Monomial derivations

Jean Moulin Ollagnier ${ }^{1}$ and Andrzej Nowicki ${ }^{2}$
${ }^{1}$ Laboratoire LIX, École Polytechnique, F 91128 Palaiseau Cedex, France and : Université Paris XII, Créteil, France, (e-mail : Jean.Moulin-Ollagnier@polytechnique.edu).
${ }^{2} \mathrm{~N}$. Copernicus University, Faculty of Mathematics and Computer Science, 87-100 Toruń, Poland, (e-mail: anow@mat.uni.torun.pl).

Abstract

We present some general properties of monomial derivations of the polynomial ring $k\left[x_{1}, \ldots, x_{n}\right]$, where k is a field of characteristic zero. The main result of this paper is a characterization of some large class of monomial derivations without Darboux polynomials. In particular, we present a full description of all monomial derivations of $k[x, y, z]$ which have no Darboux polynomials.

Key Words: Derivation; Darboux polynomial; Field of constants; Jouanolou derivation.

2000 Mathematics Subject Classification: Primary 12H05; Secondary 13N15.

Introduction

Let k be a field of characteristic zero, $k[X]=k\left[x_{1}, \ldots, x_{n}\right]$ be the polynomial ring in n variables over k, and $k(X)=k\left(x_{1}, \ldots, x_{n}\right)$ be the field of quotients of $k[X]$.

Let us assume that d is a derivation of $k[X]$, We denote also by d the unique extension of d to $k(X)$, and we denote by $k(X)^{d}$ the field of rational constants of d, that is,

$$
k(X)^{d}=\{\varphi \in k(X) ; d(\varphi)=0\} .
$$

[^0]We say that this field is trivial if $k(X)^{d}=k$. A polynomial $F \in k[X]$ is said to be a Darboux polynomial of d if $F \notin k$ and $d(F)=\Lambda F$ for some $\Lambda \in k[X]$. We say that d is without Darboux polynomials if d has no Darboux polynomials.

It is obvious that if d is without Darboux polynomials, then the field $k(X)^{d}$ is trivial. The opposite implication is, in general, not true. The derivation $\delta=x \partial_{x}+(x+y) \partial_{y}$ of $k[x, y]$ has trivial field of constants (see [15], [14]), and x is a Darboux polynomial of δ. In this paper we prove that such opposite implications is true for a large class of monomial derivations of $k[X]$. More precisely, we say that a derivation d of $k[X]$ is monomial if

$$
d\left(x_{i}\right)=x_{1}^{\beta_{i 1}} \cdots x_{n}^{\beta_{i n}}
$$

for $i=1, \ldots, n$, where each $\beta_{i j}$ is a nonnegative integer. In this case we say that d is normal monomial if $\beta_{11}=\beta_{22}=\cdots=\beta_{n n}=0$ and $\omega_{d} \neq 0$, where ω_{d} is the determinant of the matrix $\left[\beta_{i j}\right]-I$, that is,

$$
\omega_{d}=\left|\begin{array}{cccc}
\beta_{11}-1 & \beta_{12} & \ldots & \beta_{1 n} \\
\beta_{21} & \beta_{22}-1 & \ldots & \beta_{2 n} \\
\vdots & \ldots & & \vdots \\
\beta_{n 1} & \beta_{n 2} & \ldots & \beta_{n n}-1
\end{array}\right| .
$$

The main result of the paper is Theorem 4.2, which states that if d is a normal monomial derivation of $k[X]$, then d is without Darboux polynomials if and only if $k(X)^{d}=k$.

The fact that for some derivation d, the triviality of $k(X)^{d}$ implies that d is without Darboux polynomials, plays an important role in several papers concerning polynomial derivations. Let us mention some papers on Jouanolou derivations. By the Jouanolou derivation with integer parameters $n \geq 2$ and $s \geq 1$ we mean a normal monomial derivation $d: k[X] \rightarrow k[X]$ such that

$$
d\left(x_{1}\right)=x_{2}^{s}, d\left(x_{2}\right)=x_{3}^{s}, \ldots, d\left(x_{n-1}\right)=x_{n}^{s}, d\left(x_{n}\right)=x_{1}^{s} .
$$

We denote such a derivation by $J(n, s)$. If $n=2$ or $s=1$, then $J(n, s)$ has a nontrivial rational constant (see, for example, [13] or [8]). In 1979 Jouanolou, in [3], proved that the derivation $J(3, s)$, for every $s \geq 2$, has no nontrivial Darboux polynomial. Today we know several different proofs of this fact ([7], [1], [18], [13]). There exists a proof ([8]) that the same is true for $s \geq 2$ and for every prime number $n \geq 3$. There are also separate such proofs for $n=4$ and $s \geq 2$ ([19], [9], [10]). In 2003 Żoła̧dek ([19]) proved the same for all $n \geq 3$ and $s \geq 2$. Some of these proofs were reduced only to proofs that Jouanolou derivations have trivial fields of constants.

In [16] there is a full description of all monomial derivations of $k[x, y, z]$ with trivial field of constants. Using this description and several additional facts, we presented, in [12], full lists of homogeneous monomial derivations of degrees $s \leqslant 4$ (of $k[x, y, z]$) without Darboux polynomials. Now, thanks to the main result of this paper, we are ready to present such lists for arbitrary degree $s \geqslant 2$. All monomial derivations d with trivial field of constants, which are described in [16], are without Darboux polynomials if and only if $x_{i} \nmid d\left(x_{i}\right)$ for all $i=1, \ldots, n$.

1 Notations and preliminary facts

Throughout this paper k is a field of characteristic zero. If $\mu=\left(\mu_{1}, \ldots, \mu_{n}\right)$ is a sequence of integers, then we denote by X^{μ} the rational monomial $x_{1}^{\mu_{1}} \cdots x_{n}^{\mu_{n}}$ belonging to $k(X)$. In particular, if $\mu \in \mathbb{N}^{n}$ (where \mathbb{N} denote the set of nonnegative integers), then X^{μ} is an ordinary monomial of $k[X]$. Note the following well-known lemma.

Lemma 1.1 ([2], [16]). Let $a_{1}=\left(a_{11}, \ldots, a_{1 n}\right), \ldots, a_{n}=\left(a_{n 1}, \ldots, a_{n n}\right)$ be elements of \mathbb{Z}^{n}, and let A denote the $n \times n$ matrix $\left[a_{i j}\right]$. If $\operatorname{det} A \neq 0$, then the rational monomials $X^{\alpha_{1}}, \ldots, X^{\alpha_{n}}$ are algebraically independent over k.

Assume now that $\beta_{1}, \ldots, \beta_{n} \in \mathbb{N}^{n}$ and consider a monomial derivation $d: k[X] \rightarrow k[X]$ of the form

$$
d\left(x_{1}\right)=X^{\beta_{1}}, \quad \ldots, \quad d\left(x_{n}\right)=X^{\beta_{n}} .
$$

Put $\beta_{1}=\left(\beta_{11}, \ldots, \beta_{1 n}\right), \ldots, \beta_{n}=\left(\beta_{n 1}, \ldots, \beta_{n n}\right)$, where each $\beta_{i j}$ is a nonnegative integer, and let $A=\left[a_{i j}\right]$ denote the matrix $\left[\beta_{i j}\right]-I$, where I is the $n \times n$ identity matrix. Let us recall (see Introduction) that we denote by ω_{d} the determinant of the matrix A. Put

$$
y_{1}=\frac{d\left(x_{1}\right)}{x_{1}}, \quad \ldots, \quad y_{n}=\frac{d\left(x_{n}\right)}{x_{n}} .
$$

Then $y_{1}=X^{a_{1}}, \ldots, y_{n}=X^{a_{n}}$, where each a_{i}, for $i=1, \ldots, n$, is equal to $\left(a_{i 1}, \ldots, a_{i n}\right)$. It is easy to check that

$$
d\left(y_{i}\right)=y_{i}\left(a_{i 1} y_{1}+\cdots+a_{i n} y_{n}\right),
$$

for all $i=1, \ldots, n$. This implies, in particular, that $d(R) \subseteq R$, where R is the smallest k-subalgebra of $k(X)$ containing y_{1}, \ldots, y_{n}. Observe that if $\omega_{d} \neq 0$, then (by Lemma 1.1) the elements y_{1}, \ldots, y_{n} are algebraically independent
over k. Thus, if $\omega_{d} \neq 0$, then $R=k[Y]=k\left[y_{1}, \ldots, y_{n}\right]$ is a polynomial ring over k in n variables, and we have a new derivation $\delta: k[Y] \rightarrow k[Y]$ such that

$$
\delta\left(y_{1}\right)=y_{1}\left(a_{11} y_{1}+\cdots+a_{1 n} y_{n}\right), \quad \cdots, \quad \delta\left(y_{n}\right)=y_{n}\left(a_{n 1} y_{1}+\cdots+a_{n n} y_{n}\right) .
$$

The derivation δ is the restriction of d to $k[Y]$. We call δ the factorisable derivation associated with d. The concept of factorisable derivation associated with a derivation was introduced by Lagutinskii in [5] and this concept was intensively studied in [8], [16] and [17]

We will say (as in [11], [9] and [16]) that a Darboux polynomial $F \in$ $k[Y] \backslash k$ of δ is strict if F is not divisible by any of the variables y_{1}, \ldots, y_{n}. Let us recall, from [16], the following proposition.

Proposition $1.2([16])$. Let $d: k(X) \rightarrow k(X)$ be a monomial derivation such that $\omega_{d} \neq 0$, and let $\delta: k[Y] \rightarrow k[Y]$ be the factorisable derivation associated with d. Then the following conditions are equivalent.
(1) $k(X)^{d} \neq k$.
(2) $k(Y)^{\delta} \neq k$.
(3) The derivation δ has a strict Darboux polynomial.

2 The field extension $\mathrm{k}(\mathrm{Y}) \subset \mathrm{k}(\mathrm{X})$

In this section we present some preparatory properties of the field extension $k(Y) \subset k(X)$. We use mostly the same notations as in Section 1.

Let us assume that $a_{1}=\left(a_{11}, \ldots, a_{1 n}\right), \ldots, a_{n}=\left(a_{n 1}, \ldots, a_{n n}\right)$ are elements belonging to \mathbb{Z}^{n}, and let A denote the $n \times n$ matrix $\left[a_{i j}\right]$. Put

$$
N=|\operatorname{det} A|,
$$

and assume that $N \geqslant 1$. Let $X=\left\{x_{1}, \ldots, x_{n}\right\}$ be a set of variables over k, and let $Y=\left\{y_{1}, \ldots, y_{n}\right\}$, where each y_{i} is the rational monomial $X^{a_{i}}=$ $x_{1}^{a_{i 1}} \cdots x_{n}^{a_{i n}}$, for $i=1, \ldots, n$.

Since $\operatorname{det} A \neq 0$, the matrix A is invertible over \mathbb{Q}. This means that there exists an $n \times n$ matrix $A^{\prime}=\left[a_{i j}^{\prime}\right]$ such that each $a_{i j}^{\prime}$ is an integer, and

$$
A A^{\prime}=A^{\prime} A=N I,
$$

where I is the $n \times n$ identity matrix.
Look at the field extension $k(Y) \subset k(X)$. Since $\operatorname{det} A \neq 0$, this extension is (by Lemma 1.1) algebraic. But $k(X)$ is finitely generated over k, so the
extension $k(Y) \subset k(X)$ is finite. We will show, in the next section, that if the field k is algebraically closed, then this extension is Galois. In this section we prove several lemmas and propositions which are needed for our proof of this fact.

We denote by $k\langle[Y]\rangle$ the ring of fractions of the polynomial ring $k[Y]=$ $k\left[y_{1}, \ldots, y_{n}\right]$ by the multiplicatively closed subset $\left\{y_{1}^{m_{1}} \cdots y_{n}^{m_{n}} ; m_{a}, \ldots, m_{n} \in\right.$ $\mathbb{N}\}$. This ring is of course a subring of the field $k(Y)$. Every nonzero element of $k\langle[Y]\rangle$ is of the form $Y^{u} h$, where $Y^{u}=y_{1}^{u_{1}} \cdots y_{n}^{u_{n}}$ with $u_{1}, \ldots, u_{n} \in \mathbb{Z}$, and h is a strict polynomial belonging to $k[Y]$, that is, $0 \neq h \in k[Y]$ and h is not divisible by any of the variables y_{1}, \ldots, y_{n}.

Lemma 2.1. The monomials $x_{1}^{N}, \ldots, x_{n}^{N}$ belong to $k\langle[Y]\rangle$. Thus, all polynomials in $k[X]$ are integral over $k\langle[Y]\rangle$.

Proof. For every $i=1, \ldots, n$, we have $x_{i}^{N}=\prod_{j=1}^{n} y_{j}^{a_{i j}^{\prime}} \in k\langle[Y]\rangle$.
The next lemma is obvious.
Lemma 2.2. The field $k(Y)$ does not change if we use the following elementary transformations of rows of the matrix A.
(1) The interchange of two rows.
(2) The multiplication of one row by -1 .
(3) The addition of an integer multiple of one row to another row.

Moreover, in each of these transformations the number N does not change.
Applying the above elementary transformations, the Euclidean algorithm and a standard procedure, we may assume that the matrix A has the following lower-triangular form

$$
a=\left[\begin{array}{ccccc}
m_{1} & 0 & 0 & \cdots & 0 \tag{*}\\
a_{21} & m_{2} & 0 & \cdots & 0 \\
a_{31} & a_{32} & m_{3} & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & a_{n 3} & \cdots & m_{n}
\end{array}\right],
$$

where m_{1}, \ldots, m_{n} are positive integer, $m_{1} \cdots m_{n}=N$, and each $a_{i j}$ is a nonnegative integer smaller than m_{j}.

Note the following well-known lemma (see, for example, [6]).
Lemma 2.3. Let $L[t]$ be a polynomial ring in one variable t over a field L. Let φ be a nonzero polynomial, belonging to $L[t]$, of degree $m \geqslant 1$. Then $L(\varphi) \subset L(t)$ is a finite field extension, and $(L(t): L(\varphi))=m$.

Now we may prove the following proposition.
Proposition 2.4. Let $a_{1}=\left(a_{11}, \ldots, a_{1 n}\right), \ldots, a_{n}=\left(a_{n 1}, \ldots, a_{n n}\right)$ are elements belonging to \mathbb{Z}^{n}, and let A denote the $n \times n$ matrix $\left[a_{i j}\right]$. Put $N=$ $|\operatorname{det} A|$, and assume that $N \geqslant 1$. Let $X=\left\{x_{1}, \ldots, x_{n}\right\}$ be a set of variables over a field k, and let $Y=\left\{y_{1}, \ldots, y_{n}\right\}$, where each y_{i}, for $i=1, \ldots, n$, is the rational monomial $X^{a_{i}}=x_{1}^{a_{i 1}} \cdots x_{n}^{a_{i n}}$. Then the dimension of the linear space $k(X)$ over $k(Y)$ is equal to N, that is, $(k(X): k(Y))=N$.

Proof. It follows from Lemma 2.2 that we only need to consider the case where the matrix A is of the form (*). Let $M_{0}=k(Y)=k\left(y_{1}, \ldots, y_{n}\right)$ and

$$
M_{i}=k\left(x_{1}, x_{2}, \ldots, x_{i-1}, y_{i}, y_{i+1}, \ldots, y_{n}\right), i=1, \ldots, n
$$

In particular, $M_{1}=k\left(x_{1}, y_{2}, y_{3}, \ldots, y_{n}\right)$ and $M_{n}=k\left(x_{1}, \ldots, x_{n}\right)=k(X)$. Then we have the tower of fields:

$$
k(Y)=M_{0} \subset M_{1} \subset \cdots \subset M_{n}=k(X) .
$$

Let $i \in\{1, \ldots, n\}$ and denote by L_{i} the field $k\left(x_{1}, \ldots, x_{i-1}, y_{i+1}, \ldots, y_{n}\right)$. Then we have:

$$
\begin{aligned}
M_{i-1} & =k\left(x_{1}, \ldots, x_{i-1}, y_{i}, \ldots, y_{n}\right)=L_{i}\left(y_{i}\right)=L_{i}\left(x_{1}^{a_{i 1}} \cdots x_{i-1}^{a_{i, i-1}} x_{i}^{m_{i}}\right)=L_{i}\left(x_{i}^{m_{i}}\right) \\
& \subset L_{i}\left(x_{i}\right)=k\left(x_{1}, \ldots, x_{i}, y_{i+1}, \ldots, y_{n}\right)=M_{i} .
\end{aligned}
$$

It is obvious that x_{i} is algebraically independent over L_{i}. Thus, Lemma 2.3 implies that $\left(L_{i}\left(x_{i}\right): L_{i}\left(x_{i}^{m_{i}}\right)\right)=m_{i}$, that is, for every $i=1, \ldots, n$, we have the equality $\left(M_{i}: M_{i-1}\right)=m_{i}$. Hence,

$$
\begin{aligned}
(k(X): k(Y)) & =\left(M_{n}: M_{0}\right)=\left(M_{n}: M_{n-1}\right)\left(M_{n-1}: M_{n-2}\right) \cdots\left(M_{1}: M_{0}\right) \\
& =m_{n} m_{n-1} \cdots m_{1} .
\end{aligned}
$$

But $m_{n} m_{n-1} \cdots m_{1}=N$, so $(k(X): k(Y))=N$.
There exists another proof of the above proposition. Consider the free abelian group \mathbb{Z}^{n} and the subgroup of it generated by the rows of the matrix A. The quotient of them is finite. Take a system B of representatives of all the classes. The family $\left(X^{\beta}\right)$, where β runs in B, is a basis of $K(X)$ as a vector space over $K(Y)$. It is well-known that the order of the above quotient group is equal to N. Thus, $(k(X): k(Y))=N$.

In this second proof we considered the subgroup of \mathbb{Z}^{n} generated by rows. The same is true for the subgroup generated by columns, and a proof is clear. Let us note:

Proposition 2.5. In the above notation, let H be the subgroup of the free abelian group \mathbb{Z}^{n} generated by the columns of the matrix A. Then the quotient group of them is finite, and its order is equal to N.

3 The group of automorphisms

Throughout this section we assume that the field k is algebraically closed.
Let $a_{1}=\left(a_{11}, \ldots, a_{1 n}\right), \ldots, a_{n}=\left(a_{n 1}, \ldots, a_{n n}\right)$ be elements belonging to \mathbb{Z}^{n}, and let A denote the $n \times n$ matrix $\left[a_{i j}\right]$. Put $N=|\operatorname{det} A|$, and assume that $N \geqslant 1$. Let $X=\left\{x_{1}, \ldots, x_{n}\right\}$ be a set of variables over k, and let $Y=\left\{y_{1}, \ldots, y_{n}\right\}$, where each y_{i} is the rational monomial $X^{a_{i}}=x_{1}^{a_{i 1}} \cdots x_{n}^{a_{i n}}$, for $i=1, \ldots, n$.

We denote by $\operatorname{Aut}(k(X) / k(Y))$ the Galois group of the field extension $k(Y) \subset k(X)$. Every element σ of $\operatorname{Aut}(k(X) / k(Y))$ is a $k(Y)$-automorphism of the field $k(X)$, that is, $\sigma: k(X) \rightarrow k(X)$ is a field automorphism such that $\sigma(b)=b$ for every $b \in k(Y)$. Let $|\operatorname{Aut}(k(X) / k(Y))|$ denote the order of $\operatorname{Aut}(k(X) / k(Y))$. Since always

$$
|\operatorname{Aut}(k(X) / k(Y))| \leqslant(k(X): k(Y))
$$

(see [6]) and $(k(X): k(Y))=N($ by Proposition 2.4), the group Aut $(k(X) / k(Y))$ is finite. We will show that $|\operatorname{Aut}(k(X) / k(Y))|=N$, that is, that the field extension $k(Y) \subset k(X)$ is Galois.

Proposition 3.1. Every $k(Y)$-automorphism of $k(X)$ is diagonal. More precisely, if σ is a $k(Y)$-automorphism of $k(X)$, then

$$
\sigma\left(x_{1}\right)=\varepsilon_{1} x_{1}, \quad \ldots, \sigma\left(x_{n}\right)=\varepsilon_{n} x_{n}
$$

for some elements $\varepsilon_{1}, \ldots, \varepsilon_{n}$ which are N-th roots of unity.
Proof. Let $\sigma: k(X) \rightarrow k(X)$ be a $k(Y)$-automorphism, and let $i \in$ $\{1, \ldots, n\}$. Consider the element $b_{i}=x_{i}^{N}$. We know (see Lemma 2.1) that $b_{i} \in k(Y)$. Hence $\sigma\left(x_{i}\right)^{N}=\sigma\left(x_{i}^{N}\right)=\sigma\left(b_{i}\right)=b_{i}$, and hence $\sigma\left(x_{i}\right)$ is a root of the polynomial $f_{i}(t)=t^{N}-b_{i}$ belonging to the polynomial ring $k(Y)[t]$. The polynomial $f_{i}(t)$ has N roots: $x_{i}=u_{0} x_{i}, u_{1} x_{i}, \ldots, u_{N-1} x_{i}$, where u_{0}, \ldots, u_{N-1} are the all N-th roots of unity. Thus, there exists an N-th root $\varepsilon_{i} \in\left\{u_{0}, \ldots, u_{N-1}\right\}$ such that $\sigma\left(x_{i}\right)=\varepsilon_{i} x_{i}$.

Let ε be a fixed primitive N-th root of 1 .
Let b_{1}, \ldots, b_{n} be arbitrary elements of the ring $\mathbb{Z}_{N}=\mathbb{Z} / N \mathbb{Z}$, and let

$$
b=\left[\begin{array}{c}
b_{1} \\
\vdots \\
b_{n}
\end{array}\right]
$$

The column b belongs to the abelian group $\left(\mathbb{Z}_{N}\right)^{n}$. Consider the k-automorphism $\sigma_{b}: k(X) \rightarrow k(X)$ defined by

$$
\sigma_{b}\left(x_{i}\right)=\varepsilon^{b_{i}} x_{i}, \quad \text { for } \quad i=1, \ldots, n .
$$

This automorphism is a $k(Y)$-automorphism if and only if $\sigma_{b}\left(y_{i}\right)=y_{i}$, that is, if $\sigma_{b}\left(X^{a_{i}}\right)=X^{a_{i}}$ for all $i=1, \ldots, n$. But each $\sigma_{b}\left(X^{a_{i}}\right)$ is equal to $\varepsilon^{a_{i 1} b_{1}+\cdots+a_{i n} b_{n}} X^{a_{i}}$, so $\sigma_{b}\left(X^{a_{i}}\right)=X^{a_{i}} \Longleftrightarrow a_{i 1} b_{1}+\cdots+a_{i n} b_{n}=0$ in \mathbb{Z}_{N}. This means that σ_{b} is a $k(Y)$-automorphism if and only if the matrix product $A b$ equals zero in $\left(\mathbb{Z}_{N}\right)^{n}$.

Let us denote by h the group homomorphism from $\left(\mathbb{Z}_{N}\right)^{n}$ to $\left(\mathbb{Z}_{N}\right)^{n}$ defined by

$$
h(b)=A b, \quad \text { for all } b \in\left(\mathbb{Z}_{N}\right)^{n} .
$$

As a consequence of Proposition 3.1 and the above facts we obtain the following proposition.

Proposition 3.2. The order of the Galois group $\operatorname{Aut}(k(X) / k(Y))$ is equal to the order of the group Kerh.

It is easy to show that the groups $\operatorname{Aut}(k(X) / k(Y))$ and ker h are isomorphic, but we do not need this fact.

Proposition 3.3. If the field k is algebraically closed, then the field extension $k(Y) \subset k(X)$ is Galois.

Proof. Let $f: \mathbb{Z}^{n} \rightarrow \mathbb{Z}^{n}, g: \mathbb{Z}^{n} \rightarrow \mathbb{Z}^{n}, \eta: \mathbb{Z}^{n} \rightarrow\left(\mathbb{Z}_{N}\right)^{n}$ be homomorphisms of \mathbb{Z}-modules defined by

$$
f(U)=N U, \quad g(U)=A U, \quad \eta(U)=U \bmod N,
$$

for every column $U \in \mathbb{Z}^{n}$. Then we have the following commutative diagram of \mathbb{Z}-modules and \mathbb{Z}-homomorphisms.

where the two rows are exact. The homomorphism $h:\left(\mathbb{Z}_{N}\right)^{n} \rightarrow\left(\mathbb{Z}_{N}\right)^{n}$ is the same as before. We will use the snake lemma (see, for example [6])

It is possible to complete it in a unique way in a commutative diagram with exact rows and columns :

Moreover, there exists a unique \mathbb{Z}-homomorphism v from $\operatorname{Ker} h$ to Coker g such that the following long sequence is exact:
$\operatorname{Ker} g \xrightarrow{f_{1}} \operatorname{Ker} g \xrightarrow{\eta_{1}} \operatorname{Ker} h \xrightarrow{v}$ Coker $g \xrightarrow{f_{2}}$ Coker $g \xrightarrow{\eta_{2}}$ Coker h.
Observe that $f_{2}:$ Coker $g \rightarrow$ Coker g is indeed the zero map. Let $U \in \mathbb{Z}^{n}$. Since $A A^{\prime}=N I$ (see Section 2), we have $N U=A \cdot\left(A^{\prime} U\right)=g\left(A^{\prime} U\right)$. Thus, every element of the form $N U$, where $U \in \mathbb{Z}^{n}$, belongs to $\operatorname{Im} g$. Now, if $U+\operatorname{Im} g$ is an arbitrary element from Coker g, then

$$
f_{2}(U+\operatorname{Im} g)=f_{2} p(U)=q f(U)=q(N U)=N U+\operatorname{Im} g=0+\operatorname{Im} g
$$

and this means that $f_{2}=0$. Note also that the assumption $\operatorname{det} A \neq 0$ implies that g is injective, so $\operatorname{Ker} g=0$.

Thus, the following short sequence is exact:

$$
0 \longrightarrow \text { Ker } h \xrightarrow{v} \text { Coker } g \xrightarrow{0} \text {, }
$$

that is, the abelian groups Ker h and Coker g are isomorphic.
The image of g is the subgroup of \mathbb{Z}^{n} generated by the columns of the $\operatorname{matrix} A$. We know, by Proposition 2.5, that the quotient group of them is finite, and its order is equal to N. Thus, the cardinality of Coker g is equal to N. Moreover, the cardinality of $\operatorname{Ker} h$ is equal to the order of the group $\operatorname{Aut}(k(X) / k(Y))$ (see Proposition 3.2). Therefore, $|\operatorname{Aut}(k(X) / k(Y))|=N=$ $(k(X): k(Y))$, and so the extension $k(Y) \subset k(X)$ is Galois.

In the above proposition we assumed that the field k is algebraically closed. Without this assumption the field extension $k(Y) \subset k(X)$ is not Galois, in general. For example, the field extension $\mathbb{Q}\left(x^{3}\right) \subset \mathbb{Q}(x)$ is not Galois.

4 The main results

Let $d: k[X] \rightarrow k[X]$ be a monomial derivation of the form

$$
d\left(x_{1}\right)=X^{\beta_{1}}, \quad \ldots, \quad d\left(x_{n}\right)=X^{\beta_{n}}
$$

where $\beta_{1}=\left(\beta_{11}, \ldots, \beta_{1 n}\right), \ldots, \beta_{n}=\left(\beta_{n 1}, \ldots, \beta_{n n}\right)$, are sequences of nonnegative integers. Let as recall (see Introduction), that d is called normal if $\beta_{11}=\beta_{22}=\cdots=\beta_{n n}=0$ and the determinant ω_{d} is nonzero.

We will say that d is special, if either d is without Darboux polynomials or all irreducible Darboux polynomials of d belong to the set $\left\{x_{1}, \ldots, x_{n}\right\}$. In other words, if a monomial derivation d of $k[X]$ is special and $f \in k[X] \backslash k$ is a Darboux polynomial of d, then f is a monomial, that is, $f=a x_{1}^{m_{1}} \cdots x_{n}^{m_{n}}$ for some $0 \neq a \in k$ and some nonnegative integers m_{1}, \ldots, m_{n} such that $\sum m_{i} \geqslant 1$.

Now we are ready to prove the main result of this paper.
Theorem 4.1. Let d be a monomial derivation of a polynomial ring $k[X]=$ $k\left[x_{1}, \ldots, x_{n}\right]$, where k is a field of characteristic zero. If $\omega_{d} \neq 0$ then d is special if and only if the field $k(X)^{d}$ is trivial.

Proof. Denote by y_{1}, \ldots, y_{n} the rational monomials $\frac{d\left(x_{1}\right)}{x_{1}}, \ldots, \frac{d\left(x_{n}\right)}{x_{n}}$, respectively, and let $k(Y)$ denote the field $k\left(y_{1}, \ldots, y_{n}\right)$. Since $\omega_{d} \neq 0$, we have the finite field extension $k(Y) \subset k(X)$ with $(k(X): k(Y))=N$, where $N=\left|\omega_{d}\right|$.
\Longrightarrow. Assume that d is special and let φ be a nonzero element of $k(X)$ such that $d(\varphi)=0$. Let $\varphi=\frac{f}{g}$, where $f, g \in k[X] \backslash\{0\}$ with $\operatorname{gcd}(f, g)=1$. Then $d(f) g=f d(g)$, so $d(f)=\lambda f, d(g)=\lambda g$ for some $\lambda \in k[X]$. Thus, if $f \notin k$, then f is a Darboux polynomial of d. The same for g. The assumption that d is special implies that

$$
f=a x_{1}^{u_{1}} \cdots x_{n}^{u_{n}}, \quad g=b x_{1}^{v_{1}} \cdots x_{n}^{v_{n}},
$$

for some nonzero $a, b \in k$ and some nonnegative integers $u_{1}, \ldots, u_{n}, v_{1}, \ldots, v_{n}$. Moreover, $\frac{d(f)}{f}=\frac{d(g)}{g}=\lambda$. Observe that

$$
\begin{aligned}
& \frac{d(f)}{f}=u_{1} \frac{d\left(x_{1}\right)}{x_{1}}+\cdots+u_{n} \frac{d\left(x_{n}\right)}{x_{n}}=u_{1} y_{1}+\cdots+u_{n} y_{n}, \\
& \frac{d(g)}{g}=v_{1} \frac{d\left(x_{1}\right)}{x_{1}}+\cdots+v_{n} \frac{d\left(x_{n}\right)}{x_{n}}=v_{1} y_{1}+\cdots+v_{n} y_{n} .
\end{aligned}
$$

So, we have the equality $u_{1} y_{1}+\cdots+u_{n} y_{n}=v_{1} y_{1}+\cdots+v_{n} y_{n}$. We know, by Lemma 1.1, that the elements y_{1}, \ldots, y_{n} are algebraically independent.

Hence, $u_{1}=v_{1}, \ldots, u_{n}=v_{n}$. This means that $\varphi=\frac{f}{g}=\frac{a}{b} \in k$. We proved that if d is special then $k(X)^{d}=k$.
\Longleftarrow. Assume that $k(X)^{d}=k$. Let \bar{k} denote the algebraic closure of k, and \bar{d} be the derivation of $\bar{k}[X]$ such that $\bar{d}\left(x_{i}\right)=d\left(x_{i}\right)$ for all $i=1, \ldots, n$. Then $\bar{k}(X)^{\bar{d}}=\bar{k}$ (see [15]). Thus, for a proof that d is special, we may assume that the field k is algebraically closed.

Denote by G the group $\operatorname{Aut}(k(X) / k(Y))$. We know that G is finite and $|G|=N$ (Proposition 3.3).

Observe that if σ is a $k(Y)$-automorphism of $k(X)$, then $\sigma d \sigma^{-1}=d$. In fact, for every $i \in\{1, \ldots, n\}, \sigma\left(x_{i}\right)=\varepsilon_{i} x_{i}$ for some unit root ε_{i} (by Proposition 3.1), and we have the equalities

$$
\sigma d\left(x_{i}\right)=\sigma\left(x_{i} y_{i}\right)=\sigma\left(x_{i}\right) y_{i}=\varepsilon_{i} x_{i} y_{i}=\varepsilon_{i} d\left(x_{i}\right)=d\left(\varepsilon x_{i}\right)=d \sigma\left(x_{i}\right),
$$

which imply that $\sigma d=d \sigma$, that is, $\sigma d \sigma^{-1}=d$.
Let us suppose that $f \in k[X] \backslash k$ is a Darboux polynomial of d. Let $d(f)=\lambda f$, where $\lambda \in k[X]$. Consider two polynomials F and Λ defined by

$$
F=\prod_{\sigma \in G} \sigma(f), \quad \Lambda=\sum_{\sigma \in G} \sigma(\lambda) .
$$

Since every automorphism σ is diagonal (Proposition 3.1), F and Λ belong to $k[X]$. In particular, f divides F in $k[X]$. Moreover, the equalities $\sigma d \sigma^{-1}=d$ imply that

$$
d(F)=\Lambda F
$$

The polynomials F and Λ are invariant with respect to G, that is, $\sigma(F)=F$ and $\sigma(\Lambda)=\Lambda$ for every $\sigma \in G$. But the extension $k(Y) \subset k(X)$ is Galois (Proposition 3.3), so F, Λ belong to $k(Y)$. Therefore,

$$
\delta(F)=\Lambda F,
$$

where δ is the factorisable derivation associated with d (see Section 1). Let us recall (see Lemma 2.1) that $k[X]$ is integral over $k\langle[Y]\rangle$. Thus, the polynomials F, Λ belong to $k(Y)$ and they are integral over $k\langle[Y]\rangle$.

The ring $k\langle[Y]\rangle$ is a ring of fractions of the polynomial ring $k[Y]$, which is a unique factorization domain (UFD). This means, that $k\langle[Y]\rangle$ is also UFD (see, for example, [4]), and so, the domain $k\langle[Y]\rangle$ is integrally closed. Therefore, the polynomials F and Λ belong to $k\langle[Y]\rangle$. In particular,

$$
F=Y^{u} h,
$$

where $Y^{u}=y_{1}^{u_{1}} \cdots y_{n}^{u_{n}}$ with $u_{1}, \ldots, u_{n} \in \mathbb{Z}$, and h is a nonzero strict polynomial belonging to $k[Y]$. Now, from the equality $\delta(F)=\Lambda F$, we obtain that $\delta(h)=w h$, for some $w \in k[Y]$. Thus, if $h \notin k$, then we have a contradiction with Proposition 1.2. Therefore, F is a rational monomial with respect to variables y_{1}, \ldots, y_{n}. But every y_{i} is a rational monomial in x_{1}, \ldots, x_{n}, so F is a rational monomial in x_{1}, \ldots, x_{n}. Moreover, $F \in k[X] \backslash k$, so $F=a x_{1}^{m_{1}} \cdots x_{n}^{m_{n}}$ for some $0 \neq a \in k$ and nonnegative integers m_{1}, \ldots, m_{n}. This implies that the polynomial f is also a monomial, because f divides F.

We proved that, if f is a Darboux polynomial of d, then f is a monomial. This means that the derivation d is special.

In the above theorem we assumed only that d is a monomial derivation of $k[X]$ with $w_{d} \neq 0$. Assume now that d satisfies the additional condition $" x_{i} \nmid d\left(x_{i}\right)$ for all $i=1, \ldots, n "$. Then, as an immediate consequence of Theorem 4.1 we have the following theorem.

Theorem 4.2. Let d be a normal monomial derivation of a polynomial ring $k[X]=k\left[x_{1}, \ldots, x_{n}\right]$, where k is a field of characteristic zero. Then d is without Darboux polynomials if and only if the field $k(X)^{d}$ is trivial.

In Theorems 4.1 and 4.2 the monomial derivation d is monic, that is, all the polynomials $d\left(x_{1}\right), \ldots, d\left(x_{n}\right)$ are monomials with coefficients 1 . The next result shows that our theorems are valid also for arbitrary nonzero coefficients.

Theorem 4.3. Let d be a derivation of a polynomial ring $k[X]=k\left[x_{1}, \ldots, x_{n}\right]$, where k is a field of characteristic zero. Assume that

$$
d\left(x_{i}\right)=a_{i} x_{1}^{\beta_{i 1}} \cdots x_{n}^{\beta_{i n}}
$$

for $i=1, \ldots, n$, where each a_{i} is a nonzero element from k, and each $\beta_{i j}$ is a nonnegative integer. Denote by A the $n \times n$ matrix $\left[\beta_{i j}\right]-I$, and let $w_{d}=$ $\operatorname{det} A$. If the determinant ω_{d} is nonzero, then the following two conditions are equivalent.
(1) Either d is without Darboux polynomials or all irreducible Darboux polynomials of d belong to the set $\left\{x_{1}, \ldots, x_{n}\right\}$.
(2) The field $k(X)^{d}$ is trivial.

Proof. It is clear (see the proof of Theorem 4.1) that we may assume that the field k is algebraically closed. Consider the matrices

$$
E_{1}=\left[\begin{array}{c}
1 \\
0 \\
\vdots \\
0
\end{array}\right], \quad E_{2}=\left[\begin{array}{c}
0 \\
1 \\
\vdots \\
0
\end{array}\right], \quad \ldots, \quad E_{n}=\left[\begin{array}{c}
0 \\
0 \\
\vdots \\
1
\end{array}\right], \quad U=\left[\begin{array}{c}
u_{1} \\
u_{2} \\
\vdots \\
u_{n}
\end{array}\right] .
$$

Since $\operatorname{det} A \neq 0$, for every $i \in\{1, \ldots n\}$ there exists a unique solution $\left[\gamma_{i 1}, \ldots, \gamma_{i n}\right]^{T} \in \mathbb{Q}^{n}$ of the matrix equation $A U=E_{i}$. Let

$$
\varepsilon_{i}=\left(a_{1}^{-1}\right)^{\gamma_{1 i}}\left(a_{2}^{-1}\right)^{\gamma_{2 i}} \cdots\left(a_{n}^{-1}\right)^{\gamma_{n i}}
$$

for $i=1, \ldots, n$, and let $\tau: k(X) \rightarrow k(X)$ be the diagonal automorphism defined by $\tau\left(x_{i}\right)=\varepsilon_{i} x_{i}$ for all $i=1, \ldots, n$. Put $D=\tau d \tau^{-1}$. Then it is easy to check that

$$
D\left(x_{i}\right)=x_{1}^{\beta_{i 1}} \cdots x_{n}^{\beta_{i n}}
$$

for all $i=1, \ldots, n$. Thus, the derivations d and D are equivalent and they have the same matrix A. Now the statement is a consequence of Theorem 4.1.

5 Monomial derivations in three variables

In the case of a ring of polynomials in two variables, it is easy to show that every monomial derivation of has a Darboux polynomial (see, for example, $[16])$. On the contrary, in three variables, various possibilities exist. Moreover, additional facts can be shown in this smallest general case; this is the reason of the present Section.

Let us consider $k[x, y, z]$, the polynomial ring in three variables over a field k (of characteristic zero). Let d be a monomial derivation of $k[x, y, z]$ of the form

$$
\begin{equation*}
d(x)=y^{p_{2}} z^{p_{3}}, \quad d(y)=x^{q_{1}} z^{q_{3}}, \quad d(z)=x^{r_{1}} y^{r_{2}}, \tag{*}
\end{equation*}
$$

where $p_{2}, p_{3}, q_{1}, q_{3}, r_{1}, r_{2}$ are nonnegative integers. In this case

$$
\omega_{d}=\left|\begin{array}{ccc}
-1 & p_{2} & p_{3} \\
q_{1} & -1 & q_{3} \\
r_{1} & r_{2} & -1
\end{array}\right|=-1+p_{2} q_{3} r_{1}+p_{3} q_{1} r_{2}+r_{1} p_{3}+r_{2} q_{3}+p_{2} q_{1} .
$$

If $\omega_{d} \neq 0$, then we know (by Theorem 4.2) that d is without Darboux polynomials if and only if $k(x, y, z)^{d}=k$. All monomial derivations of $k[x, y, z]$, with trivial field of constants, are described in [16]. So, the problem of existence of Darboux polynomials has a full solution for monomial derivations of $k[x, y, z]$ with nonzero determinant.

There exist monomial derivations d of $k[x, y, z]$ for which $\omega_{d}=0$. Let us look at the following example.

Example 5.1. Let $d(x)=1, d(y)=x^{a} z, d(z)=x^{b} y$, where $a \neq b$ are nonnegative integers. Then $\omega_{d}=0, k(x, y, z)^{d}=k$, and d is without Darboux polynomials.

Proof. It is obvious that $\omega_{d}=\left|\begin{array}{rrr}-1 & 0 & 0 \\ a & -1 & 1 \\ b & 1 & -1\end{array}\right|=0$. Using [16] we easily deduce that $k(x, y, z)^{d}=k$. There is only a problem with Darboux polynomials. The determinant ω_{d} is equal to 0 , so we cannot use Theorem 4.2.

For a proof that d is without Darboux polynomial consider the new monomial derivation $D=y d$. The determinant of this new derivation is nonzero:

$$
\omega_{D}=\left|\begin{array}{rrr}
-1 & 1 & 0 \\
a & 0 & 1 \\
b & 2 & -1
\end{array}\right|=a+b+2 \neq 0
$$

Moreover, $k(x, y, z)^{D}=k(x, y, z)^{d}=k$. Hence, we know, by Theorem 4.1, that every Darboux polynomial of D is a monomial.

Let us suppose that $f \in k[x, y, z] \backslash k$ is a Darboux polynomial of d. Let $d(f)=\lambda f$, where $\lambda \in k[x, y, z]$. Then

$$
D(f)=y d(f)=(y \lambda) f,
$$

so f is a Darboux polynomial of D, and so, f is a monomial. Let $f=c x^{p} y^{q} z^{r}$, where $0 \neq c \in k$ and p, q, r are nonnegative integers. Since $f \notin k$, at least one of the numbers p, q, r is greater than zero. This means that at least one of the variables x, y, z is a Darboux polynomial of d (every factor of a Darboux polynomial is a Darboux polynomial). But it is a contradiction, because $x \nmid d(x), y \nmid d(y)$ and $z \nmid d(z)$. Thus, we proved that d is without Darboux polynomials.

We would like to find an example of a monomial derivation d of the form $(*)$ such that $\omega_{d}=0, k(x, y, z)^{d}=k$ and d has a Darboux polynomial. But it is impossible. For every derivation d of the form (*) we may use the same trick as in the proof of Example 5.1. Instead of derivation d we may consider the new derivations: $x d, y d, z d$. If $\omega_{d}=0$, then at least one of the determinants $\omega_{x d}, \omega_{y d}, \omega_{z d}$ is nonzero. It is a consequence of the following lemma.

Lemma 5.2. Let M be a 3×4 matrix of the form

$$
M=\left[\begin{array}{cccc}
-1 & p_{2} & p_{3} & 1 \\
q_{1} & -1 & q_{3} & 1 \\
r_{1} & r_{2} & -1 & 1
\end{array}\right],
$$

where $p_{2}, p_{3}, q_{1}, q_{3}, r_{1}, r_{2}$ are nonnegative integers. Then the rank of M is equal to 3 .

Proof. Denote by $\omega_{0}, \omega_{1}, \omega_{2}, \omega_{3}$, the determinants

$$
\left|\begin{array}{ccc}
-1 & p_{2} & p_{3} \\
q_{1} & -1 & q_{3} \\
r_{1} & r_{2} & -1
\end{array}\right|, \quad\left|\begin{array}{ccc}
1 & p_{2} & p_{3} \\
1 & -1 & q_{3} \\
1 & r_{2} & -1
\end{array}\right|, \quad\left|\begin{array}{ccc}
-1 & 1 & p_{3} \\
q_{1} & 1 & q_{3} \\
r_{1} & 1 & -1
\end{array}\right|, \quad\left|\begin{array}{ccc}
-1 & p_{2} & 1 \\
q_{1} & -1 & 1 \\
r_{1} & r_{2} & 1
\end{array}\right|,
$$

respectively, and suppose that rank $M<3$. Then $\omega_{0}=\omega_{1}=\omega_{2}=\omega_{3}=0$. Let us calculate:

$$
\begin{aligned}
& 0=\omega_{0}=-1+p_{2} q_{3} r_{1}+p_{3} q_{1} r_{2}+p_{3} r_{1}+q_{3} r_{2}+p_{2} q_{1}, \\
& 0=\omega_{1}=1+p_{2} q_{3}+p_{3} r_{2}+p_{2}+p_{3}-q_{3} r_{2}, \\
& 0=\omega_{2}=1+q_{3} r_{1}+p_{3} q_{1}+q_{1}+q_{3}-p_{3} r_{1}, \\
& 0=\omega_{2}=1+p_{2} r_{1}+q_{1} r_{2}+r_{1}+r_{2}-p_{2} q_{1} .
\end{aligned}
$$

From these equalities we obtain the inequalities: $1 \geqslant p_{3} r_{1}+q_{3} r_{2}+p_{2} q_{1}$, $q_{3} r_{2} \geqslant 1, p_{3} r_{1} \geqslant 1, p_{2} q_{1} \geqslant 1$, and we have a contradiction:

$$
1 \geqslant p_{3} r_{1}+q_{3} r_{2}+p_{2} q_{1} \geqslant 1+1+1=3 .
$$

Therefore, $\operatorname{rank} M=3$.
As a consequence of the above facts we obtain the following theorem.
Theorem 5.3. Let d be a monomial derivation of the polynomial ring $k[x, y, z]$, where k is a field of characteristic zero. Assume that

$$
d(x)=y^{p_{2}} z^{p_{3}}, \quad d(y)=x^{q_{1}} z^{q_{3}}, \quad d(z)=x^{r_{1}} y^{r_{2}},
$$

where $p_{2}, p_{3}, q_{1}, q_{3}, r_{1}, r_{2}$ are nonnegative integers. Then d is without Darboux polynomials if and only if $k(x, y, z)^{d}=k$.

We do not know if a similar statement is true for 4 (and more) variables. Of course if we have additional assumption that the determinant ω_{d} is nonzero, then it is true, by Theorem 4.2. What happens if $\omega_{d}=0$? If the number of variables is greater than 3, then does not exist an analogy of Lemma 5.2. Look at the monomial derivation d of $k[x, y, z, t]$ defined by

$$
d(x)=t^{2}, \quad d(y)=z t, \quad d(z)=y^{2}, \quad d(t)=x y
$$

Here $\omega_{d}=0$, and the determinant of every monomial derivation of the form $g d$, where g is a monomial in x, y, z, t, is also equal to zero. What is the field $k(x, y, z, t)^{d}$? Does the derivation d has Darboux polynomials? We do not know answers for these questions. There exists a big number of such examples of monomial derivations.

References

[1] D. Cerveau, A. Lins-Neto, Holomorphic foliations in CP(2) having an invariant algebraic curve, Ann. Inst. Fourier 41 (4) (1991) 883-903.
[2] N. Jacobson, Lectures in abstract algebra. Vol. III: Theory of fields and Galois theory, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London-New York, 1964.
[3] J.-P. Jouanolou, Équations de Pfaff algébriques, Lect. Notes in Math. 708, Springer-Verlag, Berlin, 1979.
[4] I. Kaplansky, Commutative Rings, The University of Chicago Press, Chicago and London, 1974.
[5] M.N. Lagutinskii, On the question of the simplest form of a system of ordinary differential equations (in Russian), Mat. Sb. 27 (1911) 420 423.
[6] S. Lang, Algebra, Second Edition, Addison-Wesley Publ. Comp. 1984.
[7] A. Lins-Neto, Algebraic solutions of polynomial differential equations and foliations in dimension two, in "Holomorphic dynamics", Lect. Notes in Math. 1345, 193-232, Springer-Verlag, Berlin, 1988.
[8] A. Maciejewski, J. Moulin Ollagnier, A. Nowicki, J.-M. Strelcyn, Around Jouanolou non-integrability theorem, Indagationes Mathematicae 11 (2000) 239-254.
[9] A. Maciejewski, J. Moulin Ollagnier, A. Nowicki, Generic polynomial vector fields are not integrable, Indag. Math. (N.S.) 15 (1) (2004) 55 72.
[10] A. Maciejewski, J. Moulin Ollagnier, A. Nowicki, Correction to: "Generic polynomial vector fields are not integrable", Indag. Math. (N.S.) 18 (2) (2007) 245-249.
[11] J. Moulin Ollagnier, Liouvillian integration of the Lotka-Volterra system, Qual. Theory Dyn. Syst. 2 (2001) 307-358.
[12] J. Moulin Ollagnier, A. Nowicki, Derivations of polynomial algebras without Darboux polynomials, J. Pure Appl. Algebra 212 (2008) 1626 1631.
[13] J. Moulin Ollagnier, A. Nowicki, J.-M. Strelcyn, On the non-existence of constants of derivations: The proof of a theorem of Jouanolou and its development, Bull. Sci. Math. 119 (1995) 195-233.
[14] A. Nowicki, Polynomial derivations and their rings of constants, N. Copernicus University Press, Toruń, 1994.
[15] A. Nowicki, On the non-existence of rational first integrals for systems of linear differential equations, Linear Algebra and Its Applications, 235 (1996) 107-120.
[16] A. Nowicki, J. Zieliński, Rational constants of monomial derivations, J. Algebra, 3002(2006) 387-418.
[17] J. Zieliński, Factorizable derivations and ideals of relations, Communications in Algebra, 35(2007) 983-997.
[18] H. Żoła̧dek, On algebraic solutions of algebraic Pfaff equations, Studia Math. 114 (1995) 117-126.
[19] H. Zołądek, Multi-dimensional Jouanolou system, J. reine angew. Math. 556 (2003) 47-78.

[^0]: ${ }^{0}$ Corresponding author : Andrzej Nowicki, N. Copernicus University, Faculty of Mathematics and Computer Science, ul. Chopina 12/18, 87-100 Toruń, Poland. E-mail: anow@mat.uni.torun.pl.

