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Abstract

In the paper Generic polynomial vector fields are not integrable [1], we study some generic
aspects of polynomial vector fields or polynomial derivations with respect to their integration.

Using direct sums of derivations together with our previous results we showed that, for all
n ≥ 3 and s ≥ 2, the absence of polynomial first integrals, or even of Darboux polynomials,
is generic for homogeneous polynomial vector fields of degree s in n variables.

To achieve this task, we need an example of such vector fields of degree s ≥ 2 for any
prime number n ≥ 3 of variables and also for n = 4.

The purpose of this note is to correct a gap in our paper for n = 4 by completing the
corresponding proof.

1 Introduction

We are interested in some generic aspects of polynomial vector fields or polynomial derivations with
respect to integration. Precisely, we want to show that the absence of polynomial first integrals, or
even of Darboux polynomials, is generic (in the Baire category sense) for homogeneous polynomial
vector fields of degree s in n variables for all n ≥ 3 and s ≥ 2.

Using direct sums of derivations together with previous results of us [2], this fact can be settled
provided that there is an example of such vector fields of degree s ≥ 2 for any prime number n ≥ 3
of variables and also for n = 4.

There is a gap in our proof when we exhibit the Jouanolou derivation J4,s as the sought example
for n = 4; the weak point lies at the very end of the paper [1]. To use our Lemma 1, we only need
an exponent α
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• which belongs to the exposed face E ,

• such that α2 is 0 or 1,

• with a total degree |α| ≤ m.

The discussion is subsections 3.9 and 3.10 does prove, at least in the situations we are interested
in, that, for a square-free Darboux polynomial at a Darboux point, there exists, for every local
coordinate ui, an exponent α in E for which the component αi is either 0 or 1.

But, there is no general reason for the exposed face E to consist only of exponents of total
degree less than or equal to the degree m of the polynomial.

What remains true of the local analysis around a Darboux point that we did in our paper is
the following.

Remark 1 If a square-free Darboux polynomial F of some derivation d of K[x1, · · · , xn] vanishes
at a Darboux point M of d, the corresponding powers series φ in the local variables is square-free
in the unique factorization domain K[[u1, · · · , un−1]] of power series.

If moreover the linear part of the local derivation at M can be put in diagonal form

n−1
∑

i=1

λiui∂i

without non-trivial tuple α in Zn−1 such that
n−1
∑

i=1

λiαi = 0 and
n−1
∑

i=1

αi = 0, then the exposed

face E of F at M either consists of only one exponent or is a line and the 0–1 constraint holds
for the square-free F at M : for every i, there exists an α ∈ E such that αi is 0 or 1.

This is exactly what happens for FJ4,s at [1, 1, 1, 1] and for Jn,2 (n is an odd prime) at [1, · · · , 1].

Using this remark, our correction will thus consist of three points :

• for s ≥ 3, the factored derivation FJ4,s has no strict Darboux polynomial,

• for any prime number n ≥ 3, the Jouanolou derivation Jn,2 has no Darboux polynomial,

• the Jouanolou derivation J4,2 has no Darboux polynomial.

2 FJ4,s has no strict Darboux polynomial

Suppose that F is a strict irreducible Darboux polynomial of degree m for FJ4,s.
At U = [1, 1, 1, 1], the exposed face for F would consist of all [α1, α2, α3] in N3 such that

α1 = α3, α1 + (1 + s)α2 + α3 = (s − 1)m + L,

for some integer L ≥ 2.
α1 = α3 takes its minimal value ε, (which is 0 or 1 according to Remark 1) for the exponent of
minimal total degree µ ≤ m.
Let α2 be the corresponding value of α2 (µ = α2 + 2ε).
From degree µ to degree m, there is a propagation of non-support : the minimal degree in u2 of
all monomials in the support of F cannot decrease too fast, by 1 if there is no exponent in the
exposed face E of degree µ + k or have a larger jump if there is an exponent in E of degree µ + k.
Precisely, define a finite sequence (dk), 0 ≤ k ≤ m−µ of nonnegative integers in the following way
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• d0 = α2

• if there is no exponent of degree µ + k in E , then dk = sup(0, dk−1 − 1)

• if there is an exponent [., α2, .] of degree µ + k in E , then dk = sup(0, inf(dk−1 − 1), α2).

Then, every exponent α in the support of F with a total degree µ + k has a second coordinate
greater than or equal to dk.
Exposed exponents are such that µ+k + sα2 = µ+α2, i. e. s(α2 −α2) = k and thus, in fact, they
play no role in the definition of the previous sequence : dk = sup(0, d0 − k).

Now, as u2 is not a Darboux polynomial, it does not divide F and there is an exponent in the
support of F with a 0 second coordinate.
Then dk has to vanish from some k; then dm−µ = 0 which means that d0 − (m − µ) ≤ 0, whence

d0 ≤ m − (d0 + 2ε), hence d0 ≤ (m/2) − ε

and the inequality :

(s − 1)m + L = 2ε + (1 + s)d0 ≤ 2ε +
1 + s

2
(m − 2ε)

which yields an upper bound on L

L ≤
3 − s

2
m − (s − 1)ε.

Even if we do not take into consideration the fact that ε is 0 or 1, this gives L ≤ 0 when s ≥ 3,
which is contradictory with L ≥ 2 �.

3 Jn,2 has no Darboux polynomial for an odd prime n

Consider the two following automorphisms of the polynomial ring K[x1, · · · , xn].
Given ε, a primitive S-root of unity where S = 2n − 1, the multiplication M is defined on the
variables by M(xi) = ε2n−i

xi.
The rotation R is defined by R(xi) = xi+1 for 1 ≤ i < n and R(xn) = x1.
The Jouanolou derivation Jn,2 commute with the two automorphisms M and R.
M generates a finite cyclic group of order S whereas R generates a finite cyclic group of order n.
Moreover, M and R are related by R M R−1 = M2. Thus, M and R together generate a finite
solvable group G of automorphisms of K[x1, · · · , xn], whose order is n S; these automorphisms
commute with the Jouanolou derivation Jn,2.
Suppose now that Jn,2 has an irreducible Darboux polynomial f and consider the subgroup Gf of
G consisting of all g that leave f projectively invariant, which means that its transform g(f) is a
scalar multiple of f . Take the product φ of all g(f) for all g in the right-quotient of G by Gf .
This polynomial φ is square-free, it is a Darboux polynomial for Jn,2, its cofactor is G-invariant
and thus is 0, which means that Jn,2(φ) = 0; moreover, φ is projectively invariant under G. Let
m be its degree.
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The support of φ is thus contained in the subset Γm of Nn consisting of all n-tuples α of total
mass |α| = m and such that σ(α) = 0, where σ(α) is defined as

σ(α) =

n
∑

i=1

2n−i αi (mod 2n − 1).

Looking now locally at the Darboux point [1, · · · , 1], as we did in [2], Theorem 4.1, we see that
m and n are related by m − (n − 1)ν = 2ν, where ν is the common value of the exponents of the
local variables in the form of minimal degree (n is an odd prime).
According to Remark 1, it can be deduced from the fact that φ is square-free that the integer ν
is either 0 or 1. Supposing that ν = 0 leads to m = 0. Thus ν must be 1 and m = n + 1.

Now remark that, on the one hand, [1, · · · , 1] ∈ Γn whereas, on the other hand, the n-tuple
[−1, 2, 0, · · · , 0] and its transforms by rotations ρi generate the Z-module of all α ∈ Z such that
|α| = 1 and σ(α) = 0.
Γn+1 thus consists of all α ∈ Nn that can be written

α = [1, · · · , 1] +

i=n
∑

i=1

kiρ
i([−1, 2, 0, · · · , 0]),

where the ki are integers (in Z) and their sum is 1. This is only possible if some ki is 1 while
all others are 0 and Γn+1 consists of only one orbit under rotations, the orbit of the exponent
[0, 3, 1, · · · , 1]. Then φ could be written

φ =

n
∑

i=1

ai x
2
i+1

∏

j 6=i

xj.

The candidate support of Jn,2(φ) consists of all n-tuples of nonnegative integers

[1, · · · , 1] + ρi([−1, 2, 0, · · · , 0]) + ρj([−1, 2, 0, · · · , 0]), i 6= j.

and Jn,2(φ) = 0 gives n(n−1)
2

linear equations involving the ai:

3 ai + aj = 0, (when j = i + 1), ai + aj = 0, (when |j − i| > 1).

To conclude that φ has to be 0, the sought contradiction, we have to distinguish two cases.
When n ≥ 5, equations ai + ai+2 = 0 and ai + ai+3 = 0 give ai+2 = ai+3 for any i; all ai are equal
and then equal to 0.
In the case n = 3 we get a square linear system whose determinant is not 0.

4 J4,2 has no Darboux polynomial

Let J4,2 be the Jouanolou derivation for s = 2 and n = 4. It is convenient to introduce new
variables to study this derivation. Let u0, u1, u2, u3 be these Fourier coordinates (i is a square
root of −1, i. e. a primitive 4-root of unity):















u0 = x1 + x2 + x3 + x4

u1 = i x1 − x2 − i x3 + x4

u2 = −x1 + x2 − x3 + x4

u3 = −i x1 − x2 + i x3 + x4
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Let d be the derivation 4J4,2:














d(u0) = u2
0 + u2

2 + 2u1u3

d(u1) = −i(2u0u1 + 2u2u3)
d(u2) = −2u0u2 − u2

1 − u2
3

d(u3) = i(2u0u3 + 2u2u1)

Let f be a non-trivial irreducible Darboux polynomial of J4,2. Using automorphisms like in the
previous section, we can build some product φ of transforms of f which is a square-free constant
of J4,2.
Now remark that d increases the partial degree in u1 and u3. Write φ = φ0 + · · ·φm, where φk is
homogeneous of degree k in u1 and u3 and homogeneous of degree m − k in u0 and u2.

Let k0 be the smallest k for which φk 6= 0.

The derivation d is the sum d = d0 + d2 of two derivations, where d0 is homogeneous of degree 0
and d2 is homogeneous of degree 2 for the partial degree in u1 and u3:















d0(u0) = u2
0 + u2

2

d0(u1) = −i(2u0u1 + 2u2u3)
d0(u2) = −2u0u2

d0(u3) = i(2u0u3 + 2u2u1)















d2(u0) = 2u1u3

d2(u1) = 0
d2(u2) = −u2

1 − u2
3

d2(u3) = 0

Once again, Remark 1 shows that the minimal value of α1 = α3 is either 0 or 1, which means
that the smallest possible k0 is either 0 or 2. It remains to show that the two possibilities lead to
contradictions.

This will be the purpose of the rest of this note for which we give appropriate new notations
in subsection 4.1.

If k0 = 2, then φ2 = A u2
1 + B u1 u3 + C u2

3 would be a nonzero constant of the derivation d0,
where A, B, C are homogeneous polynomials of degree m − 2 in u0 and u2; in subsection 4.2, we
show this is impossible.

If k0 = 0, then the equation d0(φ0) quickly gives m = 3µ, φ0 = (u2 (3u2
0 + u2

2))
µ

(up to a
nonzero constant), and the second term φ2 would satisfy d0(φ2) = −d2(φ0); in subsection 4.3, we
show this is impossible.

4.1 Notations

We will use the following new notations.

x := u0, y := u2, d := d0, U := 3x2 + y2, V := Uy = (3x2 + y2)y.

So, d : Q[x, y] → Q[x, y] is a derivation defined by

d(x) = x2 + y2, d(y) = −2xy.

The polynomial V is a constant of d, and U, y are Darboux polynomials; d(U) = 2xU , d(y) =
(−2x)y.

Consider the factor ring A = Q[x, y]/(U), and let φ : Q[x, y] → A be the natural homo-
morphism of rings (if w ∈ Q[x, y], then φ(w) is the remainder of w with respect to U). Every
polynomial w from Q[x, y] has a unique presentation

w = (3x2 + y2)w0 + a(x)y + b(x),
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where w0 ∈ Q[x, y], a(x), b(x) ∈ Q[x]. Thus, the ring A, as a set, is the set of all pairs (a, b),
where a, b ∈ Q[x], and

(a1, b1) + (a2, b2) = (a1 + a2, b1 + b2)
(a1, b1) · (a2, b2) = (a1b2 + a2b1, b1b2 − 3x2a1a2).

We will write the elements of A in the form a(x)y + b(x), where y2 = −3x2. If w ∈ Q[x, y] with
w = (3x2 + y2)w0 + a(x)y + b(x), then φ(w) = a(x)y + b(x).

Consider the derivation ∆ : Q[x, y] → Q[x, y] defined by ∆(x) = x2, ∆(y) = xy. Observe that
∆(U) = 2xU . In fact, ∆(U) = ∆(3x2 + y2) = 6x · x2 + 2y · xy = 2x(3x2 + y2) = 2xU . So, the
ideal (U) is ∆-invariant. This derivation induces the derivation δ : A → A such that

δ(x) = x2, δ(y) = xy.

Let d̄ : Q[x, y] → Q[x, y] be the derivation defined by:

d̄ := −
1

2
d.

Then we have:

Lemma 1 δφ = φd̄.

Proof. It is enough to check that δφ(x) = φd̄(x) and δφ(y) = φd̄(y). Let us check:

δφ(x) = δ(x) = x2,

φd̄(x) = −1
2
φ(x2 + y2) = 1

2
φ((3x2 + y2) − 2x2) = −1

2
(−2x2) = x2,

δφ(y) = d(y) = xy,

φd̄(y) = −1
2
φd(y) = −1

2
φ(−2xy) = − 1

2
(−2)xy = xy.

So, δφ = φd̄. �

4.2 k0 = 2 is impossible

Suppose that φ2 = A u2
1 + B u1 u3 + C u2

3 with d0(φ2) = 0 and [A, B, C] 6= [0, 0, 0]. This can be
detailed as











d0(A) − 4 i u0 A + 2 i u2 B = 0

d0(C) + 4 i u0 C − 2 i u2 B = 0

d0(B) − 4 i u2 A + 4 i u2 C = 0.

Then d0(B
2 − 4AC) = 0 and B2 − 4AC = (u2 (3u2

0 + u2
2))

µ
up to a nonzero constant.

Thus 3µ = 2m − 4 = 2(m − 2) and 3 divides m − 2 : m = 3µ + 2.

It is now convenient to write A = D + iE and C = D− iE. The polynomials B, D, E would then
satisfy the following system











d0(D) + 4 u0 E = 0

d0(E) − 4 u0 D + 2 u2 B = 0

d0(B) + 8 u2 E = 0.

Using the notations of subsection 4.1, the following proposition then gives the conclusion.
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Proposition 1 Let D, E, B be homogeneous polynomials from Q[x, y] of the same degree 3µ,
where µ > 1. Assume that

(1)











d(D) + 4xE = 0

d(B) + 8yE = 0

d(E) − 4xD + 2yB = 0.

Then D = E = B = 0.

Suppose that there is a nonzero polynomial among D, E, B. Then it is easy to see that all of
them are nonzero.

Lemma 2 If the polynomials D, E, B are as above, then all of them are divisible by yµ.

Proof. Let n be the maximal degree in x for B, D, E together. Let then [dn, en, bn] 6= [0, 0, 0] be
the vector of the corresponding coefficients. We have





n − 2(3µ − n) 4 0
−4 n − 2(3µ − n) 0
0 0 n − 2(3µ − n)









dn

en

bn



 =





0
0
0





The determinant of the matrix has to be 0, which is only possible if n = 2µ.
Thus the minimal degree in y for all monomials of D, E, B is 3µ − 2µ = µ. �

Lemma 3 If the polynomials D, E, B are as above, then all of them are divisible by U µ.

Proof. Let p > 0 be such integer that

D = UpD0, E = UpE0, B = UpB0,

where D0, E0, B0 ∈ Q[x, y] and among D0, E0, B0 there exists a polynomial which is not divisible
by U . The polynomials D0, E0, B0 are homogeneous of the same degree 3µ − 2p. We will show
that p = µ.

Put the above to (1) and remove the factor U p. Then we have the following three equalities.

(2)











d(D0) + 2pxD0 + 4xE0 = 0

d(B0) + 2pxB0 + 8yE0 = 0

d(E0) + 2pxE0 − 4xD0 + 2yB0 = 0.

Multiplying the above equalities by − 1
2

we obtain:

(3)











d̄(D0) − pxD0 − 2xE0 = 0

d̄(B0) − pxB0 − 4yE0 = 0

d̄(E0) − pxE0 + 2xD0 − yB0 = 0.

Now, using the homomorphism φ and Lemma 1, we have the following equalities in the ring A.

(4)











δ(D̄0) − pxD̄0 − 2xĒ0 = 0

δ(B̄0) − pxB̄0 − 4yĒ0 = 0

δ(Ē0) − pxĒ0 + 2xD̄0 − yB̄0 = 0,

7



where D̄0 = φ(D0), Ē0 = φ(E0), B̄0 = φ(B0).
Recall that all the polynomials D0, E0, B0 are homogeneous of the same degree 3µ−2p. More-

over, at least one of them is not divisible by U . Put

s = 3µ − 2p.

Then we have

(5)







D̄0 = a1x
s−1y + a0x

s,
B̄0 = b1x

s−1y + b0x
s,

Ē0 = c1x
s−1y + c0x

s,

where a0, b0, c0, a1, b1, c1 ∈ Q. Observe that

δ(D̄0) − pxD̄0 = 3(µ − p)a1x
sy + 3(µ − p)a0x

s+1.

Let us check:

δ(D̄0) − pxD̄0 = δ(a1x
s−1y + a0x

s) − px(a1x
s−1y + a0x

s)
= (s − 1)a1x

s−2yx2 + a1x
s−1xy + sa0x

s−1x2 − pa1x
sy − pa0x

s+1

= (s − 1 + 1 − p)a1x
sy + (s − p)a0x

s+1

= (s − p)a1x
sy + (s − p)a0x

s+1

= 3(µ − p)a1x
sy + 3(µ − p)a0x

s+1.

We have also similar two equalities for B̄0 and Ē0. Putting this to (4) we obtain the following
three equalities in the ring A.

γa1x
sy + γa0x

s+1 − 2c1x
sy − 2c0x

s+1 = 0
γb1x

sy + γb0x
s+1 − 4c0x

sy + 12c1x
s+1 = 0

γc1x
sy + γc0x

s+1 + 2a1x
sy + 2a0x

s+1 − b0x
sy + 3b1x

s+1 = 0,

where γ = 3(µ − p).

Comparing the coefficients we get:

(1a) γa1 − 2c1 = 0
(2a) γa0 − 2c0 = 0
(3a) γb1 − 4c0 = 0
(4a) γb0 + 12c1 = 0
(5a) γc1 + 2a1 − b0 = 0
(6a) γc0 + 2a0 + 3b1 = 0.

Now suppose that γ 6= 0. Then, from (2a) and (3a), a0 = 2
γ
c0 and b1 = 4

γ
c0. So, by (6a),

γc0 + 4
γ
c0 + 12

γ
c0 = 0, so (γ2 + 16)c0 = 0 and so, c0 = 0. Hence a0 = b1 = c0 = 0. Moreover, using

(1a), (4a) and (5a), we have a1 = b0 = c1 = 0. Hence, if γ 6= 0, then φ(D0) = φ(E0) = φ(B0) = 0
and this means that all the polynomials D0, E0, B0 are divisible by U . But it is a contradiction.

Therefore, γ = 0, that is, 3(µ − p) = 0, so p = µ. �

Now we are ready to complete the proof of Proposition 1.

Proof of Proposition 1. Suppose that [D, E, B] 6= [0, 0, 0]. Then all of the polynomials D, E, B
are homogeneous of the same degree 3µ and, by Lemmas 2 and 3, they are of the form

D = aV µ, B = bV µ, E = cV µ,

where V = Uy = (3x2 + y2)y. But d(V ) = 0, so the equalities (1) imply that: 4xE = 0 so E = 0;
2xD = yB so B = 0 (because if B 6= 0, then x - B), and so D = 0.
Hence, D = E = B = 0, a contradiction �.
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4.3 k0 = 0 is impossible

If k0 = 0 then φ0 = (u2 (3u2
0 + u2

2))
µ

up to a nonzero multiplicative constant.
The second term φ2 = A u2

1 + B u1 u3 + C u2
3 satisfies d0(φ2) = −d2(φ0).

A, B, C are homogeneous polynomials is u0 and u2 of the same degree 3µ − 2.
Writing again A = D+iE and C = D−iE, we receive the sought contradiction from the following
proposition.

Proposition 2 Let D, E, B be homogeneous polynomials from Q[x, y] of the same degree 3µ− 2,
where µ > 1. The following system has no solution.

(6)











d(D) + 4xE = −3µV µ−1(x2 + y2)

d(B) + 8yE = 12µV µ−1(xy)

d(E) − 4xD + 2yB = 0.

Lemma 4 If the polynomials D, E, B are as above, then all of them are divisible by yµ−1.

Proof. The proof is the same as the proof of Lemma 2. �

Lemma 5 If the polynomials D, E, B are as above, then all of them are divisible by U µ−1, where
U = 3x2 + y2.

Proof. The proof is the same as the proof of Lemma 3. �

Now we are ready to complete the proof of Proposition 2.

Proof of Proposition 2. Since D, E, B are homogeneous of the same degree 3µ− 2, Lemmas 4
and 5 imply that they are of the following form:

D = (d1x + d2y)V µ−1, E = (e1x + e2y)V µ−1, B = (b1x + b2y)V µ−1,

where d1, d2, b1, b2, e1, e2 ∈ Q. Put this to (6). Recall that d(V ) = 0. We can remove the factor
V µ−1. Then we have:

d1x
2 + d1y

2 − 2d2xy + 4e1x
2 + 4e2xy = −3µx2 − 3µy2

b1x
2 + b1y

2 − 2b2xy + 8e1xy + 8e2y
2 = 12µxy

e1x
2 + e1y

2 − 2e2xy − 4d1x
2 − 4d2xy + 2b1xy + 2b2y

2 = 0.

Comparing the coefficients we obtain, the following equalities (among others):

d1 + 4e1 + 3µ = 0, d1 + 3µ = 0, e1 − 4d1 = 0,

Hence, e1 = 0, d1 = 0 and so, µ = 0, a contradiction �.
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