + o («) = —rn. Put: o =r and
Bi=r—>1_ e forj=1,....n—1. O

Lemma 5.15. If & € Z" with || = 0, then there exists f € Z" such that @(yf) = x*.
Proof. Put: Bj =Y /"7 e for j=0,1,....,n=3,and B 2 =0, o1 =— 1. O

Now we assume that P is a fixed nonzero t-homogeneous polynomial in k[X]. Let us write this
polynomial in the form

P=cix" 4+ X,

where c1,..., ¢, are nonzero elements of k, and y1, ...,y € N. For every q € {1,...,r}, we have
|Yql =degF and o (y4) = deg, F (mod n), and hence, |y; — 1/ =0 and o (y4 — 1) =0 (mod n). This

implies, by Lemma 5.14, that for any q € {1, ..., r}, there exists a sequence 8@ = (ﬂéq), e ﬁr(lqj]) ez
such that |8@| =0 and

n—1
Ya="1= Zﬂ;q)(ff’jﬂ —ej).
j=0

For each j€{0,1,...,n— 1}, we define:

1 a() L
o :mm{ﬁ](. ),ﬂ](. ),...,,B}r)},

and we denote by A the sequence (Ag,...,Ay_1) € Z" defined by
n—1

=71+ ajlej —e).
j=0

Observe that |A| = [y1| =degP, and y; =1 + Z?;&(ﬁ;") —aj)(ejr1 —ej) for any g e {1,...,r}, and

moreover, each /3](.‘1) — o is a nonnegative integer. Put agj = ﬂ;‘“ —aj, for jeZy qe{l,...,r}, and
aq = (aq0,4q1, - - -, Agm—1y) for all g=1,...,r. Then each a4 belongs to N", and we have the equalities
n—1
Yq =A+Zaqj(ej+1 —ej), foranyqefl,...,r}.
j=0

Let us remark that A € N". Indeed, for any j € Z,, we have Aj = y1j+ oj_1 — orj, where aj_1 = ,3]@]

for some q and «; < ﬁ](»q). Thus Aj=y1j+ ﬁﬂ)l —aj =Y+ /3](-2)1 - ,B;q) = ygj = 0. Moreover, |aq| =
B9 — | = 89| — |a| = —|a|, because |@| = 0. This means that |a| <0, and all the numbers
lail, ..., |ar| are the same; they are equal to —||. Consider the polynomial in k[Y] defined by

P=ciy" +-- 4 cry™.

It is a nonzero homogeneous (in the ordinary sense) polynomial of degree —|c/|. It is easy to check
that @(P) = x~*P. Thus, we proved the following proposition.
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Proposition 5.16. If P € k[X] is a nonzero t-homogeneous polynomial, then there exist a sequence A € Z"
and a homogeneous polynomial P € k[Y] such that @ P) = x~*P and |A| = deg P.

Remark 5.17. In the above construction, the polynomial P is not divisible by any of the variables
Y0, ..., ¥n. Let us additionally assume that d(P) = 0. Then it is not difficult to show that A(P) =
—(AoY0o + -+ + An—1¥Yn—1)P, that is, P is a strict Darboux polynomial of A and its cofactor is equal
to — Y A;yi. This implies, by Proposition 4.1, that if additionally d(P) = 0, among all nonnegative
numbers Ag, ..., Ap—1, at least two are different from zero.

Now we are ready to prove the following, mentioned above, proposition.

Proposition 5.18. Let g be a T-homogeneous rational function belonging to the field k(X)®-E. Then there exists
a homogeneous rational function f € k(Y) such that A(f) =0and @(f) = g.

Proof. For g =0 it is obvious. Assume that g # 0, and let g = % where P, Q € k[X] ~ {0} with
gcd(P, Q) = 1. It follows from Propositions 2.10 and 5.11, that the polynomials P, Q are homogeneous
(in the ordinary sense) of the same degree, and they are also T-homogeneous. By Proposition 5.16,
there exist sequences A, u € Z" and a homogeneous polynomials P, Q € k[Y] such that @ P) =x~*P,
@(Q)=x""Q, and |A| = |u| =deg P = deg Q. Then we have

P Xtp)  Xew) -
—_ — = = —_— = @ P .
$Z Q"W weq) ¢ oY

Since |A» — p| =0, there exists (by Lemma 5.15) 8 € Z" such that @(yf) =x*~*. Put f =y . P/Q.
Then f € k(Y) is a homogeneous rational function, and @(f) = g. Now we will show that A(f) =0.
To this aim let us recall that g belongs to the field k(X)4-E, so d(g) = 0. This implies that @ A(f)) =0,
because (by Proposition 5.4) @(A(f)) =d(@(f)) =d(g) = 0. But the rational function A(f) is homo-
geneous, so by Proposition 5.3, A(f)=0. O

6. Rational constants of A

We proved (see Proposition 2.13) that k(X)4E = k(g1,...,8m-1), where m =n — @(n), and
£1,-.-,8m—1 € k(X) are some algebraically independent homogeneous rational functions of degree 0.
We proved in fact, that each g; (for j=1,...,m—1) is equal to the quotient :vv—é These quotients are
usually not tT-homogeneous. We will show in the next section that, in some cases, we are ready to
find such algebraically independent generators of k(X)%E which are additionally T-homogeneous. In
this section we prove that if we have T-homogeneous generators of k(X)%E, then we may construct
some algebraically independent generators of the field k(Y)%.

Let us assume that k(X)%E = k(g1,...,8m-1), Where g1,...,8n—1 € k(X) are algebraically inde-
pendent t-homogeneous rational functions. We know, by Proposition 5.18, that for each g; there
exists a homogeneous rational function f; € k(Y) such that A(f;) =0 and @(f;) = g;. Thus we
have homogeneous rational functions f1,..., fm—1, belonging to the field k(Y)?. We know also that
v ek(Y)2, where v=ygy1---yn_1. In this section we will prove the following theorem.

Theorem 6.1. Let g1, ..., 8m—1 and v, f1, ..., fm—1 be as above. Then the elements v, f1, ..., fm—1 are al-
gebraically independent over k, and k(Y)® =k(v, f1,..., fm-1).

We will prove it in several steps.

Step 1. The elements f1, ..., fm—1 are algebraically independent over k.
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Proof. Suppose that W(f1, ..., fm—1) =0 for some W €klty,...,tm—1]. Then

0=@(W(f1...., fm)) =W(@(f1),....@(frn—1)) = W(&1,.... &n-1).
But g1,..., gm—1 are algebraically independent, so W =0. O

In the next steps we write f instead of {f1,..., fm—1}, and g instead of {g1,..., gn—1}. In partic-
ular, k(f) means k(f1,..., fm-1)-

Step 2. v ¢ k(f).

Proof. Suppose that v € k(f). Let v =P(f)/Q(f) for some P,Q € k[t1,...,tm—1]. Then Q(f)v —
P(f) =0 and we have 0 = @(Q(f)v — P(f)) = Q(g)@(v) — P(g). But @(v) =1, so P(g) =
Q(g), and so P = Q, because gi,...,gm—1 are algebraically independent. Thus v = P(f)/Q (f) =
P(f)/P(f)=1; a contradiction. O

Step 3. The elements v, f1, ..., fm—1 are algebraically independent over k.

Proof. We already know (by Step 1) that f1,..., fim—1 are algebraically independent. Suppose that v
is algebraic over k(f). Let F(t) = b,t" + --- + b1t + bg € k(f)[t] (with b; # 0) be the minimal polyno-
mial of v over k(f). Multiplying by the common denominator, we may assume that the coefficients
bo, ..., b; belong to the ring k[ f]. There exist polynomials Bg, B1, ..., B € k[t1,...,tm—1] such that
bj=Bj(f) for all j=0,...,r. Thus, B;(f)v" +--- 4+ B1(f)v + Bo(f) = 0. Using @, we obtain the
equality

Br(g)1"+---+ B1(g)1+4 Bo(g) =0,

which implies that B, +---+ By + Bg =0, because g1, ..., gn_1 are algebraically independent over k.
This means, in particular, that F(1) = 0. But F(t) is an irreducible polynomial of degree r > 1, so
r=1. Hence, B1(f)v + Bo(f) =0, B1(f) #0, and hence v =—Bo(f)/B1(f) € k(f); a contradiction
with Step 2. O

It is clear that k(v, f) € k(Y)?. For a proof of Theorem 6.1 we must show that the reverse inclusion
also holds. Note that the derivation A is homogeneous, so it is well known that its field of constants
is generated by some homogeneous rational functions. Hence for a proof of this theorem it suffices to
prove that every homogeneous element of k(Y)2 is an element of k(v, f) =k(v, f1,..., fm—1).

Let us assume that H is a nonzero homogeneous rational function belonging to k(Y)%, and put
h=@(H).

Step 4. h € k(g) and h is T-homogeneous.

Proof. Since h = @(H), we have h € k(X)E. Moreover, d(h) = d(@(H)) = @ A(H)) =@(0) =0, so h €
k(X)) Nk(X)E = k(X)®E = k(g). The T-homogeneity of h follows from Proposition 512. O

Now we introduce some new notations. The t-degrees of g1, ..., gn—1 We denote by s1,...,Sm—1,
respectively, and by s we denote the t-degree of h. Thus we have t(gj) =¢%g; for j=1,....m—1,
and 7 (h) = &°h. We already know that h € k(g), so we have

b A
B(g)

for some relatively prime nonzero polynomials A, B € k[t1, ..., tm—1].
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Step 5. The elements A(g), B(g) are T-homogeneous.
Proof. Since t(h) = ¢&*h, we have T(A(g)) - B(g) = &*A(g) - T(B(g)), that is,

A(e% g1, ... gm 1) - B(g1, ..., 8m-1) =€ A(g1, ..., &n—1) - B(e"1 g1, ..., %" 1 gm_1).

But the elements gi,...,gm—1 are algebraically independent over k, so in the polynomial ring
k(t1,...,tm—1] we have the equality

A(e"ty, ..., e ty_1) - B=€"A-B(e"'tq, ..., € ' tm_1),
which implies that A(e’itq,..., &1ty _1) = pA and B(&ity,...,&5m1t,_1) = qB, for some p,q €

klt1,...,tm—1] (because we assumed that gcd(A, B) = 1). Comparing degrees we deduce that p,q € k.
Therefore, T(A(g)) = A(T(g1.....T(gn-1))) = A(*' g1,..., &% 1 gn_1) = pA(g1,.... 8m—1) = PA(),
so, T(A(g)) = pA(g), and similarly 7(B(g)) = qB(g). But 7" is the identity map, so p" =q" =1 and
so, p,q are n-th roots of unity. Put p = ¢ and q = &?, where a,b € Z,. Then we have 7(A(g)) =
£%A(g) and t(B(g)) = ePB(g). Moreover, A(g), B(g) are homogeneous in the ordinary sense, because
they belong to k(X)E, so they are homogeneous rational functions of degree zero. This means that
A(g), B(g) are t-homogeneous. O

Let us fix: a =deg, A(g) and b =deg; B(g).
Om-1

If « = (a1, ...,m—1) € N*~1 then, as usual, we denote by t* and g% the elements t‘])‘1 RS it

m
and g‘f‘ . g,im 11, respectively, and moreover, we denote:

w(a) =a151 + -+ + In—1Sm—1,
u(e) =aqdeg fi + - - + am—1 deg fi—1.

Recall that s; =deg, (g;) and @(f;) =g;, for all j=1,...,m— 1. It follows from Proposition 5.12 that
for each j we have the congruence s; = deg f; (mod n). Therefore,

u(e)=w() (modn) foralla e N*1,

Let us write the polynomials A, B in the forms

A=) Aqt%  B=)_ Bt

aEeSy BeSs
where Ay, Bg are nonzero elements of k, and S4, Sp are finite subsets of N1,
Step 6. w(o) =a (mod n) forall o« € S4, and w(B) =b (mod n) forall B € Sp.

Proof. Since 7(A(g)) =¢%A(g), we have

') Agg” ="A(@) =T(A(®) =) _ AgT(t%)
_ZA e g] ...(gsm—1gm_])am*1
=3 AasV@ge,
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Hence, > Ay (e® — eV (@)g* = 0. But gi,...,gn_1 are algebraically independent and each Ay is
nonzero, so €@ = g% and consequently w(x) =a (mod n), for all @ € S4. We do the same for
the elements w(g). O

Since u(a) = w(e) (mod n) for all « € N™~1 it follows from the above step that, for each o € Sa,
there exists p(«) € Z such that u(a) =a + p(x)n. Put

p=max({0} U {p(e); o € Sa}),

and put a(o) = p — p(a) for o € S4. Then all a(x) are nonnegative integers and all the numbers
u(a) +a(a)n, for each o € Sy, are the same; they are equal to a + pn.

A similar procedure we do with elements of Sp. For each B € Sp there exists an integer b(B)
such that u(B8) + b(B)n =b + qn, for all g € Sp, where q is a nonnegative integer. Consider now the
following quotient

o _ Zacss Aaf VI
> _pesy Bg fAvb®)
This quotient belongs of course to k(v, fi,..., fn—1). In its numerator each component Ay f%v®®,

for all @ € Su, is a homogeneous rational function of the same degree a + pn, so the numerator
is homogeneous. By the same way we see that the denominator is also homogeneous. Hence, © is
a homogeneous rational function. Observe that @(®) = h. We have also @(H) = h. Thus, H and ®
are two homogeneous rational functions such that @(H) = @(®). By Proposition 5.13, there exists
an integer ¢ such that H = v° - ©. Therefore, H € k(v, f1,..., fn—1). This completes our proof of
Theorem 6.1. O

7. Two special cases

In this section we present a description of the field k(Y)2 in the case when n is a power of a
prime number, and in the case when n is a product of two primes.

Let n = p5, where p is prime and s > 1. We already know, by Theorem 5.6, that if s = 1, then
k(Y)® =k(v). Now we assume that s > 2.

Theorem 7.1. Assume that n = p* for some prime number p and an integer s > 2. Then, there exist homoge-
neous elements f1, ..., fm—1 of k(Y)2 such that v, fi, ..., fm—1 are algebraically independent over k and

k(Y)® =k(v, f1,..., fm-1),
wherem=p*~landv=yo---yn_1.

Proof. In this case m =n — ¢(n) = p* — @(p*) = p*~! and hence, n = pm. Since Dps(t) =14+t +
2 ...+ tP=DM we have: wo = UglmUzm - - Up—1ym, a0 Wj = Uom+ jUtm+jUzmtj - - U(p—1ymtj» fOT
all j=0,1,...,m—1. Recall (see Lemma 1.1) that T(u;) =uj41 for j € Z,, so each w;j is equal to
7J(wo).

Observe that t™(wg) = wy. This implies that the t-degree of every nonzero monomial (with re-
spect to variables xg, ..., X;—1) of wq is divisible by p. This means that in the 7-decomposition of wg
there are only components with t-degrees 0, p,2p,...,(m—1)p. Let wo=vg+Vvi+---+Vp_1, Where
each v; e k[X] is T-homogeneous and 7(vj) = epjvj. Of course d(v;) =0 for all j (because 7d = &dT),
and deg(v;) = p for all j (by Proposition 2.7). Now observe that if p > 3 then go(wq) = wo, and if
p =2 then o(wp) = —wy. Hence o(wg) = uwg for some u = =1 in any case and we have

Vo+ V14 + Vo1 = wo =ug(wo) =u(e(vo) + (V1) + - + 0(Vm-1)).
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Since the t-decomposition of wg is unique, we deduce (by Lemma 5.7), that
vi=ug(vo), Vva2=up(i), ..., Vm—1=UQ(Vm-2), Vo=u0(Vm-1),

and we have v; = uij(vo) for all j=0,1,...,m— 1. Therefore, the T-decomposition of wy is of the
form wo = vg +ulo(vo) + u?0%(vo) + - - - + u™ 1™ 1(vy). This implies that

wi =T(Wo) = vo+u'ePo(vo) + u?e?P % (vo) + -~ + u™ TeM VP oM (y(),

We do the same for wy = T(wq) = t2(wg), and for all wj. Thus, for all j=0,1,...,m—1, we
have wj =vg+cji0(vo) + cjzgz(vo) + .-+ cj,m_lgmfl(vo), where each cj; = u'ePl belongs to the
ring Z[¢]. Consider now the rational functions g1, ..., gn—1 € k(X) defined for j=1,...,m—1 by
_0l(vo)
8j= vo

These functions are T-homogeneous. They are homogeneous of degree zero, and they are constants
of d. Moreover, if j € {1,...,m — 1}, then we have:

wj _ vo+t Yol (vo) 1+ vo Y cjiof (vo) 1+ Yl cigi
Wo  vo+ Y N coiol(vo)  14+vy ! Y coioi(vo) 1+ X0 coigi

All quotients wi/wy, ..., wn—1/wq then belong to the field k(g1, ..., gn—1), and hence, by Propo-
sition 2.13, the elements g1,..., gn—1 are algebraically independent over k and we have the equal-
ity k(X)E*d =k(g1,...,8m—1). Note that gq,..., gn—1 are T-homogeneous. It follows from Proposi-
tion 5.18, that for each g; there exists a homogeneous rational function f; € k(Y) such that A(f;) =0
and @(f;) = g;j. We know, by Theorem 6.1, that the elements v, f1,..., fi,—1, are algebraically inde-
pendent over k, and k(Y)® =k(v, f1,..., fm—1). This completes our proof of Theorem 7.1. O

If n =4, then (in the notations of the above proof) vo = xé +x§ — 2x1x3 and

_0(vo) _ X] + X5 —2x0x
Vo o X3+X3—2x1x3

=@(fy),

_ 2yoy2—y2Y3—YoYi
where fi=y1y3 Y1y2+Yoy3—2y1y3®

Hence, we have:
Example 7.2. If n =4, then k(Y)® =k(v, f), where

2Y0Y2 — Y2Y3 — YoY1
3
Y1y2 +Yoy3 —2y1y3

f=»y and v =yoy1y2y3.

Consider the case n=6.

Example 7.3. If n =6, then k(Y)? =k(v, f1, f2, f3), where v=yq---ys, and f1, f>, f3 are some ho-
mogeneous rational functions in k(Y) such that v, fq, f2, f3 are algebraically independent over k.

Proof. We have: ¢o(n) = @(6) =2, m=n — @n) =4, &st) =t> —t +1, and wg = L2, w, =

uq
% = T(Wg), Wy = % = 13(wg), w3 = % = 13(wg). Let us denote: Fy = uguyuy =
wowiw2, F1 = ujusus = wiwaws = 7(Fp), Go = upuz = wowq, G1 = ujug = wiwy = 17(Go),
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Gy = upus = waws = t2(Gg). By Theorem 2.9, the polynomials Fo, F1, Go, G1, G are constants of d.
Note that wo = £, wi =&, wy =, wy={ so we have: yl = fl&, w2 = fogl = &L

2 wo — FoGa' wo — FoGo — Go'
ws _ F1G1 _ F1
wo ~ FoGy = Fo°

Observe that T2(Fp) = Fo. This implies that the T-degree of every nonzero monomial (with respect
to variables xg, ..., Xp—1) of Fg is divisible by 3. This means that in the T-decomposition of Fy there
are only components with 7-degrees 0 and 3. Let Fo = vg + v3, where vg € k[X] is T-homogeneous
with deg; (vo) =0 (that is, T(vo) = vo), and v3 € k[X] is T-homogeneous with deg,(v3) =3 (that is,
T(v3) = &3v3 = —v3). Of course d(vg) =d(v3) = 0 (by Lemma 5.8). Observe that 0(Fo) = 0(upuauy) =
e~ (024 1 us = uguoug = Fo. Hence,

Vo + V3 = Fo=0(Fg) = 0(vo) +0(v3).

Since the t-decomposition of Fg is unique, we deduce (by Lemma 5.7), that vz = o(vp) and vg =
0(v3), and so, the t-decomposition of Fy is of the form Fy = vo + 0(vp). Moreover, F1 = t(Fp) =
T(vo+Vv3) =T(vo) + T(v3) =vo—0(V0)-

We do a similar procedure with the polynomial Go. We first observe that 73(Gg) = Gg, and
0(Gg) = —Gy, and then we obtain the following three t-decompositions: Go = ro — 0(ro) + 0% (ro),
Gy =19 — £20(rg) + £40%(rg), G2 =g — £%0(ro) + £20°(rp), where ry is homogeneous polyno-
mial of degree 2 which is T-homogeneous of t-degree zero. Consider now the rational functions
g1, 82, 83 € k(X) defined by

v r 2(r
g1=Q( 0)! g2=Q(0), g3=Q(0).
Vo o ro

These functions are t-homogeneous. They are homogeneous of degree zero (in the ordinary
sense) and they are constants of d. Moreover, the quotients wi/wg, wy/wg and ws3/wg belong to
k(g1, g2, g3). In fact:

w1 _ Fi1G1 _ (Vo —0(v0))(ro — £20(ro) + £*0*(r0))
wo  FoGz  (vo+0(vo))(ro — &%0(ro) + £202(r0))

_ Vo' (o~ 0(v0))(ro — £%0(ro) + £%0(10))
vy 'y (vo + 0(v0)) (ro — £40(ro) + £20%(ro))

_(1—g)(1—e’gr+8g3)
(1+g1)(1 —e%gy +62g3)’

and so, wi/wq € k(g1, 82, &3). By a similar way we show that wy/wp and ws3/wq also belong to
k(g1, g2, g3). Hence, by Proposition 2.13, the elements g1, g2, g3 are algebraically independent over k
and k(X)E4 = k(g1, g2, g3). It follows from Proposition 5.18, that for each gj there exists a homoge-
neous rational function fj € k(Y) such that A(f;) =0 and @(f;) = g;. We know, by Theorem 6.1, that
the elements v, f1, fo, f3, are algebraically independent over k, and k(Y)® =k(v, f1, f2, f3). O

Now we assume that p > g are primes, and n = pq. In the above proof we used the explicit form
of the cyclotomic polynomial @g(t). Let @pq = chtj. In 1883, Migotti [18] showed that all c; belong
to {—1,0, 1}. In 1964 Beiter [1] gave a criterion on j for c; to be 0, 1 or —1.

In 1996, Lam and Leung [11] gave a similar but more elementary result. Their criterion is based
on the elementary fact that there is a unique way to write @(pq) = (p — 1)(q — 1) = rp + sq with
nonnegative integers r and s. Indeed, from the Bézout relation up —vg=1 with 1<u<q—1 and
1<v<p-1,randshavetober=u—1ands=p—1—v;then0<r<qg—2,0<s<p—2.Using
the numbers r, s, Lam and Leung proved:
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Lemma 7.4. (See [11].) Let ®pq(t) = 7PV ;t!. Then
=1 < I=ip+jq, ief{0,1,...,1}, je{0,1,...,s};
=-1 «<— I=ip+jq+1, i€{0,1,...,(q—2)—r1}, je{0,1,...,(p—2) —s}.
Now we may prove the following theorem.

Theorem 7.5. If n = pq for some prime numbers p > q, then there exist homogeneous elements f1, ..., fm-1
of k(Y)2 such that v, fi, ..., fm_1 are algebraically independent over k and

k(Y)® =k(v, f1..... fin-1),
wherem=p+q—1landv=yo---yn_1.

Proof. We use the same idea as in the proofs of Theorem 7.1 and Example 7.3. We have: ¢(n) =
(p—1)(@—1)and m=n—¢@(n)=p+q—1. For each i € Z, let us denote:

p—1 q-1
Fi=[Jujgri»  Gi=]]ujpss
j=0 j=0

In particular, Fo = uguqlzg---Up-1)g Go = UoUplUzp---Ug—1)p. Observe that if i = bq + ¢, where
b,ceZ and 0 < ¢ < q, then F; = F. Similarly, if i = bp + ¢, where b,c € Z and 0 < ¢ < p, then
Gi = G¢. Let A be the set of all indexes [ € {0,1,...,¢(pq)} with ¢; =1, and let B be the set of all
indexes 1 € {0, 1, ..., ¢(pq)} with ;= —1. We have B # ) because n is not a power of prime (see the
fact mentioned after Theorem 3.7). It is clear that ANB =@, A# ¥, and wo = % where N =[], u,

D =[]jep w. It follows from Lemma 7.4, that

(q—2)-r(p—2)—s

r N
N= 1_[ H Uip+jg, D= 1_[ l_[ Uip+jg+1-

i=0 j=0 i=0  j=0
It is easy to check that []i_, Fip =N - S and ]_[5.’:_02_5 Gjq+1=D-T, where
r p-1 p—2-s q—1
S=ITIT wpeig and 7= [T [ tisjorr.
i=0 j=s+1 j=0 i=q—2-r+1

Now we will show that S = T. First observe that S and T have the same number of factors, which is
equal to (r +1)(p — s — 1). Next observe that

r p—s—2 p—2-s r

Szl_[ l_[ Uipt(s+1+jg and T = l_[ l_[“(q—r—1+i)p+jq+1~

i=0 j=0 j=0 i=0

Thus, it is enough to show that, fori € {0,...,r} and j€{0,1,..., p—s—2}, we have (s+1+j)q+ip=
(q—r—1+i)p+jg+1 (mod pq). But it is obvious, because (p —1)(q — 1) =rp + sq. Therefore, S=T
and we have

1_[,;0 Fip
p—2—s :
[Tj=o "Gign

()

Wo =
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Now we do exactly the same as in the proof of Example 7.3. We have the homogeneous poly-
nomials Fo,...,Fq—1 and Go,...,Gp_1, which are constants of d, and F; = t'(Fp), Gi = t'(Go),
degF; = p, degG; = q, for each i. Observe that t9(Fg) = Fg. This implies that the t-degree of ev-
ery nonzero monomial (with respect to variables xg,...,x;—1) of Fg is divisible by p. This means
that in the t-decomposition of Fq there are only components with t-degrees 0, p,2p,...,(q— 1)p.
Let Fo = Z?;(} v;, where each v; is a T-homogeneous polynomial from k[X], and 7 (v;) = ePlv;. Of
course d(v;) =0 for all i (because T7d = edt by Lemma 5.8), and deg(v;) = p. But o(u;) = s‘fuj (see
Lemma 1.1), so 9(Fo) = £Fp. Since p > q > 2, we have p > 3, and so o(Fp) = Fo. Now we have

vo+Vvi+--+vg_1=Fo=0(Fo)=0o) +0(V1)+ -+ 0(Vg-1).
Since the t-decomposition of Fy is unique, we deduce (by Lemma 5.7), that
vi=0({o), v2=0(1), ..., Vg-1=0(Vg-2), Vo=0(Vg-1),

and we have v = Qj(Vo) for all j=0,1,...,q — 1. Therefore, the T-decomposition of Fg is of the
form Fg = v + Z?:_: 0'(vo). This implies that F; = T(Fg) = vo + Y_&Po(vp). We do the same for
F2 = t(F1) = t2(Fo), and for all Fj. Thus, for all j=0,1,...,q— 1, we have

q—1
Fi=vo+ ) cjio'(vo).
i=1

where each cj; belongs to the ring Z[¢]. We do a similar procedure with the polynomial Gg. First
observe that tP(Gp) = Gop and 9(Gp) = £Gy, to obtain 7-decompositions of the forms

p—1
Gj=ro+ Y _bjio'(ro).

i=1

where each bj; belongs to Z[e] and ro is a homogeneous polynomial of degree q which is

T-homogeneous of T-degree zero and then consider the elements g1, ..., gn—1 € k(X) defined by
_0'(vo) _ 0l
&i = o 8q—-1+j = o
fori=1,...,g—1,and j=1,...,p — 1. These elements are T-homogeneous. They are homogeneous

of degree zero (in the ordinary sense) and they are constants of d. We know, by the above construc-
tion, that the elements - T!(Fj) and %‘L’l(Gj) belong to the field k(g, ..., gn—1). But, by (x), for

Vo
eacha=0,...,m—1, we have
p—1-s p—1-s r T%(Fip)
w0 = 7%wg)-2 _ [Tizo vo
e T O T p2s G
0 0 1_[]'=o Tt
and hence, each element Wargflfsvg(rﬂ) belongs to k(g1,...,8gm—1). This implies, that for every

j—1,...,m—1, the quotient

—1-s_—(+1
wi  rd T Ty Ty,
wo  pP—1-s,—(+1)

0 TO VO Wo
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belongs to k(g1,...,gn—1). Hence, by Proposition 2.13, the elements g1, ..., g, are algebraically in-
dependent over k and k(X)E4 =k(g1, ..., gm_1). It follows from Proposition 5.18, that for each gj
there exists a homogeneous rational function f; € k(Y) such that A(f;) =0 and @(fj) = g;. We
know, by Theorem 6.1, that the elements v, f1,..., fm—1, are algebraically independent over k, and
k(Y)2 =k(v, f1,..., fm—1). This completes our proof of Theorem 7.5. O

We already know a structure of the field k(Y)® but only in the following two cases, when n is a
power of a prime number (Theorem 7.1), and when n is the product of two prime numbers (Theo-
rem 7.5). We do not know what happens in all other cases. Is this field always a purely transcendental
extension of k? What is in the cases n =12 or n =30 or n =105?
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