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Abstract

We present several new examples of homogeneous derivations of a polynomial ring k[X ] = k[x1, . . . , xn] over a field k of
characteristic zero without Darboux polynomials. Using a modification of a result of Shamsuddin, we produce these examples by
induction on the number n of variables, thus more easily than the previously known example multidimensional Jouanolou systems
of Żoła̧dek.
c© 2007 Elsevier B.V. All rights reserved.
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Introduction

Throughout this paper k is a field of characteristic zero, and k[X ] = k[x1, . . . , xn] is the polynomial ring in n
variables over k. A derivation d = f1

∂
∂x1

+ · · · + fn
∂

∂xn
of k[X ] is said to be homogeneous of degree s if all the

polynomials f1, . . . , fn are homogeneous of the same degree s. If d is a derivation of k[X ], then we say that a
polynomial F ∈ k[X ] is a Darboux polynomial of d if F 6∈ k and d(F) = ΛF for some Λ ∈ k[X ]. We say that a
derivation d of k[X ] is without Darboux polynomials if d has no Darboux polynomials.

The existence of Darboux polynomials is a necessary condition for a derivation d of k[X ] to have a first
integral which belongs to k[X ], to k(X), or even belongs to a Liouvillian extension of k(X) (see [9]), where
k(X) = k(x1, . . . , xn) is the field of rational functions in n variables over k.

Denote by A(n, s) the set (a finite dimensional k-vector space) of all homogeneous derivations of a given degree
s, and let B(n, s) be the subset ofA(n, s) of all derivations which are without Darboux polynomials. It is known [3,6]
that B(n, s) is a countable intersection of Zariski open algebraic sets in A(n, s). Thus, in the case where B(n, s) is a
nonempty set, the nonexistence of Darboux polynomials is typical, their existence is rare in the Baire category sense
if we consider the whole set of all homogeneous derivations of a given degree s. It is easy to prove (see Section 1) that
if n ≤ 2 or s = 1, then B(n, s) = ∅.
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Assume now that n ≥ 3 and s ≥ 2. We already know that B(n, s) is nonempty as there exist examples of derivations
without the Darboux polynomial; they are given in the papers [16,7]. However, in these papers, the proofs that the
proposed derivations are indeed without Darboux polynomials are very long.

In this paper we present a simple way for a construction of examples of homogeneous derivations of k[X ] without
Darboux polynomials. In our construction we start from such derivations for n = 3. We use, for instance, the fact
that the Jouanolou derivation ys ∂

∂x + zs ∂
∂y + x s ∂

∂z is without Darboux polynomials [3]. Other examples for n = 3 are
given in Section 4.

For n ≥ 4, we use an induction process to produce examples; then a modification of Shamsuddin’s results plays a
crucial role in our construction [13,14].

1. Preliminary facts

We are mainly interested in Darboux polynomials of homogeneous derivations of k[X ]. It is well known from
linear algebra that every homogeneous derivation of k[X ] of degree 1 has a Darboux polynomial. The same is true for
arbitrary degrees and n ≤ 2. This fact is trivial for n = 1. For n = 2 we have the following proposition.

Proposition 1.1. Every homogeneous derivation of k[x, y] has a Darboux polynomial.

Proof. Let d be a homogeneous derivation of k[x, y] of degree s. Put f = d(x), g = d(y), and let F = xg − y f . The
Euler equalities x ∂ f

∂x + y ∂ f
∂y = s f and x ∂g

∂x + y ∂g
∂y = sg imply that d(F) = ΛF , where Λ =

∂ f
∂x +

∂g
∂y . So, if F 6= 0,

then F is a Darboux polynomial of d . If F = 0, then x − y is a Darboux polynomial of d. �

If n ≥ 3 and s ≥ 2, then the above property does not hold, in general.

Theorem 1.2 ([3]). The derivation ys ∂
∂x + zs ∂

∂y + x s ∂
∂z , where s ≥ 2, has no Darboux polynomials.

We know several different proofs of Theorem 1.2 ([3,5,1,15,10]). The derivation from this theorem is a Jouanolou
derivation. By the Jouanolou derivation with integer parameters n ≥ 3 and s ≥ 2 we mean the homogeneous
derivation d : k[X ] → k[X ] defined by

d(x1) = x s
2, d(x2) = x s

3, . . . , d(xn−1) = x s
n, d(xn) = x s

1.

We denote this derivation by J (n, s). There exists a proof ([6]) that if n ≥ 3 is a prime number, then J (n, s) is without
Darboux polynomials, for all s ≥ 2. There are also separate such proofs for n = 4 and s ≥ 2 [16,7]. In 2003 Żoła̧dek
[16] proposed an analytical proof that J (n, s) is without Darboux polynomials for all s ≥ 2 and n ≥ 3.

2. A modification of Shamsuddin’s result

Let R be a commutative ring and d : R → R be a derivation. We denote by Rd the ring of constants of d, that is,
Rd

= {r ∈ R; d(r) = 0}. If a ∈ R, then we say that a is a Darboux element of d if a 6= 0, a is not invertible in R,
and d(a) = λa for some λ ∈ R. In other words, a nonzero element a of R is a Darboux element of d if and only if
the principal ideal (a) := {ra; r ∈ R} is different from R and it is invariant with respect to d, that is d((a)) ⊆ (a). In
particular, if a is a nonzero and noninvertible element belonging to Rd , then a is a Darboux element of d. We say that
d is without Darboux elements if d has no Darboux elements.

Theorem 2.1. Let R be a commutative domain containing Q and let d : R → R be a derivation without Darboux
elements. Let R[t] be the polynomial ring in one variable over R, and let D : R[t] → R[t] be a derivation such that
D(r) = d(r) for r ∈ R, and

D(t) = at + b,

for some a, b ∈ R. Then the following two conditions are equivalent.

(1) The derivation D is without Darboux elements.
(2) There exist no elements r of R such that d(r) = ar + b.
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Proof. (1) ⇒ (2). Assume that D is without Darboux elements and suppose that there exists r ∈ R such that
d(r) = ar + b. Then D(t − r) = at + b − (ar + b) = a(t − r), so t − r is a Darboux element of D; a contradiction.
(2) ⇒ (1) Suppose that 0 6= f ∈ R[t] is a Darboux element of D. Then f is not invertible in R[t] and D( f ) = λ f
for some λ ∈ R[t]. Comparing in the equality D( f ) = λ f the degrees with respect to t , we deduce that λ ∈ R. This
implies that f 6∈ R, because d is without Darboux elements. Put n = deg f . Note that n ≥ 1.

Let f = ctn
+ cn−1tn−1

+ · · · + c1t + c0, where c, cn−1, . . . , c1, c0 ∈ R and c 6= 0. Then

D( f ) = (d(c) + nac)tn
+ un−1tn−1

+ · · · u1t + u0,

for some u0, u1, . . . , un−1 ∈ R. Comparing in the equality D( f ) = λ f the coefficients with respect to tn , we obtain
the equality d(c) + nac = λc, so

d(c) = (λ − na)c.

Hence, if c is not invertible in R, then c is a Darboux element of d. But d is without Darboux elements, so c is
invertible in R. Let u ∈ R such that uc = 1, and consider the polynomial F = u f . Then D(F) = ΛF , where
Λ = cd(u) + λ. Hence, F ∈ R[t] is a monic polynomial of degree n, which is a Darboux element of D.

Let F = tn
+ etn−1

+ en−2tn−2
+ · · · + e1t + e0, where e, en−2, . . . , e1, e0 ∈ R, and consider the polynomial

G := D(F) − naF = (Λ − na)F . Observe that G is of the form vtn−1
+ vn−2tn−2

+ · · · + v1t + v0, where
vn−2, . . . , v1, v0 ∈ R, and

v = nb + d(e) + (n − 1)ea − nae = d(e) − ea + nb.

So, deg G < n = deg F and it is clear that G is divisible by F . Hence, G = 0. In particular, v = 0, that is,
d(e) = ae − nb. Put r := −

1
n e. Then r is an element of R such that d(r) = ar + b, and we have a contradiction. �

The above theorem is inspired by results of Ahmad Shamsuddin. In 1982, he proved in [14] a similar theorem for
automorphisms leaving no nontrivial proper ideals invariant. In his Ph.D. thesis [13], he also proved a similar theorem
for simple derivations. Many consequences of his theorems can be found, for example, in [2,11,8,4].

If a = 0, then Theorem 2.1 has the following form.

Theorem 2.2. Let R be a commutative domain containing Q and let d : R → R be a derivation without Darboux
elements. Let R[t] be the polynomial ring in one variable over R, and let D : R[t] → R[t] be a derivation such that
D(r) = d(r) for r ∈ R, and D(t) = b for some b ∈ R. Then D is without Darboux elements if and only if b 6∈ d(R).

3. Examples for arbitrary number of variables

Starting from the Jouanolou derivation J (3, s) and using Theorems 2.1 and 2.2, we may produce a series of
examples of homogeneous derivations of k[x1, . . . , xn] (where n ≥ 4) without Darboux polynomials.

Example 3.1. If n ≥ 4, s ≥ 2, then the derivation

x s
2

∂

∂x1
+ x s

3
∂

∂x2
+ x s

1
∂

∂x3
+ x2x s−1

3
∂

∂x4
+ · · · + xn−2x s−1

n−1
∂

∂xn

of k[x1, . . . , xn] is without Darboux polynomials.

Proof. Denote this derivation by δn and put δ3 = J (3, s). We know, by Theorem 1.2, that δ3 is without Darboux
polynomials. Let n ≥ 4 and assume that δn−1 is without Darboux polynomials.

Put R = k[x1, . . . , xn−1], d = δn−1, D = δn , b = xn−2x s−1
n−1 and t = xn . Then R[t] = k[x1, . . . , xn], b ∈ R and D

is a derivation of R[t] such that D(r) = d(r) for all r ∈ R, and D(t) = b. We will show that b 6∈ d(R).
Suppose that b = d( f ) for some f ∈ R, and denote by g the homogeneous component of f of degree 1.

Since d is homogeneous of degree s and b is homogeneous of degree s, we have the equality b = d(g). Let
g = β1x1 + · · · + βn−1xn−1 with β1, . . . , βn−1 ∈ k. Then, if n = 4 the equality b = d(g) implies the obvious
contradiction x2x s−1

3 = β1x s
2 + β2x s

3 + β3x s
1. If n ≥ 5, then we have also a contradiction:

xn−2x s−1
n−1 = β1x s

2 + β2x s
3 + β3x s

1 + β4x2x s−1
3 + · · · + βn−1xn−3x s−1

n−2.

Therefore, b 6∈ d(R). This means, by Theorem 2.2 and an induction, that the derivation δn = D is without Darboux
polynomials. �
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Using the same proof we obtain the following example for s = 3.

Example 3.2. If n ≥ 4, then the derivation

x3
2

∂

∂x1
+ x3

3
∂

∂x2
+ x3

1
∂

∂x3
+ x1x2x3

∂

∂x4
+ · · · + xn−3xn−2xn−1

∂

∂xn

of k[x1, . . . , xn] is without Darboux polynomials.

In the same way we obtain the following generalization of the above example.

Example 3.3. If n ≥ 4, n ≥ 3, then the derivation

x s
2

∂

∂x1
+ x s

3
∂

∂x2
+ x s

1
∂

∂x3
+ x1x2x s−2

3
∂

∂x4
+ · · · + xn−3xn−2x s−2

n−1
∂

∂xn

of k[x1, . . . , xn] is without Darboux polynomials.

Note also an example for four variables.

Example 3.4. The derivation y2 ∂
∂x +z2 ∂

∂y +x2 ∂
∂z +(xt +yz) ∂

∂t of the polynomial ring k[x, y, z, t] is without Darboux
polynomials.

Proof. Denote this derivation by D and put R = k[x, y, z], d = J (3, 2), a = x and b = yz. Then R[t] = k[x, y, z, t],
a, b ∈ R and D is a derivation of R[t] such that D(r) = d(r) for all r ∈ R, and D(t) = at + b. Note that d is
homogeneous of degree 2 and, by Theorem 1.2, d is without Darboux polynomials. We will show that there exist no
elements f of R such that d( f ) = a f + b.

Suppose that d( f ) = a f + b for some f ∈ R. It is clear that f 6∈ k. Denote by g the initial homogeneous
component of f . If deg g ≥ 2 then, by the homogeneity, d(g) = xg which contradicts the fact that d is without
Darboux polynomials. Hence g is of the form αx +βy+γ z, for some α, β, γ ∈ k. Comparing the initial homogeneous
components in the equality d( f ) = a f + b, we obtain the equality

αy2
+ βz2

+ γ x2
= αx2

+ βxy + γ xz + yz.

But this equality is an obvious contradiction. Thus, there exist no elements f of R such that d( f ) = a f + b. This
implies, by Theorem 2.1, that the derivation D is without Darboux polynomials. �

Using the same proof and an induction, we have the following generalization of Example 3.4.

Example 3.5. If n ≥ 4, then the derivation

x2
2

∂

∂x1
+ x2

3
∂

∂x2
+ x2

1
∂

∂x3
+ (x1x4 + x2x3)

∂

∂x4
+ · · · + (xn−3xn + xn−2xn−1)

∂

∂xn

of k[x1, . . . , xn] is without Darboux polynomials.

4. Homogeneous monomial derivations of k[x, y, z]

If d is a derivation from the examples of the previous section, then d([x1, x2, x3]) ⊆ k[x1, x2, x3] and the restriction
of d to k[x1, x2, x3] is the Jouanolou derivation J (3, s). We used J (3, s), because we know (by Theorem 1.2) that
J (3, s) is a homogeneous derivation of k[x, y, z] = k[x1, x2, x3] without Darboux polynomials. We will show that
there exist other examples of homogeneous derivations of k[x, y, z] without Darboux polynomials.

Let s ≥ 2 be a fixed integer. In this section we consider derivations of the form d : k[x, y, z] → k[x, y, z], where
d(x), d(y), d(z) are monic monomials of the same degree s. We denote such a derivation by [d(x), d(y), d(z)], and
we say that d is irreducible if gcd(d(x), d(y), d(z)) = 1. Moreover, we say that such a monomial derivation is strict
if d(x) is not divisible by x , d(y) is not divisible by y and d(z) is not divisible by z. It is clear that if d is strict then
d is irreducible, and if d is without Darboux polynomials then d is strict. Note also (see for example [12]) that if d is
without Darboux polynomials, then d is without nontrivial rational constants.

In [12] (see Section 10) there exists a list of all monomial derivations of k[x, y, z] of degree 2 without nontrivial
rational constants. This list contains 40 derivations divided into 8 parts. The derivations in each part are the same, up
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to permutations of variables. We see here only two derivations, up to permutations of variables, which are strict. One
of them is the Jouanolou derivation J (2, 3) = [y2, z2, x2

]. The second derivation is of the form [y2, z2, xy].

Theorem 4.1. The derivation [y2, z2, xy] is without Darboux polynomials.

Proof. Put d = [y2, z2, xy], and suppose that there exists a polynomial F ∈ k[x, y, z] \ k such that d(F) = ΛF for
some Λ ∈ k[x, y, z].

Let k̄ be the algebraic closure of the field k and let d̄ mean the derivation [y2, z2, xy] of the polynomial ring
k̄[x, y, z]. Then we have the equality d̄(F) = ΛF , where Λ, F ∈ k̄[x, y, z] and F 6∈ k̄. Thus, we may assume that the
field k is algebraically closed. Moreover, since d is homogeneous, we may assume that the polynomials F and Λ are
also homogeneous.

Let σ : k[x, y, z] → k[x, y, z] be a k-algebra automorphism defined by

σ(x) = ε4x, σ (y) = ε2 y, σ (z) = εz,

where ε is a primitive root of unity of degree 5. Denote by G the subgroup of the group of all k-algebra automorphisms
of k[x, y, z], generated by σ . Then we have G = {σ, σ 2, σ 3, σ 4, σ 5

}, where σ 5 is the identity. We say that a
polynomial H ∈ k[x, y, z] is G-invariant, if τ(H) = H for every τ ∈ G. It is clear that, in our case, a nonzero
polynomial H is G-invariant if and only if each monomial of H is G-invariant. Moreover, a monomial ux p yq zr ,
where 0 6= u ∈ k, is G-invariant if and only if the integer 4p + 2q + r is divisible by 5. In particular, there are no
nonzero homogeneous G-invariant polynomials of degree 1.

Observe that the derivation d is G-invariant, that is, τdτ−1
= d for any τ ∈ G. Hence, the equality d(F) = ΛF

implies the equality d(F ′) = Λ′F ′, where

F ′
= F · σ(F) · σ 2(F) · σ 3(F) · σ 4(F), Λ′

= Λ + σ(Λ) + σ 2(Λ) + σ 3(Λ) + σ 4(Λ).

The polynomials F ′,Λ′ belong to k[x, y, z] and F ′
6∈ k. They are homogeneous and G-invariant. Suppose that Λ′

6= 0.
Then, since d is homogeneous of degree 2, the degree of Λ′ is equal to 1. We already know that there are no nonzero
homogeneous G-invariant polynomials of degree 1. This means that Λ′

= 0. Now we have: d(F ′) = 0 and F ′
6∈ k.

But this is a contradiction, because – by [12] – the derivation d is without nontrivial rational constants. �

As a consequence of the above theorem, Theorem 1.2 and [12] Proposition 10.1 we obtain the following
proposition.

Proposition 4.2. Let d : k[x, y, z] → k[x, y, z] be an irreducible derivation such that d(x), d(y), d(z) are monic
monomials of the same degree 2. Then d is without Darboux polynomials if and only if d can be found in the following
list of 8 derivations divided into 2 parts. The derivations in each part are the same, up to permutations of variables.

(1) [y2, z2, xy], [z2, xz, y2
], [z2, x2, xy], [yz, z2, x2

], [y2, xz, x2
], [yz, x2, y2

];
(2) [y2, z2, x2

], [z2, x2, y2
].

Using the results of [12] and various modifications of the proof of Theorem 4.1 we may describe all monomial
homogeneous derivations of k[x, y, z] without Darboux polynomials. Now we present such descriptions for s = 3
and 4.

Proposition 4.3. Let d : k[x, y, z] → k[x, y, z] be an irreducible derivation such that d(x), d(y), d(z) are monic
monomials of the same degree 3. Then d is without Darboux polynomials if and only if d can be found in the following
list of 28 derivations divided into 6 parts. The derivations in each part are the same, up to permutations of variables.

(1) [z3, xz2, y3
], [y3, x2z, x3

], [yz2, z3, x3
], [z3, x3, x2 y], [y2z, x3, y3

], [y3, z3, xy2
];

(2) [y3, x2z, xy2
], [y2z, xz2, y3

], [yz2, x2z, x3
], [yz2, z3, xy2

], [y2z, x3, x2 y], [z3, xz2, x2 y];
(3) [y2z, z3, x3

], [y3, z3, x2 y], [z3, x3, xy2
], [y3, xz2, x3

], [yz2, x3, y3
], [z3, x2z, y3

];
(4) [yz2, x3, xy2

], [y2z, z3, x2 y], [y3, xz2, x2 y], [y2z, xz2, x3
], [yz2, x2z, y3

], [z3, x2z, xy2
];

(5) [z3, x3, y3
], [y3, z3, x3

];
(6) [yz2, x2z, xy2

], [y2z, xz2, x2 y].
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Proposition 4.4. Let d : k[x, y, z] → k[x, y, z] be an irreducible derivation such that d(x), d(y), d(z) are monic
monomials of the same degree 4. Then d is without Darboux polynomials if and only if, up to permutations of variables,
d can be found in the following list of 11 derivations.

[z4, x2z2, y4
], [z4, xz3, y4

], [z4, x3z, y4
], [z4, x2z2, xy3

], [z4, x3z, xy3
], [z4, xz3, x2 y2

],

[z4, x3z, x2 y2
], [z4, xz3, x3 y], [yz3, x2z2, xy3

], [z4, x2z2, x3 y], [z4, x4, y4
].
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