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The Lotka–Volterra system of autonomous differential equations consists in
three homogeneous polynomial equations of degree 2 in three variables.

This system, or the corresponding vector field LV (A, B, C), depends on
three non–zero (complex) parameters and may be written as

LV (A, B, C) = x(Cy + z)∂x + y(Az + x)∂y + z(Bx + y)∂z .

In fact, LV (A, B, C) can be chosen as a normal form for most of the factored
quadratic systems; the study of its first integrals of degree 0 is thus of great
mathematical interest.

In the paper into consideration [1], we thus described all possible values
of the triple (A, B, C) of non–zero parameters for which LV (A, B, C) has a
homogeneous liouvillian first integral of degree 0.

We also discussed the corresponding problem of the liouvillian integration
for quadratic factored vector fields that cannot be put in Lotka–Volterra nor-
mal form, for instance with some 0 among A, B, C.

There are some errors in the description of these marginal situations that
we would like to correct in the present note.

Key Words: Liouvillian integration, Lotka-Volterra system, Darboux polyno-
mials, supply functions.

1. INTRODUCTION

So far as we know, no significant error has been depicted as concerns the
main purpose of our work [1], the liouvillian integrability of LV (A,B, C)
with ABC 6= 0. But there are some marginal errors in the degenerate cases
where some parameter among A,B,C is 0.
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First, two missing cases of factored systems that are not Lotka–Volterra
(even with zeroes) have been noticed by L. Cairo, H. Giacomini and J.
Llibre [2]: they must be added to the list (i)–(v) of Section 3.1.

More recently, A. Nowicki [3] discovered a gap in Theorem 12 of [1]; this
case has to be added to the list of this theorem as a last one:

25. If [A, B,C] = [1, n, 0] with n ∈ N?, there is an irreducible Darboux
polynomial of degree n and cofactor nx + (n− 1)z; we describe this family
in Section 2 of the present note.

Consequently, Proposition 47 of [1], concerning strict Darboux polynomials
of LV (A,B, 0), has to be completed and its proof corrected (Section 3).

After the remark of Andrzej Nowicki, I understood what my error was:
in a systematic way, when the parameter A (for instance) is 1, I considered
this situation as well–known with respect to liouvillian integration, but this
is only true if C 6= 0. In particular, if [A, B,C] = [1, B, 0] with B /∈ N?,
there is no strict Darboux polynomial whereas y/x is a supply function
(even if B ∈ N? of course).
Consequently, Proposition 49 of [1], concerning supply functions without
strict Darboux polynomials of LV (A,B, C), has to be completed and its
proof corrected too (Section 4).

2. THE SPORADIC FAMILY OF ANDRZEJ NOWICKI

Theorem 1. LV (1, n, 0), n ∈ N?, has a strict irreducible Darboux poly-
nomial of degree n and cofactor Λ = nx + (n− 1)z.

Proof. Let An(x, y, z) = yn − zNn−1(x, y). From the Darboux relation

x z ∂x(An) + y (x + z) ∂y(An) + z (nx + y) ∂z(An) = Λ An,

elementary computations show that An is the announced homogeneous
polynomial with prescribed degree and cofactor if and only if the two–
variable homogeneous polynomial Nn−1(x, y) of degree n − 1 follows the
ordinary differential equation

x ∂yNn−1 + Nn−1 = yn−1.

It is clear that such a Nn−1 exists and is unique.
As a polynomial in Q(x, y)[z], An has the degree 1 and is irreducible.
As y does not divide Nn−1, the coefficients of this one–variable polynomial
in z are coprime and An is thus irreducible in Q[x, y, z].
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3. THE NEW PROPOSITION 47

Proposition 47 of [1] has to be corrected as follows.

Theorem 2. The vector field LV (A,B, 0), with AB 6= 0 has no strict
Darboux polynomial except in the three following cases:

• B = 1 and y −Az is the sought polynomial,
• A = −1, B = 2 and (x + y)2 − 2yz is the sought polynomial,
• A = 1, B = n ∈ N? and An of Theorem 1 is the sought polynomial.

Proof. We have to prove that there is no other possibility. We use the
general notations and tools of [1], marginal polynomials and combinatorial
determinants.
Let then f be an irreducible strict Darboux polynomial of degree n and
cofactor λx + µy + νz. According to Lemma 15, we have µ = γ1 = 0
whereas the two–variable polynomial R is proportional to xα3 yβ3 and the
two–variable polynomial P to yβ1 (y −Az)n−β1 .
The monomial yn thus appears in P and must appear in R : α3 = 0.
Then, β3 = λ = n and B = n/γ2 is a rational number with B ≥ 1.

Now, from the main specific analysis 5.1 with marginal determinants, we
have the following facts:

• D3 = 0 but this is not an information : in this special case where
C = 0, D3 ≡ (n− α2) [n− β3]n = (n− α2) [n− n]n is 0.
• L1 = n − λ = 0 and we may use further the transfer principle with

determinant D′
1.

• D2 ≡ L2 [1/B − γ2]γ2 [A− α2]α2 [1/B + A + 1]n−γ2−α2−1.

Our analysis then divides in four branches depending on which factor of
D2 vanishes.

L2 = m + (m− β1)A = 0 A is not a positive rational number and from
Lemma 15, α2 = β1 = 0, whence A = −1. As L2 = 0, we use the transfer
principle with D′

2: the second factor of D′
2 cannot vanish and 1/B ∈ N?.

As B ≥ 1, this implies B = 2, the second announced possibility.

[1/B − γ2]γ2 = 0 1/B ∈ N?; as B ≥ 1, B = 1. Then γ2 = m and
P ≡ (y −Az)m, the well–known first announced possibility.

[A− α2]α2 = 0 A ∈ N?. But D′
1 = 0 means that 2/A ∈ N? as the other

factors cannot vanish. Then A is 1 or 2.

• A = 2 turns out to be impossible : Proposition 8 shows that M7 is
not a node (the product −(1+B) of the eigenvalues is negative) and there
is no way to solve ρ7i7 + σ7j7 = 2m− α2 with i7 and j7 equal to 0 or 1.
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• A = 1 is the discovery of Andrzej Nowicki : Proposition 8 at point
M4 shows that i4 = 0, 1, whence β1 = m or β1 = m − 1. β1 = m would
mean B = 1 (we know this situation). Thus β1 = m − 1 which implies
γ − 1 = 1 and B = m, the degree of the Darboux polynomial.

[1/B + A + 1]m−γ2−α2−1 = 0 A has to be negative and α2 = β1 = 0.

In the transfer D′
1 = 0, we have to choose [2/A + 1]m−2 = 0 whence

2/A = −a− 1 with the integer a is in the range [0..m− 2].
Then 1/B − 2/(a + 1) + 1 = −b with b in the integer range [0..m− γ2 − 2].
As 0 < 1/B ≤ 1, an elementary computation leads to 0 < 1 − a − b − ab,
which implies a = b = 0 and B = 1, A = −2, a subcase of the main
possibility.

4. THE NEW PROPOSITION 49

Proposition 49 of [1] has to be corrected in the following way.

Theorem 3. If LV (A,B, C), where A,B, C may vanish, has no strict
Darboux polynomial, and if there exits a supply function, then, up to a
natural transformation (circular permutations only!),

• [A,B, C] = [−1, 1/2, 0] and
(y + z)2

xy
is the supply function,

• [A,B, C] = [1, B, 0] and
y

x
is the supply function.

Proof. A supply function is a homogeneous rational fraction
N

xαyβzγ
of

degree 0 with [α, β, γ] in N3 \ {[0, 0, 0]} such that for some non–zero speed
Λ = λx + µy + νz,

x(Cy + z)Nx + y(Az + x)Ny + z(Bx + y)Nz

−N((β + Bγ)x + (γ + Cα)y + (α + Aβ)z) = Λxαyβzγ .
(1)

If all three exponents are less than or equal to 1, the supply function may
be written as N/(xyz) where some of x, y, z may divide N .
This is an effective computation to find all supply functions of this type
and we get the two announced cases and also some other situations that
we discard because there is a strict Darboux polynomial.

We are thus left with situations in which some of α, β, γ is greater than
or equal to 2. The supply function can be chosen irreducible, which means
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that if an exponent of a variable in the denominator is strictly positive, the
corresponding variable does not divide the numerator N .

The main tools of our paper have to be used:

• if α ≥ 1, then there exists a non–zero two variable marginal polynomial
P in y and z,
• if α ≥ 2, then moreover the marginal determinant D1 vanishes, whereas

its factor L1 cannot vanish except if ABC + 1 = 0. As a strict Darboux
polynomial of degree 1 exists in this case, we can cancel this possibility and
D1 = 0 only because of its other three factors.
• The same is true for β and γ.

Unfortunately, this proof remains a rather long case analysis.

α ≥ 2, β ≥ 2, γ ≥ 2

Marginal two–variable polynomials P, Q,R can be derived from N giving
the following set of equations with α2, α3, β1, β3, γ1, γ2 in N





γ + Cα = γ1 = Cα3,
α + Aβ = α2 = Aβ1,
β + Bγ = β3 = Bγ2

(2)

Then A,B, C are non–zero rational numbers and from

α2 + α3, β1 + β3, γ1 + γ2 ≤ α + β + γ, α, β, γ > 0,

we deduce 1/A + C ≤ 1, 1/B + A ≤ 1, 1/C + B ≤ 1.

If all α2, α3, β1, β3, γ1, γ2 vanish, then A,B, C are negative rational numbers
and their product is −1 : we discard this well–known situation.

Up to circular permutations, it is enough to consider that α2β1 6= 0 which
implies A = α2/β1 = (α2 − α)/β = α/(β1 − β) > 0 and α/α2 + β/β1 = 1.

A = 1 (together with BC 6= 0) leads to a strict Darboux polynomial of
degree 1: we discard this well–known situation.

Up to a natural transformation, [A,B, C] → [1/A, 1/C, 1/B], we have to
look for A > 1; then B < 0 hence β3 = γ2 = 0 and B = −β/γ.
C cannot be a positive integer; to have D1 = 0, 1/A + C + 1 has to be an
integer in the range [−(α + β + γ − β1 − γ1 − 2)..0].
Thus C < 0, γ1 = α3 = 0, C = −γ/α and (β1 − β)/α − γ/α + 1 is an
integer in the range [−(α + β + γ − β1 − 2)..0]: β + γ = k1α + β1 where k1

is a positive integer.
Now, to have D3 = 0, 1/C+B+1 = −α/γ−β/γ+1 has to be an integer in
the range [−(α + β + γ− 2)..0]: α + β = k3γ where k3 is a positive integer.
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To have D2 = 0, either A is an integer or 1/B + A + 1 is an integer in the
range [−(α + β + γ − α2)..0], which leads to α + γ = k2β + α2 where k2 is
a positive integer.
In that last case, adding the three equalities (with k1, k2, k3) gives a con-
tradiction if k3 6= 1. With k3 = 1, we have γ = α + β, 1/C + B = −1,
2β = (k1 − 1)α + β1 and 2α = (k2 − 1)β + α2.
Whence 2β/β1 = (k1 − 1)α/β1 + 1 and 2α/α2 = (k2 − 1)β/α2 + 1 and, by
addition, k1 = k2 = 1. This leads to α2 = 2α, β1 = 2β.
In this case, 1/C + B = −1, 1/A + C = −1, 1/B + A = −1, and there is a
strict Darboux polynomial of degree 2 (case 3 of the main list).
We are thus left with the first possibility A ∈ N?? to have D2 = 0 and we
get a candidate situation

A ∈ N??, C + 1/A = −k1 (k1 ∈ N?), B + 1/C = −k3 (k3 ∈ N?).
We need an additional argument to eliminate it:

• The denominator does not vanish at M6 and it is also minimalist at
the rational nodes M4 and M5. We say than the denominator xαyβzγ is
minimalist at some Darboux point if its order is the minimum possible
among all orders of the same exposed line. When this is the case the cofac-
tor λx+µy +νz vanish at that Darboux point. This occurs in particular if
the denominator does not vanish at the Darboux point. In the case under
consideration, the three points are not on the same line, the cofactor would
be 0 and we would have a rational first integral, which we exclude in the
present study.

This achieves the search of supply functions without a strict Darboux poly-
nomial when all three α, β, γ are greater than 1: we did not find anything.
The other two cases have to be studied with the same attention.

α ≥ 2, β ≥ 2, γ < 2, γ may be 0 or 1

If γ = 1, two–variable marginal polynomials P, Q, R can still be derived
from N giving the following set of equations, a special case of (2)





1 + Cα = γ1 = Cα3,
α + Aβ = α2 = Aβ1,
β + B = β3 = Bγ2

Here too A,B, C are non–zero rational numbers (B ∈ Z) and
1/A + C ≤ 1, 1/B + A ≤ 1, 1/C + B ≤ 1.

As γ < 2, only equations D1 = 0 and D2 = 0 can be used. For the same
reason as before, one among A,B, C at least has to be positive but the
situation is no longer symmetrical.
If B = 1, we are in a known situation (ABC 6= 0) that we discard; thus
remaining possibilities for the integer B are B ≥ 2 and B ≤ −1. Similarly
1/C is also an integer: interesting possibilities are 1/C ≥ 2 and 1/C ≤ −1.
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As 1/C +B ≤ 1, there are only three combined possibilities for B and 1/C.

• B ≤ −1 and 1/C ≤ −1 Then A > 0, γ1 = α3 = 0, β3 = γ2 = 0,
A = α2/β1 = (α2 − α)/β = α/(β1 − β) > 0 and α/α2 + β/β1 = 1.
As 1/A+C+1 ≤ 0 is impossible, 1/A ∈ N? is the only way to have D1 = 0.
As A + 1/B + 1 ≤ 0 is impossible, A ∈ N? is the only way to have D2 = 0.
Hence A = 1, with ABC 6= 0: we discard this well–known situation.
• B ≥ 2, 1/C ≤ −1 and B ≤ −1, 1/C ≥ 2 are equivalent situations

under a natural transformation. Let us choose to study the first one.
To have D1 = 0, 1/A + C + 1 ≤ 0 is impossible and 1/A ∈ N?.
Thus, to have D2 = 0, it is impossible that A + 1/B + 1 ≤ 0 and A ∈ N?.
Hence A = 1 again, with ABC 6= 0: we discard this situation.

This achieves the study of α ≥ 2, β ≥ 2 with γ = 1. Let now γ be 0.
If z divides the numerator N , then adding a non–zero constant to the supply
function cancels this fact and we still have the three non–zero marginal
polynomials P,Q, R and the following set of equations, a special case of (2)





Cα = γ1 = Cα3,
α + Aβ = α2 = Aβ1,
β = β3 = Bγ2

As γ = 0 we only have 1/A + C ≤ 1 and 1/B + A ≤ 1.
As β 6= 0, B is not 0: B = β/γ2. As α 6= 0, A 6= 0. As usual, B = 1, A 6= 0
has to be discarded. Thus, either B > 1 or 0 < B < 1. On the other hand,
C = γ1/α ≥ 0.

• If 1/B > 1, A cannot be positive : A + 1/B would be greater than 1.
α2 = β1 = 0 and A = −α/β < 0.
To have D2 = 0, either 1/B is an integer in the range [2..γ2] or −1/B −A
is an integer k2 in the range [1..α + β − γ2 − 1].
If −A = k2 + 1/B > 2, then C + 1/A + 1 > 1/2 and the only possibility to
have D1 = 0 is that C = γ1/α is an integer in the range [2..γ1], the case
C = 1 being, as usual, well–known. We would have γ1 ≥ 2α, whence α ≤ β
and 1/B = γ2/β = −k2 −A = −k2 + α/β and γ2 − α = k2 β.
As γ2 ≤ α + β, this implies k2 = 1 and 1/B ≤ 0, a contradiction.
If 1/B is an integer in the range [2..γ2], as γ2 ≤ α + β, α ≥ (1/B − 1)β.
If C = γ1/α is an integer in the range [2..γ1], we would have γ1 ≥ 2α,
whence α ≤ β. Then 1/B = 2, α = β, C = 2 and A = −1, a situation to
be discarded as ABC + 1 = 0.
• Now suppose B > 1.

To have D2 = 0, either A is an integer in the range [2..α2] or−1/B−A = k2,
where k2 is an integer in the range [1..α + β − α2 − γ2 − 1].
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If A > 0 then A is an integer and we can suppose A ≥ 2.
To have D1 = 0 the only possibility is that C = γ1/α is an integer in the
range [2..γ1], a contradiction with 1/A + C ≤ 1.
If A < 0 then −A = α/β = k2 + 1/B = k2 + γ2/β and α > k2 β
To have D1 = 0, either C = γ1/α is an integer in the range [2..γ1] or
−1/A− C = k1, where k1 is an integer in the range [1..α + β − γ1 − 1].
γ1 ≥ 2α is contradictory with γ1 ≤ α+β and C = −1/A−k1 = −k1 +β/α
whence β ≥ k1 α, a contradiction.

The study of α ≥ 2, β ≥ 2, γ ≤ 1 is achieved : nothing new.

α ≥ 2, β < 2, γ < 2

First suppose β = γ = 1. As usual, the two–variable marginal polynomials
P,Q, R can be derived from N giving the following set of equations





1 + Cα = γ1 = Cα3,
α + A = α2 = Aβ1,
1 + B = β3 = Bγ2

Because αβγ > 0, none among A,B,C is 0. All of them are rational
numbers. If they are negative, their product is −1 and we can discard this
usual situation and consider that one among A, B,C is positive.

• Let C > 0.
Then 1/C = α3 − α ∈ N?. C = 1, AB 6= 0 leads to a strict Darboux
polynomial. It then suffices to consider the integer 1/C greater than 1 and
α3 = α + 1/C ≥ α + 2.
As α3 + β3 ≤ α + 2, the total degree of N , β3 = 0, α3 = α + 2, B = −1,
C = 1/2.
D1 = 0 then needs either 1/A ∈ N? or −1/A− 3/2 ∈ N. Discarding A = 1,
we are left with A = −1/(n + 3/2), n ∈ N, which cannot be an integer.
• Let A > 0, C < 0.

Then A = α2/β1 = α2 − α = α/(β1 − 1) and α/α2 + 1/β1 = 1. A is a
positive integer and we suppose A ≥ 2.
From α2 + γ2 ≤ α + 2, the total degree of N , we have A = 2, γ2 = β3 = 0.
Whence B < 0, B = −1.
To have D1 = 0, −1/A−C = −1/2 + 1/α = k1, with k1 ∈ N?: impossible.
• Let B > 0, C < 0, A < 0.

Then α2 = β1 = 0, A = −α, α3 = γ1 = 0, C = −1 and B = β3/γ2.
To have D1 = 0, −1/A−C = 1/α + 1 = k1 ∈ N?: impossible with α /∈ N?.

Now suppose that β = 1, γ = 0 (β = 0, γ = 1 is an equivalent situation).
If z divides the numerator N , then adding a non–zero constant to the supply
function cancels this fact and we still have the three non–zero marginal
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polynomials P, Q, R and the following set of equations




Cα = γ1 = Cα3,
α + A = α2 = Aβ1,
1 = β3 = Bγ2

B 6= 0, hence β3 = 1, B = 1/γ2.
A = 0 would give α = 0, a contradiction.
B = 1, A 6= 0 with an arbitrary C is a well–known case.
Thus B < 1, γ2 ≥ 2 and α2 ≤ α− 1 because of the total degree of N .
Then A = α2 − α ≤ −1 is a integer and α2 = β1 = 0: A = −α ≤ −2.
C < 0 is impossible. If C > 0, then α3 = α and C = γ1/α ≤ 1−1/A ≤ 3/2.
C = 1 with B 6= 0 is well–known and there is no other choice to have
D1 = 0 than −1/A− C = k1, an integer in the range [1..α− γ1]: C would
be negative, a contradiction. Thus C = 0: together with A = −α, we have
D1 = 0.
This case [A,B, C] = [−α, 1/γ2, 0], with integers 2 ≤ γ2 ≤ α + 1 deserves
special arguments.

• If z does not divide the numerator N , then the marginal polynomial
R is not 0 and it is a multiple of the denominator xα y.
Adding a well–chosen constant makes z divide the numerator: N = z N .
Then z divides the left–hand side of Equation (1); it must also divide its
right–hand side, which is the speed λx + µ y + ν z multiplied by xα y.
Then λ = µ = 0 and, if R stands for the evaluation of N at z = 0, then R
follows the differential equation

x y ∂y(R) + ((B − 1)x + y)R = ν xα y, ν 6= 0. (3)

x and y divide R. Let then R = yk S, where y does not divide S.
It follows from Equation (3) that k = 1.
Let then S = xl T , where x does not divide T .
From Equation (3) again, l ≤ α and T follows the differential equation

(Bx + y) T + x y ∂y(T ) = ν xα−l. (4)

As x does not divide T , the right–side of (4) has to be the non–zero constant
ν, a contradiction with the degree of the homogeneous polynomial on the
left–hand side of (4).

To finish, suppose that β = 0, γ = 0. If y or z divides the numerator N ,
then adding a non–zero constant to the supply function cancels this fact
and we still have the three non–zero marginal polynomials P,Q, R and the
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following set of equations




Cα = γ1 = Cα3,
α = α2 = Aβ1,
0 = β3 = Bγ2

α2 = α 6= 0. Then A 6= 0, A = α/β1. C cannot be negative.
If C = 0, to have D1 = 0, 1/A has to be a positive integer, greater than 1.
Then β1 ≥ 2α, but the total degree of N is α, a contradiction.
If C 6= 0, then α3 = α and C = γ1/α. β1 ≥ 1 and β1 + γ1 ≤ α give
γ1 ≤ α− 1 : C is not an integer.
To have D1 = 0, 1/A has to be a positive integer, greater than 1 as usual.
Then, β1 ≥ 2α, the same contradiction.
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