Constants and Darboux polynomials for tensor products of polynomial algebras with derivations

Jean Moulin - Ollagnier ${ }^{2}$ and Andrzej Nowicki ${ }^{3}$

${ }^{2}$ Laboratoire GAGE, UMS CNRS 658 Medicis, École Polytechnique, F 91128 Palaiseau Cedex, France, (e-mail: Jean.Moulin-Ollagnier@polytechnique.fr).
${ }^{3} \mathrm{~N}$. Copernicus University, Faculty of Mathematics and Computer Science, 87-100 Toruń, Poland, (e-mail: anow@mat.uni.torun.pl).

Abstract

Let $d_{1}: k[X] \rightarrow k[X]$ and $d_{2}: k[Y] \rightarrow k[Y]$ be k-derivations, where $k[X]:=$ $k\left[x_{1}, \ldots, x_{n}\right], k[Y]:=k\left[y_{1}, \ldots, y_{m}\right]$ are polynomial algebras over a field k of characteristic zero. Denote by $d_{1} \oplus d_{2}$ the unique k-derivation of $k[X, Y]$ such that $\left.d\right|_{k[X]}=d_{1}$ and $\left.d\right|_{k[Y]}=d_{2}$. We prove that if d_{1} and d_{2} are positively homogeneous and if d_{1} has no nontrivial Darboux polynomials, then every Darboux polynomial of $d_{1} \oplus d_{2}$ belongs to $k[Y]$ and is a Darboux polynomial of d_{2}. We prove a similar fact for the algebra of constants of $d_{1} \oplus d_{2}$ and present several applications of our results.

1 Introduction

Throughout this paper, k is a field of characteristic zero. If A is a commutative k-algebra and $d: A \rightarrow A$ is a k-derivation, then the pair (A, d) is called a differential k-algebra; in this case, we denote by A^{d} the k-subalgebra of constants of d, that is, $A^{d}=\{a \in A ; d(a)=0\}$.

Let $\left(A, d_{1}\right)$ and $\left(B, d_{2}\right)$ be differential k-algebras and consider the pair $\left(A \otimes_{k} B, d\right)$ in which the k-algebra $A \otimes_{k} B$ is the tensor product of A and B, and d is the k-derivation of $A \otimes_{k} B$ defined as $d=d_{1} \otimes 1+1 \otimes d_{2}$. This pair is the coproduct of $\left(A, d_{1}\right)$ and $\left(B, d_{2}\right)$ in the category of differential k-algebras. Assume that we know the algebras of constants $A^{d_{1}}$ and $B^{d_{2}}$. How to describe the structure of the algebra $\left(A \otimes_{k} B\right)^{d}$ in terms of $A^{d_{1}}$ and $B^{d_{2}}$? In general, this is a very difficult question and there are examples where such description is impossible. Every element of $A^{d_{1}} \otimes_{k} B^{d_{2}}$ is a constant for d but, in general, it is not true that the algebra $\left(A \otimes_{k} B\right)^{d}$ is isomorphic to $A^{d_{1}} \otimes_{k} B^{d_{2}}$.

In this paper we study this problem when A and B are polynomial algebras over k. Given positive integers n and $m, A=k[X]:=k\left[x_{1}, \ldots, x_{n}\right], B=k[Y]:=k\left[y_{1}, \ldots, y_{m}\right]$. Then $A \otimes_{k} B$ is the polynomial algebra $k[X, Y]:=k\left[x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right]$. If $d_{1}: k[X] \rightarrow k[X]$ and $d_{2}: k[Y] \rightarrow k[Y]$ are k-derivations, then we denote by $d_{1} \oplus d_{2}$ the derivation $d_{1} \otimes 1+1 \otimes d_{2}$, which means that $d_{1} \oplus d_{2}$ is the derivation d of $k[X, Y]$ such that $\left.d\right|_{k[X]}=d_{1}$ and $\left.d\right|_{k[Y]}=d_{2}$.

We prove (Theorem ??) that if d_{1} and d_{2} are positively homogeneous (in some sense to be defined) and if $k[X]^{d_{1}}=k$, then $k[X, Y]^{d_{1} \oplus d_{2}}=k[Y]^{d_{2}}$.

The main result of this paper is Theorem ??, which, in some cases, describes the set of all Darboux polynomials of $d_{1} \oplus d_{2}$.

2 Preliminaries

Let δ be a k-derivation of $k[X]$. Then $k[X]^{\delta}$ stands for the algebra of constants of δ : $k[X]^{\delta}=\{F \in k[X] ; \delta(F)=0\}$. We still denote by δ the unique extension of δ to the field of quotients $k(X):=k\left(x_{1}, \ldots, x_{n}\right)$ of $k[X]$ and $k(X)^{\delta}$ then denotes the field of constants of δ.

We say that a polynomial $F \in k[X]$ is a Darboux polynomial of δ (see [?, ?]) if there exists a polynomial $\Lambda \in k[X]$ such that $\delta(F)=\Lambda F$. In this case, we say that Λ is a cofactor of F (if $F \neq 0$, then this cofactor is uniquely determined). Moreover, we say that a Darboux polynomial F is trivial if $F \in k$.

By a direction in \mathbb{Z}^{n} we mean a nonzero sequence $\gamma=\left(\gamma_{1}, \ldots, \gamma_{n}\right)$ of integers.
Let $\gamma=\left(\gamma_{1}, \ldots, \gamma_{n}\right)$ be a direction. If $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ is a sequence of nonnegative integers, then $|\alpha|_{\gamma}$ denotes the sum $\gamma_{1} \alpha_{1}+\cdots+\gamma_{n} \alpha_{n}$ whereas X^{α} is the monomial $x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}}$.

Let $s \in \mathbb{Z}$; a nonzero polynomial $F \in k[X]$ is said to be a γ-homogeneous polynomial of degree s if F is of the form:

$$
F=\sum_{|\alpha|_{\gamma}=s} a_{\alpha} X^{\alpha},
$$

where each a_{α} belongs to k. We assume that the zero polynomial is γ-homogeneous of any degree. It is standard to check (Cf. [?] 19) that:

Proposition 2.1. If F is a nonzero polynomial in $k[X]$, then the following conditions are equivalent:
(1) F is γ-homogeneous of degree s;
(2) $F\left(t^{\gamma_{1}} x_{1}, \ldots, t^{\gamma_{n}} x_{n}\right)=t^{s} F\left(x_{1}, \ldots, x_{n}\right)$ (in the ring $k(t)[X]$);
(3) $\gamma_{1} x_{1} \frac{\partial F}{\partial x_{1}}+\cdots+\gamma_{n} x_{n} \frac{\partial F}{\partial x_{n}}=s F$.

In other words, a γ-homogeneous F of degree s is a Darboux polynomial with cofactor s for the linear derivation $\epsilon_{\gamma}=\sum \gamma_{i} x_{i} \frac{\partial}{\partial x_{i}}$.

Denote by A_{s}^{γ} the group of all γ-homogeneous polynomials from $k[X]$ of degree s. Each A_{s}^{γ} is a k-subspace of $k[X]$ and $k[X]=\bigoplus_{s \in \mathbb{Z}} A_{s}^{\gamma}$. Moreover, $A_{s}^{\gamma} A_{t}^{\gamma} \subseteq A_{s+t}^{\gamma}$ for all $s, t \in \mathbb{Z}$ and $k[X]$ is thus a graded ring. Such a gradation on $k[X]$ is said to be a γ-gradation. Every polynomial $F \in k[X]$ has the γ-decomposition $F=\sum F_{s}$ into γ-components f_{s} of degree s. If $F \neq 0$, then $\gamma-\operatorname{deg}(F)$ denotes the γ-degree of F, that is, the maximal s such that $F_{s} \neq 0$. We assume also that $\gamma-\operatorname{deg}(0)=-\infty$.

The derivation δ is called γ-homogeneous of degree s if $\delta\left(A_{p}^{\gamma}\right) \subseteq A_{s+p}^{\gamma}$, for any $p \in \mathbb{Z}$ (equivalently, if $\delta\left(x_{i}\right) \in A_{s+\gamma_{i}}^{\gamma}$ for $i=1, \ldots, n$). Note that each partial derivative $\partial / \partial x_{i}$, for $i=1, \ldots, n$, is γ-homogeneous of degree $-\gamma_{i}$. We say that the derivation δ is linear if $\delta\left(x_{i}\right)=\sum_{j=1}^{n} a_{i j} x_{j}$, for all $i=1, \ldots, n$, where each $a_{i j}$ belongs to k. Every linear derivation
is $(1, \ldots, 1)$-homogeneous of degree zero. We say that the derivation δ is γ-homogeneous if there exists an integer s such that δ is γ-homogeneous of degree s.

Assume now that δ is γ-homogeneous and let $F \in k[X]$. If $F \in k[X]^{\delta}$, then each $\gamma-$ homogeneous component of F belongs also to $k[X]^{\delta}$. Thus, in this case the algebra $k[X]^{\delta}$ is generated over k by γ-homogeneous polynomials. Note also:

Proposition $2.2([?, ?])$. Let $\delta: k[X] \rightarrow k[X]$ be γ-homogeneous of degree s, and let $F \in k[X]$ be a nonzero Darboux polynomial of δ with a cofactor Λ. Then Λ is γ-homogeneous of degree s and all γ-components of F are also Darboux polynomials of δ with a common cofactor equal to Λ.

A direction $\gamma=\left(\gamma_{1}, \ldots, \gamma_{n}\right)$ is said to be positive if all integers $\gamma_{1}, \ldots, \gamma_{n}$ are positive. We say that a derivation δ of $k[X]$ is positively homogeneous if there exists a positive direction γ in \mathbb{N}^{n} such that δ is γ-homogeneous of a positive degree.

Proposition 2.3. Assume that $d_{1}: k[X] \rightarrow k[X]$ and $d_{2}: k[Y] \rightarrow k[Y]$ are positively homogeneous derivations. Then there exist positive directions η and ε in \mathbb{N}^{n} and \mathbb{N}^{m}, respectively, such that:
(a) d_{1} is η-homogeneous of a positive degree s,
(b) d_{2} is ε-homogeneous of the same degree s and
(c) $d_{1} \oplus d_{2}$ is γ-homogeneous of degree s, where $\gamma=(\eta, \varepsilon)$.

In particular, if $d_{1}: k[X] \rightarrow k[X]$ and $d_{2}: k[Y] \rightarrow k[Y]$ are positively homogeneous derivations, then the derivation $d_{1} \oplus d_{2}: k[X, Y] \rightarrow k[X, Y]$ is also positively homogeneous.

Proof. Let $\gamma^{\prime}=\left(\gamma_{1}^{\prime}, \ldots, \gamma_{n}^{\prime}\right)$ and $\gamma^{\prime \prime}=\left(\gamma_{1}^{\prime \prime}, \ldots, \gamma_{m}^{\prime \prime}\right)$ be positive directions in \mathbb{N}^{n} and \mathbb{N}^{m}, respectively, such that d_{1} is γ^{\prime}-homogeneous of a positive degree s^{\prime} and d_{2} is $\gamma^{\prime \prime}$-homogeneous of a positive degree $s^{\prime \prime}$. Put $s:=s^{\prime} s^{\prime \prime}, \eta:=s^{\prime \prime} \gamma^{\prime}=\left(s^{\prime \prime} \gamma_{1}^{\prime}, \ldots, s^{\prime \prime} \gamma_{n}^{\prime}\right)$ and $\varepsilon:=s^{\prime} \gamma^{\prime \prime}=$ $\left(s^{\prime} \gamma_{1}^{\prime \prime}, \ldots, s^{\prime} \gamma_{n}^{\prime \prime}\right)$. Using Proposition ??, we see that d_{1} is η-homogeneous of degree s and d_{2} is ε-homogeneous of the same degree s. Let $\gamma=(\eta, \varepsilon)=\left(s^{\prime \prime} \gamma_{1}^{\prime}, \ldots, s^{\prime \prime} \gamma_{n}^{\prime}, s^{\prime} \gamma_{1}^{\prime \prime}, \ldots, s^{\prime} \gamma_{m}^{\prime \prime}\right)$. Then γ is a positive direction in \mathbb{N}^{n+m} and the derivation $d_{1} \oplus d_{2}$ is γ-homogeneous of the positive degree s.

3 Darboux polynomials

Theorem 3.1. Let $d_{1}: k[X] \rightarrow k[X]$ and $d_{2}: k[Y] \rightarrow k[Y]$ be positively homogeneous derivations and let $d=d_{1} \oplus d_{2}$. Assume that d_{1} has no Darboux polynomials belonging to $k[X] \backslash k$. Then every Darboux polynomial of d belongs to $k[Y]$ and it is a Darboux polynomial of d_{2}.

Proof. Let s, η, ε and γ be as in Proposition ??, and let $F \in k[X, Y] \backslash k$ be a Darboux polynomial of d with a cofactor $\Lambda \in k[X, Y]$. Then, by Proposition ??, Λ is γ-homogeneous of degree s and we may assume that F is γ-homogeneous of degree $p \geqslant 1$. The polynomials F and Λ have the following forms:

$$
F=\sum_{|\alpha|_{\varepsilon} \leqslant p} F_{\alpha} Y^{\alpha}, \quad \Lambda=\sum_{|\beta|_{\varepsilon} \leqslant s} \Lambda_{\beta} Y^{\beta},
$$

where $F_{\alpha}, \Lambda_{\beta}$ (for any α and β) are γ-homogeneous polynomials from $k[X]$ of degrees $p-|\alpha|_{\varepsilon}$ and $s-|\beta|_{\varepsilon}$, respectively. The polynomials $d(F)$ and ΛF may then be developed as

$$
d(F)=\sum_{|\alpha|_{\varepsilon} \leqslant p}\left(d_{1}\left(F_{\alpha}\right) Y^{\alpha}+F_{\alpha} d_{2}\left(Y^{\alpha}\right)\right), \quad \Lambda F=\sum_{|\beta|_{\varepsilon} \leqslant s} \sum_{|\alpha|_{\varepsilon} \leqslant p} \Lambda_{\beta} F_{\alpha} Y^{\alpha+\beta},
$$

Since $d(F)=\Lambda F$, we have:

$$
0=\sum_{|\alpha|_{\varepsilon} \leqslant p}\left(d_{1}\left(F_{\alpha}\right) Y^{\alpha}+F_{\alpha} d_{2}\left(Y^{\alpha}\right)\right)-\sum_{|\beta|_{\varepsilon} \leqslant s} \sum_{|\alpha|_{\varepsilon} \leqslant p} \Lambda_{\beta} F_{\alpha} Y^{\alpha+\beta} .
$$

Denote by H the polynomial on the right-hand side of this equality and consider the ε gradation on the polynomial ring $k[X, Y]$ over $k[X]$.
With respect to this gradation, the polynomial H has the form $H=H_{0}+H_{1}+\cdots+H_{p+s}$, where $H_{i} \in \underset{|\alpha|_{\varepsilon}=i}{\bigoplus} k[X] Y^{\alpha}$ for all $i=0,1, \ldots, p+s$. Since $H=0$, we have $H_{0}=H_{1}=\ldots=$ $H_{p+s}=0$.

Using an induction with respect to j, we will now show, for all $j \in\{0,1, \ldots, p-1\}$, that

$$
\begin{equation*}
F_{\alpha}=0, \quad \text { for any } \alpha \text { with }|\alpha|_{\varepsilon}=j . \tag{*}
\end{equation*}
$$

First consider the case $j=0$. We know that $0=H_{0}=d_{1}\left(F_{0}\right) Y^{0}-\Lambda_{0} F_{0} Y^{0}$, and $d_{1}\left(F_{0}\right)=\Lambda_{0} F_{0}$. But d_{1} has only trivial Darboux polynomials, so $F_{0} \in k$. Moreover, F_{0} is γ-homogeneous and $\gamma-\operatorname{deg}\left(F_{0}\right)=p-|0|_{\varepsilon}=p \geqslant 1$, so $F_{0}=0$. Thus, the condition (*) holds for $j=0$.

Assume now that $j>0$ (and of course $j \in\{0,1, \ldots, p-1\}$) and that $(*)$ is true for all numbers smaller than j. Consider the polynomial H_{j}.

Case 1. Let $j<s+1$. Then we have:

$$
H_{j}=\sum_{|\alpha|_{\varepsilon}=j} d_{1}\left(F_{\alpha}\right) Y^{\alpha}-\sum_{|\alpha|_{\varepsilon}+|\beta|_{\varepsilon}=j} \Lambda_{\beta} F_{\alpha} Y^{\alpha+\beta} .
$$

By induction, $F_{\alpha}=0$ for $|\alpha|_{\varepsilon}<j$, so

$$
0=H_{j}=\sum_{|\alpha|_{\varepsilon}=j} d_{1}\left(F_{\alpha}\right) Y^{\alpha}-\sum_{|\alpha|_{\varepsilon}=j} \Lambda_{0} F_{\alpha} Y^{\alpha}=\sum_{|\alpha|_{\varepsilon}=j}\left(d_{1}\left(F_{\alpha}\right)-\Lambda_{0} F_{\alpha}\right) Y^{\alpha}
$$

and this implies that $d_{1}\left(F_{\alpha}\right)=\Lambda_{0} F_{\alpha}$ for $|\alpha|_{\varepsilon}=j$. But d_{1} has only trivial Darboux polynomials, so $F_{\alpha} \in k$ for $|\alpha|_{\varepsilon}=j$. Moreover, each such F_{α} is γ-homogeneous and γ -$\operatorname{deg}\left(F_{\alpha}\right)=p-|\alpha|_{\varepsilon}=p-j \geqslant 1$, so $F_{\alpha}=0$.

Case 2. Let $j \geq s+1$. In this case

$$
H_{j}=\sum_{|\alpha| \varepsilon=j} d_{1}\left(F_{\alpha}\right) Y^{\alpha}+\sum_{\left|\alpha^{\prime}\right|_{\varepsilon}=j-s} F_{\alpha^{\prime}} d_{2}\left(Y^{\alpha^{\prime}}\right)-\sum_{|\alpha|_{\varepsilon}+|\beta|_{\varepsilon}=j} \Lambda_{\beta} F_{\alpha} Y^{\alpha+\beta} .
$$

By induction, each $F_{\alpha^{\prime}}$ is equal to 0 and $F_{\alpha}=0$ for $|\alpha|_{\varepsilon}<j$, so

$$
0=H_{j}=\sum_{|\alpha|_{\varepsilon}=j} d_{1}\left(F_{\alpha}\right) Y^{\alpha}-\sum_{|\alpha|_{\varepsilon}=j} \Lambda_{0} F_{\alpha} Y^{\alpha}=\sum_{|\alpha|_{\varepsilon}=j}\left(d_{1}\left(F_{\alpha}\right)-\Lambda_{0} F_{\alpha}\right) Y^{\alpha} .
$$

Hence, $d_{1}\left(F_{\alpha}\right)=\Lambda_{0} F_{\alpha}$ and $F_{\alpha} \in k$ for $|\alpha|_{\varepsilon}=j$. Each such F_{α} is γ-homogeneous and $\gamma-\operatorname{deg}\left(F_{\alpha}\right)=p-|\alpha|_{\varepsilon}=p-j \geqslant 1$, so $F_{\alpha}=0$ for $|\alpha|_{\varepsilon}=j$. Therefore, we proved the condition (*).

We can now conclude that F reduces to $\sum_{|\alpha|_{\varepsilon}=p} F_{\alpha} Y^{\alpha}$, where the γ-degree of each F_{α} is equal to $p-|\alpha|_{\varepsilon}=p-p=0$. Since the direction γ is positive, each F_{α} belongs to k. Thus, $F \in k[Y]$. Moreover, $\Lambda F=d(F)=d_{2}(F) \in k[Y]$, that is, $\Lambda \in k[Y]$. Therefore, F is a Darboux polynomial of d_{2}. This completes the proof.

As a consequence of this theorem we obtain:
Corollary 3.2. Let $d_{1}: k[X] \rightarrow k[X]$ and $d_{2}: k[Y] \rightarrow k[Y]$ be positively homogeneous derivations and assume that d_{1} and d_{2} have only trivial Darboux polynomials. Then every Darboux polynomial of $d_{1} \oplus d_{2}$ is trivial.

Every γ-homogeneous derivation of the polynomial ring over k in two variables has a nontrivial Darboux polynomial [?]. There exist homogeneous derivations in three variables without nontrivial Darboux polynomials. It is well known [?, ?, ?, ?] that if $s \geqslant 2$, then the derivation δ of $k[x, y, z]$ defined by $\delta(x)=y^{s}, \delta(y)=z^{s}$ and $\delta(z)=x^{s}$ has only trivial Darboux polynomials. Using this fact and Corollary ?? we get the following example in the case $n=m=3$.

Example 3.3. Let $R=k\left[x_{1}, \ldots, x_{6}\right]$ and let d be the derivation of R defined by

$$
d\left(x_{1}\right)=x_{2}^{p}, d\left(x_{2}\right)=x_{3}^{p}, d\left(x_{3}\right)=x_{1}^{p}, d\left(x_{4}\right)=x_{5}^{q}, d\left(x_{5}\right)=x_{6}^{q}, d\left(x_{6}\right)=x_{4}^{q},
$$

where p and q are integers greater than 1. This derivation has only trivial Darboux polynomials.

Similar examples we can produce for any number of variables divided by 3 . Using Theorem ?? and the above mentioned fact we get the following next example.

Example 3.4. Let $R=k\left[x_{1}, x_{2}, x_{3}, x_{4}\right]$ and let d be the derivation of $k[X]$ defined by

$$
d\left(x_{1}\right)=x_{2}^{p}, d\left(x_{2}\right)=x_{3}^{p}, d\left(x_{3}\right)=x_{1}^{p}, d\left(x_{4}\right)=x_{4}^{q}
$$

where p and q are integers greater than 1. Then every nontrivial Darboux polynomial of d is of the form ax x_{4}^{s} with $0 \neq a \in k$ and $s \geqslant 1$.

This example is valid also for $q=1$, as the following more general theorem shows.
Theorem 3.5. Let $d_{1}: k[X] \rightarrow k[X]$ be a positively homogeneous derivation without nontrivial Darboux polynomials. If $d_{2}: k[Y] \rightarrow k[Y]$ is a linear derivation, then every Darboux polynomial of $d_{1} \oplus d_{2}$ belongs to $k[Y]$ and is a Darboux polynomial of d_{2}.

Proof. Let γ be a positive direction in $k[X]$ such that d_{1} is γ-homogeneous of a positive degree s. Let $F \in k[X, Y]$ be a Darboux polynomial of $d:=d_{1} \oplus d_{2}$ with a cofactor $\Lambda \in k[X, Y]$.

Case 1. Assume that the field k is algebraically closed. In this case, using a change of coordinates, we may assume that the matrix of d_{2} is triangular. Let

$$
d_{2}\left(y_{i}\right)=a_{i, i} y_{i}+a_{i, i+1} y_{i+1}+\cdots+a_{i, m} y_{m}
$$

for $i=1, \ldots, m$, where each $a_{i j}$ belongs to k.
Let $F=\sum_{\alpha} F_{\alpha} Y^{\alpha}$, with $F_{\alpha} \in k[X]$. Then $d(F)=\sum_{\alpha} d_{1}\left(F_{\alpha}\right) Y^{\alpha}+F_{\alpha} d_{2}\left(Y^{\alpha}\right)$. Comparing in the equality $d(F)=\Lambda F$ the degrees with respect to Y, we observe that $\Lambda \in k[X]$.

We will show that each F_{α} belongs to k. Suppose that this is not true. Let β be the maximal element, with respect to lexicographic order on $k[Y]$, such that $F_{\beta} \notin k$. Comparing in the equality $0=\sum_{\alpha}\left(d_{1}\left(F_{\alpha}\right) Y^{\alpha}+F_{\alpha} d_{2}\left(Y^{\alpha}\right)-\Lambda F_{\alpha} Y^{\alpha}\right)$ the coefficients of Y^{β}, we obtain (thanks to our assumptions) that

$$
d_{1}\left(F_{\beta}\right)=a F_{\beta}+\Lambda F_{\beta}+b=(a+\Lambda) F_{\beta}+b,
$$

for some $a, b \in k$. Let $H \in k[X]$ be the initial γ-component of F_{β} and let $p:=\gamma$-deg H. Note that $d_{1}(H) \in \cap A_{p+s}^{\gamma}$.

Suppose that $\Lambda+a=0$. Then $d_{1}\left(F_{\beta}\right)=b \in k$, so $d_{1}(H) \in k$ (because d_{1} is γ homogeneous of a positive degree). Hence, $d_{1}(H) \in A_{0}^{\gamma} \cap A_{p+s}^{\gamma}=0$, that is, $H \in k[X]^{d_{1}}$ and, in particular, H is a Darboux polynomial of d_{1}. Since d_{1} has only trivial Darboux polynomials, $H \in k$ and consequently, $F_{\beta} \in k$. But it is a contradiction.

Therefore $\Lambda+a \neq 0$. Let $\lambda \in k[X]$ be the initial γ-component of $\Lambda+a$. Then $\lambda \neq 0$. Comparing the initial γ-components in the equality $d_{1}\left(F_{\beta}\right)=(a+\Lambda) F_{\beta}+b$, we obtain that $d_{1}(H)=\lambda H$, that is, H is a Darboux polynomial of d_{1}. But d_{1} has only trivial Darboux polynomial, so $H \in k$. This implies that $F_{\beta} \in k$, but it is again a contradiction.

Thus, each F_{α} belongs to k, that is, $F \in k[Y]$. Since, $\Lambda F=d(F)=d_{2}(F) \in k[Y]$, we have $\Lambda \in k[Y]$, and this means that F is a Darboux polynomial of d_{2}.

Case 2. Now we do not assume that k is algebraically closed. Let \bar{k} be an algebraic closure of k, and let $\bar{d}_{1}: \bar{k}[X] \rightarrow \bar{k}[X], \bar{d}_{2}: \bar{k}[Y] \rightarrow \bar{k}[Y]$, be the derivations such that $\bar{d}_{1}\left(x_{i}\right)=d_{1}\left(x_{i}\right)$ for $i=1, \ldots, n$, and $\bar{d}_{2}\left(y_{j}\right)=d_{2}\left(y_{j}\right)$ for $j=1, \ldots, m$. Then F (as an element from $\bar{k}[X, Y]$) is a Darboux polynomial of $\bar{d}_{1} \oplus \bar{d}_{2}$ and hence, by Case $1, F \in \bar{k}[Y] \cap k[X, Y]=k[Y]$. So, $F \in k[Y]$ and it is clear that F is a Darboux polynomial of d_{2}.

4 Constants

Theorem 4.1. Let $d_{1}: k[X] \rightarrow k[X]$ and $d_{2}: k[Y] \rightarrow k[Y]$ be positively homogeneous derivations and let $d=d_{1} \oplus d_{2}$. Assume that $k[X]^{d_{1}}=k$. Then $k[X, Y]^{d}=k[Y]^{d_{2}}$.

Proof. Let s, η, ε and γ be as in Proposition ??, and let $F \in k[X, Y]$ be a γ homogeneous polynomial of degree $p \geqslant 1$ belonging to $k[X, Y]^{d} \backslash k$. Put

$$
F=\sum_{|\alpha| \varepsilon \leqslant p} F_{\alpha} Y^{\alpha},
$$

where each F_{α} is a γ-homogeneous polynomial from $k[X]$ of degree $p-|\alpha|_{\varepsilon}$. Since $d(F)=0$, we have

$$
0=\sum_{|\alpha| \varepsilon \leqslant p}\left(d_{1}\left(F_{\alpha}\right) Y^{\alpha}+F_{\alpha} d_{2}\left(Y^{\alpha}\right)\right) .
$$

Repeating the proof of Theorem ?? for the Darboux polynomial F with cofactor $\Lambda=0$ we deduce that if $j \in\{0,1, \ldots, p-1\}$, then $F_{\alpha}=0$ for any α with $|\alpha|_{\varepsilon}=j$. Thus, we have:

$$
F=\sum_{|\lambda|_{\varepsilon}=p} F_{\alpha} Y^{\alpha}
$$

where γ-degree of each F_{α} is equal to $p-|\alpha|_{\varepsilon}=p-p=0$. Since the direction γ is positive, each F_{α} belongs to k. This means that $F \in k[Y]$. Moreover, $d_{2}(F)=d(F)=0$. Therefore, $F \in k[Y]^{d_{2}}$. This completes the proof.

As a consequence of this theorem we obtain:
Corollary 4.2. Let $d_{1}: k[X] \rightarrow k[X]$ and $d_{2}: k[Y] \rightarrow k[Y]$ be positively homogeneous derivations. If $k[X]^{d_{1}}=k$ and $k[Y]^{d_{2}}=k$, then $k[X, Y]^{d_{1} \oplus d_{2}}=k$.

The following example shows that a similar corollary is not true if instead of rings of constants we consider fields of constants.

Example 4.3. Let $n=m=1$ and let $d_{1}: k[X] \rightarrow k[X], d_{2}: k[Y] \rightarrow k[Y]$ be the derivations such that $d_{1}\left(x_{1}\right)=x_{1}^{2}$ and $d_{2}\left(y_{1}\right)=y_{1}^{2}$. Then d_{1} and d_{2} are positively homogeneous, $k(X)^{d_{1}}=$ $k, k(Y)^{d_{2}}=k$, and $k(X, Y)^{d_{1} \oplus d_{2}} \neq k$. The rational function $\frac{x_{1}-y_{1}}{x_{1} y_{1}}$ belongs to $k(X, Y)^{d_{1} \oplus d_{2}} \backslash$ k.

The next example shows that if homogeneous derivations d_{1} and d_{2} are not positively homogeneous, then Corollary ?? is not true, in general.

Example 4.4. Let $n=m=1$ and let $d_{1}: k[X] \rightarrow k[X], d_{2}: k[Y] \rightarrow k[Y]$ be the derivations such that $d_{1}\left(x_{1}\right)=-x_{1}$ and $d_{2}\left(y_{1}\right)=y_{1}$. Then d_{1} and d_{2} are homogeneous with respect to the ordinary directions and they are not positively homogeneous; both derivations are homogeneous of degree zero. In this case $k[X]^{d_{1}}=k$ and $k[Y]^{d_{2}}=k$, but $k[X, Y]^{d_{1} \oplus d_{2}} \neq k$. The polynomial $x_{1} y_{1}$ belongs to $k[X, Y]^{d_{1} \oplus d_{2}} \backslash k$.

In this example both derivations are homogeneous but not positively homogeneous. There is no similar examples in which d_{2} is as above and d_{1} positively homogeneous. This follows from the following, more general, theorem.

Theorem 4.5. Let γ be a direction in $k[X]$ (not necessary positive) and let $d_{1}: K[X] \rightarrow$ $k[X]$ be a γ-homogeneous derivation of degree $s \neq 0$. If $d_{2}: k[Y] \rightarrow k[Y]$ is a linear derivation with $k[Y]^{d_{2}}=k$, then $k[X, Y]^{d_{1} \oplus d_{2}}=k[X]^{d_{1}}$.

Proof. As in the proof of Theorem ?? we may assume that the field k is algebraically closed, and that $d_{2}\left(y_{i}\right)=a_{i, i} y_{i}+a_{i, i+1} y_{i+1}+\cdots+a_{i, m} y_{m}$ for $i=1, \ldots, m$, where each $a_{i j}$ belongs to k. Since $k[X]^{d_{2}}=k$, the elements $\lambda_{1}:=a_{1,1}, \ldots, \lambda_{m}:=a_{m, m}$ are linearly independent over \mathbb{N} (see for example [?]).

Let $F=\sum_{\alpha} F_{\alpha} Y^{\alpha}$, with $F_{\alpha} \in k[X]$, be a nonzero polynomial from $k[X, Y]$ belonging to $k[X, Y]^{d}$, where $d:=d_{1} \oplus d_{2}$. Let $\beta=\left(\beta_{1}, \ldots, \beta_{m}\right)$ be the maximal element, with respect to lexicographic order on $k[Y]$, such that $F_{\beta} \neq 0$. Since $d(F)=0$, we have the equality $0=\sum_{\alpha}\left(d_{1}\left(F_{\alpha}\right) Y^{\alpha}+F_{\alpha} d_{2}\left(Y^{\alpha}\right)\right)$. Comparing in this equality the coefficients of Y^{β} we obtain (thanks to our assumptions) that

$$
d_{1}\left(F_{\beta}\right)=\mu F_{\beta},
$$

where $\mu=-\left(\beta_{1} \lambda_{1}+\cdots+\beta_{m} \lambda_{m}\right)$. Let $H \in k[X]$ be the initial γ-component of F_{β} and let $p:=\gamma$-deg H. Since F_{β} is a Darboux polynomial of d_{1} and d_{1} is γ-homogeneous, Proposition ?? implies that $d_{1}(H)=\mu H$.

If $\mu \neq 0$, then we have a contradiction: $0 \neq \mu H=d_{1}(H) \in A_{p}^{\gamma} \cap A_{p+s}^{\gamma}=0$. Thus, $\beta_{1} \lambda_{1}+\cdots+\beta_{m} \lambda_{m}=-\mu=0$ and this implies (since $\lambda_{1}, \ldots, \lambda_{m}$ are linearly independent over \mathbb{N}) that $\beta=(0, \ldots, 0)$. Hence, $F=F_{0} \in k[X]^{d_{1}}$.

In Example ?? the derivations d_{1} and d_{2} are linear. There is no similar example in which d_{2} is linear and d_{1} is positively homogeneous. This follows from the following theorem.

Theorem 4.6. Let d_{1} be a positively homogeneous derivation of $k[X]$ with $k[X]^{d_{1}}=k$. If d_{2} is a linear derivation of $k[Y]$, then $k[X, Y]^{d_{1} \oplus d_{2}}=k[Y]^{d_{2}}$.

Proof. As in the proof of Theorem ?? we may assume that the field k is algebraically closed, and that $d_{2}\left(y_{i}\right)=a_{i, i} y_{i}+a_{i, i+1} y_{i+1}+\cdots+a_{i, m} y_{m}$ for $i=1, \ldots, m$, where each $a_{i j}$ belongs to k. Assume moreover, that γ is such a positive direction in $k[X]$ that d_{1} is γ-homogeneous of a positive degree s.

Let $F=\sum_{\alpha} F_{\alpha} Y^{\alpha}$, with $F_{\alpha} \in k[X]$, be an element from $k[X, Y]$ belonging to $k[X, Y]^{d}$, where $d:=d_{1} \oplus d_{2}$. We will show that each F_{α} belongs to k.

Suppose that this is not true. Let β be the maximal element, with respect to lexicographic order on $k[Y]$, such that $F_{\beta} \notin k$. Since $d(F)=0$, we have the equality $0=\sum_{\alpha}\left(d_{1}\left(F_{\alpha}\right) Y^{\alpha}+F_{\alpha} d_{2}\left(Y^{\alpha}\right)\right)$. Comparing in this equality the coefficients of Y^{β} we obtain (thanks to our assumptions) that

$$
d_{1}\left(F_{\beta}\right)=a F_{\beta}+b,
$$

for some $a, b \in k$. Let $H \in k[X]$ be the initial γ-component of F_{β} and let $p:=\gamma$-deg H.
Suppose that $a=0$. Then $d_{1}\left(F_{\beta}\right)=b \in k$, so $d_{1}(H) \in k$ (because d_{1} is γ-homogeneous). Hence, $d_{1}(H) \in A_{0}^{\gamma} \cap A_{p+s}^{\gamma}=0$, that is, $H \in k[X]^{d_{1}}$. But $k[X]^{d_{1}}=k$, so $H \in k$ and we have a contradiction.

Therefore $a \neq 0$. Comparing the initial γ-components is the equality $d_{1}\left(F_{\beta}\right)=a F_{\beta}+b$, we obtain that $d_{1}(H)=a H$. Now we have: $a H=d_{1}(H) \in A_{p}^{\gamma} \cap A_{p+s}^{\gamma}=0$, that is $H=0$, but it is again a contradiction.

Thus, each F_{α} belongs to k, and this implies that $F \in k[Y]^{d_{2}}$.
As a consequence of this theorem and the classical result of Weitzenböck (see for example [?]) we get

Corollary 4.7. Let d_{1} be a positively homogeneous derivation of $k[X]$ with $k[X]^{d_{1}}=k$. If d_{2} is a linear derivation of $k[Y]$, then the algebra $k[X, Y]^{d_{1} \oplus d_{2}}$ is finitely generated over k.

Let δ_{5}, δ_{6} and δ_{7} be the derivations of polynomial rings over k in 5,6 and 7 variables, respectively, defined as follows:

$$
\begin{aligned}
\delta_{5} & =y_{1}^{2} \frac{\partial}{\partial y_{3}}+\left(y_{1} y_{3}+y_{2}\right) \frac{\partial}{\partial y_{4}}+y_{4} \frac{\partial}{\partial y_{5}}, \\
\delta_{6} & =y_{1}^{3} \frac{\partial}{\partial y_{3}}+y_{2}^{3} y_{3} \frac{\partial}{\partial y_{4}}+y_{2}^{3} y_{4} \frac{\partial}{\partial y_{5}}+y_{1}^{2} y_{2}^{2} \frac{\partial}{\partial y_{6}}, \\
\delta_{7} & =y_{1}^{3} \frac{\partial}{\partial y_{4}}+y_{2}^{3} \frac{\partial}{\partial y_{5}}+y_{3}^{3} \frac{\partial}{\partial y_{6}}+y_{1}^{2} y_{2}^{2} y_{3}^{2} \frac{\partial}{\partial y_{7}} .
\end{aligned}
$$

It is known that the rings of constants of these derivations are not finitely generated over k. The proofs of this fact we have in [?] and [?] (for δ_{7}), [?] (for δ_{6}), [?] and [?] (for δ_{5}). It is easy to check that these derivations are positively homogeneous. The derivation δ_{7} is γ-homogeneous of degree 1 for $\gamma=(1,1,1,2,2,2,5)$. The derivation δ_{6} is γ-homogeneous of degree 1 for $\gamma=(1,1,2,4,6,3)$, and δ_{5} is γ-homogeneous of degree 1 for $\gamma=(2,5,2,4,3)$. Using the derivations $\delta_{5}, \delta_{6}, \delta_{7}$ and Theorem ?? we may construct new examples of polynomial derivations with non-finitely generated ring of constants. Let us note:

Proposition 4.8. Let $d_{1}: k[X] \rightarrow k[X]$ be a positively homogeneous derivation such that $k[X]^{d_{1}}=k$, and let $d_{2}: k[Y] \rightarrow k[Y]$ be a derivation belonging to the set $\left\{\delta_{5}, \delta_{6}, \delta_{7}\right\}$. Then the ring of constants of the derivation $d_{1} \oplus d_{2}: k[X, Y] \rightarrow k[X, Y]$ is not finitely generated over k.

If the ring of constants of one of the derivations d_{1} and d_{2} is not finitely generated over k, then it is not true, in general, that the ring of constants of $d_{1} \oplus d_{2}$ is also not finitely generated.

Example 4.9. Let $d_{2}=\delta_{5}$ and d_{1} be the derivation of $k[X]:=k\left[x_{1}\right]$ such that $d_{1}\left(x_{1}\right)=1$. Then $k[Y]^{d_{2}}$ is not finitely generated over k and $k[X, Y]^{d_{1} \oplus d_{2}}$ is finitely generated over k.

Proof. It is obvious, because the derivation $d_{1} \oplus d_{2}$ is locally nilpotent with a slice (see for example, [?] or [?]).

References

[1] Daigle, D.; Freudenburg, G. A counterexample to Hilbert's fourteenth problem in dimension five, J. of Algebra 1999, 221, 528-535.
[2] Deveney, J.K.; Finston, D.R. G_{a} actions on \mathbb{C}^{3} and \mathbb{C}^{7}, Comm. Algebra 1994, 22, 6295 - 6302.
[3] van den Essen, A. Polynomial automorphisms and the Jacobian Conjecture, Progress in Mathematics 190, 2000.
[4] Freudenburg, G. A counterexample to Hilbert's fourteenth problem in dimension six, Transformation Groups 2000, 5, 61-71.
[5] Freudenburg, G. Recent progress on Hilbert's fourteenth problem via triangular derivations, Annales Polonici Math. 2001, 76, 95-99.
[6] Jouanolou, J.-P. Equations de Pfaff algébriques, Lect. Notes in Math. 708, SpringerVerlag, Berlin, 1979.
[7] Moulin Ollagnier, J.; Maciejewski, A.; Nowicki, A.; Strelcyn, J.-M. Around Jouanolou non-integrability theorem, Indag. Mathem., N. S. 2000, 11, 239-254.
[8] Moulin Ollagnier, J.; Nowicki, A.; Strelcyn, J.-M. On the non-existence of constants of derivations: The proof of a theorem of Jouanolou and its development, Bull. Sci. Math., 1995, 119, 195-233.
[9] Nowicki, A. Polynomial derivations and their rings of constants, N. Copernicus University Press: Toruń, 1994.
[10] Nowicki, A. On the non-existence of rational first integrals for systems of linear differential equations, Linear Algebra and Its Applications 1996, 235, 107-120.
[11] Nowicki, A.; Tyc, A. On semisimple derivations in characteristic zero, Communications in Algebra 2001, 29(11), 5115-5130.
[12] Roberts, P. An infinitely generated symbolic blow-up in a power series ring and a new counterexample to Hilbert's fourteenth problem, J. Algebra 1990, 132, 461 - 473.

