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Abstract

We present some general properties of monomial derivations of the
polynomial ring k[x1, . . . , xn], where k is a field of characteristic zero.
The main result of this paper is a characterization of some large class
of monomial derivations without Darboux polynomials. In particular,
we present a full description of all monomial derivations of k[x, y, z]
which have no Darboux polynomials.
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Introduction

Let k be a field of characteristic zero, k[X] = k[x1, . . . , xn] be the poly-
nomial ring in n variables over k, and k(X) = k(x1, . . . , xn) be the field of
quotients of k[X].

Let us assume that d is a derivation of k[X], We denote also by d the
unique extension of d to k(X), and we denote by k(X)d the field of rational
constants of d, that is,

k(X)d = {ϕ ∈ k(X); d(ϕ) = 0}.
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We say that this field is trivial if k(X)d = k. A polynomial F ∈ k[X] is
said to be a Darboux polynomial of d if F 6∈ k and d(F ) = ΛF for some
Λ ∈ k[X]. We say that d is without Darboux polynomials if d has no Darboux
polynomials.

It is obvious that if d is without Darboux polynomials, then the field
k(X)d is trivial. The opposite implication is, in general, not true. The
derivation δ = x∂x + (x + y)∂y of k[x, y] has trivial field of constants (see
[15], [14]), and x is a Darboux polynomial of δ. In this paper we prove that
such opposite implications is true for a large class of monomial derivations
of k[X]. More precisely, we say that a derivation d of k[X] is monomial if

d(xi) = xβi11 · · ·xβinn

for i = 1, . . . , n, where each βij is a nonnegative integer. In this case we say
that d is normal monomial if β11 = β22 = · · · = βnn = 0 and ωd 6= 0, where
ωd is the determinant of the matrix [βij]− I, that is,

ωd =

∣∣∣∣∣∣∣∣∣
β11 − 1 β12 . . . β1n
β21 β22 − 1 . . . β2n
... · · · ...
βn1 βn2 . . . βnn − 1

∣∣∣∣∣∣∣∣∣ .
The main result of the paper is Theorem 4.2, which states that if d is a
normal monomial derivation of k[X], then d is without Darboux polynomials
if and only if k(X)d = k.

The fact that for some derivation d, the triviality of k(X)d implies that d is
without Darboux polynomials, plays an important role in several papers con-
cerning polynomial derivations. Let us mention some papers on Jouanolou
derivations. By the Jouanolou derivation with integer parameters n ≥ 2 and
s ≥ 1 we mean a normal monomial derivation d : k[X]→ k[X] such that

d(x1) = xs2, d(x2) = xs3, . . . , d(xn−1) = xsn, d(xn) = xs1.

We denote such a derivation by J(n, s). If n = 2 or s = 1, then J(n, s) has a
nontrivial rational constant (see, for example, [13] or [8]). In 1979 Jouanolou,
in [3], proved that the derivation J(3, s), for every s ≥ 2, has no nontrivial
Darboux polynomial. Today we know several different proofs of this fact
([7], [1], [18], [13]). There exists a proof ([8]) that the same is true for s ≥ 2
and for every prime number n ≥ 3. There are also separate such proofs for
n = 4 and s ≥ 2 ([19], [9], [10]). In 2003 Żo la̧dek ([19]) proved the same for
all n ≥ 3 and s ≥ 2. Some of these proofs were reduced only to proofs that
Jouanolou derivations have trivial fields of constants.
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In [16] there is a full description of all monomial derivations of k[x, y, z]
with trivial field of constants. Using this description and several additional
facts, we presented, in [12], full lists of homogeneous monomial derivations
of degrees s 6 4 (of k[x, y, z]) without Darboux polynomials. Now, thanks to
the main result of this paper, we are ready to present such lists for arbitrary
degree s > 2. All monomial derivations d with trivial field of constants,
which are described in [16], are without Darboux polynomials if and only if
xi - d(xi) for all i = 1, . . . , n.

1 Notations and preliminary facts

Throughout this paper k is a field of characteristic zero. If µ = (µ1, . . . , µn)
is a sequence of integers, then we denote by Xµ the rational monomial
xµ11 · · ·xµnn belonging to k(X). In particular, if µ ∈ Nn (where N denote
the set of nonnegative integers), then Xµ is an ordinary monomial of k[X].
Note the following well-known lemma.

Lemma 1.1 ([2], [16]). Let a1 = (a11, . . . , a1n), . . . , an = (an1, . . . , ann) be
elements of Zn, and let A denote the n × n matrix [aij]. If detA 6= 0, then
the rational monomials Xα1 , . . . , Xαn are algebraically independent over k.

Assume now that β1, . . . , βn ∈ Nn and consider a monomial derivation
d : k[X]→ k[X] of the form

d(x1) = Xβ1 , . . . , d(xn) = Xβn .

Put β1 = (β11, . . . , β1n), . . . , βn = (βn1, . . . , βnn), where each βij is a nonneg-
ative integer, and let A = [aij] denote the matrix [βij] − I, where I is the
n× n identity matrix. Let us recall (see Introduction) that we denote by ωd
the determinant of the matrix A. Put

y1 =
d(x1)

x1
, . . . , yn =

d(xn)

xn
.

Then y1 = Xa1 , . . . , yn = Xan , where each ai, for i = 1, . . . , n, is equal to
(ai1, . . . , ain). It is easy to check that

d(yi) = yi(ai1y1 + · · ·+ ainyn),

for all i = 1, . . . , n. This implies, in particular, that d(R) ⊆ R, where R is the
smallest k-subalgebra of k(X) containing y1, . . . , yn. Observe that if ωd 6= 0,
then (by Lemma 1.1) the elements y1, . . . , yn are algebraically independent
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over k. Thus, if ωd 6= 0, then R = k[Y ] = k[y1, . . . , yn] is a polynomial ring
over k in n variables, and we have a new derivation δ : k[Y ] → k[Y ] such
that

δ(y1) = y1(a11y1 + · · ·+ a1nyn), · · · , δ(yn) = yn(an1y1 + · · ·+ annyn).

The derivation δ is the restriction of d to k[Y ]. We call δ the factorisable
derivation associated with d. The concept of factorisable derivation associated
with a derivation was introduced by Lagutinskii in [5] and this concept was
intensively studied in [8], [16] and [17]

We will say (as in [11], [9] and [16]) that a Darboux polynomial F ∈
k[Y ] r k of δ is strict if F is not divisible by any of the variables y1, . . . , yn.
Let us recall, from [16], the following proposition.

Proposition 1.2 ([16]). Let d : k(X) → k(X) be a monomial derivation
such that ωd 6= 0, and let δ : k[Y ] → k[Y ] be the factorisable derivation
associated with d. Then the following conditions are equivalent.

(1) k(X)d 6= k.

(2) k(Y )δ 6= k.

(3) The derivation δ has a strict Darboux polynomial.

2 The field extension k(Y) ⊂ k(X)

In this section we present some preparatory properties of the field exten-
sion k(Y ) ⊂ k(X). We use mostly the same notations as in Section 1.

Let us assume that a1 = (a11, . . . , a1n), . . . , an = (an1, . . . , ann) are ele-
ments belonging to Zn, and let A denote the n× n matrix [aij]. Put

N = | detA|,

and assume that N > 1. Let X = {x1, . . . , xn} be a set of variables over
k, and let Y = {y1, . . . , yn}, where each yi is the rational monomial Xai =
xai11 · · ·xainn , for i = 1, . . . , n.

Since detA 6= 0, the matrix A is invertible over Q. This means that there
exists an n× n matrix A′ =

[
a′ij
]

such that each a′ij is an integer, and

AA′ = A′A = NI,

where I is the n× n identity matrix.

Look at the field extension k(Y ) ⊂ k(X). Since detA 6= 0, this extension
is (by Lemma 1.1) algebraic. But k(X) is finitely generated over k, so the
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extension k(Y ) ⊂ k(X) is finite. We will show, in the next section, that if the
field k is algebraically closed, then this extension is Galois. In this section
we prove several lemmas and propositions which are needed for our proof of
this fact.

We denote by k〈[Y ]〉 the ring of fractions of the polynomial ring k[Y ] =
k[y1, . . . , yn] by the multiplicatively closed subset {ym1

1 · · · ymn
n ; ma, . . . ,mn ∈

N}. This ring is of course a subring of the field k(Y ). Every nonzero element
of k〈[Y ]〉 is of the form Y uh, where Y u = yu11 · · · yunn with u1, . . . , un ∈ Z, and
h is a strict polynomial belonging to k[Y ], that is, 0 6= h ∈ k[Y ] and h is not
divisible by any of the variables y1, . . . , yn.

Lemma 2.1. The monomials xN1 , . . . , x
N
n belong to k〈[Y ]〉. Thus, all polyno-

mials in k[X] are integral over k〈[Y ]〉.

Proof. For every i = 1, . . . , n, we have xNi =
n∏
j=1

y
a′ij
j ∈ k〈[Y ]〉. �

The next lemma is obvious.

Lemma 2.2. The field k(Y ) does not change if we use the following elemen-
tary transformations of rows of the matrix A.

(1) The interchange of two rows.

(2) The multiplication of one row by −1.

(3) The addition of an integer multiple of one row to another row.

Moreover, in each of these transformations the number N does not change.

Applying the above elementary transformations, the Euclidean algorithm
and a standard procedure, we may assume that the matrixA has the following
lower-triangular form

(∗) a =


m1 0 0 · · · 0
a21 m2 0 · · · 0
a31 a32 m3 · · · 0
...

...
...

. . .
...

an1 an2 an3 · · · mn

 ,
where m1, . . . ,mn are positive integer, m1 · · ·mn = N , and each aij is a
nonnegative integer smaller than mj.

Note the following well-known lemma (see, for example, [6]).

Lemma 2.3. Let L[t] be a polynomial ring in one variable t over a field L.
Let ϕ be a nonzero polynomial, belonging to L[t], of degree m > 1. Then
L(ϕ) ⊂ L(t) is a finite field extension, and (L(t) : L(ϕ)) = m.
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Now we may prove the following proposition.

Proposition 2.4. Let a1 = (a11, . . . , a1n), . . . , an = (an1, . . . , ann) are ele-
ments belonging to Zn, and let A denote the n × n matrix [aij]. Put N =
| detA|, and assume that N > 1. Let X = {x1, . . . , xn} be a set of variables
over a field k, and let Y = {y1, . . . , yn}, where each yi, for i = 1, . . . , n, is
the rational monomial Xai = xai11 · · ·xainn . Then the dimension of the linear
space k(X) over k(Y ) is equal to N , that is, (k(X) : k(Y )) = N .

Proof. It follows from Lemma 2.2 that we only need to consider the
case where the matrix A is of the form (∗). Let M0 = k(Y ) = k(y1, . . . , yn)
and

Mi = k(x1, x2, . . . , xi−1, yi, yi+1, . . . , yn), i = 1, . . . , n.

In particular, M1 = k(x1, y2, y3, . . . , yn) and Mn = k(x1, . . . , xn) = k(X).
Then we have the tower of fields:

k(Y ) = M0 ⊂M1 ⊂ · · · ⊂Mn = k(X).

Let i ∈ {1, . . . , n} and denote by Li the field k(x1, . . . , xi−1, yi+1, . . . , yn).
Then we have:

Mi−1 = k (x1, . . . , xi−1, yi, . . . , yn) = Li(yi) = Li
(
xai11 · · ·x

ai,i−1

i−1 xmi
i

)
= Li (x

mi
i )

⊂ Li(xi) = k(x1, . . . , xi, yi+1, . . . , yn) = Mi.

It is obvious that xi is algebraically independent over Li. Thus, Lemma 2.3
implies that (Li(xi) : Li(x

mi
i )) = mi, that is, for every i = 1, . . . , n, we have

the equality (Mi : Mi−1) = mi. Hence,

(k(X) : k(Y )) = (Mn : M0) = (Mn : Mn−1) (Mn−1 : Mn−2) · · · (M1 : M0)

= mnmn−1 · · ·m1.

But mnmn−1 · · ·m1 = N , so (k(X) : k(Y )) = N . �

There exists another proof of the above proposition. Consider the free
abelian group Zn and the subgroup of it generated by the rows of the matrix
A. The quotient of them is finite. Take a system B of representatives of all
the classes. The family (Xβ), where β runs in B, is a basis of K(X) as a
vector space over K(Y ). It is well-known that the order of the above quotient
group is equal to N . Thus, (k(X) : k(Y )) = N .

In this second proof we considered the subgroup of Zn generated by rows.
The same is true for the subgroup generated by columns, and a proof is clear.
Let us note:

Proposition 2.5. In the above notation, let H be the subgroup of the free
abelian group Zn generated by the columns of the matrix A. Then the quotient
group of them is finite, and its order is equal to N .
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3 The group of automorphisms

Throughout this section we assume that the field k is algebraically closed.

Let a1 = (a11, . . . , a1n), . . . , an = (an1, . . . , ann) be elements belonging to
Zn, and let A denote the n × n matrix [aij]. Put N = | detA|, and assume
that N > 1. Let X = {x1, . . . , xn} be a set of variables over k, and let
Y = {y1, . . . , yn}, where each yi is the rational monomial Xai = xai11 · · ·xainn ,
for i = 1, . . . , n.

We denote by Aut(k(X)/k(Y )) the Galois group of the field extension
k(Y ) ⊂ k(X). Every element σ of Aut(k(X)/k(Y )) is a k(Y )-automorphism
of the field k(X), that is, σ : k(X) → k(X) is a field automorphism such
that σ(b) = b for every b ∈ k(Y ). Let |Aut(k(X)/k(Y ))| denote the order
of Aut(k(X)/k(Y )). Since always

|Aut(k(X)/k(Y ))| 6 (k(X) : k(Y ))

(see [6]) and (k(X) : k(Y )) = N (by Proposition 2.4), the group Aut(k(X)/k(Y ))
is finite. We will show that |Aut(k(X)/k(Y ))| = N , that is, that the field
extension k(Y ) ⊂ k(X) is Galois.

Proposition 3.1. Every k(Y )-automorphism of k(X) is diagonal. More pre-
cisely, if σ is a k(Y )-automorphism of k(X), then

σ(x1) = ε1x1, . . . , σ(xn) = εnxn,

for some elements ε1, . . . , εn which are N-th roots of unity.

Proof. Let σ : k(X) → k(X) be a k(Y )-automorphism, and let i ∈
{1, . . . , n}. Consider the element bi = xNi . We know (see Lemma 2.1) that
bi ∈ k(Y ). Hence σ(xi)

N = σ(xNi ) = σ(bi) = bi, and hence σ(xi) is a
root of the polynomial fi(t) = tN − bi belonging to the polynomial ring
k(Y )[t]. The polynomial fi(t) has N roots: xi = u0xi, u1xi, . . . , uN−1xi,
where u0, . . . , uN−1 are the all N -th roots of unity. Thus, there exists an
N -th root εi ∈ {u0, . . . , uN−1} such that σ(xi) = εixi. �

Let ε be a fixed primitive N -th root of 1.

Let b1, . . . , bn be arbitrary elements of the ring ZN = Z/NZ, and let

b =

 b1
...
bn

 .
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The column b belongs to the abelian group (ZN)n. Consider the k-automorphism
σb : k(X)→ k(X) defined by

σb(xi) = εbixi, for i = 1, . . . , n.

This automorphism is a k(Y )-automorphism if and only if σb(yi) = yi, that
is, if σb (Xai) = Xai for all i = 1, . . . , n. But each σb (Xai) is equal to
εai1b1+···+ainbnXai , so σb (Xai) = Xai ⇐⇒ ai1b1 + · · ·+ainbn = 0 in ZN . This
means that σb is a k(Y )-automorphism if and only if the matrix product Ab
equals zero in (ZN)n.

Let us denote by h the group homomorphism from (ZN)n to (ZN)n defined
by

h(b) = Ab, for all b ∈ (ZN)n .

As a consequence of Proposition 3.1 and the above facts we obtain the fol-
lowing proposition.

Proposition 3.2. The order of the Galois group Aut(k(X)/k(Y )) is equal
to the order of the group Kerh.

It is easy to show that the groups Aut(k(X)/k(Y )) and kerh are isomor-
phic, but we do not need this fact.

Proposition 3.3. If the field k is algebraically closed, then the field extension
k(Y ) ⊂ k(X) is Galois.

Proof. Let f : Zn → Zn, g : Zn → Zn, η : Zn → (ZN)n be homomor-
phisms of Z-modules defined by

f(U) = NU, g(U) = AU, η(U) = U mod N,

for every column U ∈ Zn. Then we have the following commutative diagram
of Z-modules and Z-homomorphisms.

Zn f−−−→ Zn η−−−→ (ZN)n −−−→ 0yg yg yh
0 −−−→ Zn f−−−→ Zn η−−−→ (ZN)n

where the two rows are exact. The homomorphism h : (ZN)n → (ZN)n is the
same as before. We will use the snake lemma (see, for example [6])

It is possible to complete it in a unique way in a commutative diagram
with exact rows and columns :
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Ker g
f1−−−→ Ker g

η1−−−→ Kerhyi yj yk
Zn f−−−→ Zn η−−−→ (ZN)n −−−→ 0yg yg yh

0 −−−→ Zn f−−−→ Zn η−−−→ (ZN)nyp yq yr
Coker g

f2−−−→ Coker g
η2−−−→ Cokerh

Moreover, there exists a unique Z-homomorphism v from Kerh to Coker g
such that the following long sequence is exact :

Ker g
f1−−−→ Ker g

η1−−−→ Kerh
v−−−→ Coker g

f2−−−→ Coker g
η2−−−→ Cokerh.

Observe that f2 : Coker g → Coker g is indeed the zero map. Let U ∈ Zn.
Since AA′ = NI (see Section 2), we have NU = A · (A′U) = g(A′U). Thus,
every element of the form NU , where U ∈ Zn, belongs to Im g. Now, if
U + Im g is an arbitrary element from Coker g, then

f2 (U + Im g) = f2p(U) = qf(U) = q(NU) = NU + Im g = 0 + Im g,

and this means that f2 = 0. Note also that the assumption detA 6= 0 implies
that g is injective, so Ker g = 0.

Thus, the following short sequence is exact:

0 −−−→ Kerh
v−−−→ Coker g

0−−−→ ,

that is, the abelian groups Kerh and Coker g are isomorphic.

The image of g is the subgroup of Zn generated by the columns of the
matrix A. We know, by Proposition 2.5, that the quotient group of them is
finite, and its order is equal to N . Thus, the cardinality of Coker g is equal
to N . Moreover, the cardinality of Kerh is equal to the order of the group
Aut(k(X)/k(Y )) (see Proposition 3.2). Therefore, |Aut(k(X)/k(Y ))| = N =
(k(X) : k(Y )), and so the extension k(Y ) ⊂ k(X) is Galois. �

In the above proposition we assumed that the field k is algebraically
closed. Without this assumption the field extension k(Y ) ⊂ k(X) is not
Galois, in general. For example, the field extension Q(x3) ⊂ Q(x) is not
Galois.
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4 The main results

Let d : k[X]→ k[X] be a monomial derivation of the form

d(x1) = Xβ1 , . . . , d(xn) = Xβn ,

where β1 = (β11, . . . , β1n), . . . , βn = (βn1, . . . , βnn), are sequences of nonneg-
ative integers. Let as recall (see Introduction), that d is called normal if
β11 = β22 = · · · = βnn = 0 and the determinant ωd is nonzero.

We will say that d is special, if either d is without Darboux polynomials
or all irreducible Darboux polynomials of d belong to the set {x1, . . . , xn}. In
other words, if a monomial derivation d of k[X] is special and f ∈ k[X]rk is
a Darboux polynomial of d, then f is a monomial, that is, f = axm1

1 · · ·xmn
n

for some 0 6= a ∈ k and some nonnegative integers m1, . . . ,mn such that∑
mi > 1.

Now we are ready to prove the main result of this paper.

Theorem 4.1. Let d be a monomial derivation of a polynomial ring k[X] =
k[x1, . . . , xn], where k is a field of characteristic zero. If ωd 6= 0 then d is
special if and only if the field k(X)d is trivial.

Proof. Denote by y1, . . . , yn the rational monomials d(x1)
x1

, . . . , d(xn)
xn

,
respectively, and let k(Y ) denote the field k(y1, . . . , yn). Since ωd 6= 0, we
have the finite field extension k(Y ) ⊂ k(X) with (k(X) : k(Y )) = N , where
N = |ωd|.

=⇒. Assume that d is special and let ϕ be a nonzero element of k(X)
such that d(ϕ) = 0. Let ϕ = f

g
, where f, g ∈ k[X] r {0} with gcd(f, g) = 1.

Then d(f)g = fd(g) , so d(f) = λf , d(g) = λg for some λ ∈ k[X]. Thus, if
f 6∈ k, then f is a Darboux polynomial of d. The same for g. The assumption
that d is special implies that

f = axu11 · · ·xunn , g = bxv11 · · ·xvnn ,

for some nonzero a, b ∈ k and some nonnegative integers u1, . . . , un, v1, . . . , vn.
Moreover, d(f)

f
= d(g)

g
= λ. Observe that

d(f)
f

= u1
d(x1)
x1

+ · · ·+ un
d(xn)
xn

= u1y1 + · · ·+ unyn,

d(g)
g

= v1
d(x1)
x1

+ · · ·+ vn
d(xn)
xn

= v1y1 + · · ·+ vnyn.

So, we have the equality u1y1 + · · · + unyn = v1y1 + · · · + vnyn. We know,
by Lemma 1.1, that the elements y1, . . . , yn are algebraically independent.
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Hence, u1 = v1, . . . , un = vn. This means that ϕ = f
g

= a
b
∈ k. We proved

that if d is special then k(X)d = k.

⇐=. Assume that k(X)d = k. Let k denote the algebraic closure of k,
and d be the derivation of k[X] such that d(xi) = d(xi) for all i = 1, . . . , n.

Then k(X)d = k (see [15]). Thus, for a proof that d is special, we may
assume that the field k is algebraically closed.

Denote by G the group Aut (k(X)/k(Y )). We know that G is finite and
|G| = N (Proposition 3.3).

Observe that if σ is a k(Y )-automorphism of k(X), then σdσ−1 = d.
In fact, for every i ∈ {1, . . . , n}, σ(xi) = εixi for some unit root εi (by
Proposition 3.1), and we have the equalities

σd(xi) = σ(xiyi) = σ(xi)yi = εixiyi = εid(xi) = d(εxi) = dσ(xi),

which imply that σd = dσ, that is, σdσ−1 = d.

Let us suppose that f ∈ k[X] r k is a Darboux polynomial of d. Let
d(f) = λf , where λ ∈ k[X]. Consider two polynomials F and Λ defined by

F =
∏
σ∈G

σ(f), Λ =
∑
σ∈G

σ(λ).

Since every automorphism σ is diagonal (Proposition 3.1), F and Λ belong to
k[X]. In particular, f divides F in k[X]. Moreover, the equalities σdσ−1 = d
imply that

d(F ) = ΛF.

The polynomials F and Λ are invariant with respect to G, that is, σ(F ) = F
and σ(Λ) = Λ for every σ ∈ G. But the extension k(Y ) ⊂ k(X) is Galois
(Proposition 3.3), so F,Λ belong to k(Y ). Therefore,

δ(F ) = ΛF,

where δ is the factorisable derivation associated with d (see Section 1). Let
us recall (see Lemma 2.1) that k[X] is integral over k〈[Y ]〉. Thus, the poly-
nomials F,Λ belong to k(Y ) and they are integral over k〈[Y ]〉.

The ring k〈[Y ]〉 is a ring of fractions of the polynomial ring k[Y ], which
is a unique factorization domain (UFD). This means, that k〈[Y ]〉 is also
UFD (see, for example, [4]), and so, the domain k〈[Y ]〉 is integrally closed.
Therefore, the polynomials F and Λ belong to k〈[Y ]〉. In particular,

F = Y uh,
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where Y u = yu11 · · · yunn with u1, . . . , un ∈ Z, and h is a nonzero strict polyno-
mial belonging to k[Y ]. Now, from the equality δ(F ) = ΛF , we obtain that
δ(h) = wh, for some w ∈ k[Y ]. Thus, if h 6∈ k, then we have a contradic-
tion with Proposition 1.2. Therefore, F is a rational monomial with respect
to variables y1, . . . , yn. But every yi is a rational monomial in x1, . . . , xn,
so F is a rational monomial in x1, . . . , xn. Moreover, F ∈ k[X] r k, so
F = axm1

1 · · ·xmn
n for some 0 6= a ∈ k and nonnegative integers m1, . . . ,mn.

This implies that the polynomial f is also a monomial, because f divides F .
We proved that, if f is a Darboux polynomial of d, then f is a monomial.

This means that the derivation d is special. �

In the above theorem we assumed only that d is a monomial derivation
of k[X] with wd 6= 0. Assume now that d satisfies the additional condition
”xi - d(xi) for all i = 1, . . . , n”. Then, as an immediate consequence of
Theorem 4.1 we have the following theorem.

Theorem 4.2. Let d be a normal monomial derivation of a polynomial ring
k[X] = k[x1, . . . , xn], where k is a field of characteristic zero. Then d is
without Darboux polynomials if and only if the field k(X)d is trivial.

In Theorems 4.1 and 4.2 the monomial derivation d is monic, that is,
all the polynomials d(x1), . . . , d(xn) are monomials with coefficients 1. The
next result shows that our theorems are valid also for arbitrary nonzero
coefficients.

Theorem 4.3. Let d be a derivation of a polynomial ring k[X] = k[x1, . . . , xn],
where k is a field of characteristic zero. Assume that

d(xi) = aix
βi1
1 · · · xβinn

for i = 1, . . . , n, where each ai is a nonzero element from k, and each βij is
a nonnegative integer. Denote by A the n× n matrix [βij]− I, and let wd =
detA. If the determinant ωd is nonzero, then the following two conditions
are equivalent.

(1) Either d is without Darboux polynomials or all irreducible Darboux
polynomials of d belong to the set {x1, . . . , xn}.

(2) The field k(X)d is trivial.

Proof. It is clear (see the proof of Theorem 4.1) that we may assume
that the field k is algebraically closed. Consider the matrices

E1 =


1
0
...
0

 , E2 =


0
1
...
0

 , . . . , En =


0
0
...
1

 , U =


u1
u2
...
un

 .
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Since detA 6= 0, for every i ∈ {1, . . . n} there exists a unique solution
[γi1, . . . , γin]T ∈ Qn of the matrix equation AU = Ei. Let

εi =
(
a−11

)γ1i (a−12

)γ2i · · · (a−1n )γni ,

for i = 1, . . . , n, and let τ : k(X) → k(X) be the diagonal automorphism
defined by τ(xi) = εixi for all i = 1, . . . , n. Put D = τdτ−1. Then it is easy
to check that

D(xi) = xβi11 · · ·xβinn
for all i = 1, . . . , n. Thus, the derivations d and D are equivalent and they
have the same matrix A. Now the statement is a consequence of Theorem
4.1. �

5 Monomial derivations in three variables

In the case of a ring of polynomials in two variables, it is easy to show
that every monomial derivation of has a Darboux polynomial (see, for ex-
ample, [16]). On the contrary, in three variables, various possibilities exist.
Moreover, additional facts can be shown in this smallest general case; this is
the reason of the present Section.

Let us consider k[x, y, z], the polynomial ring in three variables over a
field k (of characteristic zero). Let d be a monomial derivation of k[x, y, z]
of the form

(∗) d(x) = yp2zp3 , d(y) = xq1zq3 , d(z) = xr1yr2 ,

where p2, p3, q1, q3, r1, r2 are nonnegative integers. In this case

ωd =

∣∣∣∣∣∣
−1 p2 p3
q1 −1 q3
r1 r2 −1

∣∣∣∣∣∣ = −1 + p2q3r1 + p3q1r2 + r1p3 + r2q3 + p2q1.

If ωd 6= 0, then we know (by Theorem 4.2) that d is without Darboux poly-
nomials if and only if k(x, y, z)d = k. All monomial derivations of k[x, y, z],
with trivial field of constants, are described in [16]. So, the problem of ex-
istence of Darboux polynomials has a full solution for monomial derivations
of k[x, y, z] with nonzero determinant.

There exist monomial derivations d of k[x, y, z] for which ωd = 0. Let us
look at the following example.
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Example 5.1. Let d(x) = 1, d(y) = xaz, d(z) = xby, where a 6= b are
nonnegative integers. Then ωd = 0, k(x, y, z)d = k, and d is without Darboux
polynomials.

Proof. It is obvious that ωd =

∣∣∣∣∣∣
−1 0 0
a −1 1
b 1 −1

∣∣∣∣∣∣ = 0. Using [16] we

easily deduce that k(x, y, z)d = k. There is only a problem with Darboux
polynomials. The determinant ωd is equal to 0, so we cannot use Theorem
4.2.

For a proof that d is without Darboux polynomial consider the new mono-
mial derivation D = yd. The determinant of this new derivation is nonzero:

ωD =

∣∣∣∣∣∣
−1 1 0
a 0 1
b 2 −1

∣∣∣∣∣∣ = a+ b+ 2 6= 0.

Moreover, k(x, y, z)D = k(x, y, z)d = k. Hence, we know, by Theorem 4.1,
that every Darboux polynomial of D is a monomial.

Let us suppose that f ∈ k[x, y, z] r k is a Darboux polynomial of d. Let
d(f) = λf , where λ ∈ k[x, y, z]. Then

D(f) = yd(f) = (yλ)f,

so f is a Darboux polynomial of D, and so, f is a monomial. Let f = cxpyqzr,
where 0 6= c ∈ k and p, q, r are nonnegative integers. Since f 6∈ k, at least
one of the numbers p, q, r is greater than zero. This means that at least
one of the variables x, y, z is a Darboux polynomial of d (every factor of a
Darboux polynomial is a Darboux polynomial). But it is a contradiction,
because x - d(x), y - d(y) and z - d(z). Thus, we proved that d is without
Darboux polynomials. �

We would like to find an example of a monomial derivation d of the form
(∗) such that ωd = 0, k(x, y, z)d = k and d has a Darboux polynomial.
But it is impossible. For every derivation d of the form (∗) we may use the
same trick as in the proof of Example 5.1. Instead of derivation d we may
consider the new derivations: xd, yd, zd. If ωd = 0, then at least one of the
determinants ωxd, ωyd, ωzd is nonzero. It is a consequence of the following
lemma.

Lemma 5.2. Let M be a 3× 4 matrix of the form

M =

 −1 p2 p3 1
q1 −1 q3 1
r1 r2 −1 1

 ,
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where p2, p3, q1, q3, r1, r2 are nonnegative integers. Then the rank of M is
equal to 3.

Proof. Denote by ω0, ω1, ω2, ω3, the determinants∣∣∣∣∣∣
−1 p2 p3
q1 −1 q3
r1 r2 −1

∣∣∣∣∣∣ ,
∣∣∣∣∣∣

1 p2 p3
1 −1 q3
1 r2 −1

∣∣∣∣∣∣ ,
∣∣∣∣∣∣
−1 1 p3
q1 1 q3
r1 1 −1

∣∣∣∣∣∣ ,
∣∣∣∣∣∣
−1 p2 1
q1 −1 1
r1 r2 1

∣∣∣∣∣∣ ,
respectively, and suppose that rankM < 3. Then ω0 = ω1 = ω2 = ω3 = 0.
Let us calculate:

0 = ω0 = −1 + p2q3r1 + p3q1r2 + p3r1 + q3r2 + p2q1,
0 = ω1 = 1 + p2q3 + p3r2 + p2 + p3 − q3r2,
0 = ω2 = 1 + q3r1 + p3q1 + q1 + q3 − p3r1,
0 = ω2 = 1 + p2r1 + q1r2 + r1 + r2 − p2q1.

From these equalities we obtain the inequalities: 1 > p3r1 + q3r2 + p2q1,
q3r2 > 1, p3r1 > 1, p2q1 > 1, and we have a contradiction:

1 > p3r1 + q3r2 + p2q1 > 1 + 1 + 1 = 3.

Therefore, rankM = 3. �

As a consequence of the above facts we obtain the following theorem.

Theorem 5.3. Let d be a monomial derivation of the polynomial ring k[x, y, z],
where k is a field of characteristic zero. Assume that

d(x) = yp2zp3 , d(y) = xq1zq3 , d(z) = xr1yr2 ,

where p2, p3, q1, q3, r1, r2 are nonnegative integers. Then d is without Darboux
polynomials if and only if k(x, y, z)d = k.

We do not know if a similar statement is true for 4 (and more) vari-
ables. Of course if we have additional assumption that the determinant ωd
is nonzero, then it is true, by Theorem 4.2. What happens if ωd = 0? If
the number of variables is greater than 3, then does not exist an analogy of
Lemma 5.2. Look at the monomial derivation d of k[x, y, z, t] defined by

d(x) = t2, d(y) = zt, d(z) = y2, d(t) = xy.

Here ωd = 0, and the determinant of every monomial derivation of the form
gd, where g is a monomial in x, y, z, t, is also equal to zero. What is the
field k(x, y, z, t)d? Does the derivation d has Darboux polynomials? We do
not know answers for these questions. There exists a big number of such
examples of monomial derivations.
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