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Abstract
Let dy : k[X] — k[X] and do : k[Y] — Kk[Y] be k-derivations, where k[X] :=
klx1,...,zn], K[Y] := E[y1, - .., ym] are polynomial algebras over a field k of character-

istic zero. Denote by di © da the unique A-derivation of k[X, Y] such that d|yx) = d1
and d|k[y] = do. We prove that if d; and ds are positively homogeneous and if d; has
no nontrivial Darboux polynomials, then every Darboux polynomial of di & do belongs
to k[Y] and is a Darboux polynomial of ds. We prove a similar fact for the algebra of
constants of d; ® do and present several applications of our results.

1 Introduction

Throughout this paper, k is a field of characteristic zero. If A is a commutative k-algebra
and d : A — Ais a k-derivation, then the pair (A, d) is called a differential k-algebra; in this
case, we denote by A? the k-subalgebra of constants of d, that is, A = {a € A; d(a) = 0}.

Let (A,d;) and (B,dy) be differential k-algebras and consider the pair (A ®; B,d) in
which the k-algebra A ®; B is the tensor product of A and B, and d is the k-derivation of
A ®y B defined as d = dy ® 1 + 1 ® dy. This pair is the coproduct of (A,d;) and (B, ds) in
the category of differential k-algebras. Assume that we know the algebras of constants A%
and B%. How to describe the structure of the algebra (A ®; B)? in terms of A% and B% ?
In general, this is a very difficult question and there are examples where such description is
impossible. Every element of A% ®; B% is a constant for d but, in general, it is not true
that the algebra (A ® B)? is isomorphic to A% ®; B%.

In this paper we study this problem when A and B are polynomial algebras over k. Given
positive integers n and m, A = k[X] := klxy,...,2z,], B = k[Y] := k[y1,...,ym]. Then
A ®y B is the polynomial algebra k[X,Y] := klxy, ..., 20,91, .., Ym]. If di : K[ X] — k[X]
and dy : k[Y] — Ek[Y] are k-derivations, then we denote by d;@®ds the derivation d; ®1+1Rds,
which means that dy ® d; is the derivation d of k[.X, Y] such that d|x] = di and d|yy] = da.



We prove (Theorem ?7) that if d; and ds are positively homogeneous (in some sense to
be defined) and if k[X]" = k, then k[X,Y]1%% = [Y]%.

The main result of this paper is Theorem 7?7, which, in some cases, describes the set of
all Darboux polynomials of d; & ds.

2 Preliminaries

Let § be a k-derivation of k[X]. Then k[X]° stands for the algebra of constants of &:
k[X]° = {F € k[X]; 6(F) = 0}. We still denote by § the unique extension of § to the field
of quotients k(X) := k(xy,...,x,) of k[X] and k(X)° then denotes the field of constants
of 4.

We say that a polynomial F' € k[X]| is a Darbouz polynomial of 6 (see [?, ?]) if there
exists a polynomial A € k[X] such that §(F#) = AF. In this case, we say that A is a cofactor
of F' (if F' # 0, then this cofactor is uniquely determined). Moreover, we say that a Darboux
polynomial F'is trivial if F' € k.

By a direction in Z™ we mean a nonzero sequence vy = (71, ..., 7V,) of integers.

Let v = (71, ...,7) be a direction. If o = (ay,...,q,) is a sequence of nonnegative
integers, then |a|, denotes the sum ;04 +- - - +7,,a,, whereas X is the monomial 27" - - - 29",
Let s € Z; a nonzero polynomial F' € k[X] is said to be a y-homogeneous polynomial of

degree s if F' is of the form:
F= ) a.X

loe]y=s

where each a, belongs to k. We assume that the zero polynomial is v-homogeneous of any
degree. It is standard to check (Cf. [?] 19) that:

Proposition 2.1. If F' is a nonzero polynomial in k[X]|, then the following conditions are
equivalent:

(1) F is y-homogeneous of degree s;
(2) F(t"xy, ..., t"x,) = t°F(xq,...,2,) (in the ring k(t)[X]),
(3) %xlg—fl 4+ .- +'yna:n387’i =sF.

In other words, a v-homogeneous F' of degree s is a Darboux polynomial with cofactor s for
the linear derivation e, =) v z; %.

Denote by A7 the group of all y-homogeneous polynomials from k[X] of degree s. Each
A} is a k-subspace of k[X] and k[X] = @, A]. Moreover, AJA] C A],, for all s,t € Z
and k[X] is thus a graded ring. Such a gradation on k[X] is said to be a y-gradation. Every
polynomial F' € k[X] has the y-decomposition F' = > Fy into y-components fs of degree s.
If FF # 0, then y-deg(F’) denotes the y-degree of F, that is, the maximal s such that Fy # 0.
We assume also that y-deg(0) = —oo.

The derivation d is called y-homogeneous of degree s if 6(A)) C A

aip, for any p € Z
(equivalently, if 6(x;) € Al for i = 1,...,n). Note that each partial derivative 9/0x;,
for + = 1,...,n, is 7-homogeneous of degree —v;. We say that the derivation 0 is linear if

d(z;) = 2?21 a;;jxj, for all i = 1,...,n, where each a;; belongs to k. Every linear derivation



is (1,...,1)-homogeneous of degree zero. We say that the derivation § is y-homogeneous if
there exists an integer s such that ¢ is y-homogeneous of degree s.

Assume now that § is y-homogeneous and let F' € k[X]. If F € k[X]°, then each -
homogeneous component of F belongs also to k[X]°. Thus, in this case the algebra k[X]°
is generated over k by y-homogeneous polynomials. Note also:

Proposition 2.2 ([?, ?]). Let § : k[X] — k[X] be y-homogeneous of degree s, and let
F € k[X] be a nonzero Darbouz polynomial of § with a cofactor A. Then A is vy-homogeneous
of degree s and all v-components of F' are also Darboux polynomials of 6 with a common
cofactor equal to A. [J

A direction v = (71, ..., 7,) is said to be positive if all integers 71, . . . , 7y, are positive. We
say that a derivation 0 of k[X] is positively homogeneous if there exists a positive direction
~ in N™ such that ¢ is y-homogeneous of a positive degree.

Proposition 2.3. Assume that dy : k[ X| — k[X] and dy : k[Y| — k[Y] are positively homo-
geneous derivations. Then there exist positive directions n and € in N™ and N™, respectively,
such that:

(a) dy is n-homogeneous of a positive degree s,

(b) dy is e-homogeneous of the same degree s and

(¢) dy @ dy is y-homogeneous of degree s, where v = (n,¢).
In particular, if dy : k[X] — k[X] and dy : k[Y] — k[Y] are positively homogeneous deriva-
tions, then the derivation dy @© dy : k[X,Y] — k[X,Y] is also positively homogeneous.

Proof. Let~ = (v1,...,7,) and " = (7/,...,7) be positive directions in N* and N™,
respectively, such that d; is v-homogeneous of a positive degree s’ and dy is v”-homogeneous

of a positive degree s”. Put s := §'s", n = 'y = (s",...,5")) and ¢ = " =
(s'v{,...,sv"). Using Proposition ??, we see that d; is n-homogeneous of degree s and dy
is e-homogeneous of the same degree s. Let v = (n,e) = ("1, ..., 8"y, s, ....s9").

Then + is a positive direction in N"*™ and the derivation d; & ds is y-homogeneous of the
positive degree s. []

3 Darboux polynomials

Theorem 3.1. Let dy : k[X]| — k[X] and dy : k[Y] — k[Y] be positively homogeneous
derivations and let d = dy @ dy. Assume that dy has no Darboux polynomials belonging to
k[X]|\Ek. Then every Darboux polynomial of d belongs to k[Y] and it is a Darbouzx polynomial

Of dg.

Proof. Let s, n, € and v be as in Proposition 7?7, and let F' € k[X, Y]\ k be a Darboux
polynomial of d with a cofactor A € k[X,Y]. Then, by Proposition 7?7, A is y-homogeneous
of degree s and we may assume that F' is y-homogeneous of degree p > 1. The polynomials
F and A have the following forms:

F=) FY* A=Y AgY”’

lale<p |Ble<s



where F,, Ag (for any a and /) are y-homogeneous polynomials from k[X| of degrees p— |-
and s — |f|., respectively. The polynomials d(F') and AF may then be developed as

d(F) =Y (di(F)Y* + Fodo(Y®)), AF =Y > AgF Y™,

lale<p |Ble<s |ale<p

Since d(F') = AF, we have:

0= (d(F)Y*+ Fady(Y®?)) = > > AgFo Y.

|a|5<p |B|E<S|a‘5<p

Denote by H the polynomial on the right-hand side of this equality and consider the &-
gradation on the polynomial ring k[X, Y] over k[X].

With respect to this gradation, the polynomial H has the form H = Hy+ Hy +--- + Hp,s,
where H; € @ k[X|Y*foralli=0,1,...,p+s. Since H =0, we have Hy = H; = ... =

lafe=i
H

=0.
p+s
Using an induction with respect to j, we will now show, for all j € {0,1,...,p—1}, that

(%) F, =0, forany a with |a|. = j.

First consider the case 7 = 0. We know that 0 = Hy = dy(F)Y°? — AgF,Y?, and
di(Fy) = AogFy. But d; has only trivial Darboux polynomials, so Fy € k. Moreover, Fy is
v-homogeneous and y-deg(Fy) = p — |0]. = p > 1, so Fy = 0. Thus, the condition (%) holds
for j = 0.

Assume now that j > 0 (and of course 7 € {0,1,...,p — 1}) and that (x) is true for all
numbers smaller than j. Consider the polynomial H;.

Case 1. Let j < s+ 1. Then we have:
Hi= Y &(F)Y*—= Y AgF, Y
lerle=3 lafe+|Ble=j
By induction, F, = 0 for |a|. < j, so
0=H;= Y di(F)Y*= > AF.Y*= > (di(Fa) = AgFo) Y,
lole=3 lo|e=3 lole=3
and this implies that d;(F,) = A¢F, for |a|. = j. But d; has only trivial Darboux
polynomials, so F, € k for |a|. = j. Moreover, each such F, is -homogeneous and ~-
deg(F,)=p—lalc.=p—7=1,s0 F,=0.
Case 2. Let j > s+ 1. In this case
Hi= > di(F)Y"+ Y Fuds(Y¥)= Y AgF Y
lorle=j lo/|e=j—s lodle+]Ble=7
By induction, each F, is equal to 0 and F, = 0 for |a|. < j, so
0=H;= Y di(F)Y*= > AFY*= )" (di(Fa) — AFo) Y.

lale=y | e=3 |t e=3



Hence, dy(F,) = AoF, and F, € k for |a|. = j. Each such F, is y-homogeneous and
v-deg(F,) = p—lale. =p—7 =2 1, s0 F, = 0 for |a]. = j. Therefore, we proved the
condition (x).

We can now conclude that F' reduces to Zla\s:p F,Y* where the y-degree of each F,
is equal to p — |a|c = p — p = 0. Since the direction 7 is positive, each F, belongs to k.
Thus, F' € k[Y]. Moreover, AF = d(F') = dy(F) € k[Y], that is, A € k[Y]. Therefore, F' is
a Darboux polynomial of dy. This completes the proof. [

As a consequence of this theorem we obtain:

Corollary 3.2. Let dy : k[X] — k[X] and dy : k[Y] — k[Y] be positively homogeneous
deriwations and assume that di; and dy have only trivial Darboux polynomials. Then every
Darboux polynomial of dy & dy s trivial. [

Every y-homogeneous derivation of the polynomial ring over k in two variables has a
nontrivial Darboux polynomial [?]. There exist homogeneous derivations in three variables
without nontrivial Darboux polynomials. It is well known [?, 7, ?, ?] that if s > 2, then
the derivation ¢ of k[x,y, z| defined by §(z) = y*, d(y) = 2° and 0(z) = z* has only trivial
Darboux polynomials. Using this fact and Corollary ?? we get the following example in the
case n =m = 3.

Example 3.3. Let R = k[z1,...,x¢] and let d be the derivation of R defined by
d(z1) = 23, d(xz) = af, d(zs) = 7, d(2s) = a5, d(zs) = x5, d(xe) = i,

where p and q are integers greater than 1. This derivation has only trivial Darbouzx polyno-
maals. [J

Similar examples we can produce for any number of variables divided by 3. Using
Theorem ??7 and the above mentioned fact we get the following next example.

Example 3.4. Let R = k[x1, x,x3, x4] and let d be the derivation of k[X] defined by
d(xl) = 37129, d(xZ) = 37157 d(ﬁg) = fEIf, d($4) = QEZ,

where p and q are integers greater than 1. Then every nontrivial Darboux polynomial of d
s of the form axi with 0 #a € k and s > 1. [

This example is valid also for ¢ = 1, as the following more general theorem shows.

Theorem 3.5. Let d; : k[X]| — k[X] be a positively homogeneous derivation without non-
trivial Darboux polynomials. If dy : k[Y| — k[Y] is a linear derivation, then every Darbouz
polynomial of di @ dy belongs to kY] and is a Darboux polynomial of ds.



Proof. Let v be a positive direction in k[X] such that d; is y-homogeneous of a
positive degree s. Let F' € k[X,Y]| be a Darboux polynomial of d := d; & ds with a cofactor
A€ k[X,Y].

Case 1. Assume that the field k is algebraically closed. In this case, using a change of
coordinates, we may assume that the matrix of dy is triangular. Let

da(yi) = Qi iYi + Giit1Yis1 + -+ GimYm

for 7 =1,...,m, where each a;; belongs to k.

Let FF =) F,Y* with F, € k[X]. Thend(F) =) di(Fo)Y*+Fody(Y*). Comparing
in the equality d(F') = AF the degrees with respect to Y, we observe that A € k[X].

We will show that each F, belongs to k. Suppose that this is not true. Let § be the
maximal element, with respect to lexicographic order on k[Y], such that Fjz ¢ k. Comparing
in the equality 0 = Y _(d1(F.)Y® + Fodo(Y®) — AF,Y®) the coefficients of Y, we obtain
(thanks to our assumptions) that

d1 (FB) :aFlg—l—AFﬂ—i—b: (a—i-A)Fg—i-b,

for some a,b € k. Let H € k[X] be the initial y-component of Fj and let p := ~-deg H.
Note that di(H) € NA,, .

Suppose that A +a = 0. Then dy(F3) = b € k, so di(H) € k (because d; is -
homogeneous of a positive degree). Hence, di(H) € AJN A}, = 0, that is, H € k[X]|*"
and, in particular, H is a Darboux polynomial of d;. Since d; has only trivial Darboux
polynomials, H € k and consequently, Fz € k. But it is a contradiction.

Therefore A + a # 0. Let A € k[X] be the initial y-component of A + a. Then X # 0.
Comparing the initial y-components in the equality d; (F) = (a + A)Fj + b, we obtain that
di(H) = AH, that is, H is a Darboux polynomial of d;. But d; has only trivial Darboux
polynomial, so H € k. This implies that Fjg € k, but it is again a contradiction.

Thus, each F, belongs to k, that is, F' € k[Y]. Since, AF = d(F) = do(F) € k[Y], we
have A € k[Y], and this means that F' is a Darboux polynomial of ds.

Case 2. Now we do not assume that k is algebraically closed. Let k be an algebraic closure
of k, and let d; : k[X] — k[X], ds : k[Y] — E[Y], be the derivations such that d (z;) = di(;)
fori=1,...,n, and dy(y;) = da(y;) for j =1,...,m. Then F (as an element from k[X,Y])
is a Darboux polynomial of d; @ dy and hence, by Case 1, F' € k[Y] N k[X,Y] = k[Y]. So,
F € k[Y] and it is clear that F' is a Darboux polynomial of dy. O

4 Constants

Theorem 4.1. Let dy : k[X]| — k[X] and dy : k[Y] — k[Y] be positively homogeneous
derivations and let d = dy ® dy. Assume that k[X]|% = k. Then k[X,Y]? = k[Y]%.

Proof. Let s, n, ¢ and v be as in Proposition ??, and let F' € k[X,Y] be a ~-
homogeneous polynomial of degree p > 1 belonging to k[X,Y]? \ k. Put

F= ) F.Y°

|a‘s<p
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where each F,, is a y-homogeneous polynomial from k[X] of degree p — |a|.. Since d(F') = 0,
we have
0= (di(Fa)Y* + Fada(Y™)).

lale<p

Repeating the proof of Theorem ?? for the Darboux polynomial F' with cofactor A = 0 we
deduce that if j € {0,1,...,p — 1}, then F, = 0 for any a with |a|. = j. Thus, we have:

where y-degree of each F,, is equal to p — |a|. = p—p = 0. Since the direction ~ is positive,
each F, belongs to k. This means that F' € k[Y]. Moreover, do(F') = d(F') = 0. Therefore,
F € k[Y]®. This completes the proof. OJ

As a consequence of this theorem we obtain:

Corollary 4.2. Let dy : k[X] — k[X] and dy : k[Y] — k[Y] be positively homogeneous
derivations. If k[X|M =k and k[Y]® =k, then k[X,Y]9% = k. 0O

The following example shows that a similar corollary is not true if instead of rings of
constants we consider fields of constants.

Example 4.3. Letn =m = 1 and let dy : k[X] — k[X], da : k[Y] — k[Y] be the derivations
such that di(z1) = 22 and dy(y1) = y?. Then dy and dy are positively homogeneous, k(X)% =
k, k(Y)%2 =k, and k(X,Y)"%% £ k. The rational function o4 belongs to k(X, Y )h@da
k. O

The next example shows that if homogeneous derivations d; and dy are not positively
homogeneous, then Corollary ?? is not true, in general.

Example 4.4. Letn = m = 1 and let dy : k[X] — k[X], da : k[Y] — k[Y] be the derivations
such that di(x1) = —z1 and do(y1) = y1. Then dy and dy are homogeneous with respect
to the ordinary directions and they are not positively homogeneous; both derivations are
homogeneous of degree zero. In this case k[ X% =k and k[Y]® = k, but k[X,Y]|1%% £ k.
The polynomial x1y; belongs to k[X,Y]1%% k. O

In this example both derivations are homogeneous but not positively homogeneous.
There is no similar examples in which ds is as above and d; positively homogeneous. This
follows from the following, more general, theorem.

Theorem 4.5. Let v be a direction in k[X]| (not necessary positive) and let dy : K[X] —
k[X] be a y-homogeneous derivation of degree s # 0. If dy : k[Y]| — k[Y] is a linear
derivation with k[Y]% =k, then k[X,Y]9%4 = [ X]%.



Proof. As in the proof of Theorem 77 we may assume that the field k is algebraically
closed, and that do(v;) = @iy + @iit1Yit1 + -+ + GimYm for ¢ = 1,...,m, where each
a;j belongs to k. Since k[X]% = k, the elements \; := ay1,...,\p := Gp.n are linearly
independent over N (see for example [?]).

Let F' =) F,Y% with F,, € k[X], be a nonzero polynomial from k[X, Y] belonging to
k[X,Y]4, where d := dy ® dy. Let B = (B1,...,B,) be the maximal element, with respect
to lexicographic order on k[Y], such that Fjg # 0. Since d(F) = 0, we have the equality
0=>,(di(F,)Y*+ F,dy(Y?)). Comparing in this equality the coefficients of Y* we obtain
(thanks to our assumptions) that

dy (Fg) = pFp,

where = —(S1A\1 + -+ + BmAm). Let H € k[X] be the initial y-component of Fjz and let
p = y-deg H. Since Fj is a Darboux polynomial of d; and d; is y-homogeneous, Proposition
?? implies that dy(H) = pH.

If 1 # 0, then we have a contradiction: 0 # uH = di(H) € AJN A, = 0. Thus,
Pid1 + -+ BnAm = —p = 0 and this implies (since Ay, ..., \,, are linearly independent

over N) that 3= (0,...,0). Hence, F = Fy € k[X]4. O

In Example ?? the derivations d; and dy are linear. There is no similar example in which
ds is linear and d; is positively homogeneous. This follows from the following theorem.

Theorem 4.6. Let dy be a positively homogeneous derivation of k[X| with k[X|" = k. If
dy is a linear derivation of k[Y], then k[X,Y |1 %% = k[Y]%.

Proof. As in the proof of Theorem 7?7 we may assume that the field £ is algebraically
closed, and that do(v;) = @iy + @iit1Yit1 + -+ + QGimYm for ¢ = 1,...,m, where each
a;; belongs to k. Assume moreover, that v is such a positive direction in k[X] that d; is
~v-homogeneous of a positive degree s.

Let F =) F,Y* with F, € k[X], be an element from k[X,Y] belonging to k[X,Y]?,
where d := d; & dy. We will show that each F,, belongs to k.

Suppose that this is not true. Let § be the maximal element, with respect to lex-
icographic order on k[Y], such that Fs ¢ k. Since d(F) = 0, we have the equality
0= (di(F,)Y*+ F,dy(Y*)). Comparing in this equality the coefficients of Y? we obtain
(thanks to our assumptions) that

dl (F/j) = aFﬁ + b,

for some a,b € k. Let H € k[X] be the initial y-component of Fjz and let p := v-deg H.

Suppose that a = 0. Then d;(F3) =b € k, so d1(H) € k (because d; is y-homogeneous).
Hence, di(H) € AJNA},, =0, that is, H € k[X]". But k[X]" =k, so H € k and we have
a contradiction.

Therefore a # 0. Comparing the initial y-components is the equality d; (Fj3) = aFp + b,
we obtain that di(H) = aH. Now we have: all = di(H) € AJNA),, =0, that is H = 0,
but it is again a contradiction.

Thus, each F, belongs to k, and this implies that F € k[Y]%. O

As a consequence of this theorem and the classical result of Weitzenbdck (see for example
[7]) we get



Corollary 4.7. Let dy be a positively homogeneous derivation of k[ X| with k[X]% = k. If
dy is a linear derivation of k[Y], then the algebra k[X,Y]"%% s finitely generated over k.
[

Let 05, 06 and 07 be the derivations of polynomial rings over k in 5, 6 and 7 variables,
respectively, defined as follows:

05 = yai+(y1yg+yz)a%+y4a%5,
g = )

0 o 0 o
07 = Yigor +VUspr +Uige T UTY Y-

It is known that the rings of constants of these derivations are not finitely generated over k.
The proofs of this fact we have in [?] and [?] (for d7), [?] (for d6), [?] and [?] (for O5). It
is easy to check that these derivations are positively homogeneous. The derivation ¢; is
~v-homogeneous of degree 1 for v = (1,1, 1,2,2,2,5). The derivation dg is y-homogeneous of
degree 1 for v = (1,1,2,4,6,3), and 05 is y-homogeneous of degree 1 for v = (2,5,2,4, 3).
Using the derivations ds, dg, 07 and Theorem 7?7 we may construct new examples of polyno-
mial derivations with non-finitely generated ring of constants. Let us note:

Proposition 4.8. Let d; : k[X] — k[X] be a positively homogeneous derivation such that
k[X])% =k, and let dy : k[Y] — k[Y] be a derivation belonging to the set {05, 0, 67}. Then
the ring of constants of the derivation d; & dsy : k[X,Y] — k[X, Y] is not finitely generated
over k. [

If the ring of constants of one of the derivations d; and dy is not finitely generated
over k, then it is not true, in general, that the ring of constants of dy & d is also not finitely
generated.

Example 4.9. Let dy = 5 and dy be the derivation of k[X] := k|x;] such that di(z1) = 1.
Then k[Y]® is not finitely generated over k and k[X,Y]4%4% js finitely generated over k.

Proof. It is obvious, because the derivation d; @ ds is locally nilpotent with a slice
(see for example, [?] or [?]). O
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