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ABSTRACT 

We study some generic aspects of polynomial vector fields or polynomial derivations with respect to 
their integration. In particular, using a well-suited presentation of Darboux polynomials at some 
Darboux point as power series in local Darboux coordinates, it is possible to show, by algebraic 
means only, that the Jouanolou derivation in four variables has no polynomial first integral for any 
integer value s _> 2 of the parameter. 

Using direct sums of derivations together with our previous results we show that, for all n > 3 
and s _> 2, the absence of polynomial first integrals, or even of Darboux polynomials, is generic for 
homogeneous polynomial vector fields of degree s in n variables. 

l. INTRODUCTION 

We are interested in homogeneous derivations of polynomial rings 
~[X] = ~[x~, • • •, x~], where ~ is a field of characteristic 0. 

A derivation d = ~ PiOi of ~;[X] is said to be homogeneous of degree s if all 

polynomials Pi are homogeneous of the same degree s + 1. In this case, the 

Classification ." 34A34, 12H29, 58F18, 13N10. 
Keywords. differential equations, non-integrability, polynomial vector fields, Darboux polynomial, 
Darboux point, polynomial derivations. 
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image d(F) of a homogeneous polynomial F of  degree m is homogeneous of  
degree m + s. 

A non-trivial first integral o f  degree 0 of a homogeneous derivation d is a 
common constant F of ~ and of  the Euler derivation E = ~ xiOi, which is not a 
common constant for the n partial derivatives Oi, 1 < i < n. 

In this context, integration in finite form consists in the search of first in- 
tegrals of degree 0 for a homogeneous derivation d in some well-defined differ- 
ential extension of the field E(X).  Usual considered extensions are algebraic 
and liouvillian ones. 

A very important  tool, now called the Darboux polynomials, has been in- 
troduced by Darboux [1] in connection with this problem. 
Let d be a homogeneous derivation of  ~[X]. A homogeneous polynomial F c 
K[X] is said to be a Darboux polynomial of d with cofactor A if d(F) = AF, 
where A is a homogeneous polynomial of degree s. The cofactor A of a non-zero 
Darboux polynomial is well-defined. A Darboux polynomial F is said to be 
non-trivial if F¢~ .  

The absence of Darboux polynomials is typical and their existence is rare if 
we consider the whole set (a finite dimensional K-vector space) of all homo- 
geneous derivations of a given degree s > 1. To be precise, we follow the notion 
of the Baire category when ~ is the field E of real numbers or the field C of 
complex numbers. 

According to the previous studies [3,5], the set of  all homogeneous deriva- 
tions of a given degree s of ~[X] without a non-trivial Darboux polynomial in a 
countable intersection of  Zariski open algebraic sets; it is therefore sufficient to 
find, for every degree s _> 1, one derivation d without a non-trivial Darboux 
polynomial. To deal with all possible E, it is natural to look for examples of 
such derivations with rational coefficients. In the three-variable case, a well- 
known example is the Jouanolou derivation J3,s = ySOx + zsOy + x~Oz: there are 
many different proofs that J3,s, s _> 2, has no non-trivial Darboux polynomial 
[3,6,4]. In more variables, H. Z o ~ d e k  [10] recently proposed an analytical p roof  
that Jn,~, s > 2, n _> 3, has no non-trivial Darboux polynomial; at the end of his 
paper, in Remark 7, Zot~dek gives a special proof  for the case n = 4, s > 4, 
which is quite different from ours. 

In the present work, we propose another way of constructing a homogeneous 
derivation of degree s -  1 of Q[Xl , . - . ,  xn] without any non-trivial Darboux 
polynomial for every n _> 3 and every s _> 2: direct sums of  derivations. The 
main point is then to prove that J4,s, s > 2, has no non-trivial Darboux poly- 
nomial. We do it in a purely algebraic way. 

The key tool of  our proof  consists in the study of Darboux polynomials of  a 
homogeneous derivation around some particular points of the projective space, 
called the Darbouxpoints.  A Darboux point of a homogeneous derivation d is a 
point of  the projective space in n - 1  dimensions where the vectors 
[d(xl ) , . - - ,  d(xn)] and [Xl,.-. ,xn] are collinear. 

The idea of  studying Darboux polynomials at Darboux points is not com- 
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pletely new; for instance, the Lagutinskii-Levelt procedure (LL for short) [5,6] 
can be considered as the linearpart of this study. 

One of the novelties of the present paper is to consider much more com- 
pletely the possible structure of a Darboux polynomial as a power series in the 
local coordinates at a Darboux point. In the planar case, this deeper analysis 
leads to a branch decomposition [7]. 

2. D I R E C T  S U M S  O F  D E R I V A T I O N S  

2.1. Basic facts 

In this subsection, we describe how to construct homogeneous derivations of 
polynomials rings over a field N by direct sums of previously known ones and 
show that dl G d2 inherits nice properties of dl and d2. Some additional facts 
concerning such direct sums of derivations are given in [8]. 

Definition 1 A derivation d = ~ PiOi of~[X] is said to be homogeneous of degree 
s ifallpolynomials Pi are homogeneous of the same degree s + 1. In this case, the 
image d(F) of a homogeneous polynomial F of degree m is homogeneous of degree 
m + s. To stress this natural definition of the degree, let us remark that linear de- 
rivations (the Pi are homogeneous of degree 1) are homogeneous of degree O. 

Definition 2 Let da and d2 be homogeneous K-derivations of the same degree s of 
the polynomial rings ~[J(] = Nix1,--.,  xn] and N[Y] = ~ v l , ' - ' ,  yp], respectively. 
The sets X and Y of indeterminates being disjoint, there is a unique K-derivation d 
on the polynomial ring ~[X U Y] whose restrictions to N[X] and to ~[ Y] are re- 
spectively dl and d2. This d is called the direct sum of dl and d2 and it is denoted 
by d = dl O d2. 

Two hereditary properties of direct sums of derivations are interesting in our 
study of generic non-integrability: 

Proposition 1 I f  dl and d2 have no non-trivial polynomial constant, the same is 
true for dl ~ d2. 

Proposition 2 I f  dl and d2 have no non-trivial Darboux polynomial the same is 
true for dl 0 6t2. 

As Proposition 1 is the particular case of Proposition 2, in which the cofactor is 
0, the proof of the second proposition will include the proof of the first one. 

Proof. Let F E ~[X, I7] ~ be a homogeneous Darboux polynomial of d of de- 
gree m > 1 with A E N[X, Y] as its cofactor. Then A is homogeneous of degree 
S. 
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The notation I[[lex]l] standing for the sum of coordinates of  a tuple of  non- 
negative integers, the polynomials F and A have the following forms in 
~[X][Y]: 

(1) F =  ~ F~Y ~, A= ~ AgYg, 
[ct]<m [~l<S 

where F~, A/~ (for any a and/3) are homogeneous polynomials from kIX ] of de- 
grees m - [a[ and s - 1/31, respectively. 

From Equation (1), the polynomials d(F) and AF may be developed as 

(2) d(F) = E (dl (Fo) rc~ + Fc~d2(rc~)), AF = ~ Z AzFc~ rc~+Z. 
Ic~[_<m [¢/l_<s Ic~[_<m 

Since d(F) = AF, we have: 

(3) H : ~ (dl(F~lr ~ + Fod2(r°))- ~ ~ A~F~r ~+9 : O. 
Ic~l_<m /fll_<s Ic~l_<m 

The previous difference H has the form H = Ho + H1 + • .. + Hm+s, where each 
H/ is  homogeneous of degree i in ~[X][ Y]. 

Since H = 0, we have H0 = H~ . . . . .  Hm+s = O. 
Using induction with respect to the total degree of the exponents, we now 

show that F~ = 0 for all a such that I~l -< m - 1. 
First consider the case j  = I< = 0. 
We know that 0 = H0 = & (F0) yO _ AoFo yO and & (F0) = AoFo. But dl has 

only trivial Darboux polynomials, so F0 E ~. Moreover, deg(F0) = 

m - 1 0 l = m >  1, s o F o = 0 .  
Consider now the cases 0 < j _< rn - 1 and suppose that F~ = 0 for all ex- 

ponents such that la I < j. 
We want to deduce that F~ = 0 for all exponents such that la[ = j .  From the 

fact that Ha = 0; we have therefore to distinguish between two cases: j < s + 1 
(no contribution from d2) a n d j  _> s + 1 (d2 contributes to Ha). 

C a se l  ~ < s + l ] :  

Ha : Z dl(F~)Y~- Z A~ F~Y~+~ 
I~l=j I~l+l/~l=j 

By induction, as F~ = 0 for I< <J,  Ha reduces to 

0=Ha= dl (Fce)yo~ _ ~ AoFa yo~ = ~ (dl (Fa)  - AoF~) Y% 
Ic~[=/ I~r=j [al=j 

which implies that 
But dl has only 

over, deg(F~) = m - [a[ = m - j  > 1, so F~ = 0. 
Case 2 [/_> s + 1]: 

Hj = Z dl(Fc~)Ya + ~ Fa'd2(Ya')- 
I~-J I~'l=J -~ 

dl (Fa) = AoFa for [al =J .  
trivial Darboux polynomials, so F~ E ~ for ]al = j .  More- 

Z A~F~ Y~+~. 
r~l+rfil-J 
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By induction, each F~, is equal to 0 and F~ = 0 for [c~ I < j, so 

0 =  Hj = ~ dl(F~)Y ~ -  Z A°F~'Y~= ~-~(d~(F~)- AoFo)Y% 
[~l=j I~l=j I~l=/ 

Hence, dl(F~)=AoF~ and F ~ C ~  for Ic~l=j. Moreover,  d e g ( F ~ ) =  

m - l e v i = m - j >  1, s o F ~ = 0 f o r l c ~ l = j .  
We can now conclude. F reduces to ~/c~[= m Fc~ Izc~ where the degree of each 

F~ is equal to p -  levi = p - p  = 0. Thus, F E N;[Y]. Moreover,  
AF = d(F)= d2(F)E  ~[Y], that  is, A E ~[Y]. Therefore, F is a Darboux  
polynomial  of  d2. But d2 has no non-trivial Darboux  polynomial.  []  

2.2. Application 

Direct  sums of derivations are a useful tool to deal with some generic aspects of  
non-integrabili ty of  polynomial  derivations. According to our previous dis- 
cussion, we have to show, for any number  of  variables n _> 3, any degree s _> 2 
and any field ~ of characteristic 0, that there exists a K-derivation d of 
~[xl,  • - •, x~] of  degree s - 1 (the d(xi) are homogeneous  polynomials  of  degree 
s) without  a non-trivial Da rboux  polynomial.  I t  is enough to consider the case 
where ~ is the field Q of rat ional  numbers.  

According to [5], the Jouanolou derivation J~,s = ~_.,~+10i has no Darboux  
polynomial  for s >_ 3 when n > 5 is a pr ime number.  Jouanolou 's  original result 
[3,5] is that  the same is true for n = 3,s >_ 2. 

The case of  a pr ime number  n _> 5 with s : 2 has to be dealt with in a special 
way; we leave to the reader to prove that  there is no Darboux  polynomial  in this 
case. This can be done as in the case of  J4,s but with much simpler details. 
Using direct sums of Jouanolou derivations of  the same degree with various 
numbers  of  variables, one can show the existence of a Q-derivat ion of 
Q [ x l , . . - ,  xn] of  degree s - 1 without  a Darboux  polynomial  for any s > 2 and 
any n _> 3 provided that n can be written as a sum of positive odd primes. 

Every n _> 3 but n : 4 has the last property. Thus, we have to prove that  J4,~ 
has no Darboux  polynomial  for any s _> 2 to achieve our task. This is in fact the 
main  theorem of the present paper  whose p roof  is the purpose of Section 3: 

Theorem 1. J4,s has no Darboux polynomial for any s > Z 

On the other hand, as every integer n _> 3 but 5 is a positive combinat ion of 3 
and 4, it suffices to prove that  J5,2 has no Darboux  polynomial  to receive the 
announced genericity result for all n _> 3 and all s >_ 2. Some remarks  will be 
given about  this fact along with the proof  of  the main  theorem. 

3. J4,s H A S  N O  D A R B O U X  P O L Y N O M I A L  

Some time ago, Henryk  Zot~tdek [10] gave a complete but difficult p roof  that 
J~,s has no Darboux  polynomial  for any s >_ 2 by analytical means together 
with a remark  on the case n = 4, s > 4. We will restrict our proof  to the case 
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n = 4,s _> 2, which is enough (together with previous results and the case 
n = 5, s = 2) to receive the generic conclusion we look for. 

Let us remark that J4,~ has the invariant algebraic set {xl = x3,x2 = x4} 
whose codimension is 2 in the projective space. Thus, J4,s is not the example to 
show the generic absence of invariant algebraic sets (not only of those of codi- 
mension 1); see the work of M. G. Soares [9]. 

Let us put  some emphasis on the fact that our proof  is purely algebraic and 
takes into account a more complete study of Darboux polynomials around 
Darboux points that the usual Lagutinskii-Levelt procedure (LL for short) in 
which we can take into account the fact that a Darboux polynomial is irre- 
ducible. 

Despite the fact that we are mainly interested in the case n = 4, some inter- 
mediate results are valid for all Jouanolou derivations and we will present them 
in a general framework. We first recall some useful reductions. 

3.1. Darboux polynomials and polynomials constants of tin,, 

Let s > 2 and n > 3 be integers. Then denote by d the usual Jouanolou deriva- 
tion J,,~ 

d(xi) = ~+1, i= 1 , . . . , n .  

According to [5] (Lemma 2.2), d = J~,s has Darboux polynomials if and only if 
it has a non-trivial homogeneous polynomial first integral (a polynomial con- 
stant). 

3.2. J.., and FJ,,,~ 

Let s _> 2 and n _> 3 be integers. Then denote by 5 the factored Jouanolou deri- 
vation Fd~,s 

 (xi) = x i ( s x i + l  - x i ) ,  i = 1 , . . . ,  n .  

According to [5] (Corollary 3.2), if the factored derivation 5 = FJn,s has no 
polynomial first integral, the same is true for the original Jouanolou derivation 
d = FJ,,~. 

3.3. Polynomials constants of FJ,,, 

The coordinates are evident Darboux polynomials for FJ.,s. Let us call strict 
Darboux polynomial a Darboux polynomial which is not divisible by any of  the 
coordinates. 

A general Darboux polynomial is the product  of a strict one by a monomial.  
It is easy to show that a non-trivial monomial  cannot be a polynomial constant 

for FJn,s. 
Thus, a non-trivial polynomial constant has some strict irreducible factor. 

Then, in order to conclude that FJn,s has no polynomial constant and hence 
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that  Jn,s has no Darboux  polynomial ,  it is enough to show that  FJn,s has no 
strict (irreducible) Darboux  polynomial.  

The rest of  this section is devoted to the p roof  of  this sufficient condition for 

n = 4: FJn,~ has no strict Darboux  polynomial.  

3.4. Cofactors of strict Darboux polynomials of FJ,,,s 

The following proposi t ion gives strong restrictions on the cofactors of  a sup- 
posed strict Darboux  polynomial  of  FJ,,,~. 

Proposition 3. Let F be a non-trivial strict homogeneous Darboux polynomial o f  
degree m of  FJn,~ and let A : ~ Aixi be its cofactor. Then all Ai are integers in the 
range - m  <_ Ai <_ O. Moreover, two o f  the "~i at least are different from O. 

Proof. As F is strict, for any i, the polynomial  Fi = ~xi-o that we get by evalu- 
ating F in xi = 0 is a non-zero homogeneous  polynomial  in n - 1 variables (all 
but x0 with the same degree m. 

Evaluating the Darboux  equation ~(F) = AF at xn = 0 we obtain 

(5) 
n - 2  n 1 

Xi(SXi+l -- xi)Ot'(Fn) @ Xn-1 (--xn-1)On-1 (F~) : ( Z  Aixi)F~, 
i=1 i = l  

Let ml, 0 < ml <_ m, be the partial  degree of Fn with respect to x~. 
Consider now Fn as a polynomial  in Nix2, . . .  ,x,,21][xll. Balancing mono-  

mials of  degree ml + 1 in Equat ion (4) gives AI = - m l .  

Same results hold for all coefficients of  the cofactor A. 
As IAit is the partial  degree of Fi_l with respect to xi, Ai = 0 means that  the 

variable xi-1 appears  in every monomia l  of  F in which xi appears. 
Then, if  all Ai vanish, the product  of  all variables divides the non-trivial 

polynomial  F, a contradict ion with the fact that F is strict. 
In the same way, if all Ai but one vanish, the variable corresponding to the non- 
zero coefficient divides F, once again a contradiction. [~ 

3.5. The Lagutinskii-Levelt procedure 

In [5,6], we described completely a nice combinator ia l  tool to find necessary 
conditions on Darboux  polynomials  of  some vector field and their cofactors by 
looking at them around one or several Da rboux  points of  the vector field. Fol- 
lowing Jean-Marie  Strelcyn [2], we call this tool the Lagutinskii-Levelt  proce- 
dure. 

We will now describe the LL procedure in the only case that we are interested 
in: strict Darboux  polynomials  of  FJn,s at the Darboux  point U = [1,- . . ,  1] of  
the projective space. 

Consider a strict Darboux  polynomial  F of  degree m and cofactor  A for FJ,,,s 
and write the corresponding Darboux  relations for Fdn,~ and the Euler vector 
field: 
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Z xi(sxi+l - xi)O,.F = AF,  
(5) 

Z xiOiF = mF.  

A linear combination cancels the coefficient before OnF: 
n - 1  

(6) ZXi(SXi+I -- Xi-- SXl + xn)OiF = ( A - m S X l  +rnxn)F.  
i-1 

Now choose local coordinates around the point U = [1, . - . ,  1]: 

xi = 1 + Y i ,  1 < i < n - 1,yn = O. 

In the new coordinates, Equation (6) becomes 

n 1 

(7) Z ( 1  + yi)(syi+l - y i -  syl)OiF = ( A - m s ( 1  +Yl) + m)F,  
i=1 

which can be developed as 

n--2 

Z ( 1  + yi)(syi+l - Yi - syl)Oig + (1 + Y,-1)(-Yn-1 - syl)On 1r  

(8) £ n l  
= (m(1 - s) + Ai - rnsyl + Z AiYi)F. 

i-1 i-1 

As U is a Darboux point, all coefficients before the partial derivatives vanish at 
[0, .- . ,0] .  

We pass now to the heart  of  the LL method. 
Let then H be the homogeneous component  of the lowest degree # _< m of  F 

in the Yi. Consider the homogeneous component  of degree # of Equation (8): 

(9) Z ( s y i + l - Y i - S y l ) O i H + ( - Y n - l - s y l ) O n  1H = m ( 1 - s ) + ,  ki H, 
i=1 

It is convenient to change the sign on both sides. This means that H is a Dar- 
boux polynomial with the prescribed cofactor (m(s - 1) - E i~ l  Ai) for the lin- 
ear derivation 

n 2 

( 1 0 )  Do= ~-~(-syi+l +Yi+Syl)Oiq-(Yn_l  +Syl)On-1 • 
i=1 

The corresponding square matrix is conjugate to a diagonal one. Indeed, its 
eigenvalues are different: they are all the 1 - sw where co is a n-th root of  unity 
except 1 itself. 

Thus, after a linear change of coordinates, Do can be written 

n - 1  

( 1 1 )  Do : -  Z(1 --scoi)oi, 
i=1 
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for some primitive n-th root of unity whereas, by a scalar multiplication, H is a 

~i in the new coordinates ui. monomial  I-I ui 
Thus there exist nonnegative integers ~i, 1 < i < n - 1, such that 

n-1 n-1 
(12) Z o~i : #, Z o~ i (1 -  s J )  = m ( s -  1 ) -  ,~i. 

i=1 i=l i=l 

In the case where n _> 3 is a prime number and s _> 3, this analysis is sufficient to 

give a contradiction and FJ~,s has no strict Darboux polynomial [5]. For n = 4 
in particular, we need to go further in the local analysis of  Darboux strict 

polynomials of FJ~,s at U. 
In the case of a prime n > 5 with s = 2, all o~ are equal to the same ~. Then 

either # = ( n -  1)o~ < m, which implies ~ > 2 or o~ = 1 and m = # = ( n -  1) 

and the Darboux polynomial would factor in linear forms. 

3.6. Beyond the Lagutinskii-Levelt procedure 

The Darboux equation (7) for F may be now written in the new coordinates ui: 

(13) (Do + D1)(F) = ('~ + F)F, 

n-1 
where Do is the previously defined linear derivation Do = ~i=1 (1-swi)Oi ,  
where D1 = ~] i~  UiOi with homogeneous Ui of degree 2, where "7 = 
m(s - 1) - ~i~1 hi and where/~ is some homogeneous polynomial of degree 1 

whose value is not important. 
Moreover, the nonzero Darboux polynomial F is defined up to a nonzero 

multiplicative factor. We normalize it by giving the coefficient 1 to its term ]-[ u i 
of the lowest total degree. 

Let us call the set of all solutions a = [~1,' " ' ,  o~n_l] E N,,-1 of 

n-1 n-1 
Z piOzi = Z ( 1  -- s~i)o~i = 
i=1 i=1 

the exposed face for "7 and denote it by £. The exposed support of F is the subset 
S = £ n Supp(F) of£,  and by 7-/we denote the convex hull of S in N n-1. 

We will say that an irreducible F satisfies the 0-1 constraint if for every i there 
exists an exponent ~ in S such that c~i is either 0 or 1. This is the way in which we 

are able to take into account the irreducibility of F. 
We will explain later how the 0-1 constraint comes from the study of the local 

Darboux problem in the ring ~[[u]] of formal power series in n - 1 variables. 

Let us now pass to the conclusion: the 0-1 constraint gives an upper bound on 

the degree of irreducible strict Darboux polynomials for 6 and allows us to 

show their absence. 

3.7. Under the 0-1 constraint 

In the case n = 4, the study of a Diophantine system is a useful tool to prove 
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tha t  there is no str ict  D a r b o u x  po lynomia l  o f  FJ4,s tha t  satisfies the 0-1 con- 
straint.  

L e m m a  1. Let m > 1, s > 2 and L > 2 be integers. Consider the following system 
in the unknowns cq, o~2~ gt 3 

{ ( 1 - - s i )  oq ÷ ( l ÷ s )  c~2 + ( l ÷ s i )  ce3 = ( s - 1 ) m ÷ L ,  

Ctl ÷ 0:2 ÷ 0:3 ~ m, 

0:2_  O~ 2 ~ 0, 

where i stands for the square root o f - 1 .  The only solutions of(14) in N 3 are 

(15) { [0:i, 0:2, 0:3 ] r--- [ k , l , k ] , w i t h s = 2 ,  L = 2 , m = 2 k + l ,  

[oq, c~2, 0:3 ] [0, 1,0], with s _> 3, L = 2, m 1. 

Clearly, for  every solut ion  of  this system, we would  have 

(16) 0:1 ~---o~3, (1 ÷ s )  c t2÷20:1 = m ( s - 1 ) + L ,  0:2÷2Ct 1 _<m, 0:2 E {0,1} 

I f  c~2 = 0, then m(s - 1) + L = 20:1 _< m which implies  m(s - 2) + L _ 0, hence 
s = 2 and  L = 0, which is excluded. 

N o w  let 0 : 2 = 1 .  Then  m ( s - 1 ) + L = 2 0 : l + l + s _ < m + s  whence  
m(s - 2) + L _< s. As L < 1 is excluded,  we are left with the two a n n o u n c e d  
possibilit ies: [ s = 2 , L = 2 , m = 2 0 : 1 + l ]  and  [ s _ > 3 , m = l , L = 2 ] ,  wi th  

~1 = 0. [ ]  

Proposition 4. There is no non-trivial strict Darboux polynomial of  FJ4,s that 
satisfies the 0-1 constraint. 

Proof .  Such a D a r b o u x  po lynomia l  F would  have a cofac to r  

A = A l X l  ÷A2X2 ÷A3X3 ÷A4X4. 
Accord ing  to P ropos i t ion  3, two Ai at least  do not  vanish  and 

IA[ -- ~ I;~el > 2. 
App l i ca t ion  of  Equa t ion  (12) to the case n = 4 together  with the 0-1 con-  

s t ra int  gives the sys tem (14) with L = IAI. 
F r o m  L e m m a  1, L = IAI = 2. Thus,  there are two 0 and  two - 1  a m o n g  the 

values of  hi. Moreover ,  ei ther s = 2 or, if  s _> 3, the degree m of  F is 1. 
I t  is an  exercise to conclude  there is no str ict  D a r b o u x  po lynomia l  for  FJ4,s 

when s = 2 or  when  s _> 3, m = 1 with a co fac to r  kl Xl -4-/~2 X2 ÷ ,~3 X3 ÷ /~4 X4 
with  two 0 and  two - 1  a m o n g  )~i; in the case analysis,  pa t t e rns  [1, 1,0, 0] and  
[1,0, 1,0] for  the hi have to dist inguished.  We leave it to the reader.  [ ]  

In  the case o f  FS, 2 or  m o r e  genera l ly  for  F,,2, where  n _> 5 is pr ime,  the str ict  
D a r b o u x  po lynomia l s  tha t  obey the 0-1 cons t ra in t  would  be linear. I t  is an easy  
exercise to check tha t  this is impossible .  

We have  now to es tabl ish the 0-1 cons t ra in t ,  i. e. to state tha t  a str ict  irre- 
ducible D a r b o u x  po lynomia l  o f  FJ4,s satisfies the 0-1 cons t ra in t  at the Dar -  
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boux point U. We have therefore to study the analogous of the Darboux pro- 
blem (13) for power series in n - 1 variables instead of  polynomials in n vari- 
ables. 

The same arguments, with much simpler details, will prove the 0-1 con- 
straint for a prime number n >_ 5 and s = 2. 

3.8. Square-free polynomials and power series 

The following lemma is the only way we found to use the fact that a Darboux 
polynomial is irreducible. 

Lemma 2. Let f be a square-free polynomial in IK[Xl,...,xn] vanishing at 
[0 , . . . ,  0]. Then f is not a unit in the ring ~[[xm,.. . ,  x,,]] of power series and it is 
square-free in IN[Ix1,.--, Xn]]. 

Before proving the lemma, let us remark that, i f f  does not vanish at [0 , . . - ,  0], 
then f is a unit in the ring of power series and asking if it is square-free is an 
empty question. Indeed, the units of  ~[[xl, - •. ,  x~]] are the power series with a 
non-zero constant term. 

We can now pass to the proof, in which the partial derivatives are a good tool 
to study multiple factors of polynomials and power series when ~ has the 
characteristic 0. 

Proof. First, a non-constant  p o l y n o m i a l f  is square-free in ~[xl,  • •. ,  xn] if and 
only if the greatest common divisor o f f  and all its partial derivatives OiOC), 1 <_ 
i _< n, is 1. 

This result is easy to prove in one direction: a irreducible multiple factor o f f  
would be a factor o f f  and of all its partial derivatives. 

To prove the assertion in the other direction, first consider the case of  an ir- 
reducible f :  f cannot  divide all its partial derivatives; for degree reasons, i f f  
divides Oi(f) then 0/(/) = 0 a n d f  does not depend on xi. 

Let now f be a product  of different irreducible f-. A common irreducible 
factor o f f  and all its partial derivatives has to be chosen among the f-. Butj~ 
does not divide all its partial derivatives and there is some partial derivative of 
f which is not divisible by J}. 

The same result holds in ~[[Xl,. • •, xn]], which is also a unique factorization 
domain: a non-invertible f is square-free if and only if the greatest common 
divisor o f f  and all its partial derivatives is 1. 
The proof  of  this result is quite similar to the proof  of  the previous assertion on 
~[xl,---, x~]. 

The only change appears in the proof  that an irreducible non-invertible f 
cannot  divide all its partial derivatives; instead of degree arguments, we need 
valuation arguments. 

Choose some lexicographical order on exponents; the minimal degree of all 
monomials appearing i n f  is not 0; one of the variables at least in involved in 
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this term and the partial derivative with respect to it has thus a lowest degree 
which is smaller than the lowest degree o f f  and cannot  be a multiple o f f .  

To achieve the proof  of  the lemma with the help of  the previous character- 
ization t h a t f  is square-free in terms of partial derivatives, it remains to prove 
that the greatest common divisor of a finite set of polynomials in ~[xi,  - - -, xn] is 
also their greatest common divisor in ~[[Xl, • •. ,  xn]]. Of  course, it suffices to 
prove it for two polynomials. Equivalently, if P and Q are relatively prime in 
~ [ X l ,  " • " ,  Xn] , then a common divisor q5 of them in K [ [ X l , " ' '  , Xn] ] has to be in- 
vertible. 

As P and Q are relatively prime, for any i, there exists polynomials Ui, Vi and 
Rz such that U~P + E Q = R~, where the non-zero Ri is a polynomial in all 
variables but x~. 

For every i, ~ divides Ri and thus its lowest exponent must have 0 as its i-co- 
ordinate. Therefore, this lowest exponent is 0 and ~ is invertible. [] 

Remark 1. When partial derivatives ~cannot be used to characterize square-free 
elements of  unique factorization domains, the general statement that "an ele- 
ment a of a unique factorization domain A which is square-free in A is also 
square-free in the unique factorization domain B" is false. Consider for in- 
stance 2, which is square-free in ~ and associate to the square of  (1 + i) in the 
unique factorization domain Z[i]. 

3.9. The Darboux problem in ~[[ul, • • . ,  u._l]] 

In the local coordinates ui, 1 < i < n - 1, for which Do is diagonal, a strict 
Darboux polynomial F of degree m and cofactor A for FJn,s Darboux satisfies 
Equation (13) which takes the following form 

n 1 

Z [ ( 1  - saJ)u, + Ui]OiF = 7(1 + T)F, 
i=1 

where a~ is some chosen primitive n-th root  of 1, the Ui are homogeneous poly- 
nomials of  degree 2, T is a homogeneous polynomial of  degree 1 and 7 c ~. 

Moreover, the component  of  the lowest degree of  F can be normalized such 
that 

F = u ~ = H u ~ '  (3,'ll~J+l), 

where 34 is the maximal ideal of  ~[[u]]. 
We will say that such a Darboux polynomial F has a (local) goodpresenta- 

tion if it satisfies the following three conditions. 
• There exists an invertible power series ~ starting with 1 such that the 

power series g = ~; 1F satisfies D(g) = 7(1 + T~)g with a simpler cofactor 7(1 + 
T') that belongs to the kernel of the initial derivation 

n - 1  v~n-1 rr 1 _ so.)i)l, li]Oi. DO = ~ i = 1  piUi Oi = Z.~i=I  t \  
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• For every index i such that c~i y¢ 0, the elementary problem, in which 7 is 

replaced by the eigenvalue pi = (1 - sco i) of Do corresponding to ui, 

D(qS) = (1 - scoi)(1 + V')¢, 

has a (maybe non-unique) solution ¢i in ~[[u]] such that ¢i =- ui (iV/2). (in this 

case we call the ¢i Darboux coordinates). 
• g is equal to a power series in ¢i with support in 7-/: there exists a unique 

family {g~, c~ E 7-l} such that g is equal to the (infinite and convergent) sum 

g:  goII : 
aET~ 

Suppose that every Darboux polynomial F has a good presentation at U. As F 
can be supposed square-free as a polynomial,  F is square-free as a power series, 

according to Lemma 2. 
Then, no ¢/2 divides F and, for every index i, there exists an ~ E 7-/with 

g~ ~ 0. The corresponding u s is one of the monomials appearing in F, a poly- 

nomial of  total degree m. 
This means that F would satisfy the 0-1 constraint. 
Thus, it remains to show that strict Darboux polynomials of FJ4,s have a 

good presentation at [1, 1, 1, 11. The last subsection 3.10 is devoted to this tech- 

nical result. 

3.10. Strict Darboux polynomials of FJ4,s at [1, 1, 1, 1] 

To simplify matters, let us change the notations in this three-variable case. We 

thus consider the local Darboux problem in ~[u, v, w] 

[(1 - si)u + U]OuF + [(1 + s)v + V]OvF + [(1 + si)w 4- W]OwF = 7(1 + T)F, 

where U, V, W are homogeneous polynomials of degree 2 in ~;[u, v, w], where T 
is a homogeneous polynomial of degree 1 in N[u, v, w] and where 7 is in ~. 

Suppose that this problem has a solution F E ~[u, v, w I whose lowest degree 
term is uZvJw K. We would like to prove that F has a good presentation at 
U = [1, 1, 1, 1]. This is a specialization of the following proposition. 

Proposition 5. Let s >_ 2 be an integer. Let U, V, W be power series in ~[[u, v, w]] 
of valuation 2 and let D be the derivation [ ( 1 - s i ) u +  U]O,, + [(1 +s)v+ 
V]Ov + [(1 + si)w + W]Ow. Let T be a power series in ~([[u, v, w]] of valuation 1. 
Suppose that a non-zero element f is a Darboux power series with cofactor 7(1 + 

T) of D, which means 

[(1 - si)u + U]Ouf 4- [(1 4- s)v 4- V]Ovf + I(1 + si)w + W]Owf = ~,(1 4- T) f  

T, fien, f has a good presentation. 

Proof. Normalization of the cofactor 
In the present case, finding a suitable ~ is not very difficult. Indeed, for any 
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candidate cofactor A = ~ An without constant term (A0 = 0), there exists one 
and only one power series n such that 

(17) n-= 1 (.M), D(n) = An, 

where AA is the maximal ideal of E[[u, v, w]]. 
To check this fact, remark that the initial diagonal derivation Do, which is 

homogeneous of  degree O, acts on every finite-dimensional K-vector space 
En[u, v, w] of homogeneous polynomials of  degree n as a linear map. The 
monomials are eigenvectors 

cq oQ o~ 3 DO(U 1 u 2 u 3 ) = ((1 - si)al + (1 + s)o~ 2 -r- (1 -}- si)oL3)u~ 1 l,l 2 ce21,l 3 a3 , 

and it is simple to check that no eigenvalue (1 - si)al + (1 + s)oe2 + (1 + si)a3 
is 0 when n =Ioe] _> 1 (the exposed face for 0 reduces to {[0,0,0]}); thus Do is 
one-to-one on every KnIu , v, wI,n >_ 1. 

The sought power series n can be written as an infinite sum of  homogeneous 
polynomials 

n = ~ n n  = l + ~ n n  
n = 0  n = l  

and equation D(n) = An can be developed as 

(18) Do(nn) = A . n -  ~ D > o ( n n ) ,  
n = 0  n = 0  

where the derivation D>o = D -  Do strictly increases degrees as well as the 
multiplication by A (Ao = 0). 

Equating terms of degree 0 in Equation (18) gives Do(no) = 0 and we can then 
fix no = 1. 

Equating terms of  degree n _> 1 in Equation (18) gives a linear equation on n~ 

n 1 

(19) Do(n.) = ~ Ainj - ~[D>o(ni) ] l . ,  
i +j=n i = 0  

where the notation [] l ,  stands for the homogeneous component  of total degree 
n .  

As Do is one-to-one on ~ [ u ,  v, w], n > 1, Equation (19) gives nn in a unique 
way from previously known hi, i < n. 

Then, the problem (17) can be solved by induction: n is completely and un- 
iquely determined from the initial value n0 = 1 and from the successive equa- 
tions (19) for n _> 1. 

Now, if we choose A = 7T, g = n - I f  is a Darboux power series for the deri- 
vation D, but with the cofactor 7 E ~ instead of 7(1 + T) and its initial term 
(the one of lowest degree) is uSvJwK, the same as the one o f f .  

Looking for Darboux coordinates 
The Darboux coordinates that we look for are power series ~1, ~2, ~3 whose 
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initial terms are u, v, w respectively (the coordinates)  and whose cofactors  for  D 
are 1 - si, 1 + s and 1 + si respectively (the eigenvalues of  Do). 

By an induct ion  process  similar to the one we used for comput ing  r;, we can 
define uniquely and complete ly  ¢1 and ¢3. In this case, the series s tar t  at the 
degree 1 and Do - (1 :t: si) is a one- to -one  l inear mapping  f rom every ~ [ u ,  v, w 1 
to itself, when n _> 2. Indeed,  

• (1 - si)eq + (1 + s)c~2 + (1 + si)c~3 = 1 - si  has only the solut ion oz = 
[1,0, 0] in N 3, 

• (1 - si)c~a + (1 + s)c~2 + (1 + si)o~3 =- 1 + si has only the solut ion c~ = 
[0, 0, 1] in N 3. 

In the case of  J,,2 with a p r ime  n >_ 5, all equat ions  

n-1 

~ ( 1  - 2w/)c~j = (1 - 2J°)c%,  
j= l  

where co is a pr imit ive n-th roo t  of  1 and J0 goes f rom 1 to n - 1, have only the 
trivial solut ion in nonnegat ive  integers; thus D a r b o u x  coordina tes  do exist, 
which provides  the good  presen ta t ion  and achieves the p r o o f  in this case with- 
out  fur ther  considerat ions .  This is not  the case for J4,,. 

Critical conditions 
A new fact appears  in defining the second D a r b o u x  coord ina te  ¢2 f rom v. 
It is still t rue that  equat ion  (1 - si)c~l + (1 + s)c~2 + (1 + si)c~3 = 1 + s has only 
one solut ion in N 3 when s is even, o~ = [0, 1,0]. 

But,  when s is odd,  the equat ion  has two solutions in N3, c~ = [0, 1,01, 
~ s + l  s + l  

= L-5-, J 
Thus,  if s is even, ¢2 is defined complete ly  and uniquely by induct ion  and we 

receive the sought  D a r b o u x  coordinate .  
On the contrary,  if s is odd,  the process  has to be s topped at the degree n = 

s + 1 where the cor responding  equa t ion  is 

n - I  

(20) (Do - (1 + s))(¢2,n) = - ~ [D>o(¢2j ) ] ln .  
j--0 

The  l inear map  Do - (s + l) is nei ther  injective nor  surjective on ~n[u, v, wl: 
• the coefficient of  (uw) (~+1)/2 in ¢2 is not  defined by Equa t ion  (20), 
• the coefficient of  (uw) (s+1)/2 in ~ - ~  [D>o(¢2j)]bn has to be 0. 

Thus  we have a f reedom to define a coefficient and a necessary  condi t ion  in 
order  to s tar t  the induct ion  process again; let us call this necessary condi t ion  
cri t ical .  I f  the critical condi t ion  is fulfilled, we give an a rb i t ra ry  value to the 
free coefficient of  ¢2 and ¢2 is complete ly  (but not  uniquely) defined. 

It is possible to deduce this crit ical condi t ion  f rom the existence of  g as a 
D a r b o u x  power  series for  D with cofac tor  "7 and initial t e rm ulvSw K, provided  
that  J > 0. 

But,  i f J  = 0, we do not  need ¢2 to give a good presenta t ion  ofg .  
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C a n c e l l a t i o n  o f  c r i t i c a l  c o n d i t i o n s  

Let  s > 3 be an odd natura l  number.  Two D a r b o u x  coordina tes  are known for 
D, 051 and 053; moreover ,  we can star t  the same induct ion  process to define 052 up 
to degree s, or modu lo  A4 ~+1, which can be wri t ten as 

(21) 052 - v (A//2), D(052) = (1 +s)052 (AW+I). 

Moreover ,  all coefficients of  052,s+1 are also well-defined by induct ion,  except  of  
course  the critical one before  (uw) (s+1)/2. Thus 052 is defined modu lo  the larger  
ideal  ( j ~ s + 2  (uw)(s+l)/2) a n d  satisfies 

= (1 +s)052 (Ad*+2,(uw)(S+*)/2). (22) D(052) 

Recall  tha t  we also assume the existence o f g  such that  

(23) D(g) = ( ( 1 - s i ) I + ( l + s ) J + ( l + s i ) K ) g ,  g=-uIvJw K (A//I+J+K+I), J > 0 .  

The triple a = [I, J ,  K] is an obvious solut ion in N 3 o f  the equa t ion  

(24) (1 - si)cq + (1 + s)a2 + (1 + si)oz3) = 7 = ( 1  - -  si)I + (1 + s)J + (1 + si)K 

This solut ion is the only one o f  degree lal = I + J + K. 
For  any n, 1 <_ n < s, there is no solut ion to (24) with Io~l = n + I + J + K. 
For  n = s ,  there is one solut ion to (24) with ]c~[ = n + I + J + K ,  

s+i s+l 
ce = l i t - T - , J -  1,K+-T-] . "  "s 1 ~" 

I+J+K+s+l I J 1 K (+) /  Thus,  m odu lo  the ideal ( 34  , u v  - w (uw) - ) ,  g and the pro-  
I J K duct  P = 051052053 are wel l 'def ined  by induct ion  f rom their  c o m m o n  initial 

monom ia l  o f  the lowest  degree, u~vJwK. 
Indeed,  Do - 7 is invertible for  all monomia l s  of  total  degree I + J ÷ K < 

[a I < I + J + K + s and also for all monomia l s  o f  total  degree I + J + K + s 
except  UI+(s+l)/2Y J-1W K+(s+l)/2. 

Thus,  modu lo  this ideal, g and the P agree: 

(25) g ~ >'1AI05 ,'4"K2"9"3 (J~I+J+K+s+I,uIyJ-1wK(uw) (s+I)/2) 

As J ¢ 0, it is possible to fix the coefficient of  052 before u(s+l)/Zw(s+l)/2 in such a 
way that  g and 05105J~K have the same coefficient before blI÷(s+l)/2Y J-1W K+(s+I)/2, 1 2>'3 
i. e. such that  g and P agree modu lo  the smaller  ideal J~4 [+J+K+s+l. 

By transitivity, we thus get the bet ter  congruence  (modulo  a smaller  ideal): 

D(05/052]05 K) --= ~91"I05J'K2 ~3 (~/[I+J+K+s+l), 

But [ s K ~ ] K D(051052053 ) may  be developed as 7 - 7¢1¢2053 (recall = (1 - si)I+ 
(1 + s)J + (1 + si)K): 

I J K D(¢1052¢ 3 ) 705~05~05K I-1 J K - = I051 052053 (9(051) - (1 - si)05I) 

÷ J05/05J-105K(D(052 ) - (1 ÷ S)052) 

÷ K05~05~¢ K-1 (D(¢3) -- (1 ÷ si)053). 
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As D(q~l) = (1 -si)O1 and D(~b3) = (1 -~ si)03, the first and third terms of the 
right-hand side of the previous equality are 0 and we get (J  > 0): 

(26) qS~q52 s l ~ f ( D ( ~ 2 )  - (1 + s)q~2) E j~I÷J+K+s--1. 

Using the previously known congruences 

D(~2) ~- (1 -}-s)~ 2 (2k/[ s+l) and ~IAJ-I~ K ulvJ-Iw K (./k/[I+J+K), 
"~'1 ~2 3 ~ 

we get (D(~b2) - (1 + s)~b2)\ 1 2(~I~J-l~K3 -- UI12J-1wK) E ~I+J+K+s+I. 
By difference with congruence (26), we get 

(D(02) - (1 ~ - s ) 0 2 ) u l v J - l w  K E .Ad I+J+K+s+l. 

By simplification, D(~2) - (1 + s)~b2 belongs to 3//~+2. 
In other words, the coefficient of  the monomial  of exponent [(s + 1)/2, 0, (s + 

1)/2] in D(~b2) - (1 -}- s)q~2 is 0, which is exactly the sought critical condition. 

Good presentation 
In the present case, 7-/is simple to describe: this is the set of all solutions of 
Equation (24) with lal _> I + J + K. This set is finite, but this is not important. 

The coefficients ga may be uniquely defined by induction. 
Setting g[i,s,x] = 1 is the unique way to ensure congruence for the total degree 
n=no = I + J + K :  

(27) g = ~ g~H¢~i = g[,,j,K]~OJo~ = c)Ic)~I~ (j~n+l). 
aET-(no 

Let now n >_ no + 1 and suppose that all g~, a E ~ ,  no <_ ]al < n, have been un- 
iquely defined in such a way that 

(28) g ~ Z g~HqS; i  (Mn). 
aE~<n 

Series g and the sum in construction are both in the kernel o f D  - "7. Thus, their 
coefficients of total degree n are the same for the exponents outside ~ and the 
congruence is better: 

(29) g =- Z g~ Hd);~ (']~n+l'bll31V~2W~3'/3 E ~-{n), 

where ~ ,  may be empty. 
Now define coefficients g~ for all (if any)/3 E ~n by 

(30) g -= Z g~ H qS;~ + Z g/3b//31y/32W/33 ( "A'~n+l)" 

Remark that the only way to have 

aE~n ~3E'l-tn 

is to choose ~ = g~ for all a E 7-(n. 
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The induction step is now complete: 

(32) g -- ~ gc~Hq~i (jMn+l). 
~E~<n+l 

The whole process gives the sought good presentation: 

( 3 3 /  g = i e .  g = 

c~ET-/ o~C7-/ 

This completes the proof of Theorem 1 [] 
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