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Let k[X] = k[x0, . . . , xn−1] and k[Y ] = k[y0, . . . , yn−1] be the poly-
nomial rings in n � 3 variables over a field k of characteristic
zero containing the n-th roots of unity. Let d be the cyclotomic
derivation of k[X], and let � be the factorisable derivation of k[Y ]
associated with d, that is, d(x j) = x j+1 and �(y j) = y j(y j+1 − y j)

for all j ∈ Zn . We describe polynomial constants and rational con-
stants of these derivations. We prove, among others, that the field
of constants of d is a field of rational functions over k in n − ϕ(n)

variables, and that the ring of constants of d is a polynomial ring
if and only if n is a power of a prime. Moreover, we show that the
ring of constants of � is always equal to k[v], where v is the prod-
uct y0 · · · yn−1, and we describe the field of constants of � in two
cases: when n is power of a prime, and when n = pq.

© 2013 Published by Elsevier Inc.

Introduction

Throughout this paper n � 3 is an integer, k is a field of characteristic zero containing the
n-th roots of unity. We denote by Zn the ring Z/nZ and consider the two polynomial rings
k[X] = k[x0, . . . , xn−1] and k[Y ] = k[y0, . . . , yn−1] over k in n variables; the indexes of the variables
x0, . . . , xn−1 and y0, . . . , yn−1 are elements of Zn .

We denote by k(X) = k(x0, . . . , xn−1) and k(Y ) = k(y0, . . . , yn−1) the fields of quotients of k[X] and
k[Y ], respectively.

We then call cyclotomic derivations the following two derivations d and �:
i) d is the derivation of k[X] defined by d(x j) = x j+1, for j ∈ Zn ,
ii) � is the derivation of k[Y ] defined by �(y j) = y j(y j+1 − y j), for j ∈ Zn .
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We denote also by d and � the unique extension of d to k(X) and the unique extension of � to
k(Y ), respectively. We will show that there are some important relations between d and �. In this
paper we study polynomial and rational constants of these derivations.

In general, if δ is a derivation of a commutative k-algebra A, then we denote by Aδ the k-algebra
of constants of δ, that is, Aδ = {a ∈ A; δ(a) = 0}. For a given derivation δ of k[X], we are interested in
some descriptions of k[X]δ and k(X)δ . However, we know that such descriptions are usually difficult
to obtain. Rings and fields of constants appear in various classical problems; for details we refer
to [5,6,26,24]. The mentioned problems are already difficult for factorisable derivations. We say that a
derivation δ : k[X] → k[X] is factorisable if

δ(xi) = xi

n−1∑
j=0

aijx j

for all i ∈ Zn , where each aij belongs to k. Such factorisable derivations and factorisable systems of
ordinary differential equations were intensively studied from a long time; see for example [8,7,22,25].
Our derivation � is factorisable, and the derivation d is monomial, that is, all the polynomials
d(x0), . . . ,d(xn−1) are monomials. With any given monomial derivation δ of k[X] we may associate,
using a special procedure, the unique factorisable derivation D of k[Y ] (see [16,27,21], for details),
and then, very often, the problem of descriptions of k[X]δ or k(X)δ reduces to the same problem for
the factorisable derivation D .

Consider a derivation δ of k[X] given by δ(x j) = xs
j+1 for j ∈ Zn , where s is an integer. Such δ is

called a Jouanolou derivation [10,22,16,33]. The factorisable derivation D , associated with this δ, is a
derivation of k[Y ] defined by D(y j) = y j(sy j+1 − y j), for j ∈ Zn . We proved in [16] that if s � 2 and
n � 3 is prime, then the field of constants of δ is trivial, that is, k(X)δ = k. In 2003 H. Żoła̧dek [33]
proved that for s � 2, it is also true for arbitrary n � 3; without the assumption that n is prime. The
central role, in his and our proofs, is played by some extra properties of the associated derivation D .
Indeed, for s � 2, the differential field (k(X),d) is a finite algebraic extension of (k(Y ), δ).

Our cyclotomic derivation d is the Jouanolou derivation with s = 1, and the cyclotomic derivation �

is the factorisable derivation of k[Y ] associated with d. In this case s = 1, the differential field (k(X),d)

is no longer a finite algebraic extension of (k(Y ), δ); the relations between d and � are thus more
complicated.

We present some algebraic descriptions of the domains k[X]d , k[Y ]� , and the fields k(X)d , k(Y )� .
Note that these rings are nontrivial. The cyclic determinant

w =

∣∣∣∣∣∣∣∣∣
x0 x1 · · · xn−1

xn−1 x0 · · · xn−2
...

...
...

x1 x2 · · · x0

∣∣∣∣∣∣∣∣∣
is a polynomial belonging to k[X]d , and the product y0 y1 · · · yn−1 belongs to k[Y ]� . In this paper we
prove, among others, that k(X)d is a field of rational functions over k in n − ϕ(n) variables, where
ϕ is the Euler totient function (Theorem 2.9), and that k[X]d is a polynomial ring over k if and
only if n is a power of a prime (Theorem 3.7). The field k(X)d is in fact the field of quotients of
k[X]d (Proposition 2.5). We denote by ξ(n) the sum

∑
p|n n

p , where p runs through all prime divisors

of n, and we prove that the number of a minimal set of generators of k[X]d is equal to ξ(n) if and
only if n has at most two prime divisors (Corollary 3.13). In particular, if n = piq j , where p �= q are
primes and i, j are positive integers, then the minimal number of generators of k[X]d is equal to
ξ(n) = pi−1q j−1(p + q) (Corollary 3.11).

The ring of constants k[Y ]� is always equal to k[v], where v = y0 y1, . . . , yn−1 (Theorem 4.2)
and, if n is prime, then k(Y )� = k(v) (Theorem 5.6). If n = ps , where p is prime and s � 2, then
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k(Y )� = k(v, f1, . . . , fm−1) with m = ps−1, where f1, . . . , fm−1 ∈ k(Y ) are homogeneous rational func-
tions such that v, f1, . . . , fm−1 are algebraically independent over k (Theorem 7.1). A similar theorem
we prove for n = pq (Theorem 7.5).

In our proofs we use classical properties of cyclotomic polynomials, and some results ([11,12,31,
32] and others) play an important role on vanishing sums of roots of unity.

1. Notations and preparatory facts

Recall that Zn is the ring Z/nZ and that the indexes of the variables x0, . . . , xn−1 and y0, . . . , yn−1
of the polynomial rings k[X] and k[Y ], that we are interested in, are elements of Zn . This means in
particular that, if i, j are integers, then xi = x j ⇐⇒ i ≡ j (mod n). Throughout this paper ε is a
primitive n-th root of unity, and we assume that ε ∈ k, where the field k has characteristic 0.

We fix the notations d and � for the derivations of the polynomial rings k[X] = k[x0, . . . , xn−1]
and k[Y ] = k[y0, . . . , yn−1], respectively, defined by

d(x j) = x j+1, �(y j) = y j(y j+1 − y j) for j ∈ Zn.

We denote also by d and � the unique extension of d to k(X) = k(x0, . . . , xn−1) and the unique
extension of � to k(Y ) = k(y0, . . . , yn−1), respectively.

The letters � and τ we book for two k-automorphisms of the field k(X), defined by

�(x j) = x j+1, τ (x j) = ε j x j for all j ∈ Zn.

We denote by u0, u1, . . . , un−1 the linear forms in k[X], defined by

u j =
n−1∑
i=0

(
ε j)i

xi, for j ∈ Zn.

If r is an integer and n � r, then the sum
∑n−1

j=0(εr) j is equal to 0, and in the other case, when n | r,
this sum is equal to n. As a consequence of this fact, we obtain that

xi = 1

n

n−1∑
j=0

(
ε−i) j

u j for all i ∈ Zn.

Thus, k[X] = k[u0, . . . , un−1], k(X) = k(u0, . . . , un−1), and the forms u0, . . . , un−1 are algebraically in-
dependent over k. Moreover, we have the following equalities.

Lemma 1.1. τ (u j) = u j+1 , �(u j) = ε− ju j for all j ∈ Zn.

Proof.

τ (u j) = τ

(
n−1∑
i=0

(ε j)i xi

)
=

n−1∑
i=0

(
ε j)i

εi xi =
n∑

i=1

(
ε j+1)i

xi = u j+1,

�(u j) = �

(
n−1∑
i=0

(
ε j)i

xi

)
=

n−1∑
i=0

(
ε j)i

xi+1 =
n∑

i=1

(
ε j)i−1

xi

= ε− j
n∑(

ε j)i
xi = ε− j

n−1∑(
ε j)i

xi = ε− ju j. �

i=1 i=0
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For every sequence α = (α0,α1, . . . ,αn−1) of integers, we denote by Hα(t) the polynomial in Z[t]
defined by

Hα(t) = α0 + α1t1 + α2t2 + · · · + αn−1tn−1.

Two subsets of Zn which we denote by Gn and Mn play an important role in our paper. The first
subset Gn is the set of all sequences α = (α0, . . . ,αn−1) ∈ Zn such that α0 + α1ε

1 + α2ε
2 + · · · +

αn−1ε
n−1 = 0. The second subset Mn is the set of all such sequences α = (α0, . . . ,αn−1) which

belong to Gn and the integers α0, . . . ,αn−1 are nonnegative, that is, they belong to the set of natural
numbers N = {0,1,2, . . .}. Let us remember:

Gn = {
α ∈ Zn; Hα(ε) = 0

}
, Mn = {

α ∈Nn; Hα(ε) = 0
} = Gn ∩Nn.

If α,β ∈ Gn , then of course α ± β ∈ Gn , and if α,β ∈ Mn , then α + β ∈ Mn . Thus Gn is an abelian
group, and Mn is an abelian monoid with zero 0 = (0, . . . ,0).

The primitive n-th root ε is an algebraic element over Q, and its monic minimal polynomial is
equal to the n-th cyclotomic polynomial Φn(t). Recall (see for example: [23,13]) that Φn(t) is a monic
irreducible polynomial with integer coefficients of degree ϕ(n), where ϕ is the Euler totient function.

This implies the following proposition.

Proposition 1.2. Let α ∈ Zn. Then α ∈ Gn if and only if there exists a polynomial F (t) ∈ Z[t] such that Hα(t) =
F (t)Φn(t).

Put e0 = (1,0,0, . . . ,0), e1 = (0,1,0, . . . ,0), . . . , en−1 = (0,0, . . . ,0,1), and let e = ∑n−1
i=0 ei =

(1,1, . . . ,1). Since
∑n−1

i=0 εi = 0, the element e belongs to Mn .

Proposition 1.3. If α ∈ Gn, then there exist β,γ ∈Mn such that α = β − γ .

Proof. Let α = (α0, . . . ,αn−1) ∈ Gn , and let r = min{α0, . . . ,αn−1}. If r � 0, then α ∈ Mn and then
α = β − γ , where β = α, γ = 0. Assume that r = −s, where 1 � s ∈ N. Put β = α + se and γ = se.
Then β,γ ∈Mn , and α = β − γ . �

The monoid Mn has an order �. If α,β ∈ Mn , then we write α � β , if α − β ∈ Nn , that is,
α � β ⇐⇒ there exists γ ∈Mn such that α = β + γ . In particular, α � 0 for any α ∈Mn . It is clear
that the relation � is reflexive, transitive and antisymmetric. Thus Mn is a poset with respect to �.

Proposition 1.4. The poset Mn is artinian, that is, if α(1) � α(2) � α(3) � · · · is a sequence of elements
from Mn, then there exists an integer s such that α( j) = α( j+1) for all j � s.

Proof. Given an element α = (α0, . . . ,αn−1) ∈ Mn , we put |α| = α0 + · · · + αn−1. Observe that if
α,β ∈ Mn and α > β , then |α| > |β|. Suppose that there exists an infinite sequence α(1) > α(2) >

α(3) > · · · of elements from Mn , and let s = |α(1)|. Then we have an infinite sequence s > |α(2)| >

|α(2)| > · · · � 0, of natural numbers; a contradiction. �
Let α ∈ Mn . We say that α is a minimal element of Mn , if α �= 0 and there is no β ∈ Mn such

that β �= 0 and β < α. Equivalently, α is a minimal element of Mn , if α �= 0 and α is not a sum of
two nonzero elements of Mn . It follows from Proposition 1.4 that for any 0 �= α ∈ Mn there exists
a minimal element β such that β � α. Moreover, every nonzero element of Mn is a finite sum of
minimal elements.

Proposition 1.5. The set of all minimal elements of Mn is finite.
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Proof. We use classical noetherian arguments. Consider the polynomial ring R = Z[z0, . . . , zn−1]. If
α = (α0, . . . ,αn−1) is an element from Mn , then we denote by zα the monomial zα0

0 zα1
1 · · · z

αn−1
n1 . Let

S be the set of all minimal elements of Mn , and consider the ideal A of R generated by all elements
of the form zα with α ∈ S . Since R is noetherian, A is finitely generated; there exist α(1), . . . ,α(r) ∈ S
such that A = (zα(1)

, . . . , zα(r)
). Let α be an arbitrary element from S . Then zα ∈ A, and then there

exist j ∈ {1, . . . , r} and γ ∈ Nn such that zα = zγ · zα( j) = zγ +α( j)
. This implies that α = γ + α( j) .

Observe that γ = α − α( j) ∈ Gn ∩ Nn , and Gn ∩ Nn = Mn , so γ belongs to Mn . But α is minimal, so
γ = 0, and consequently α = α( j) . This means that S is a finite set equal to {α(1), . . . ,α(r)}. �

We denote by ζ , the rotation of Zn given by

ζ(α) = (αn−1,α0,α1, . . . ,αn−2),

for α = (α0,α1, . . . ,αn−1) ∈ Zn . We have for example: ζ(e j) = e j+1 for all j ∈ Zn , and ζ(e) = e. The
mapping ζ : Zn → Zn is obviously an automorphism of the Z-module Zn .

Lemma 1.6. Let α ∈ Zn. If α ∈ Gn, then ζ(α) ∈ Gn. If α ∈ Mn, then ζ(α) ∈ Mn. Moreover, α is a minimal
element of Mn if and only if ζ(α) is a minimal element of Mn.

Proof. Assume that α = (α0, . . . ,αn−1) ∈ Gn . Then α0 +α1ε + · · ·+αn−1ε
n−1 = 0. Multiplying it by ε,

we have 0 = α0ε + α1ε
2 + · · · + αn−1ε

n . But εn = 1, so αn−1 + α0ε + α1ε
2 + · · · + αn−2ε

n−2 = 0, and
so ζ(α) ∈ Gn . This implies also, that if α ∈Mn , then ζ(α) ∈Mn .

Assume now that α is a minimal element of Mn and suppose that ζ(α) = β + γ , for some β,γ ∈
Mn . Then we have α = ζn(α) = ζn−1(ζ(α)) = ζn−1(β) + ζn−1(γ ) = β ′ + γ ′ , where β ′ = ζn−1(β) and
γ ′ = ζn−1(γ ) belong to Mn . Since α is minimal, β ′ = 0 or γ ′ = 0, and then β = 0 or γ = 0. Thus
if α is a minimal element of Mn , then ζ(α) is also a minimal element of Mn . Moreover, if ζ(α) is
minimal, then α is minimal, because α = ζn−1(ζ(α)). �
2. The derivation d and its constants

Let us recall that d : k[X] → k[X] is a derivation such that d(x j) = x j+1, for j ∈ Zn .

Proposition 2.1. For each j ∈ Zn, the equality d(u j) = ε− ju j holds.

Proof. See the proof of Lemma 1.1. �
This means that d is a diagonal derivation of the polynomial ring k[U ] = k[u0, . . . , un−1] which

is equal to the ring k[X]. It is known (see for example [24]) that the algebra of constants of every
diagonal derivation of k[U ] = k[X] is finitely generated over k. Therefore, k[X]d is finitely generated
over k. We would like to describe a minimal set of generators of the ring k[X]d , and a minimal set of
generators of the field k(X)d .

If α = (α0, . . . ,αn−1) ∈ Zn , then we denote by uα the rational monomial uα0
0 · · · u

αn−1
n−1 . Recall (see

the previous section) that Hα(t) is the polynomial α0 + α1t1 + · · · + αn−1tn−1 belonging to Z[t]. As a
consequence of Proposition 2.1 we obtain

Proposition 2.2. d(uα) = Hα(ε−1)uα for all α ∈ Zn.

Note that ε−1 is also a primitive n-th root of unity. Hence, by Proposition 1.2, we have the
equivalence Hα(ε−1) = 0 ⇐⇒ Hα(ε) = 0, and so, by the previous proposition, we see that if
α ∈ Zn , then d(uα) = 0 ⇐⇒ α ∈ Gn , and if α ∈ Nn , then d(uα) = 0 ⇐⇒ α ∈ Mn . Moreover, if
F = b1uα(1) +· · ·+bruα(r)

, where b1, . . . ,br ∈ k and α(1), . . . ,α(r) are pairwise distinct elements of Nn ,
then d(F ) = 0 if and only if d(biuα(i)

) = 0 for every i = 1, . . . , r. Hence, k[X]d is generated over k by
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all elements of the form uα with α ∈ Mn . We know (see the previous section), that every nonzero
element of Mn is a finite sum of minimal elements of Mn . Thus we have the following proposition.

Proposition 2.3. The ring of constants k[X]d is generated over k by all the elements of the form uβ , where β

is a minimal element of the monoid Mn.

In the next section we will prove some additional facts on the minimal number of generators of
the ring k[X]d . Now, let us look at the field k(X)d .

Proposition 2.4. The field of constants k(X)d is generated over k by all elements of the form uγ with γ ∈ Gn.

Proof. Let L be the subfield of k(X) generated over k by all elements of the form uγ with γ ∈ Gn .
It is clear that L ⊆ k(X)d . We will prove the reverse inclusion. Assume that 0 �= f ∈ k(X)d . Since
k(X) = k(U ), we have f = A/B , where A, B are coprime polynomials in k[U ]. Put

A =
∑
α∈S1

aαuα, B =
∑
β∈S2

bβuβ,

where all aα , bβ are nonzero elements of k, and S1, S2 are some subsets of Nn . Since d( f ) = 0,
we have the equality Ad(B) = d(A)B . But A, B are relatively prime, so d(A) = λA, d(B) = λB for some
λ ∈ k[U ]. Comparing degrees, we see that λ ∈ k. Moreover, by Proposition 2.2, we deduce that d(uα) =
λuα for all α ∈ S1, and also d(uβ) = λuβ for all β ∈ S2. This implies that if δ1, δ2 ∈ S1 ∪ S2, then
d(uδ1−δ2 ) = 0. In fact, d(uδ1−δ2 ) = d

( uδ1

uδ2

) = 1
u2δ2

(d(uδ1 )uδ2 − uδ1 d(uδ2 )) = 1
u2δ2

(λuδ1 uδ2 − λuδ1 uδ2 ) = 0.
This means, that if δ1, δ2 ∈ S1 ∪ S2, then δ1 − δ2 ∈ Gn . Fix an element δ from S1 ∪ S2. Then all α − δ,
β − δ belong to Gn , and we have

f = A

B
=

∑
aαuα∑
bβuβ

= u−δ
∑

aαuα

u−δ
∑

bβuβ
=

∑
aαuα−δ∑
bβuβ−δ

,

and hence, f ∈ L. �
Let us recall (see Proposition 1.3) that every element of the group Gn is a difference of two ele-

ments from the monoid Mn . Using this fact and the previous propositions we obtain

Proposition 2.5. The field k(X)d is the field of quotients of the ring k[X]d.

Now we will prove that k(X)d is a field of rational functions over k, and its transcendental degree
over k is equal to n − ϕ(n), where ϕ is the Euler totient function. For this aim look at the cyclotomic
polynomial Φn(t). Assume that

Φn(t) = c0 + c1t + · · · + cϕ(n)t
ϕ(n).

All the coefficients c0, . . . , cϕ(n) are integers, and c0 = cϕ(n) = 1. Put m = n − ϕ(n) and

γ0 = (c0, c1, . . . , cϕ(n), 0, . . . ,0︸ ︷︷ ︸
m−1

).

Note that γ0 ∈ Zn , and Hγ0(t) = Φn(t). Consider the elements γ0, γ1, . . . , γm−1 defined by

γ j = ζ j(γ0), for j = 0,1, . . . ,m − 1.
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Observe that Hγ j (t) = Φn(t) · t j for all j ∈ {0, . . . ,m − 1}. Since Φn(ε) = 0, we have Hγ j (ε) = 0, and
so, the elements γ0, . . . , γm−1 belong to Gn .

Lemma 2.6. The elements γ0, . . . , γm−1 generate the group Gn.

Proof. Let α ∈ Gn . It follows from Proposition 1.2, that Hα(t) = F (t)Φn(t), for some F (t) ∈ Z[t]. Then
obviously deg F (t) < m. Put F (t) = b0 + b1t + · · · + bm−1tm−1, with b0, . . . ,bm−1 ∈ Z. Then we have

Hα(t) = b0
(
Φn(t)t

0) + b1
(
Φn(t)t

1) + · · · + bm−1
(
Φn(t)t

m−1)
= b0 Hγ0(t) + · · · + bm−1 Hγm−1(t),

and this implies that α = b0γ0 + b1γ1 + · · · + bm−1γm−1. �
Consider now the rational monomials w0, . . . , wm−1 defined by

w j = uγ j = uc0
0+ ju

c1
1+ ju

c2
2+ j · · · u

cϕ(n)

ϕ(n)+ j

for j = 0,1, . . . ,m − 1, where m = n − ϕ(n). Each w j is a rational monomial with respect to
u0, . . . , un−1 of the same degree equal to Φn(1) = c0 + c1 + · · · + cϕ(n) . It is known (see for exam-
ple [13]) that Φn(1) = p if n is power of a prime number p, and Φn(1) = 1 in all other cases. As each
u j is a homogeneous polynomial in k[X] of degree 1, we have:

Proposition 2.7. The elements w0, . . . , wm−1 are homogeneous rational functions with respect to variables
x0, . . . , xn−1 , of the same degree r. If n is a power of a prime number p, then r = p, and r = 1 in all other cases.

As an immediate consequence of Lemma 2.6 and Proposition 2.4, we obtain the equality k(X)d =
k(w0, . . . , wm−1).

Lemma 2.8. The elements w0, . . . , wm−1 are algebraically independent over k.

Proof. Let A be the n×m Jacobi matrix [aij], where aij = ∂ w j
∂ui

for i = 0,1, . . . ,n−1, j = 0,1, . . . ,m−1.

It is enough to show that rank(A) = m (see for example [9]). Observe that ∂ w0
∂u0

= c0uc0−1
0 uc1

1 · · ·
u

cϕ(n)

ϕ(n) �= 0 (because c0 = 1), and
∂ w j
∂u0

= 0 for j � 1. Moreover, ∂ w1
∂u1

�= 0 and
∂ w j
∂u1

= 0 for j � 2, and

in general, ∂ wi
∂ui

�= 0 and
∂u j
∂ui

= 0 for all i, j = 0, . . . ,m − 1 with j > i. This means, that the upper
m × m matrix of A is a triangular matrix with a nonzero determinant. Therefore, rank(A) = m. �

Thus, we proved the following theorem.

Theorem 2.9. The field of constants k(X)d is a field of rational functions over k and its transcendental degree
over k is equal to m = n − ϕ(n), where ϕ is the Euler totient function. More precisely,

k(X)d = k(w0, . . . , wm−1),

where the elements w0, . . . , wm−1 are as above.

Now we will describe all constants of d which are homogeneous rational functions of degree zero.
Let us recall that a nonzero polynomial F is homogeneous of degree r, if all its monomials are of
the same degree r. We assume that the zero polynomial is homogeneous of arbitrary degree. Ho-
mogeneous polynomials are also homogeneous rational functions, which are defined in the following
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way. Let f = f (x0, . . . , xn−1) ∈ k(X). We say that f is homogeneous of degree s ∈ Z, if in the field
k(t, x0, . . . , xn−1) the equality f (tx0, tx1, . . . , txn−1) = ts · f (x0, . . . , xn−1) holds. The characteristic plays
no role in the previous definition whereas it is easy to prove (see for example [24, Proposition 2.1.3])
the following equivalent formulations of homogeneous rational functions when the characteristic of k
is 0.

Proposition 2.10. Let k be a field of characteristic 0. Let F , G be nonzero coprime polynomials in k[X] and let
f = F/G. Let s ∈ Z. The following conditions are equivalent.

(1) The rational function f is homogeneous of degree s.
(2) The polynomials F , G are homogeneous of degrees p and q, respectively, where s = p − q.
(3) x0

∂ f
∂x0

+ · · · + xn−1
∂ f

∂xn−1
= sf .

Equality (3) is called the Euler formula. In this paper we denote by E the Euler derivation of k(X),
that is, E is a derivation of k(X) defined by E(x j) = x j for all j ∈ Zn . As usual, we denote by k(X)E

the field of constants of E . Observe that, by Proposition 2.10, a rational function f ∈ k(X) belongs
to k(X)E if and only if f is homogeneous of degree zero. In particular, the set of all homogeneous
rational functions of degree zero is a subfield of k(X). It is obvious that the quotients x1

x0
, . . . ,

xn−1
x0

belong to k(X)E , and they are algebraically independent over k. Moreover, k(X)E = k
( x1

x0
, . . . ,

xn−1
x0

)
.

Therefore, k(X)E is a field of rational functions over k, and its transcendence degree over k is equal
to n − 1. Put q j = x j+1

x j
for all j ∈ Zn . In particular, qn−1 = x0

xn−1
. The elements q0, . . . ,qn−1 belong to

k(X)E and moreover,
x j
x0

= q0q1 · · ·q j−1 for j = 1, . . . ,n − 1. Thus we have the following equality.

Proposition 2.11. k(X)E = k
( x1

x0
,

x2
x1

, . . . ,
xn−1
xn−2

,
x0

xn−1

)
.

Now consider the field k(X)d,E = k(X)d ∩ k(X)E .

Lemma 2.12. Let d1,d2 : k(X) → k(X) be two derivations. Assume that K (X)d1 = k(c,b1, . . . ,bs), where
c,b1, . . . ,bs are algebraically independent over k elements from k(X) such that d2(b1) = · · · = d2(bs) = 0
and d2(c) �= 0. Then k(X)d1 ∩ k(X)d2 = k(b1, . . . ,bs).

Proof. Put L = k(b1, . . . ,bs). Observe that k(X)d1 = L(c), and c is transcendental over L. Let 0 �= f ∈
k(X)d1 ∩k(X)d2 . Then f = F (c)

G(c) , where F (t), G(t) are coprime polynomials in L[t]. We have: d2(F (c)) =
F ′(c)d2(c), d2(G(c)) = G ′(c)d2(c), where F ′(t), G ′(t) are derivatives of F (t), G(t), respectively. Since
d2( f ) = 0, we have

0 = d2
(

F (c)
)
G(c) − d2

(
G(c)

)
F (c) = (

F ′(c)G(c) − G ′(c)F (c)
)
d2(c),

and so, (F ′G − G ′ F )(c) = 0, because d2(c) �= 0. Since c is transcendental over L, we obtain the equality
F ′(t)G(t) = G ′(t)F (t) in L[t], which implies that F (t) divides F ′(t) and G(t) divides G ′(t) (because
F (t), G(t) are relatively prime), and comparing degrees we deduce that F ′(t) = G ′(t) = 0, that is,
F (t) ∈ L and G(t) ∈ L. Thus the elements F (c), G(c) belong to L and so, f = F (c)

G(c) belongs to L. There-

fore, k(X)d1 ∩ k(X)d2 ⊆ L. The reverse inclusion is obvious. �
Let us return to the rational functions w0, . . . , wm−1. We know (see Proposition 2.7) that they are

homogeneous of the same degree. Put: d1 = d, d2 = E , c = w0 and b j = w j
w0

for j = 1, . . . ,m − 1, then,
as a consequence of Lemma 2.12. We obtain the following proposition.

Proposition 2.13. k(X)d,E = k
( w1

w0
, . . . ,

wm−1
w0

)
.

Since w0, . . . , wm−1 are algebraically independent over k (see Lemma 2.8), the quotients
w1
w , . . . ,

wm−1
w are also algebraically independent over k. Thus, k(X)d,E is a field of rational functions
0 0
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and its transcendental degree over k is equal to n − ϕ(n) − 1, where ϕ is the Euler totient function.
Since n is prime if and only if n − ϕ(n) − 1 = 0, we obtain:

Corollary 2.14. k(X)d,E = k ⇐⇒ n is a prime number.

3. Numbers of minimal elements

Let F be the set of all the minimal elements of the monoid Mn , and denote by ν(n) the cardi-
nality of F . We know, by Proposition 1.5, that ν(n) < ∞. We also know (see Proposition 2.3) that the
ring k[X]d is generated over k by all the elements of the form uβ , where β ∈ F . But k[X] is equal to
the polynomial ring k[U ] = k[u0, . . . , un−1], so k[X]d is generated over k by a finite set of monomials
with respect to the variables u0, . . . , un−1.

It is clear that if β,γ are distinct elements from F , then uβ � uγ and uγ � uβ . This implies that no
monomial uβ,β ∈F belongs to the algebra generated by other uγ ,γ ∈F , uγ � uβ . Thus, {uβ ; β ∈ F}
is a minimal set of generators of k[X]d .

Moreover, {uβ ; β ∈ F} is a set of generators of k[X]d with the minimal number of elements
according to the following proposition.

Proposition 3.1. Let f1, . . . , f s be polynomials in k[X]. If k[X]d = k[ f1, . . . , f s], then s � ν(n).

Proof. Let M be the maximal ideal of k[X]d of all f ∈ k[X]d such that f (0) = 0. All uβ with β ∈
Mn \ {0} belong to M; their set is a basis of the k-vector space M whereas the subset {uβ,β ∈
Mn \ {0}, β /∈F} of it is a basis of M2. The image of {uβ,β ∈F} in M/M2 then constitutes a basis of
the k-vector space M/M2 whose finite dimension is thus ν(n).

Now, for any f ∈ k[X]d , denote by f̃ the difference f̃ = f − f (0), which belongs to M .
If { f1, . . . , f s} generates the algebra k[X]d , the same is true for the set { f̃ 1, . . . , f̃ s} of elements

of M . As a k-vector space, M is then generated by all products
∏i=s

i=1 f̃ αi
i , where the αi are natural

numbers with
∑

αi � 1. All such products with
∑

αi � 2 then belong to M2 and the images of
f̃ 1, . . . , f̃ s in M/M2 generate the k-vector space M/M2. So we have: s � ν(n). �

In this section we prove, among others, that k[X]d is a polynomial ring over k if and only if
n is a power of a prime number. Moreover, we present some additional properties of the number
ν(n), which are consequences of known results on vanishing sums of roots of unity; see for example
[12,29,31,32], where many interesting facts and references on this subject can be found.

We denote by ξ(n) the sum
∑

p|n n
p , where p runs through all prime divisors of n. Note that if a,b

are positive coprime integers, then ξ(ab) = aξ(b) + ξ(a)b.
First we show that the computation of ν(n) can be reduced to the case when n is square-free.

For this aim let us denote by n0 the largest square-free factor of n, and by n′ the integer n/n0. Then
ϕ(n) = n′ϕ(n0) and ξ(n) = n′ξ(n0). Moreover, it is not difficult to prove that Φn(t) = Φn0(t

n′
). Indeed,

observe that Φn0(t
n′

) is a monic polynomial of degree ϕ(n0)n′ = ϕ(n). Since εn′
is a primitive n0-th

root of unity, we have Φn0 (ε
n′

) = 0. Hence, Φn(t) divides Φn0 (t
n′

), and thus equals to Φn0(t
n′

).
Assume now that n = mc, where m � 2, c � 2 are integers. For a given sequence γ =

(γ0, . . . , γm−1) ∈ Zm , consider the sequence

γ = (γ0,0, . . . ,0︸ ︷︷ ︸
c−1

, γ1,0, . . . ,0︸ ︷︷ ︸
c−1

, . . . , γm−1,0, . . . ,0︸ ︷︷ ︸
c−1

).

This sequence is an element of Zn , and it is easy to prove the following lemma.

Lemma 3.2. γ ∈ Gn ⇐⇒ γ ∈ Gm, and γ ∈ Mn ⇐⇒ γ ∈ Mm. Moreover, γ is a minimal element of
Mn ⇐⇒ γ is a minimal element of Mm.
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Using the above notations, we have:

Proposition 3.3. ν(n) = n′ν(n0), for all n � 3.

Proof. If n′ = 1 then this is clear. Assume that n′ � 2. Let α = (α0, . . . ,αn−1) be an element of Mn .
For every j ∈ {0,1, . . . ,n′ − 1}, let us denote:

f j(t) =
n0−1∑
i=0

αin′+ jt
in′+ j = t j

n0−1∑
i=0

αin′+ jt
in′

, β j = (α0n′+ j,α1n′+ j, . . . ,α(n0−1)n′+ j).

Note that f j(t) ∈ Z[t] and β j ∈ Nn0 . Consider the elements β0, β1, . . . , βn′−1, introduced before
Lemma 3.2 for m = n0 and c = n′ . Observe that

α = β0 + ζ(β1) + ζ 2(β2) + · · · + ζn′−1(βn′−1) (∗)

where ζ is the rotation of Zn , as in Section 1. Denote also by f (t) the polynomial Hα(t) = α0 +α1t +
· · · + αn−1tn−1, that is, f (t) = ∑n′−1

j=0 f j(t). It follows from Proposition 1.2, that f (t) = g(t)Φn(t) for
some g(t) ∈ Z[t].

For every j ∈ {0,1, . . . ,n′ − 1}, denote by A j the set of polynomials F (t) ∈ Z[t] such that the
degrees of all nonzero monomials of F (t) are congruent to j modulo n′ . We assume that the zero
polynomial also belongs to A j . It is clear that each A j is a Z-module, Ai A j ⊆ Ai+ j for i, j ∈ Zn′ , and
Z[t] = ⊕

j∈Zn′ A j . Thus, we have a gradation on Z[t] with respect to Zn′ . We will say that it is the
n′-gradation, and the decompositions of polynomials with respect to this gradation we will call the
n′-decompositions.

Let g(t) = g0(t) + g1(t) + · · · + gn′−1(t) be the n′-decomposition of g(t); each g j(t) belongs to A j .
Since Φn(t) = Φn0(t

n′
), we have Φn(t) ∈ A0. Hence,

f (t) = g0(t)Φn(t) + g1(t)Φn(t) + · · · + gn′−1(t)Φn(t)

is the n′-decomposition of f (t). But the previous equality f (t) = ∑
f j(t) is also the n′-decomposition

of f (t), so we have f j(t) = g j(t)Φn(t) for all j ∈ Zn′ .
Put η = εn′

. Then η is a primitive n0-th root of unity and, for every j ∈ Zn′ , we have

n0−1∑
i=0

αin′+ jη
i = ε− j f j(ε) = ε− j g j(ε)Φn(ε) = ε− j g j(ε) · 0 = 0.

The equality says that Hβ j
(ε) = 0, and so β j ∈Mn . Hence, β j is an element of Mn0 by Lemma 3.2.

Assume now that the above α is a minimal element of Mn . Then, by (∗), we have α = ζ j(β j) for
some j ∈ {0, . . . ,n′ − 1}. Then β j = ζn− j(α) and so, β j is (by Lemma 1.6) a minimal element of Mn ,
and this implies, by Lemma 3.2, that β j is a minimal element of Mn0 . Thus, every minimal element α

of Mn is of the form α = ζ j(β), where j ∈ {0, . . . ,n′ − 1} and β is a minimal element of Mn0 , and it
is clear that this presentation is unique. This means, that ν(n) � n′ · ν(n0).

Assume now that β is a minimal element of Mn0 . Then we have n′ pairwise distinct sequences
β, ζ(β), ζ 2(β), . . . , ζn′−1(β), which are (by Lemmas 1.6 and 3.2) minimal elements of Mn . Hence,
ν(n) � n′ · ν(n0). Therefore, ν(n) = n′ · ν(n0). �

If p is prime, then ν(p) = 1; the constant sequence e = (1,1, . . . ,1) is the unique minimal element
of Mp . In this case k[X]d is the polynomial ring k[w], where w = u0 . . . up−1 is the cyclic determinant
of the variables x0, . . . , xp−1 (see the Introduction). In particular, if p = 3, then k[x0, x1, x2]d = k[x3

0 +
x3

1 + x3
2 − 3x0x1x2]. Using Proposition 3.3 and its proof we obtain:
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Proposition 3.4. Let n = ps, where s � 1 and p is a prime number. Then ν(n) = ξ(n) = ps−1 , and the ring of
constants k[X]d is a polynomial ring over k in ps−1 variables.

Assume now that p is a prime divisor of n. Denote by np the integer n/p, and consider the se-
quences

E(p)

i =
p−1∑
j=0

ei+ jnp ,

for i = 0,1, . . . ,np − 1. Recall that e0 = (1,0, . . . ,0), . . . , en−1 = (0,0, . . . ,0,1) are the basic elements

of Zn . Observe that each E(p)

i is equal to ζ i(E(p)
0 ), where ζ is the rotation of Zn . Observe also that

E(p)
0 = e, where in this case e = (1,1, . . . ,1) ∈ Zp and e is the element of Zn introduced before

Lemma 3.2 for m = p and c = np . But e is a minimal element of Mp , so we see, by Lemmas 3.2

and 1.6, that each E(p)

i is a minimal element of Mn . We will call such E(p)

i a standard minimal

element of Mn . It is clear that if i, j ∈ {0,1, . . . ,np − 1} and i �= j, then E(p)

i �= E(p)

j . Observe also that,

for every i, we have |E(p)

i | = p. This implies, that if p �= q are prime divisors of n, then E(p)

i �= E(q)

j
for all i ∈ {0, . . . ,np − 1}, j ∈ {0,1, . . . ,nq − 1}. Assume that p1, . . . , ps are all the prime divisors of
n. Then, by the above observations, the number of all standard minimal elements of Mn is equal to
np1 + · · · + nps = ξ(n). Hence, we proved the following proposition.

Proposition 3.5. ν(n) � ξ(n), for all n � 3.

For a proof of the next result we need the following lemma.

Lemma 3.6. If n is divisible by two distinct primes, then ξ(n) + ϕ(n) > n.

Proof. Since ξ(n) = n′ξ(n0), ϕ(n) = n′ϕ(n0) and n = n′n0 we may assume that n is square-free. Let n =
p1 · · · ps , where s � 2 and p1, . . . , ps are distinct primes. If s = 2, then the equality is obvious. Assume
that s � 3, and that the equality is true for s − 1. Put p = ps , m = p1 · · · ps−1. Then m is square-free,
n = mp, gcd(m, p) = 1, ξ(m) + ϕ(m) > m by induction assumption and moreover, ϕ(m) < m. Hence,
ξ(n)+ϕ(n) = pξ(m)+ ξ(p)m +ϕ(p)ϕ(m) = pξ(m)+m + (p − 1)ϕ(m) > pξ(m)+ pϕ(m) > pm = n. �
Theorem 3.7. The ring of constants k[X]d is a polynomial ring over k if and only if n is a power of a prime
number.

Proof. Assume that n is divisible by two distinct primes, and suppose that k[X]d is a polynomial
ring of the form k[ f1, . . . , f s], where f1, . . . , f s ∈ k[X] are algebraically independent over k. Then, by
Proposition 3.1, we have s � ν(n). The polynomials f1, . . . , f s belong to the field k(X)d , and we know,
by Theorem 2.9, that the transcendental degree of this field over k is equal to n −ϕ(n). Hence, s � n −
ϕ(n). But ν(n) � ξ(n) (Proposition 3.5) and ξ(n) > n − ϕ(n) (Lemma 3.6), so we have a contradiction:
s � ν(n) � ξ(n) > n − f (n). This means, that if n is divisible by two distinct primes, then k[X]d is not
a polynomial ring over k. The “if” part follows from Proposition 3.4. �

It is well known (see for example [2]) that all coefficients of the cyclotomic polynomial Φn(t) are
nonnegative if and only if n is a power of a prime. Thus, we proved that k[X]d is a polynomial ring
over k if and only if all coefficients of Φn(t) are nonnegative.

In our next considerations we will apply the following theorem of Rédei, de Bruijn and Schoenberg.

Theorem 3.8. (See [28,4,30].) The standard minimal elements of Mn generate the group Gn.

Known proofs of the above theorem usually use techniques of group rings. Lam and Leung [12]
gave a new proof using induction and group-theoretic techniques.
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Now, let us assume that n = pq, where p �= q are primes. In this case, Lam and Leung [12] proved
that ν(n) = p + q. We will give a new elementary proof of this fact. Note that in this case np = q

and nq = p. Put Pi = E(q)

i for i = 0,1, . . . , p − 1, and Q j = E(p)

j for j = 0, . . . ,q − 1. We have p + q
elements P0, . . . , P p−1, Q 0, . . . , Q q−1, which are the standard minimal elements of Mpq .

Lemma 3.9. For every β ∈ Mpq there exist nonnegative integers a0, . . . ,ap−1 , b0, . . ., bq−1 such that β =
a0 P0 + · · · + ap−1 P p−1 + b0 Q 0 + · · · + bq−1 Q q−1 .

Proof. Let β ∈ Mpq . Then β ∈ Gpq and, by Theorem 3.8, we have an equality β = ∑
ai P i + ∑

b j Q j ,

for some integers a0, . . . ,ap−1,b0, . . . ,bq−1. Since
∑p−1

i=0 Pi = e = ∑q−1
j=0 Q j , we may assume that

bq−1 = 0. Let us recall that Pi = ∑q−1
j=0 e jp+i for i = 0, . . . , p − 1, and Q j = ∑p−1

i=0 eiq+ j for j =
0, . . . ,q − 1. Thus, we have

β =
p−1∑
i=0

q−1∑
j=0

(aie jp+i + b jeiq+ j).

By the Chinese Remainder Theorem, the map

{0, . . . , pq − 1} � l �→ (
λ(l),μ(l)

) ∈ {0, . . . , p − 1} × {0, . . . ,q − 1}

is a bijection, where λ(l) and μ(l) are remainders of l divided by p and q, respectively. Hence, we
have

β =
p−1∑
i=0

q−1∑
j=0

(aie jp+i + b jeiq+ j) =
pq−1∑
l=0

(aλ(l) + bμ(l))el.

Since β is an element of Mpq ⊂ Npq , it follows that

ai + b j � 0 for all i ∈ {0, . . . , p − 1}, j ∈ {0, . . . ,q − 1}. (∗)

Let s ∈ {0, . . . ,q − 1} be such that bs = min{b0, . . .bq−1}. Since
∑p−1

i=0 Pi = e = ∑q−1
j=0 Q j , we can ex-

press

β =
p−1∑
i=0

ai P i +
q−1∑
j=0

b j Q j =
p−1∑
i=0

(ai + bs)Pi +
q−1∑
j=0

(b j − bs)Q j,

in which ai + bs � 0 for each i by (∗), and b j − bs � 0 for each j by the minimality of bs . �
Theorem 3.10. (See [12].) Let n = piq j , where p �= q are primes and i, j are positive integers. Then ν(n) =
ξ(n) = pi−1q j−1(p +q). In other words, the monoid Mn has exactly pi−1q j−1(p +q) minimal elements, and
all its minimal elements are standard.

Proof. Let n = pq, and B = {P0, . . . , P p−1, Q 0, . . . , Q q−1}. Then B is contained in F . By Lemma 3.9,
we have B = F . Hence, we get ν(pq) = #F = #B = p + q = ξ(pq). This implies, by the equality
ξ(n) = n′ξ(n0) and Proposition 3.3, that ν(n) = ξ(n) for all n of the form piq j . �

As a consequence of Theorem 3.10 and Proposition 3.1 we obtain:
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Corollary 3.11. Let n = piq j , where p �= q are primes and i, j are positive integers. Then the minimal number
of generators of the ring of constants k[X]d is equal to ξ(n) = pi−1q j−1(p + q).

We already know that if n is divisible by at most two distinct primes, then every minimal element
of Mn is standard. It is well known (see for example [12,32,29]) that in all other cases there always
exist nonstandard minimal elements. For instance, Lam and Leung [12] proved that if n is divisible
by three primes p1 < p2 < p3, then the equality a1a2 + a3 = 0, where a j = ∑p1−1

i=1 εinpi for j = 1,2,3,
is of the form Hα(ε) = 0, where α is a nonstandard minimal element of Mn . There are also other
examples. Assume that n = p1 · · · ps , where p1, . . . , ps are distinct primes, and denote by U the set of
all numbers from {1,2, . . . ,n − 1} which are relatively prime to n. If s � 3 is odd, then

γ = e0 +
∑
u∈U

eu

is a nonstandard minimal element of Mn . This element γ belongs to Mn , because the sum of
all primitive n-th roots of unity is equal to μ(n), where μ is the Möbius function (see for exam-
ple [15,19]). The minimality of γ follows from the known fact (see for example [3]) that if n is
square-free, then all the primitive n-th roots of unity form a basis of Q(ε) over Q. Observe also that
|γ | = ϕ(n) + 1 �= pi for all i = 1, . . . , s, so γ is nonstandard.

If s � 4 is even, then put p = ps , n′ = p1 · · · ps−1, and let U ′ be the set of all numbers from
{1,2, . . . ,n′ − 1} which are relatively prime to n′ . Then εp is a primitive n′-th root of unity and, using
similar arguments, we see that

γ ′ = e0 +
∑
v∈U ′

evp

is a nonstandard minimal element of Mn . Now we use Lemma 3.2 and Proposition 3.3, and we obtain
the following result of Lam and Leung.

Theorem 3.12. (See [12].) If n � 3 is an integer, then ν(n) = ξ(n) if and only if n has at most two prime
divisors.

Now, as a consequence of the previous considerations, we obtain:

Corollary 3.13. The number of a minimal set of generators of k[X]d is equal to ξ(n) if and only if n has at most
two prime divisors.

Note that in our examples all nonzero coefficients of the minimal (standard or nonstandard)
elements of Mn were equal to 1. Recently, John P. Steinberger [32] gave the first explicit construc-
tions of nonstandard minimal elements of Mn (for some n) with coefficients greater than 1 (indeed
containing arbitrary large coefficients). He gave at the same time an answer to an old question of
H.W. Lenstra Jr. [14] concerning this subject.

4. Polynomial constants of �

Let us recall that � is the derivation of k[Y ] given by �(y j) = y j(y j+1 − y j) for j ∈ Zn , where
k[Y ] = k[y0, . . . , yn−1]. It is a homogeneous derivation, that is, all the polynomials �(y0), . . . ,�(yn−1)

are homogeneous of the same degree. Put v = y0 y1 · · · yn−1. Observe that v ∈ k[Y ]� . In this section
we will prove that k[Y ]� = k[v]. For this aim we first study Darboux polynomials of �.

We say that a nonzero polynomial F ∈ k[Y ] is a Darboux polynomial of �, if F is homogeneous and
there exists a polynomial Λ ∈ k[Y ] such that �(F ) = ΛF . Such a polynomial Λ is uniquely determined
and we say that Λ is the cofactor of F . Some basic properties of Darboux polynomials of arbitrary
homogeneous derivations one can find for example in [22,20] or [24]. Note that if F , G ∈ k[Y ] and
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F G is a Darboux polynomial of �, then F , G are also Darboux polynomials of � [22,24]. It is obvious
that in our case each cofactor Λ is of the form λ0 y0 + λ1 y1 + · · · + λn−1 yn−1, where the coefficients
λ0, . . . , λn−1 belong to k. We say that a Darboux polynomial is strict if it is not divisible by any of the
variables y0, . . . , yn−1. The following important proposition is a special case of Proposition 3 from our
paper [17]. For the sake of completeness we repeat its proof.

Proposition 4.1. Let F ∈ k[Y ] � k be a strict Darboux polynomial of � and let Λ = λ0 y0 + · · · + λn−1 yn−1
be its cofactor. Then all λi are integers and they belong to the interval [−r,0], where r = deg F . Moreover, at
least two of the λi ’s are nonzero.

Proof. As F is strict, for any i, the polynomial Fi = F |yi=0 (that we get by evaluating F in yi = 0) is
a nonzero homogeneous polynomial with the same degree r in n − 1 variables (all but yi ). Evaluating
the equality �(F ) = ΛF at yn−1 = 0 we obtain

n−3∑
i=0

yi(yi+1 − yi)
∂ Fn−1

∂ yi
− y2

n−2
∂ Fn−1

∂ yn−2
=

(
n−2∑
i=0

λi yi

)
Fn−1. (∗)

Let r0 be the degree of Fn−1 with respect to y0. Then obviously 0 � r0 � r. Consider now Fn−1 as
a polynomial in k[y1, . . . , yn−2][y0]. Balancing monomials of degree r0 + 1 in the equality (∗) gives
λ0 = −r0. The same results hold for all coefficients of the cofactor Λ.

We have already proved that all λi are integers and −r � λi � 0. Moreover, we have proved that
|λi | is the degree of Fi−1 with respect to yi (for any i ∈ Zn). Thus λi = 0 means that the variable
yi−1 appears in every monomial of F in which yi appears. Then, if all λi vanish, the product of all
variables divides the nonzero polynomial F , a contradiction with the fact that F is strict. In the same
way, if all λi but one vanish, the variable corresponding to the nonzero coefficient divides F , once
again a contradiction. �
Theorem 4.2. The ring of constants k[Y ]� is equal to k[v], where v = y0 y1 . . . , yn−1 .

Proof. The inclusion k[v] ⊆ k[Y ]� is obvious. We will prove the reverse inclusion. For every Darboux
polynomial F of �, we denote by Λ(F ) the cofactor of F . Then we have �(F ) = Λ(F ) · F , and Λ(F ) =
λ0 y0 + · · · + λn−1 yn−1, where the coefficients λ0, . . . , λn−1 are uniquely determined. In this case we
denote by Γ (F ) the sum λ0 + λ1 + · · · + λn−1. In particular, the variables y0, . . . , yn−1 are Darboux
polynomials of �, and Λ(y j) = y j+1 − y j , Γ (y j) = 0, for any j ∈ Zn . It follows from Proposition 4.1
that if a Darboux polynomial F is strict and F /∈ k, then Γ (F ) is an integer, and Γ (F ) � −2. Note also
that if F , G are Darboux polynomials of �, then F G is a Darboux polynomial of �, and then

Λ(F G) = Λ(F ) + Λ(G) and Γ (F G) = Γ (F ) + Γ (G).

Assume now that F is a nonzero polynomial belonging to k[Y ]� . We will show that F ∈ k[v]. Since
the derivation � is homogeneous we may assume that F is homogeneous. Thus F is a Darboux
polynomial of � and its cofactor is equal to 0. Let us write this polynomial in the form

F = yβ0
0 yβ1

1 · · · y
βn−1
n−1 · G,

where β0, . . . , βn−1 are nonnegative integers, and G is a nonzero polynomial from K [Y ] which is not
divisible by any of the variables y0, . . . , yn−1 i.e. a strict Darboux polynomial of �. Let us suppose
that G /∈ k. Then Γ (G) � −2 (by Proposition 4.1), and we have a contradiction:

0 = Γ (F ) =
n−1∑
j=0

β jΓ (y j) + Γ (G) =
n−1∑
j=0

β j · 0 + Γ (G) = Γ (G) � −2.
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Thus F is a monomial of the form byβ = byβ0
0 yβ1

1 · · · y
βn−1
n−1 , with some nonzero b ∈ k. But �(F ) = 0,

so β0(y1 − y0) + β1(y2 − y1) + · · · + βn−1(y0 − yn−1) = 0, and so β0 = β1 = · · · = βn−1 = c, for some
c ∈ N.

Now we have F = byβ = b(y0 · · · yn−1)
c = bvc , and hence F ∈ k[v]. �

5. The mappings @ and τ

In this section we show that the derivations d and � have certain additional properties, and we
present some specific relations between these derivations.

Let us fix the following two notations:

a =
(

x1

x0
,

x2

x1
, . . . ,

xn−1

xn−2
,

x0

xn−1

)
and v = y0 y1 · · · yn−1.

We already know, by Proposition 2.11 and Theorem 4.2, that k(X)E = k(a) and k[Y ]� = k[v].

Lemma 5.1. Let F ∈ k[Y ]. If F (a) = 0, then there exists a polynomial G ∈ k[Y ] such that F = (v − 1)G.

Proof. First note that if b = (b0, . . . ,bn−1) is an element of kn such that the product b0b1 · · ·bn−1
equals 1, then b is of the form b = ( c1

c0
, c2

c1
, . . . ,

cn−1
cn−2

,
c0

cn−1

)
, for some nonzero elements c0, . . . , cn−1

from k. In fact, put: c0 = 1, c1 = b0, c2 = b0b1, . . . , cn−1 = b0b1 · · ·bn−2.
Let P = v − 1, and let A be the ideal of k[Y ] = k[y0, . . . , yn−1] generated by P , where k is the

algebraic closure of k. Observe that, for any b ∈ kn , if P (b) = 0, then (by the assumption and the above
note) F (b) = 0. This means, by the Nullstellensatz, that some power of F belongs to the ideal A. But
A is a prime ideal, so F ∈ A and so, there exists a polynomial G ∈ k[Y ] such that F = (v − 1)G . Since
F , v − 1 belong to k[Y ], it is obvious that G also belongs to k[Y ]. �
Lemma 5.2. If F is a nonzero homogeneous polynomial in k[Y ], then F (a) �= 0.

Proof. Suppose that F (a) = 0. Then, by Lemma 5.1, F = (v − 1)G , for some G ∈ k[Y ]. As F is homo-
geneous, the polynomials v − 1 and G are also homogeneous; but it is a contradiction, because v − 1
is not homogeneous. �

Let us denote by S the multiplicative subset {F ∈ k[Y ]; F (a) �= 0} and consider the quotient ring

A = S−1k[Y ].
Every element of this ring is of the form F/G , where F , G ∈ k[Y ] and G(a) �= 0. It is a local ring
with the unique maximal ideal I = { F

G ∈ A; F (a) = 0
}

. It follows from Lemma 5.1 that I = (v − 1)A.
Observe that �(A) ⊆ A and �(I) ⊆ I , so � is a derivation of A and I is a differential ideal of A. By
Lemma 5.2, every homogeneous element of k(Y ) belongs to A.

If f ∈A, then f (a) is well-defined, and it is a homogeneous rational function of degree zero, that
is, f (a) ∈ k(X)E . Thus we have a k-algebra homomorphism from A to k(X)E . This homomorphism we
will denote by @. So we have:

@ : A → k(X)E , @( f ) = f (a) for f ∈ A.

In particular, @(v) = 1, and @(y j) = x j+1
x j

for j ∈ Zn . These equalities imply that @ is surjective. Note

also that ker @ = I , so the field k(X)E is isomorphic to the factor ring A/I . Moreover, as a consequence
of Lemma 5.2 we have:

Proposition 5.3. If f ∈ k(Y ) is homogeneous and @( f ) = 0, then f = 0.
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Note also the next important proposition.

Proposition 5.4. d ◦ @ = @ ◦ �, that is, d( f (a)) = (�( f ))(a) for f ∈A.

Proof. It is enough to prove that the above equality holds in the case when f = y j with j ∈ Zn . Let
f = y j , j ∈ Zn . Then:

d
(

f (a)
) = d

(
x j+1

x j

)
= d(x j+1)x j − d(x j)x j+1

x2
j

= x j+2x j − x2
j+1

x2
j

= x j+1

x j

(
x j+2

x j+1
− x j+1

x j

)

= (
y j(y j+1 − y j)

)
(a) = (

�(y j)
)
(a) = (

�( f )
)
(a).

This completes the proof. �
Corollary 5.5. Let f ∈A. If �( f ) = 0, then d(@( f )) = 0.

Proof. d(@( f )) = @(�( f )) = @(0) = 0 (by Proposition 5.4). �
Now we are ready to prove the following theorem.

Theorem 5.6. If n is a prime number, then k(Y )� = k(v), where v = y0 y1 · · · yn−1 .

Proof. Put P = v − 1. Note that �(P ) = 0. Let 0 �= f = F
G ∈ k(Y ), where F , G are nonzero, coprime

polynomials in k[Y ], and assume that �( f ) = 0. We will show, using an induction with respect to
deg F + deg G , that f ∈ k(v).

If deg F + deg G = 0, then f ∈ k, so f ∈ k(v). Assume that deg F + deg G = r > 0.
If P divides F , then F = F ′ P , for some F ′ ∈ k[Y ], and then �

( F ′
G

) = 1
P �

( F
G

) = 0 with deg F ′ +
deg G < r. Then, by induction, F ′

G ∈ k(v) and this implies that F
G ∈ k, because F

G = P F ′
G and P ∈ k(v).

We use the same argument in the case when P divides G .
Now we may assume that P � F and P � G . In this case, by Lemma 5.1, the quotient F

G belongs
to A, and @

( F
G

) �= 0. Moreover, we may assume that deg F � deg G (in the opposite case we consider
G/F instead of F/G).

Since �( f ) = 0, we have (by Corollary 5.5) @( f ) ∈ k(X)d ∩ k(X)E = k(X)d,E . But n is prime so, by
Corollary 2.14, k(X)d,E = k. Therefore, @

( F
G

) = c, for some nonzero c ∈ k. Thus we have

0 = @

(
F

G

)
− c = @

(
F

G
− c

)
= @

(
F − cG

G

)
= @(F − cG)

@(G)
,

and hence, @(F − cG) = 0. If F − cG = 0, then F
G = c ∈ k(v). Assume that F − cG �= 0. Then, by

Lemma 5.1, F − cG = H · P , for some nonzero H ∈ k[Y ]. As gcd(F , G) = 1, we have gcd(H, G) = 1.
Observe that �

( H
G

) = 0. In fact, �
( H

G

) = 1
P �

( P H
G

) = 1
P �

( F−cG
G

) = 1
P �

( F
G − c

) = 1
P �

( F
G

) = 0. Since
deg F � deg F and deg P > 0, we have deg F � deg(F − cG) = deg H P > deg H , and so (by induction)
the quotient H

G belongs to k(v). But

f = F

G
=

(
F

G
− c

)
+ c = F − cG

G
+ c = P

H

G
+ c,

so f ∈ k(v). We have proved that k(Y )� ⊆ k(v). The reverse inclusion is obvious. �
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Let us recall (see Theorem 4.2), that the ring of constants k[Y ]� is always equal to k[v]. Thus, if
n is prime, then k(Y )� is the field of quotients of k[Y ]� . In a general case a similar statement is not
true. For example, if n = 4, then the rational function

y1 y3
2y0 y2 − y2 y3 − y0 y1

y1 y2 + y0 y3 − 2y1 y3

belongs to k(Y )� and it is not in k(v). We will check it later in Example 7.2.
Let us recall (see Section 1) that τ is an automorphism of k(X) defined by

τ (x j) = ε j x j for all j ∈ Zn.

We say that a rational function f ∈ k(X) is τ -homogeneous, if f is homogeneous in the ordinary
sense and τ ( f ) = εs f for some s ∈ Zn . In this case we say that s is the τ -degree of f and we write
degτ ( f ) = s. Note that degτ ( f ) is an element of Zn .

Let α = (α0, . . . ,αn−1) ∈ Zn . As usual, we denote by xα the rational monomial xα0
0 · · · x

αn−1
n−1 , and

by |α| the sum α0 + · · · + αn−1. Moreover, we denote by σ(α) the element from Zn defined by

σ(α) = 0α0 + 1α1 + 2α2 + · · · + (n − 1)αn−1 (mod n).

Let us recall (see Section 1) that � : k(X) → k(X) is a field automorphism, defined by �(x j) = x j+1 for
all j ∈ Zn . It is very easy to check that:

Lemma 5.7. Every rational monomial xα , where α ∈ Zn, is τ -homogeneous and its τ -degree is equal to σ(α).
Moreover, if 0 �= f ∈ k(X) and f is τ -homogeneous, then �( f ) is also τ -homogeneous, and degτ �( f ) ≡
degτ f + deg f (mod n).

The derivation d has the following additional properties.

Lemma 5.8. τdτ−1 = εd.

Proof. It is enough to show that τd(x j) = εd(τ (x j)) for j ∈ Zn . Let us verify: τd(x j) = τ (x j+1) =
ε j+1x j+1 = ε · ε jd(x j) = εd(ε j x j) = εd(τ (x j)). �
Lemma 5.9. Let f ∈ k(X). If f is τ -homogeneous, then d( f ) is τ -homogeneous and degτ d( f ) = 1 + degτ f .

Proof. Assume that f is τ -homogeneous and s = degτ f . Since the derivation d is homogeneous and
f is homogeneous in the ordinary sense, d( f ) is also homogeneous in the ordinary sense. More-
over, by the previous proposition, we have: τ (d( f )) = εd(τ ( f )) = εd(εs f ) = εs+1d( f ), so d( f ) is
τ -homogeneous and degτ d( f ) = s + 1. �
Proposition 5.10. Let F ∈ k[X] be a Darboux polynomial of d. If F is τ -homogeneous, then d(F ) = 0.

Proof. Assume that d(F ) = bF with b ∈ k[X], F is homogeneous in the ordinary sense, and τ (F ) =
εs F for some s ∈ Zn . Then b ∈ k, and we have εd(F ) = ε−sεd(εs F ) = ε−sεd(τ (F )) = ε−sτ (d(F )) =
ε−sτ (bF ) = bε−sτ (F ) = bε−sεs F = bF = d(F ). Hence, (ε − 1)d(F ) = 0. But ε �= 1, so d(F ) = 0. �
Proposition 5.11. Let f = P

Q , where P , Q are nonzero coprime polynomials in k[X]. If f is τ -homogeneous,
then P , Q are also τ -homogeneous, and degτ f = degτ P − degτ Q . Moreover, if f is τ -homogeneous and
d( f ) = 0, then d(P ) = d(Q ) = 0.
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Proof. Assume that f is τ homogeneous and degτ f = s. Then f is homogeneous in the ordinary
sense and then, by Proposition 2.10, the polynomials P , Q are also homogeneous in the ordinary
sense. Since τ

( P
Q

) = εs P
Q , we have τ (P )Q = εs Pτ (Q ) and this implies that τ (P ) = aP , τ (Q ) = bQ ,

for some a,b ∈ k[X] (because P , Q are relatively prime). Comparing degrees, we deduce that a,b ∈
k � {0}. But τn is the identity map, so P = τn(P ) = an P and Q = τn(Q ) = bn Q and so, a, b are n-th
roots of unity. Since ε is a primitive n-root, we have a = εs1 , b = εs2 , for some s1, s2 ∈ Zn . Thus, the
polynomials P , Q are τ -homogeneous, and it is clear that s ≡ s1 − s2 (mod n).

Assume now that f is τ -homogeneous and d( f ) = 0. Then P , Q are τ -homogeneous Darboux
polynomials of d (with the same cofactor) and, by Proposition 5.10, we have d(P ) = d(Q ) = 0. �

Note also the following proposition.

Proposition 5.12. If f ∈k(Y ) is homogeneous, then @( f ) is τ -homogeneous, and degτ @( f ) ≡ deg f (mod n).

Proof. First assume that f = F is a nonzero homogeneous polynomial in k[Y ] of degree s and
consider all the monomial of F . Every nonzero monomial is of the form byα , where 0 �= b ∈ k,
and α ∈ Nn with |α| = s. For each such yα , we have @(yα) = xβ , where β = (β0, . . . , βn−1) =
(αn−1 − α0,α0 − α1,α1 − α2, . . . ,αn−2 − αn−1), and then

σ(β) =
n−1∑
j=0

jβ j = |α| − nαn−1 = s − nαn−1,

so σ(β) ≡ s (mod n). This means that τ (xβ) = εsxβ . Thus, for every nonzero monomial P which
appears in F , we have τ (@(P )) = εs@(P ). This implies that τ (@( f )) = εs@( f ). But @(F ) is also homo-
geneous in the ordinary sense (because @(F ) ∈ k(X)E ), so @(F ) is τ -homogeneous, and degτ @(F ) =
deg F (mod n).

Now let 0 �= f ∈ k(Y ) be an arbitrary homogeneous rational function. Let f = F
G with F , G ∈ k[Y ]�

{0} and gcd(F , G) = 1. Then F , G are homogeneous (by Proposition 2.10), and @( f ) = @(F )
@(G)

. Thus, by
the above proof for polynomials, @( f ) is τ -homogeneous, and degτ @( f ) ≡ deg f (mod n). �
Proposition 5.13. Let f , g ∈ k(Y ) be homogeneous rational functions. If @( f ) = @(g), then f = vc g, for
some c ∈ Z.

Proof. Assume that @( f ) = @(g). Then, by Proposition 5.12, deg f ≡ degτ @( f ) = degτ @(g) ≡
deg g (mod n), so there exists c ∈ Z such that deg f = nc + deg g . Then f and vc g are homogeneous
of the same degree, so f − vc g is homogeneous. Observe that @( f − vc g) = @( f ) − @(v)c@(g) =
@( f ) − @(g) = 0. Hence, by Proposition 5.3, we have f = vc g . �

Let us assume that g is a τ -homogeneous rational function belonging to the field k(X)d,E . We will
show that then there exists a homogeneous (in the ordinary sense) rational function f ∈ k(Y ) such
that �( f ) = 0 and @( f ) = g . This fact will play a key role in our description of the structure of the
field k(Y )� . For a proof of this fact we need to prove some lemmas and propositions.

Let us recall from Section 1, that the elements e0, . . . , en−1 ∈ Zn are defined by: e0 = (1,0,0, . . . ,0),
e1 = (0,1,0, . . . ,0), . . . , en−1 = (0,0, . . . ,0,1). In particular, we have

@(y j) = x j+1

x j
= xe j+1−e j , for j ∈ Zn.

Lemma 5.14. Let α ∈ Zn. Assume that |α| = 0 and σ(α) = 0 (mod n). Then there exists a sequence β =
(β0, . . . , βn−1) ∈ Zn such that |β| = 0 and α = ∑n−1

j=0 β j(e j+1 − e j).
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Proof. Since σ(α) ≡ 0 (mod n), there exists an integer r such that nα0 +σ(α) = −rn. Put: β0 = r and
β j = r − ∑ j

i=1 αi , for j = 1, . . . ,n − 1. �
Lemma 5.15. If α ∈ Zn with |α| = 0, then there exists β ∈ Zn such that @(yβ) = xα .

Proof. Put: β j = ∑n−2
i= j+1 αi for j = 0,1, . . . ,n − 3, and βn−2 = 0, βn−1 = −αn−1. �

Now we assume that P is a fixed nonzero τ -homogeneous polynomial in k[X]. Let us write this
polynomial in the form

P = c1xγ1 + · · · + cr xγr ,

where c1, . . . , cr are nonzero elements of k, and γ1, . . . , γr ∈ Nn . For every q ∈ {1, . . . , r}, we have
|γq| = deg F and σ(γq) ≡ degτ F (mod n), and hence, |γq − γ1| = 0 and σ(γq − γ1) ≡ 0 (mod n). This

implies, by Lemma 5.14, that for any q ∈ {1, . . . , r}, there exists a sequence β(q) = (β
(q)
0 , . . . , β

(q)
n−1) ∈ Zn

such that |β(q)| = 0 and

γq − γ1 =
n−1∑
j=0

β
(q)

j (e j+1 − e j).

For each j ∈ {0,1, . . . ,n − 1}, we define:

α j = min
{
β

(1)
j , β

(2)
j , . . . , β

(r)
j

}
,

and we denote by λ the sequence (λ0, . . . , λn−1) ∈ Zn defined by

λ = γ1 +
n−1∑
j=0

α j(e j+1 − e j).

Observe that |λ| = |γ1| = deg P , and γq = λ + ∑n−1
j=0(β

(q)

j − α j)(e j+1 − e j) for any q ∈ {1, . . . , r}, and

moreover, each β
(q)

j − α j is a nonnegative integer. Put aqj = β
(q)

j − α j , for j ∈ Zn , q ∈ {1, . . . , r}, and
aq = (aq0,aq1, . . . ,aq(n−1)) for all q = 1, . . . , r. Then each aq belongs to Nn , and we have the equalities

γq = λ +
n−1∑
j=0

aqj(e j+1 − e j), for any q ∈ {1, . . . , r}.

Let us remark that λ ∈ Nn . Indeed, for any j ∈ Zn , we have λ j = γ1 j + α j−1 − α j , where α j−1 = β
(q)

j−1

for some q and α j � β
(q)

j . Thus λ j = γ1 j + β
(q)

j−1 − α j � γ1 j + β
(q)

j−1 − β
(q)

j = γqj � 0. Moreover, |aq| =
|β(q) − α| = |β(q)| − |α| = −|α|, because |β(q)| = 0. This means that |α| � 0, and all the numbers
|a1|, . . . , |ar | are the same; they are equal to −|α|. Consider the polynomial in k[Y ] defined by

P = c1 ya1 + · · · + cr yar .

It is a nonzero homogeneous (in the ordinary sense) polynomial of degree −|α|. It is easy to check
that @(P ) = x−λ P . Thus, we proved the following proposition.



J. Moulin Ollagnier, A. Nowicki / Journal of Algebra 394 (2013) 92–119 111
Proposition 5.16. If P ∈ k[X] is a nonzero τ -homogeneous polynomial, then there exist a sequence λ ∈ Zn

and a homogeneous polynomial P ∈ k[Y ] such that @(P ) = x−λ P and |λ| = deg P .

Remark 5.17. In the above construction, the polynomial P is not divisible by any of the variables
y0, . . . , yn . Let us additionally assume that d(P ) = 0. Then it is not difficult to show that �(P ) =
−(λ0 y0 + · · · + λn−1 yn−1)P , that is, P is a strict Darboux polynomial of � and its cofactor is equal
to −∑

λi yi . This implies, by Proposition 4.1, that if additionally d(P ) = 0, among all nonnegative
numbers λ0, . . . , λn−1, at least two are different from zero.

Now we are ready to prove the following, mentioned above, proposition.

Proposition 5.18. Let g be a τ -homogeneous rational function belonging to the field k(X)d,E . Then there exists
a homogeneous rational function f ∈ k(Y ) such that �( f ) = 0 and @( f ) = g.

Proof. For g = 0 it is obvious. Assume that g �= 0, and let g = P
Q , where P , Q ∈ k[X] � {0} with

gcd(P , Q ) = 1. It follows from Propositions 2.10 and 5.11, that the polynomials P , Q are homogeneous
(in the ordinary sense) of the same degree, and they are also τ -homogeneous. By Proposition 5.16,
there exist sequences λ,μ ∈ Zn and a homogeneous polynomials P , Q ∈ k[Y ] such that @(P ) = x−λ P ,
@(Q ) = x−μ Q , and |λ| = |μ| = deg P = deg Q . Then we have

g = P

Q
= xλ(x−λ P )

xμ(x−μ Q )
= xλ@(P )

xμ@(Q )
= xλ−μ@(P/Q ).

Since |λ − μ| = 0, there exists (by Lemma 5.15) β ∈ Zn such that @(yβ) = xλ−μ . Put f = yβ · P/Q .
Then f ∈ k(Y ) is a homogeneous rational function, and @( f ) = g . Now we will show that �( f ) = 0.
To this aim let us recall that g belongs to the field k(X)d,E , so d(g) = 0. This implies that @(�( f )) = 0,
because (by Proposition 5.4) @(�( f )) = d(@( f )) = d(g) = 0. But the rational function �( f ) is homo-
geneous, so by Proposition 5.3, �( f ) = 0. �
6. Rational constants of �

We proved (see Proposition 2.13) that k(X)d,E = k(g1, . . . , gm−1), where m = n − ϕ(n), and
g1, . . . , gm−1 ∈ k(X) are some algebraically independent homogeneous rational functions of degree 0.
We proved in fact, that each g j (for j = 1, . . . ,m − 1) is equal to the quotient

w j
w0

. These quotients are
usually not τ -homogeneous. We will show in the next section that, in some cases, we are ready to
find such algebraically independent generators of k(X)d,E which are additionally τ -homogeneous. In
this section we prove that if we have τ -homogeneous generators of k(X)d,E , then we may construct
some algebraically independent generators of the field k(Y )� .

Let us assume that k(X)d,E = k(g1, . . . , gm−1), where g1, . . . , gm−1 ∈ k(X) are algebraically inde-
pendent τ -homogeneous rational functions. We know, by Proposition 5.18, that for each g j there
exists a homogeneous rational function f j ∈ k(Y ) such that �( f j) = 0 and @( f j) = g j . Thus we
have homogeneous rational functions f1, . . . , fm−1, belonging to the field k(Y )� . We know also that
v ∈ k(Y )� , where v = y0 y1 · · · yn−1. In this section we will prove the following theorem.

Theorem 6.1. Let g1, . . . , gm−1 and v, f1, . . . , fm−1 be as above. Then the elements v, f1, . . . , fm−1 are al-
gebraically independent over k, and k(Y )� = k(v, f1, . . . , fm−1).

We will prove it in several steps.

Step 1. The elements f1, . . . , fm−1 are algebraically independent over k.
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Proof. Suppose that W ( f1, . . . , fm−1) = 0 for some W ∈ k[t1, . . . , tm−1]. Then

0 = @
(
W ( f1, . . . , fm1)

) = W
(
@( f1), . . . ,@( fm−1)

) = W (g1, . . . , gm−1).

But g1, . . . , gm−1 are algebraically independent, so W = 0. �
In the next steps we write f instead of { f1, . . . , fm−1}, and g instead of {g1, . . . , gm−1}. In partic-

ular, k( f ) means k( f1, . . . , fm−1).

Step 2. v /∈ k( f ).

Proof. Suppose that v ∈ k( f ). Let v = P ( f )/Q ( f ) for some P , Q ∈ k[t1, . . . , tm−1]. Then Q ( f )v −
P ( f ) = 0 and we have 0 = @(Q ( f )v − P ( f )) = Q (g)@(v) − P (g). But @(v) = 1, so P (g) =
Q (g), and so P = Q , because g1, . . . , gm−1 are algebraically independent. Thus v = P ( f )/Q ( f ) =
P ( f )/P ( f ) = 1; a contradiction. �
Step 3. The elements v, f1, . . . , fm−1 are algebraically independent over k.

Proof. We already know (by Step 1) that f1, . . . , fm−1 are algebraically independent. Suppose that v
is algebraic over k( f ). Let F (t) = brtr + · · · + b1t + b0 ∈ k( f )[t] (with br �= 0) be the minimal polyno-
mial of v over k( f ). Multiplying by the common denominator, we may assume that the coefficients
b0, . . . ,br belong to the ring k[ f ]. There exist polynomials B0, B1, . . . , Br ∈ k[t1, . . . , tm−1] such that
b j = B j( f ) for all j = 0, . . . , r. Thus, Br( f )vr + · · · + B1( f )v + B0( f ) = 0. Using @, we obtain the
equality

Br(g)1r + · · · + B1(g)1 + B0(g) = 0,

which implies that Br + · · · + B1 + B0 = 0, because g1, . . . , gm−1 are algebraically independent over k.
This means, in particular, that F (1) = 0. But F (t) is an irreducible polynomial of degree r � 1, so
r = 1. Hence, B1( f )v + B0( f ) = 0, B1( f ) �= 0, and hence v = −B0( f )/B1( f ) ∈ k( f ); a contradiction
with Step 2. �

It is clear that k(v, f ) ⊆ k(Y )� . For a proof of Theorem 6.1 we must show that the reverse inclusion
also holds. Note that the derivation � is homogeneous, so it is well known that its field of constants
is generated by some homogeneous rational functions. Hence for a proof of this theorem it suffices to
prove that every homogeneous element of k(Y )� is an element of k(v, f ) = k(v, f1, . . . , fm−1).

Let us assume that H is a nonzero homogeneous rational function belonging to k(Y )� , and put
h = @(H).

Step 4. h ∈ k(g) and h is τ -homogeneous.

Proof. Since h = @(H), we have h ∈ k(X)E . Moreover, d(h) = d(@(H)) = @(�(H)) = @(0) = 0, so h ∈
k(X)d ∩ k(X)E = k(X)d,E = k(g). The τ -homogeneity of h follows from Proposition 5.12. �

Now we introduce some new notations. The τ -degrees of g1, . . . , gm−1 we denote by s1, . . . , sm−1,
respectively, and by s we denote the τ -degree of h. Thus we have τ (g j) = εs j g j for j = 1, . . . ,m − 1,
and τ (h) = εsh. We already know that h ∈ k(g), so we have

h = A(g)

B(g)

for some relatively prime nonzero polynomials A, B ∈ k[t1, . . . , tm−1].
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Step 5. The elements A(g), B(g) are τ -homogeneous.

Proof. Since τ (h) = εsh, we have τ (A(g)) · B(g) = εs A(g) · τ (B(g)), that is,

A
(
εs1 g1, . . . , ε

sm−1 gm−1
) · B(g1, . . . , gm−1) = εs A(g1, . . . , gm−1) · B

(
εs1 g1, . . . , ε

sm−1 gm−1
)
.

But the elements g1, . . . , gm−1 are algebraically independent over k, so in the polynomial ring
k[t1, . . . , tm−1] we have the equality

A
(
εs1t1, . . . , ε

sm−1tm−1
) · B = εs A · B

(
εs1t1, . . . , ε

sm−1tm−1
)
,

which implies that A(εs1 t1, . . . , ε
sm−1 tm−1) = p A and B(εs1 t1, . . . , ε

sm−1 tm−1) = qB , for some p,q ∈
k[t1, . . . , tm−1] (because we assumed that gcd(A, B) = 1). Comparing degrees we deduce that p,q ∈ k.
Therefore, τ (A(g)) = A(τ (g1, . . . , τ (gm−1))) = A(εs1 g1, . . . , ε

sm−1 gm−1) = p A(g1, . . . , gm−1) = p A(g),
so, τ (A(g)) = p A(g), and similarly τ (B(g)) = qB(g). But τn is the identity map, so pn = qn = 1 and
so, p,q are n-th roots of unity. Put p = εa and q = εb , where a,b ∈ Zn . Then we have τ (A(g)) =
εa A(g) and τ (B(g)) = εb B(g). Moreover, A(g), B(g) are homogeneous in the ordinary sense, because
they belong to k(X)E , so they are homogeneous rational functions of degree zero. This means that
A(g), B(g) are τ -homogeneous. �

Let us fix: a = degτ A(g) and b = degτ B(g).
If α = (α1, . . . ,αm−1) ∈ Nm−1 then, as usual, we denote by tα and gα the elements tα1

1 · · · t
αm−1
m−1

and gα1
1 · · · g

αm−1
m−1 , respectively, and moreover, we denote:

w(α) = α1s1 + · · · + αm−1sm−1,

u(α) = α1 deg f1 + · · · + αm−1 deg fm−1.

Recall that s j = degτ (g j) and @( f j) = g j , for all j = 1, . . . ,m − 1. It follows from Proposition 5.12 that
for each j we have the congruence s j ≡ deg f j (mod n). Therefore,

u(α) ≡ w(α) (mod n) for all α ∈Nn−1.

Let us write the polynomials A, B in the forms

A =
∑
α∈S A

Aαtα, B =
∑
β∈S B

Bβtβ,

where Aα , Bβ are nonzero elements of k, and S A , S B are finite subsets of Nm−1.

Step 6. w(α) ≡ a (mod n) for all α ∈ S A , and w(β) ≡ b (mod n) for all β ∈ S B .

Proof. Since τ (A(g)) = εa A(g), we have

εa
∑

Aα gα = εa A(g) = τ
(

A(g)
) =

∑
Aατ

(
tα

)
=

∑
Aα

(
εs1 g1

)α1 · · · (εsm−1 gm−1
)αm−1

=
∑

Aαεw(α)gα.
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Hence,
∑

Aα(εa − εw(α))gα = 0. But g1, . . . , gm−1 are algebraically independent and each Aα is
nonzero, so εw(α) = εa and consequently w(α) ≡ a (mod n), for all α ∈ S A . We do the same for
the elements w(β). �

Since u(α) ≡ w(α) (mod n) for all α ∈ Nm−1, it follows from the above step that, for each α ∈ S A ,
there exists p(α) ∈ Z such that u(α) = a + p(α)n. Put

p = max
({0} ∪ {

p(α); α ∈ S A
})

,

and put a(α) = p − p(α) for α ∈ S A . Then all a(α) are nonnegative integers and all the numbers
u(α) + a(α)n, for each α ∈ S A , are the same; they are equal to a + pn.

A similar procedure we do with elements of S B . For each β ∈ S B there exists an integer b(β)

such that u(β) + b(β)n = b + qn, for all β ∈ S B , where q is a nonnegative integer. Consider now the
following quotient

Θ =
∑

α∈S A
Aα f α va(α)∑

β∈S B
Bβ f β vb(β)

.

This quotient belongs of course to k(v, f1, . . . , fn−1). In its numerator each component Aα f α va(α) ,
for all α ∈ S A , is a homogeneous rational function of the same degree a + pn, so the numerator
is homogeneous. By the same way we see that the denominator is also homogeneous. Hence, Θ is
a homogeneous rational function. Observe that @(Θ) = h. We have also @(H) = h. Thus, H and Θ

are two homogeneous rational functions such that @(H) = @(Θ). By Proposition 5.13, there exists
an integer c such that H = vc · Θ . Therefore, H ∈ k(v, f1, . . . , fn−1). This completes our proof of
Theorem 6.1. �
7. Two special cases

In this section we present a description of the field k(Y )� in the case when n is a power of a
prime number, and in the case when n is a product of two primes.

Let n = ps , where p is prime and s � 1. We already know, by Theorem 5.6, that if s = 1, then
k(Y )� = k(v). Now we assume that s � 2.

Theorem 7.1. Assume that n = ps for some prime number p and an integer s � 2. Then, there exist homoge-
neous elements f1, . . . , fm−1 of k(Y )� such that v, f1, . . . , fm−1 are algebraically independent over k and

k(Y )� = k(v, f1, . . . , fm−1),

where m = ps−1 and v = y0 · · · yn−1 .

Proof. In this case m = n − ϕ(n) = ps − ϕ(ps) = ps−1 and hence, n = pm. Since Φps (t) = 1 + tm +
t2m + · · · + t(p−1)m , we have: w0 = u0umu2m · · · u(p−1)m , and w j = u0m+ ju1m+ ju2m+ j · · · u(p−1)m+ j , for
all j = 0,1, . . . ,m − 1. Recall (see Lemma 1.1) that τ (u j) = u j+1 for j ∈ Zn , so each w j is equal to
τ j(w0).

Observe that τm(w0) = w0. This implies that the τ -degree of every nonzero monomial (with re-
spect to variables x0, . . . , xn−1) of w0 is divisible by p. This means that in the τ -decomposition of w0
there are only components with τ -degrees 0, p,2p, . . . , (m−1)p. Let w0 = v0 + v1 +· · ·+ vm−1, where
each v j ∈ k[X] is τ -homogeneous and τ (v j) = εpj v j . Of course d(v j) = 0 for all j (because τd = εdτ ),
and deg(v j) = p for all j (by Proposition 2.7). Now observe that if p � 3 then �(w0) = w0, and if
p = 2 then �(w0) = −w0. Hence �(w0) = uw0 for some u = ±1 in any case and we have

v0 + v1 + · · · + vm−1 = w0 = u�(w0) = u
(
�(v0) + �(v1) + · · · + �(vm−1)

)
.
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Since the τ -decomposition of w0 is unique, we deduce (by Lemma 5.7), that

v1 = u�(v0), v2 = u�(v1), . . . , vm−1 = u�(vm−2), v0 = u�(vm−1),

and we have v j = u j� j(v0) for all j = 0,1, . . . ,m − 1. Therefore, the τ -decomposition of w0 is of the
form w0 = v0 + u1�(v0) + u2�2(v0) + · · · + um−1�m−1(v0). This implies that

w1 = τ (w0) = v0 + u1εp�(v0) + u2ε2p�2(v0) + · · · + um−1ε(m−1)p�m−1(v0).

We do the same for w2 = τ (w1) = τ 2(w0), and for all w j . Thus, for all j = 0,1, . . . ,m − 1, we
have w j = v0 + c j1�(v0) + c j2�

2(v0) + · · · + c j,m−1�
m−1(v0), where each c ji = uiεpi j belongs to the

ring Z[ε]. Consider now the rational functions g1, . . . , gm−1 ∈ k(X) defined for j = 1, . . . ,m − 1 by

g j = � j(v0)

v0
.

These functions are τ -homogeneous. They are homogeneous of degree zero, and they are constants
of d. Moreover, if j ∈ {1, . . . ,m − 1}, then we have:

w j

w0
= v0 + ∑m−1

i=1 c ji�
i(v0)

v0 + ∑m−1
i=1 c0i�i(v0)

= 1 + v−1
0

∑m−1
i=1 c ji�

i(v0)

1 + v−1
0

∑m−1
i=1 c0i�i(v0)

= 1 + ∑m−1
i=1 c ji gi

1 + ∑m−1
i=1 c0i gi

.

All quotients w1/w0, . . . , wm−1/w0 then belong to the field k(g1, . . . , gm−1), and hence, by Propo-
sition 2.13, the elements g1, . . . , gm−1 are algebraically independent over k and we have the equal-
ity k(X)E,d = k(g1, . . . , gm−1). Note that g1, . . . , gm−1 are τ -homogeneous. It follows from Proposi-
tion 5.18, that for each g j there exists a homogeneous rational function f j ∈ k(Y ) such that �( f j) = 0
and @( f j) = g j . We know, by Theorem 6.1, that the elements v, f1, . . . , fm−1, are algebraically inde-
pendent over k, and k(Y )� = k(v, f1, . . . , fm−1). This completes our proof of Theorem 7.1. �

If n = 4, then (in the notations of the above proof) v0 = x2
0 + x2

2 − 2x1x3 and

g1 = �(v0)

v0
= x2

1 + x2
3 − 2x0x2

x2
0 + x2

2 − 2x1x3
= @( f1),

where f1 = y1 y3
2y0 y2−y2 y3−y0 y1
y1 y2+y0 y3−2y1 y3

.
Hence, we have:

Example 7.2. If n = 4, then k(Y )� = k(v, f ), where

f = y1 y3
2y0 y2 − y2 y3 − y0 y1

y1 y2 + y0 y3 − 2y1 y3
and v = y0 y1 y2 y3.

Consider the case n = 6.

Example 7.3. If n = 6, then k(Y )� = k(v, f1, f2, f3), where v = y0 · · · y5, and f1, f2, f3 are some ho-
mogeneous rational functions in k(Y ) such that v, f1, f2, f3 are algebraically independent over k.

Proof. We have: ϕ(n) = ϕ(6) = 2, m = n − ϕ(n) = 4, Φ6(t) = t2 − t + 1, and w0 = u0u2
u1

, w1 =
u1u3

u2
= τ (w0), w2 = u2u4

u3
= τ 2(w0), w3 = u3u5

u4
= τ 3(w0). Let us denote: F0 = u0u2u4 =

w0 w1 w2, F1 = u1u3u5 = w1 w2 w3 = τ (F0), G0 = u0u3 = w0 w1, G1 = u1u4 = w1 w2 = τ (G0),
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G2 = u2u5 = w2 w3 = τ 2(G0). By Theorem 2.9, the polynomials F0, F1, G0, G1, G2 are constants of d.
Note that w0 = F0

G1
, w1 = F1

G2
, w2 = F0

G0
, w3 = F1

G1
, so we have: w1

w0
= F1G1

F0G2
, w2

w0
= F0G1

F0G0
= G1

G0
,

w3
w0

= F1G1
F0G1

= F1
F0

.

Observe that τ 2(F0) = F0. This implies that the τ -degree of every nonzero monomial (with respect
to variables x0, . . . , xn−1) of F0 is divisible by 3. This means that in the τ -decomposition of F0 there
are only components with τ -degrees 0 and 3. Let F0 = v0 + v3, where v0 ∈ k[X] is τ -homogeneous
with degτ (v0) = 0 (that is, τ (v0) = v0), and v3 ∈ k[X] is τ -homogeneous with degτ (v3) = 3 (that is,
τ (v3) = ε3 v3 = −v3). Of course d(v0) = d(v3) = 0 (by Lemma 5.8). Observe that �(F0) = �(u0u2u4) =
ε−(0+2+4)u0u2u4 = u0u2u4 = F0. Hence,

v0 + v3 = F0 = �(F0) = �(v0) + �(v3).

Since the τ -decomposition of F0 is unique, we deduce (by Lemma 5.7), that v3 = �(v0) and v0 =
�(v3), and so, the τ -decomposition of F0 is of the form F0 = v0 + �(v0). Moreover, F1 = τ (F0) =
τ (v0 + v3) = τ (v0) + τ (v3) = v0 − �(v0).

We do a similar procedure with the polynomial G0. We first observe that τ 3(G0) = G0, and
�(G0) = −G0, and then we obtain the following three τ -decompositions: G0 = r0 − �(r0) + �2(r0),
G1 = r0 − ε2�(r0) + ε4�2(r0), G2 = r0 − ε4�(r0) + ε2�2(r0), where r0 is homogeneous polyno-
mial of degree 2 which is τ -homogeneous of τ -degree zero. Consider now the rational functions
g1, g2, g3 ∈ k(X) defined by

g1 = �(v0)

v0
, g2 = �(r0)

r0
, g3 = �2(r0)

r0
.

These functions are τ -homogeneous. They are homogeneous of degree zero (in the ordinary
sense) and they are constants of d. Moreover, the quotients w1/w0, w2/w0 and w3/w0 belong to
k(g1, g2, g3). In fact:

w1

w0
= F1G1

F0G2
= (v0 − �(v0))(r0 − ε2�(r0) + ε4�2(r0))

(v0 + �(v0))(r0 − ε4�(r0) + ε2�2(r0))

= v−1
0 r−1

0 (v0 − �(v0))(r0 − ε2�(r0) + ε4�2(r0))

v−1
0 r−1

0 (v0 + �(v0))(r0 − ε4�(r0) + ε2�2(r0))

= (1 − g1)(1 − ε2 g2 + ε4 g3)

(1 + g1)(1 − ε4 g2 + ε2 g3)
,

and so, w1/w0 ∈ k(g1, g2, g3). By a similar way we show that w2/w0 and w3/w0 also belong to
k(g1, g2, g3). Hence, by Proposition 2.13, the elements g1, g2, g3 are algebraically independent over k
and k(X)E,d = k(g1, g2, g3). It follows from Proposition 5.18, that for each g j there exists a homoge-
neous rational function f j ∈ k(Y ) such that �( f j) = 0 and @( f j) = g j . We know, by Theorem 6.1, that
the elements v, f1, f2, f3, are algebraically independent over k, and k(Y )� = k(v, f1, f2, f3). �

Now we assume that p > q are primes, and n = pq. In the above proof we used the explicit form
of the cyclotomic polynomial Φ6(t). Let Φpq = ∑

c jt j . In 1883, Migotti [18] showed that all c j belong
to {−1,0,1}. In 1964 Beiter [1] gave a criterion on j for c j to be 0, 1 or −1.

In 1996, Lam and Leung [11] gave a similar but more elementary result. Their criterion is based
on the elementary fact that there is a unique way to write ϕ(pq) = (p − 1)(q − 1) = rp + sq with
nonnegative integers r and s. Indeed, from the Bézout relation up − vq = 1 with 1 � u � q − 1 and
1 � v � p − 1, r and s have to be r = u − 1 and s = p − 1 − v; then 0 � r � q − 2, 0 � s � p − 2. Using
the numbers r, s, Lam and Leung proved:
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Lemma 7.4. (See [11].) Let Φpq(t) = ∑ϕ(pq)

l=0 cltl . Then

cl = 1 ⇐⇒ l = ip + jq, i ∈ {0,1, . . . , r}, j ∈ {0,1, . . . , s};
cl = −1 ⇐⇒ l = ip + jq + 1, i ∈ {0,1, . . . , (q − 2) − r}, j ∈ {0,1, . . . , (p − 2) − s}.

Now we may prove the following theorem.

Theorem 7.5. If n = pq for some prime numbers p > q, then there exist homogeneous elements f1, . . . , fm−1
of k(Y )� such that v, f1, . . . , fm−1 are algebraically independent over k and

k(Y )� = k(v, f1, . . . , fm−1),

where m = p + q − 1 and v = y0 · · · yn−1 .

Proof. We use the same idea as in the proofs of Theorem 7.1 and Example 7.3. We have: ϕ(n) =
(p − 1)(q − 1) and m = n − ϕ(n) = p + q − 1. For each i ∈ Z, let us denote:

Fi =
p−1∏
j=0

u jq+i, Gi =
q−1∏
j=0

u jp+i .

In particular, F0 = u0uqu2q · · · u(p−1)q G0 = u0upu2p · · · u(q−1)p . Observe that if i = bq + c, where
b, c ∈ Z and 0 � c < q, then Fi = Fc . Similarly, if i = bp + c, where b, c ∈ Z and 0 � c < p, then
Gi = Gc . Let A be the set of all indexes l ∈ {0,1, . . . , ϕ(pq)} with cl = 1, and let B be the set of all
indexes l ∈ {0,1, . . . , ϕ(pq)} with cl = −1. We have B �= ∅ because n is not a power of prime (see the
fact mentioned after Theorem 3.7). It is clear that A ∩ B = ∅, A �= ∅, and w0 = N

D where N = ∏
l∈A ul ,

D = ∏
l∈B ul . It follows from Lemma 7.4, that

N =
r∏

i=0

s∏
j=0

uip+ jq, D =
(q−2)−r∏

i=0

(p−2)−s∏
j=0

uip+ jq+1.

It is easy to check that
∏r

i=0 Fip = N · S and
∏p−2−s

j=0 G jq+1 = D · T , where

S =
r∏

i=0

p−1∏
j=s+1

uip+ jq and T =
p−2−s∏

j=0

q−1∏
i=q−2−r+1

uip+ jq+1.

Now we will show that S = T . First observe that S and T have the same number of factors, which is
equal to (r + 1)(p − s − 1). Next observe that

S =
r∏

i=0

p−s−2∏
j=0

uip+(s+1+ j)q and T =
p−2−s∏

j=0

r∏
i=0

u(q−r−1+i)p+ jq+1.

Thus, it is enough to show that, for i ∈ {0, . . . , r} and j ∈ {0,1, . . . , p−s−2}, we have (s+1+ j)q+ ip ≡
(q − r − 1 + i)p + jq + 1 (mod pq). But it is obvious, because (p − 1)(q − 1) = rp + sq. Therefore, S = T
and we have

w0 =
∏r

i=0 Fip∏p−2−s G jq+1

. (∗)

j=0
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Now we do exactly the same as in the proof of Example 7.3. We have the homogeneous poly-
nomials F0, . . . , Fq−1 and G0, . . . , G p−1, which are constants of d, and Fi = τ i(F0), Gi = τ i(G0),
deg Fi = p, deg Gi = q, for each i. Observe that τ q(F0) = F0. This implies that the τ -degree of ev-
ery nonzero monomial (with respect to variables x0, . . . , xn−1) of F0 is divisible by p. This means
that in the τ -decomposition of F0 there are only components with τ -degrees 0, p,2p, . . . , (q − 1)p.
Let F0 = ∑q−1

i=0 vi , where each vi is a τ -homogeneous polynomial from k[X], and τ (vi) = εpi vi . Of
course d(vi) = 0 for all i (because τd = εdτ by Lemma 5.8), and deg(vi) = p. But �(u j) = ε− ju j (see
Lemma 1.1), so �(F0) = ±F0. Since p > q � 2, we have p � 3, and so �(F0) = F0. Now we have

v0 + v1 + · · · + vq−1 = F0 = �(F0) = �(v0) + �(v1) + · · · + �(vq−1).

Since the τ -decomposition of F0 is unique, we deduce (by Lemma 5.7), that

v1 = �(v0), v2 = �(v1), . . . , vq−1 = �(vq−2), v0 = �(vq−1),

and we have v j = � j(v0) for all j = 0,1, . . . ,q − 1. Therefore, the τ -decomposition of F0 is of the

form F0 = v0 + ∑q−1
i=1 �i(v0). This implies that F1 = τ (F0) = v0 + ∑

εip�(v0). We do the same for
F2 = τ (F1) = τ 2(F0), and for all F j . Thus, for all j = 0,1, . . . ,q − 1, we have

F j = v0 +
q−1∑
i=1

c ji�
i(v0),

where each c ji belongs to the ring Z[ε]. We do a similar procedure with the polynomial G0. First
observe that τ p(G0) = G0 and �(G0) = ±G0, to obtain τ -decompositions of the forms

G j = r0 +
p−1∑
i=1

b ji�
i(r0),

where each b ji belongs to Z[ε] and r0 is a homogeneous polynomial of degree q which is
τ -homogeneous of τ -degree zero and then consider the elements g1, . . . , gm−1 ∈ k(X) defined by

gi = �i(v0)

v0
, gq−1+ j = � j(r0)

r0
,

for i = 1, . . . ,q − 1, and j = 1, . . . , p − 1. These elements are τ -homogeneous. They are homogeneous
of degree zero (in the ordinary sense) and they are constants of d. We know, by the above construc-
tion, that the elements 1

v0
τ i(F j) and 1

r0
τ i(G j) belong to the field k(g1, . . . , gm−1). But, by (∗), for

each a = 0, . . . ,m − 1, we have

wa
r p−1−s

0

vr+1
0

= τ a(w0)
r p−1−s

0

vr+1
0

=
∏r

i=0
τ a(Fip)

v0∏p−2−s
j=0

τ a(G jq+1)

r0

,

and hence, each element war p−1−s
0 v−(r+1)

0 belongs to k(g1, . . . , gm−1). This implies, that for every
j − 1, . . . ,m − 1, the quotient

w j

w0
= r p−1−s

0 v−(r+1)
0 w j

r p−1−s v−(r+1)w
0 0 0
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belongs to k(g1, . . . , gm−1). Hence, by Proposition 2.13, the elements g1, . . . , gm are algebraically in-
dependent over k and k(X)E,d = k(g1, . . . , gm−1). It follows from Proposition 5.18, that for each g j
there exists a homogeneous rational function f j ∈ k(Y ) such that �( f j) = 0 and @( f j) = g j . We
know, by Theorem 6.1, that the elements v, f1, . . . , fm−1, are algebraically independent over k, and
k(Y )� = k(v, f1, . . . , fm−1). This completes our proof of Theorem 7.5. �

We already know a structure of the field k(Y )� but only in the following two cases, when n is a
power of a prime number (Theorem 7.1), and when n is the product of two prime numbers (Theo-
rem 7.5). We do not know what happens in all other cases. Is this field always a purely transcendental
extension of k? What is in the cases n = 12 or n = 30 or n = 105?
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