Final version published in *Communications in Algebra* **33** (1) (2004), 379-389.

Constants and Darboux polynomials for tensor products of polynomial algebras with derivations

Jean Moulin - Ollagnier² and Andrzej Nowicki³

²Laboratoire GAGE, UMS CNRS 658 Medicis, École Polytechnique, F 91128 Palaiseau Cedex, France, (e-mail: Jean.Moulin-Ollagnier@polytechnique.fr).

³N. Copernicus University, Faculty of Mathematics and Computer Science, 87-100 Toruń, Poland, (e-mail: anow@mat.uni.torun.pl).

Abstract

Let $d_1 : k[X] \to k[X]$ and $d_2 : k[Y] \to k[Y]$ be k-derivations, where $k[X] := k[x_1, \ldots, x_n], k[Y] := k[y_1, \ldots, y_m]$ are polynomial algebras over a field k of characteristic zero. Denote by $d_1 \oplus d_2$ the unique k-derivation of k[X, Y] such that $d|_{k[X]} = d_1$ and $d|_{k[Y]} = d_2$. We prove that if d_1 and d_2 are positively homogeneous and if d_1 has no nontrivial Darboux polynomials, then every Darboux polynomial of $d_1 \oplus d_2$ belongs to k[Y] and is a Darboux polynomial of d_2 . We prove a similar fact for the algebra of constants of $d_1 \oplus d_2$ and present several applications of our results.

1 Introduction

Throughout this paper, k is a field of characteristic zero. If A is a commutative k-algebra and $d: A \to A$ is a k-derivation, then the pair (A, d) is called a differential k-algebra; in this case, we denote by A^d the k-subalgebra of constants of d, that is, $A^d = \{a \in A; d(a) = 0\}$.

Let (A, d_1) and (B, d_2) be differential k-algebras and consider the pair $(A \otimes_k B, d)$ in which the k-algebra $A \otimes_k B$ is the tensor product of A and B, and d is the k-derivation of $A \otimes_k B$ defined as $d = d_1 \otimes 1 + 1 \otimes d_2$. This pair is the coproduct of (A, d_1) and (B, d_2) in the category of differential k-algebras. Assume that we know the algebras of constants A^{d_1} and B^{d_2} . How to describe the structure of the algebra $(A \otimes_k B)^d$ in terms of A^{d_1} and B^{d_2} ? In general, this is a very difficult question and there are examples where such description is impossible. Every element of $A^{d_1} \otimes_k B^{d_2}$ is a constant for d but, in general, it is not true that the algebra $(A \otimes_k B)^d$ is isomorphic to $A^{d_1} \otimes_k B^{d_2}$.

In this paper we study this problem when A and B are polynomial algebras over k. Given positive integers n and m, $A = k[X] := k[x_1, \ldots, x_n], B = k[Y] := k[y_1, \ldots, y_m]$. Then $A \otimes_k B$ is the polynomial algebra $k[X,Y] := k[x_1, \ldots, x_n, y_1, \ldots, y_m]$. If $d_1 : k[X] \to k[X]$ and $d_2 : k[Y] \to k[Y]$ are k-derivations, then we denote by $d_1 \oplus d_2$ the derivation $d_1 \otimes 1 + 1 \otimes d_2$, which means that $d_1 \oplus d_2$ is the derivation d of k[X,Y] such that $d|_{k[X]} = d_1$ and $d|_{k[Y]} = d_2$. We prove (Theorem ??) that if d_1 and d_2 are positively homogeneous (in some sense to be defined) and if $k[X]^{d_1} = k$, then $k[X,Y]^{d_1 \oplus d_2} = k[Y]^{d_2}$.

The main result of this paper is Theorem ??, which, in some cases, describes the set of all Darboux polynomials of $d_1 \oplus d_2$.

2 Preliminaries

Let δ be a k-derivation of k[X]. Then $k[X]^{\delta}$ stands for the algebra of constants of δ : $k[X]^{\delta} = \{F \in k[X]; \ \delta(F) = 0\}$. We still denote by δ the unique extension of δ to the field of quotients $k(X) := k(x_1, \ldots, x_n)$ of k[X] and $k(X)^{\delta}$ then denotes the field of constants of δ .

We say that a polynomial $F \in k[X]$ is a *Darboux polynomial* of δ (see [?, ?]) if there exists a polynomial $\Lambda \in k[X]$ such that $\delta(F) = \Lambda F$. In this case, we say that Λ is a *cofactor* of F (if $F \neq 0$, then this cofactor is uniquely determined). Moreover, we say that a Darboux polynomial F is *trivial* if $F \in k$.

By a *direction* in \mathbb{Z}^n we mean a nonzero sequence $\gamma = (\gamma_1, \ldots, \gamma_n)$ of integers.

Let $\gamma = (\gamma_1, \ldots, \gamma_n)$ be a direction. If $\alpha = (\alpha_1, \ldots, \alpha_n)$ is a sequence of nonnegative integers, then $|\alpha|_{\gamma}$ denotes the sum $\gamma_1 \alpha_1 + \cdots + \gamma_n \alpha_n$ whereas X^{α} is the monomial $x_1^{\alpha_1} \cdots x_n^{\alpha_n}$.

Let $s \in \mathbb{Z}$; a nonzero polynomial $F \in k[X]$ is said to be a γ -homogeneous polynomial of degree s if F is of the form:

$$F = \sum_{|\alpha|_{\gamma}=s} a_{\alpha} X^{\alpha},$$

where each a_{α} belongs to k. We assume that the zero polynomial is γ -homogeneous of any degree. It is standard to check (Cf. [?] 19) that:

Proposition 2.1. If F is a nonzero polynomial in k[X], then the following conditions are equivalent:

- (1) F is γ -homogeneous of degree s;
- (2) $F(t^{\gamma_1}x_1,...,t^{\gamma_n}x_n) = t^s F(x_1,...,x_n)$ (in the ring k(t)[X]);
- (3) $\gamma_1 x_1 \frac{\partial F}{\partial x_1} + \dots + \gamma_n x_n \frac{\partial F}{\partial x_n} = sF.$

In other words, a γ -homogeneous F of degree s is a Darboux polynomial with cofactor s for the linear derivation $\epsilon_{\gamma} = \sum \gamma_i x_i \frac{\partial}{\partial x_i}$.

Denote by A_s^{γ} the group of all γ -homogeneous polynomials from k[X] of degree s. Each A_s^{γ} is a k-subspace of k[X] and $k[X] = \bigoplus_{s \in \mathbb{Z}} A_s^{\gamma}$. Moreover, $A_s^{\gamma} A_t^{\gamma} \subseteq A_{s+t}^{\gamma}$ for all $s, t \in \mathbb{Z}$ and k[X] is thus a graded ring. Such a gradation on k[X] is said to be a γ -gradation. Every polynomial $F \in k[X]$ has the γ -decomposition $F = \sum F_s$ into γ -components f_s of degree s. If $F \neq 0$, then γ -deg(F) denotes the γ -degree of F, that is, the maximal s such that $F_s \neq 0$. We assume also that γ -deg $(0) = -\infty$.

The derivation δ is called γ -homogeneous of degree s if $\delta(A_p^{\gamma}) \subseteq A_{s+p}^{\gamma}$, for any $p \in \mathbb{Z}$ (equivalently, if $\delta(x_i) \in A_{s+\gamma_i}^{\gamma}$ for $i = 1, \ldots, n$). Note that each partial derivative $\partial/\partial x_i$, for $i = 1, \ldots, n$, is γ -homogeneous of degree $-\gamma_i$. We say that the derivation δ is *linear* if $\delta(x_i) = \sum_{j=1}^n a_{ij} x_j$, for all $i = 1, \ldots, n$, where each a_{ij} belongs to k. Every linear derivation is $(1, \ldots, 1)$ -homogeneous of degree zero. We say that the derivation δ is γ -homogeneous if there exists an integer s such that δ is γ -homogeneous of degree s.

Assume now that δ is γ -homogeneous and let $F \in k[X]$. If $F \in k[X]^{\delta}$, then each γ -homogeneous component of F belongs also to $k[X]^{\delta}$. Thus, in this case the algebra $k[X]^{\delta}$ is generated over k by γ -homogeneous polynomials. Note also:

Proposition 2.2 ([?, ?]). Let $\delta : k[X] \to k[X]$ be γ -homogeneous of degree s, and let $F \in k[X]$ be a nonzero Darboux polynomial of δ with a cofactor Λ . Then Λ is γ -homogeneous of degree s and all γ -components of F are also Darboux polynomials of δ with a common cofactor equal to Λ . \Box

A direction $\gamma = (\gamma_1, \ldots, \gamma_n)$ is said to be *positive* if all integers $\gamma_1, \ldots, \gamma_n$ are positive. We say that a derivation δ of k[X] is *positively homogeneous* if there exists a positive direction γ in \mathbb{N}^n such that δ is γ -homogeneous of a positive degree.

Proposition 2.3. Assume that $d_1 : k[X] \to k[X]$ and $d_2 : k[Y] \to k[Y]$ are positively homogeneous derivations. Then there exist positive directions η and ε in \mathbb{N}^n and \mathbb{N}^m , respectively, such that:

- (a) d_1 is η -homogeneous of a positive degree s,
- (b) d_2 is ε -homogeneous of the same degree s and
- (c) $d_1 \oplus d_2$ is γ -homogeneous of degree s, where $\gamma = (\eta, \varepsilon)$.

In particular, if $d_1 : k[X] \to k[X]$ and $d_2 : k[Y] \to k[Y]$ are positively homogeneous derivations, then the derivation $d_1 \oplus d_2 : k[X, Y] \to k[X, Y]$ is also positively homogeneous.

Proof. Let $\gamma' = (\gamma'_1, \ldots, \gamma'_n)$ and $\gamma'' = (\gamma''_1, \ldots, \gamma''_m)$ be positive directions in \mathbb{N}^n and \mathbb{N}^m , respectively, such that d_1 is γ' -homogeneous of a positive degree s' and d_2 is γ'' -homogeneous of a positive degree s''. Put s := s's'', $\eta := s''\gamma' = (s''\gamma'_1, \ldots, s''\gamma'_n)$ and $\varepsilon := s'\gamma'' = (s'\gamma''_1, \ldots, s'\gamma''_n)$. Using Proposition ??, we see that d_1 is η -homogeneous of degree s and d_2 is ε -homogeneous of the same degree s. Let $\gamma = (\eta, \varepsilon) = (s''\gamma'_1, \ldots, s''\gamma'_n, s'\gamma''_1, \ldots, s'\gamma''_m)$. Then γ is a positive direction in \mathbb{N}^{n+m} and the derivation $d_1 \oplus d_2$ is γ -homogeneous of the positive degree s. \Box

3 Darboux polynomials

Theorem 3.1. Let $d_1 : k[X] \to k[X]$ and $d_2 : k[Y] \to k[Y]$ be positively homogeneous derivations and let $d = d_1 \oplus d_2$. Assume that d_1 has no Darboux polynomials belonging to $k[X] \setminus k$. Then every Darboux polynomial of d belongs to k[Y] and it is a Darboux polynomial of d_2 .

Proof. Let s, η, ε and γ be as in Proposition ??, and let $F \in k[X, Y] \setminus k$ be a Darboux polynomial of d with a cofactor $\Lambda \in k[X, Y]$. Then, by Proposition ??, Λ is γ -homogeneous of degree s and we may assume that F is γ -homogeneous of degree $p \ge 1$. The polynomials F and Λ have the following forms:

$$F = \sum_{|\alpha|_{\varepsilon} \leqslant p} F_{\alpha} Y^{\alpha}, \quad \Lambda = \sum_{|\beta|_{\varepsilon} \leqslant s} \Lambda_{\beta} Y^{\beta},$$

where F_{α} , Λ_{β} (for any α and β) are γ -homogeneous polynomials from k[X] of degrees $p - |\alpha|_{\varepsilon}$ and $s - |\beta|_{\varepsilon}$, respectively. The polynomials d(F) and ΛF may then be developed as

$$d(F) = \sum_{|\alpha|_{\varepsilon} \leqslant p} \left(d_1(F_{\alpha}) Y^{\alpha} + F_{\alpha} d_2(Y^{\alpha}) \right), \quad \Lambda F = \sum_{|\beta|_{\varepsilon} \leqslant s} \sum_{|\alpha|_{\varepsilon} \leqslant p} \Lambda_{\beta} F_{\alpha} Y^{\alpha + \beta},$$

Since $d(F) = \Lambda F$, we have:

$$0 = \sum_{|\alpha|_{\varepsilon} \leqslant p} \left(d_1(F_{\alpha}) Y^{\alpha} + F_{\alpha} d_2(Y^{\alpha}) \right) - \sum_{|\beta|_{\varepsilon} \leqslant s} \sum_{|\alpha|_{\varepsilon} \leqslant p} \Lambda_{\beta} F_{\alpha} Y^{\alpha+\beta}.$$

Denote by H the polynomial on the right-hand side of this equality and consider the ε -gradation on the polynomial ring k[X, Y] over k[X].

With respect to this gradation, the polynomial H has the form $H = H_0 + H_1 + \dots + H_{p+s}$, where $H_i \in \bigoplus_{|\alpha|_{\varepsilon}=i} k[X]Y^{\alpha}$ for all $i = 0, 1, \dots, p+s$. Since H = 0, we have $H_0 = H_1 = \dots = H_{p+s} = 0$.

$$H_{p+s} = 0.$$

Using an induction with respect to j, we will now show, for all $j \in \{0, 1, \dots, p-1\}$, that

(*)
$$F_{\alpha} = 0$$
, for any α with $|\alpha|_{\varepsilon} = j$.

First consider the case j = 0. We know that $0 = H_0 = d_1(F_0)Y^0 - \Lambda_0 F_0 Y^0$, and $d_1(F_0) = \Lambda_0 F_0$. But d_1 has only trivial Darboux polynomials, so $F_0 \in k$. Moreover, F_0 is γ -homogeneous and γ -deg $(F_0) = p - |0|_{\varepsilon} = p \ge 1$, so $F_0 = 0$. Thus, the condition (*) holds for j = 0.

Assume now that j > 0 (and of course $j \in \{0, 1, ..., p-1\}$) and that (*) is true for all numbers smaller than j. Consider the polynomial H_j .

Case 1. Let j < s + 1. Then we have:

$$H_j = \sum_{|\alpha|_{\varepsilon}=j} d_1(F_{\alpha}) Y^{\alpha} - \sum_{|\alpha|_{\varepsilon}+|\beta|_{\varepsilon}=j} \Lambda_{\beta} F_{\alpha} Y^{\alpha+\beta}.$$

By induction, $F_{\alpha} = 0$ for $|\alpha|_{\varepsilon} < j$, so

$$0 = H_j = \sum_{|\alpha|_{\varepsilon}=j} d_1(F_{\alpha})Y^{\alpha} - \sum_{|\alpha|_{\varepsilon}=j} \Lambda_0 F_{\alpha}Y^{\alpha} = \sum_{|\alpha|_{\varepsilon}=j} \left(d_1(F_{\alpha}) - \Lambda_0 F_{\alpha} \right)Y^{\alpha},$$

and this implies that $d_1(F_{\alpha}) = \Lambda_0 F_{\alpha}$ for $|\alpha|_{\varepsilon} = j$. But d_1 has only trivial Darboux polynomials, so $F_{\alpha} \in k$ for $|\alpha|_{\varepsilon} = j$. Moreover, each such F_{α} is γ -homogeneous and γ - $\deg(F_{\alpha}) = p - |\alpha|_{\varepsilon} = p - j \ge 1$, so $F_{\alpha} = 0$.

Case 2. Let $j \ge s + 1$. In this case

$$H_j = \sum_{|\alpha|_{\varepsilon}=j} d_1(F_{\alpha})Y^{\alpha} + \sum_{|\alpha'|_{\varepsilon}=j-s} F_{\alpha'}d_2(Y^{\alpha'}) - \sum_{|\alpha|_{\varepsilon}+|\beta|_{\varepsilon}=j} \Lambda_{\beta}F_{\alpha}Y^{\alpha+\beta}.$$

By induction, each $F_{\alpha'}$ is equal to 0 and $F_{\alpha} = 0$ for $|\alpha|_{\varepsilon} < j$, so

$$0 = H_j = \sum_{|\alpha|_{\varepsilon}=j} d_1(F_{\alpha})Y^{\alpha} - \sum_{|\alpha|_{\varepsilon}=j} \Lambda_0 F_{\alpha}Y^{\alpha} = \sum_{|\alpha|_{\varepsilon}=j} \left(d_1(F_{\alpha}) - \Lambda_0 F_{\alpha}\right)Y^{\alpha}.$$

Hence, $d_1(F_\alpha) = \Lambda_0 F_\alpha$ and $F_\alpha \in k$ for $|\alpha|_{\varepsilon} = j$. Each such F_α is γ -homogeneous and γ -deg $(F_\alpha) = p - |\alpha|_{\varepsilon} = p - j \ge 1$, so $F_\alpha = 0$ for $|\alpha|_{\varepsilon} = j$. Therefore, we proved the condition (*).

We can now conclude that F reduces to $\sum_{|\alpha|_{\varepsilon}=p} F_{\alpha}Y^{\alpha}$, where the γ -degree of each F_{α} is equal to $p - |\alpha|_{\varepsilon} = p - p = 0$. Since the direction γ is positive, each F_{α} belongs to k. Thus, $F \in k[Y]$. Moreover, $\Lambda F = d(F) = d_2(F) \in k[Y]$, that is, $\Lambda \in k[Y]$. Therefore, F is a Darboux polynomial of d_2 . This completes the proof. \Box

As a consequence of this theorem we obtain:

Corollary 3.2. Let $d_1 : k[X] \to k[X]$ and $d_2 : k[Y] \to k[Y]$ be positively homogeneous derivations and assume that d_1 and d_2 have only trivial Darboux polynomials. Then every Darboux polynomial of $d_1 \oplus d_2$ is trivial. \Box

Every γ -homogeneous derivation of the polynomial ring over k in two variables has a nontrivial Darboux polynomial [?]. There exist homogeneous derivations in three variables without nontrivial Darboux polynomials. It is well known [?, ?, ?, ?] that if $s \ge 2$, then the derivation δ of k[x, y, z] defined by $\delta(x) = y^s$, $\delta(y) = z^s$ and $\delta(z) = x^s$ has only trivial Darboux polynomials. Using this fact and Corollary ?? we get the following example in the case n = m = 3.

Example 3.3. Let $R = k[x_1, \ldots, x_6]$ and let d be the derivation of R defined by

$$d(x_1) = x_2^p, \ d(x_2) = x_3^p, \ d(x_3) = x_1^p, \ d(x_4) = x_5^q, \ d(x_5) = x_6^q, \ d(x_6) = x_4^q$$

where p and q are integers greater than 1. This derivation has only trivial Darboux polynomials. \Box

Similar examples we can produce for any number of variables divided by 3. Using Theorem ?? and the above mentioned fact we get the following next example.

Example 3.4. Let $R = k[x_1, x_2, x_3, x_4]$ and let d be the derivation of k[X] defined by

$$d(x_1) = x_2^p, \ d(x_2) = x_3^p, \ d(x_3) = x_1^p, \ d(x_4) = x_4^q$$

where p and q are integers greater than 1. Then every nontrivial Darboux polynomial of d is of the form ax_4^s with $0 \neq a \in k$ and $s \geq 1$. \Box

This example is valid also for q = 1, as the following more general theorem shows.

Theorem 3.5. Let $d_1 : k[X] \to k[X]$ be a positively homogeneous derivation without nontrivial Darboux polynomials. If $d_2 : k[Y] \to k[Y]$ is a linear derivation, then every Darboux polynomial of $d_1 \oplus d_2$ belongs to k[Y] and is a Darboux polynomial of d_2 . **Proof.** Let γ be a positive direction in k[X] such that d_1 is γ -homogeneous of a positive degree s. Let $F \in k[X, Y]$ be a Darboux polynomial of $d := d_1 \oplus d_2$ with a cofactor $\Lambda \in k[X, Y]$.

Case 1. Assume that the field k is algebraically closed. In this case, using a change of coordinates, we may assume that the matrix of d_2 is triangular. Let

$$d_2(y_i) = a_{i,i}y_i + a_{i,i+1}y_{i+1} + \dots + a_{i,m}y_m$$

for $i = 1, \ldots, m$, where each a_{ij} belongs to k.

Let $F = \sum_{\alpha} F_{\alpha} Y^{\alpha}$, with $F_{\alpha} \in k[X]$. Then $d(F) = \sum_{\alpha} d_1(F_{\alpha})Y^{\alpha} + F_{\alpha}d_2(Y^{\alpha})$. Comparing in the equality $d(F) = \Lambda F$ the degrees with respect to Y, we observe that $\Lambda \in k[X]$.

We will show that each F_{α} belongs to k. Suppose that this is not true. Let β be the maximal element, with respect to lexicographic order on k[Y], such that $F_{\beta} \notin k$. Comparing in the equality $0 = \sum_{\alpha} (d_1(F_{\alpha})Y^{\alpha} + F_{\alpha}d_2(Y^{\alpha}) - \Lambda F_{\alpha}Y^{\alpha})$ the coefficients of Y^{β} , we obtain (thanks to our assumptions) that

$$d_1(F_\beta) = aF_\beta + \Lambda F_\beta + b = (a + \Lambda)F_\beta + b,$$

for some $a, b \in k$. Let $H \in k[X]$ be the initial γ -component of F_{β} and let $p := \gamma$ -deg H. Note that $d_1(H) \in \cap A_{p+s}^{\gamma}$.

Suppose that $\Lambda + a = 0$. Then $d_1(F_\beta) = b \in k$, so $d_1(H) \in k$ (because d_1 is γ homogeneous of a positive degree). Hence, $d_1(H) \in A_0^{\gamma} \cap A_{p+s}^{\gamma} = 0$, that is, $H \in k[X]^{d_1}$ and, in particular, H is a Darboux polynomial of d_1 . Since d_1 has only trivial Darboux
polynomials, $H \in k$ and consequently, $F_\beta \in k$. But it is a contradiction.

Therefore $\Lambda + a \neq 0$. Let $\lambda \in k[X]$ be the initial γ -component of $\Lambda + a$. Then $\lambda \neq 0$. Comparing the initial γ -components in the equality $d_1(F_\beta) = (a + \Lambda)F_\beta + b$, we obtain that $d_1(H) = \lambda H$, that is, H is a Darboux polynomial of d_1 . But d_1 has only trivial Darboux polynomial, so $H \in k$. This implies that $F_\beta \in k$, but it is again a contradiction.

Thus, each F_{α} belongs to k, that is, $F \in k[Y]$. Since, $\Lambda F = d(F) = d_2(F) \in k[Y]$, we have $\Lambda \in k[Y]$, and this means that F is a Darboux polynomial of d_2 .

Case 2. Now we do not assume that k is algebraically closed. Let \overline{k} be an algebraic closure of k, and let $\overline{d}_1 : \overline{k}[X] \to \overline{k}[X], \overline{d}_2 : \overline{k}[Y] \to \overline{k}[Y]$, be the derivations such that $\overline{d}_1(x_i) = d_1(x_i)$ for $i = 1, \ldots, n$, and $\overline{d}_2(y_j) = d_2(y_j)$ for $j = 1, \ldots, m$. Then F (as an element from $\overline{k}[X, Y]$) is a Darboux polynomial of $\overline{d}_1 \oplus \overline{d}_2$ and hence, by Case 1, $F \in \overline{k}[Y] \cap k[X, Y] = k[Y]$. So, $F \in k[Y]$ and it is clear that F is a Darboux polynomial of d_2 . \Box

4 Constants

Theorem 4.1. Let $d_1 : k[X] \to k[X]$ and $d_2 : k[Y] \to k[Y]$ be positively homogeneous derivations and let $d = d_1 \oplus d_2$. Assume that $k[X]^{d_1} = k$. Then $k[X, Y]^d = k[Y]^{d_2}$.

Proof. Let s, η, ε and γ be as in Proposition ??, and let $F \in k[X, Y]$ be a γ -homogeneous polynomial of degree $p \ge 1$ belonging to $k[X, Y]^d \setminus k$. Put

$$F = \sum_{|\alpha|_{\varepsilon} \leqslant p} F_{\alpha} Y^{\alpha},$$

where each F_{α} is a γ -homogeneous polynomial from k[X] of degree $p - |\alpha|_{\varepsilon}$. Since d(F) = 0, we have

$$0 = \sum_{|\alpha|_{\varepsilon} \leqslant p} \left(d_1(F_{\alpha}) Y^{\alpha} + F_{\alpha} d_2(Y^{\alpha}) \right).$$

Repeating the proof of Theorem ?? for the Darboux polynomial F with cofactor $\Lambda = 0$ we deduce that if $j \in \{0, 1, \dots, p-1\}$, then $F_{\alpha} = 0$ for any α with $|\alpha|_{\varepsilon} = j$. Thus, we have:

$$F = \sum_{|\lambda|_{\varepsilon} = p} F_{\alpha} Y^{\alpha},$$

where γ -degree of each F_{α} is equal to $p - |\alpha|_{\varepsilon} = p - p = 0$. Since the direction γ is positive, each F_{α} belongs to k. This means that $F \in k[Y]$. Moreover, $d_2(F) = d(F) = 0$. Therefore, $F \in k[Y]^{d_2}$. This completes the proof. \Box

As a consequence of this theorem we obtain:

Corollary 4.2. Let $d_1 : k[X] \to k[X]$ and $d_2 : k[Y] \to k[Y]$ be positively homogeneous derivations. If $k[X]^{d_1} = k$ and $k[Y]^{d_2} = k$, then $k[X,Y]^{d_1 \oplus d_2} = k$. \Box

The following example shows that a similar corollary is not true if instead of rings of constants we consider fields of constants.

Example 4.3. Let n = m = 1 and let $d_1 : k[X] \to k[X], d_2 : k[Y] \to k[Y]$ be the derivations such that $d_1(x_1) = x_1^2$ and $d_2(y_1) = y_1^2$. Then d_1 and d_2 are positively homogeneous, $k(X)^{d_1} = k$, $k(Y)^{d_2} = k$, and $k(X, Y)^{d_1 \oplus d_2} \neq k$. The rational function $\frac{x_1 - y_1}{x_1 y_1}$ belongs to $k(X, Y)^{d_1 \oplus d_2} \smallsetminus k$. \Box

The next example shows that if homogeneous derivations d_1 and d_2 are not positively homogeneous, then Corollary ?? is not true, in general.

Example 4.4. Let n = m = 1 and let $d_1 : k[X] \to k[X], d_2 : k[Y] \to k[Y]$ be the derivations such that $d_1(x_1) = -x_1$ and $d_2(y_1) = y_1$. Then d_1 and d_2 are homogeneous with respect to the ordinary directions and they are not positively homogeneous; both derivations are homogeneous of degree zero. In this case $k[X]^{d_1} = k$ and $k[Y]^{d_2} = k$, but $k[X,Y]^{d_1 \oplus d_2} \neq k$. The polynomial x_1y_1 belongs to $k[X,Y]^{d_1 \oplus d_2} \smallsetminus k$. \Box

In this example both derivations are homogeneous but not positively homogeneous. There is no similar examples in which d_2 is as above and d_1 positively homogeneous. This follows from the following, more general, theorem.

Theorem 4.5. Let γ be a direction in k[X] (not necessary positive) and let $d_1 : K[X] \rightarrow k[X]$ be a γ -homogeneous derivation of degree $s \neq 0$. If $d_2 : k[Y] \rightarrow k[Y]$ is a linear derivation with $k[Y]^{d_2} = k$, then $k[X, Y]^{d_1 \oplus d_2} = k[X]^{d_1}$.

Proof. As in the proof of Theorem ?? we may assume that the field k is algebraically closed, and that $d_2(y_i) = a_{i,i}y_i + a_{i,i+1}y_{i+1} + \cdots + a_{i,m}y_m$ for $i = 1, \ldots, m$, where each a_{ij} belongs to k. Since $k[X]^{d_2} = k$, the elements $\lambda_1 := a_{1,1}, \ldots, \lambda_m := a_{m,m}$ are linearly independent over \mathbb{N} (see for example [?]).

Let $F = \sum_{\alpha} F_{\alpha} Y^{\alpha}$, with $F_{\alpha} \in k[X]$, be a nonzero polynomial from k[X, Y] belonging to $k[X, Y]^d$, where $d := d_1 \oplus d_2$. Let $\beta = (\beta_1, \ldots, \beta_m)$ be the maximal element, with respect to lexicographic order on k[Y], such that $F_{\beta} \neq 0$. Since d(F) = 0, we have the equality $0 = \sum_{\alpha} (d_1(F_{\alpha})Y^{\alpha} + F_{\alpha}d_2(Y^{\alpha}))$. Comparing in this equality the coefficients of Y^{β} we obtain (thanks to our assumptions) that

$$d_1\left(F_\beta\right) = \mu F_\beta,$$

where $\mu = -(\beta_1 \lambda_1 + \cdots + \beta_m \lambda_m)$. Let $H \in k[X]$ be the initial γ -component of F_β and let $p := \gamma$ -deg H. Since F_β is a Darboux polynomial of d_1 and d_1 is γ -homogeneous, Proposition ?? implies that $d_1(H) = \mu H$.

If $\mu \neq 0$, then we have a contradiction: $0 \neq \mu H = d_1(H) \in A_p^{\gamma} \cap A_{p+s}^{\gamma} = 0$. Thus, $\beta_1 \lambda_1 + \cdots + \beta_m \lambda_m = -\mu = 0$ and this implies (since $\lambda_1, \ldots, \lambda_m$ are linearly independent over \mathbb{N}) that $\beta = (0, \ldots, 0)$. Hence, $F = F_0 \in k[X]^{d_1}$. \Box

In Example ?? the derivations d_1 and d_2 are linear. There is no similar example in which d_2 is linear and d_1 is positively homogeneous. This follows from the following theorem.

Theorem 4.6. Let d_1 be a positively homogeneous derivation of k[X] with $k[X]^{d_1} = k$. If d_2 is a linear derivation of k[Y], then $k[X, Y]^{d_1 \oplus d_2} = k[Y]^{d_2}$.

Proof. As in the proof of Theorem ?? we may assume that the field k is algebraically closed, and that $d_2(y_i) = a_{i,i}y_i + a_{i,i+1}y_{i+1} + \cdots + a_{i,m}y_m$ for $i = 1, \ldots, m$, where each a_{ij} belongs to k. Assume moreover, that γ is such a positive direction in k[X] that d_1 is γ -homogeneous of a positive degree s.

Let $F = \sum_{\alpha} F_{\alpha} Y^{\alpha}$, with $F_{\alpha} \in k[X]$, be an element from k[X, Y] belonging to $k[X, Y]^d$, where $d := d_1 \oplus d_2$. We will show that each F_{α} belongs to k.

Suppose that this is not true. Let β be the maximal element, with respect to lexicographic order on k[Y], such that $F_{\beta} \notin k$. Since d(F) = 0, we have the equality $0 = \sum_{\alpha} (d_1(F_{\alpha})Y^{\alpha} + F_{\alpha}d_2(Y^{\alpha}))$. Comparing in this equality the coefficients of Y^{β} we obtain (thanks to our assumptions) that

$$d_1\left(F_\beta\right) = aF_\beta + b,$$

for some $a, b \in k$. Let $H \in k[X]$ be the initial γ -component of F_{β} and let $p := \gamma$ -deg H.

Suppose that a = 0. Then $d_1(F_\beta) = b \in k$, so $d_1(H) \in k$ (because d_1 is γ -homogeneous). Hence, $d_1(H) \in A_0^{\gamma} \cap A_{p+s}^{\gamma} = 0$, that is, $H \in k[X]^{d_1}$. But $k[X]^{d_1} = k$, so $H \in k$ and we have a contradiction.

Therefore $a \neq 0$. Comparing the initial γ -components is the equality $d_1(F_\beta) = aF_\beta + b$, we obtain that $d_1(H) = aH$. Now we have: $aH = d_1(H) \in A_p^{\gamma} \cap A_{p+s}^{\gamma} = 0$, that is H = 0, but it is again a contradiction.

Thus, each F_{α} belongs to k, and this implies that $F \in k[Y]^{d_2}$. \Box

As a consequence of this theorem and the classical result of Weitzenböck (see for example [?]) we get

Corollary 4.7. Let d_1 be a positively homogeneous derivation of k[X] with $k[X]^{d_1} = k$. If d_2 is a linear derivation of k[Y], then the algebra $k[X,Y]^{d_1 \oplus d_2}$ is finitely generated over k.

Let δ_5 , δ_6 and δ_7 be the derivations of polynomial rings over k in 5, 6 and 7 variables, respectively, defined as follows:

$$\begin{split} \delta_5 &= y_1^2 \frac{\partial}{\partial y_3} + (y_1 y_3 + y_2) \frac{\partial}{\partial y_4} + y_4 \frac{\partial}{\partial y_5}, \\ \delta_6 &= y_1^3 \frac{\partial}{\partial y_3} + y_2^3 y_3 \frac{\partial}{\partial y_4} + y_2^3 y_4 \frac{\partial}{\partial y_5} + y_1^2 y_2^2 \frac{\partial}{\partial y_6}, \\ \delta_7 &= y_1^3 \frac{\partial}{\partial y_4} + y_2^3 \frac{\partial}{\partial y_5} + y_3^3 \frac{\partial}{\partial y_6} + y_1^2 y_2^2 y_3^2 \frac{\partial}{\partial y_7}. \end{split}$$

It is known that the rings of constants of these derivations are not finitely generated over k. The proofs of this fact we have in [?] and [?] (for δ_7), [?] (for δ_6), [?] and [?] (for δ_5). It is easy to check that these derivations are positively homogeneous. The derivation δ_7 is γ -homogeneous of degree 1 for $\gamma = (1, 1, 1, 2, 2, 2, 5)$. The derivation δ_6 is γ -homogeneous of degree 1 for $\gamma = (1, 1, 2, 4, 6, 3)$, and δ_5 is γ -homogeneous of degree 1 for $\gamma = (2, 5, 2, 4, 3)$. Using the derivations δ_5 , δ_6 , δ_7 and Theorem ?? we may construct new examples of polynomial derivations with non-finitely generated ring of constants. Let us note:

Proposition 4.8. Let $d_1 : k[X] \to k[X]$ be a positively homogeneous derivation such that $k[X]^{d_1} = k$, and let $d_2 : k[Y] \to k[Y]$ be a derivation belonging to the set $\{\delta_5, \delta_6, \delta_7\}$. Then the ring of constants of the derivation $d_1 \oplus d_2 : k[X, Y] \to k[X, Y]$ is not finitely generated over k. \Box

If the ring of constants of one of the derivations d_1 and d_2 is not finitely generated over k, then it is not true, in general, that the ring of constants of $d_1 \oplus d_2$ is also not finitely generated.

Example 4.9. Let $d_2 = \delta_5$ and d_1 be the derivation of $k[X] := k[x_1]$ such that $d_1(x_1) = 1$. Then $k[Y]^{d_2}$ is not finitely generated over k and $k[X,Y]^{d_1 \oplus d_2}$ is finitely generated over k.

Proof. It is obvious, because the derivation $d_1 \oplus d_2$ is locally nilpotent with a slice (see for example, [?] or [?]). \Box

References

- Daigle, D.; Freudenburg, G. A counterexample to Hilbert's fourteenth problem in dimension five, J. of Algebra 1999, 221, 528-535.
- [2] Deveney, J.K.; Finston, D.R. G_a actions on \mathbb{C}^3 and \mathbb{C}^7 , Comm. Algebra **1994**, 22, 6295 6302.
- [3] van den Essen, A. *Polynomial automorphisms and the Jacobian Conjecture*, Progress in Mathematics 190, 2000.

- [4] Freudenburg, G. A counterexample to Hilbert's fourteenth problem in dimension six, Transformation Groups **2000**, 5, 61-71.
- [5] Freudenburg, G. Recent progress on Hilbert's fourteenth problem via triangular derivations, Annales Polonici Math. 2001, 76, 95 - 99.
- [6] Jouanolou, J.-P. Equations de Pfaff algébriques, Lect. Notes in Math. 708, Springer-Verlag, Berlin, 1979.
- [7] Moulin Ollagnier, J.; Maciejewski, A.; Nowicki, A.; Strelcyn, J.-M. Around Jouanolou non-integrability theorem, Indag. Mathem., N. S. 2000, 11, 239 - 254.
- [8] Moulin Ollagnier, J.; Nowicki, A.; Strelcyn, J.-M. On the non-existence of constants of derivations: The proof of a theorem of Jouanolou and its development, Bull. Sci. Math., 1995, 119, 195 - 233.
- [9] Nowicki, A. Polynomial derivations and their rings of constants, N. Copernicus University Press: Toruń, 1994.
- [10] Nowicki, A. On the non-existence of rational first integrals for systems of linear differential equations, Linear Algebra and Its Applications 1996, 235, 107 - 120.
- [11] Nowicki, A.; Tyc, A. On semisimple derivations in characteristic zero, Communications in Algebra 2001, 29(11), 5115 - 5130.
- [12] Roberts, P. An infinitely generated symbolic blow-up in a power series ring and a new counterexample to Hilbert's fourteenth problem, J. Algebra 1990, 132, 461 – 473.