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In this paper, we present some tools, especially but not only from enumer-
ative and algebraic geometry, that are involved in the search of first integrals
of polynomial planar vector fields. As an illustration, we described how these
tools have been useful in our recent characterization of all cases of projective
liouvillian integration of the homogeneous three-dimensional Lotka-Volterra
system.
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1. INTRODUCTION

The aim of this paper is first to make precise the framework in which we
look for first integrals of planar vector fields.

Many definitions, that are well-known for us, are given, general methods
are described and the results of our work on a special class of examples,
the Lotka-Volterra system, are given in details.

Last, we describe a new tool which is useful in the study of the integration
of some polynomial planar vector fields, those with at least a Darboux line.
Usual affine polynomial planar vector fields have this property, which is
then not so seldom.

The idea is to decompose a candidate Darboux polynomial in its two-
variable homogeneous components; the component of highest degree can be
expressed without knowing its exact degree and it is possible to start from
it to derive necessary conditions for the existence of a Darboux polynomial.
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2. AFFINE AND PROJECTIVE POINTS OF VIEW

2.1. The affine model

In the first naive affine point of view, a polynomial planar vector field V
is a C-derivation V = P∂x + Q∂y of the ring C[x, y], where P,Q ∈ C[x, y].

In this context, a first integral of V is a non-constant function F such
that

PFx + QFy = 0.

In order to make things algebraically clear, we demand that the ”func-
tion” F belongs to some differential field extension K of C(x, y) for the two
commuting derivations ∂x and ∂y.

Moreover, saying that F is not a constant means that its two-component
exterior derivative [∂xF, ∂yF ] = [Fx, Fy] is not equal to [0, 0].

2.2. The projective model

In this point of view, a polynomial planar vector field V is a particular
C-derivation of the ring C[x, y, z]

V = P∂x + Q∂y + R∂z,

where P,Q,R are homogeneous polynomials with the same degree m.
The triple [P,Q,R] thus defines a map from the projective plane to itself
with some singularities.

A first integral of V is a non-constant ”function” F such that

PFx + QFy + RFz = 0.

F belongs here to some differential field extension K of C(x, y, z) for the
three commuting derivations ∂x, ∂y and ∂z. That F is not a constant is
given by

[∂xF, ∂yF, ∂zF ] = [Fx, Fy, Fz] 6= [0, 0, 0].

We will say that F is a true first integral if it is a function on the projec-
tive plane. This means that F does not depend on the chosen representative
[x, y, z] of a point in the projective plane, but only on this point; in other
words, F is homogeneous of degree 0, which can be written with the help
of the Euler field E = x∂x + y∂y + z∂z:

xFx + yFy + zFz = 0.

The exterior derivative [Fx, Fy, Fz] of a true first integral is collinear to
the 1-form ω = (Qz − Ry)dx + (Rx − Pz)dy + (Py − Qx)dz.



INTEGRATION OF POLYNOMIAL PLANAR VECTOR FIELDS 21

It turns out that finding a true first integral amounts to finding an inte-
grating factor for ω. In turn, an integrating factor for ω is a homogeneous
(not true) first integral of the curl of ω.

The curl of ω is the sum of the given vector field together with a suitable
multiple of E, in order to get a vector field with a zero divergence.

3. CHANGING THE POINT OF VIEW

3.1. From the affine model to the projective one

This is very easy: make P and Q homogeneous with the same degree m
in the three variables x, y, z: P → zmP (x/z, y/z), Q → zmQ(x/z, y/z),
then set R = 0. Then, if F is a first integral in the affine sense, F (x/z, y/z)
is a true first integral in the projective sense.

3.2. From the projective model to the affine one

Let V = P∂x + Q∂y + R∂z. Consider its transform V0 = zV − RE.
Up to multiplication by z, V0 leads to the same 1-form ω and moreover

has a zero third coordinate. Let z = 1 in it to get the sought affine planar
polynomial vector field.

Evaluating in z = 1 a true first integral of the projective model gives a
first integral of the affine model.

3.3. A slight difference, the degree

Though without common factor for its polynomial coordinates, the affine
model may have a degree higher by 1. For example, this happens for the
Jouanolou vector field

y2∂x + z2∂y + x2∂z,

for which zV − RE = [y2 − x3, 1 − x2y, 0]. This vector field and its gener-
alizations have been studied in [5, 7, 8].

Later on, we will discuss this difference. In fact, the affine model has a
special property, which will turn out to be very useful in the computational
treatment of its integrability:

There exists a Darboux polynomial of degree 1, the extra coordinate z.

4. DARBOUX POLYNOMIALS AND DARBOUX POINTS

Now, we adopt the projective point of view in which V is a polynomial
vector field of degree m. To study the integrability of such a vector field,
an old method of Darboux consists in finding sufficiently many ”particular
algebraic solutions” of the system of differential equations.

Due to the great interest of this concept, we have got the habit to call
these solutions Darboux polynomials. Indeed, these polynomials are not
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only meaningful as equations of plane projective algebraic curves; they are
also useful on the whole projective plane.

Given a polynomial planar vector field V = P∂x + Q∂y + R∂z, where
P,Q,R are homogeneous three-variable polynomials with the same degree
m, a homogeneous polynomial F in C[x, y, z] is said to be a Darboux poly-
nomial of V with cofactor (or eigenvalue) Λ if

PFx + QFy + RFz = ΛF.

The cofactor Λ has to be a homogeneous polynomial of degree m − 1.

4.1. The method of Darboux

Many elementary remarks can be done about Darboux polynomials.
First, the homogeneous components of a non-homogeneous Darboux

polynomial are Darboux polynomials, and that was a reason to define only
homogeneous Darboux polynomials.

Second, the product of two Darboux polynomials is Darboux and its
cofactor is the sum of cofactors; conversely, factors of Darboux polynomi-
als are Darboux (characteristic 0 is important here as in many places in
differential algebra).

Thus, if there are sufficiently many irreducible pairwise relatively prime
homogeneous Darboux polynomials, a well-suited product of (maybe non-
integer) powers of them is a Darboux object with cofactor 0.

This ”function” is a first integral but not a true one: it is homogeneous,
but there is no reason for its degree to be 0.

In the case this degree is not 0, an integrating factor of ω can be deduced,
which ensures the liouvillian integration of the vector field.

When there is a non-trivial linear combination with integer coefficients
of cofactors of Darboux polynomials, the previous object is a homogeneous
rational first integral; this rational first integral is not a true one except if
the same linear combination of the degrees moreover yields 0.

These ideas date back to Darboux.

4.2. Vector cofactors

If the degree of the Darboux polynomial F is n, the new vector field
VF = V − Λ

n
E is the vector cofactor of F , which means the following

relation between the vector field VF and the closed 1-form [Fx, Fy, Fz]

(VF )xFx + (VF )yFy + (VF )zFz = 0.

This orthogonality relation leads to an interesting formula of enumerative
geometry concerning the intersection indices of the homogeneous ideals
generated by the coordinates of VF on the one hand and by the three
partial derivatives of F on the other hand (the Tjurina ideal of F ) [2, 3, 5].
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4.3. Darboux points

Irreducible homogeneous Darboux polynomials of a polynomial homoge-
neous vector field generate minimal homogeneous prime ideals in C[x, y, z]
that are invariant under the corresponding derivation.

Similarly, a maximal homogeneous ideal corresponds to a point in the
projective plane. The ideal is the one of all polynomials vanishing at the
point; if [x0, y0, z0] is a representative of the point, the ideal is generated
by the three polynomials zy0 − z0y, xz0 − x0z, yx0 − y0x.

It is not very difficult to check that such a maximal homogeneous ideal
is invariant if and only if the vector field and the Euler field are collinear
at the corresponding point.

The points where this happens are thus of special interest. They are the
singular points of ω or the Darboux points of the vector field. There is a
finite number of them in the projective plane.

The first-order study of the behavior of Darboux polynomials around
Darboux points is known as the Levelt (or Lagutinskii-Levelt) procedure.

This is a very powerful tool to deal with the integrability of a given vec-
tor field. Though powerful, this first-order study has to be completed in
many applications; for instance, in our recent treatment of the liouvillian
integration [13] of the Lotka-Volterra system, we factored irreducible Dar-
boux polynomials into branches (two-variable formal power series) in order
to find more efficient necessary conditions of integrability.

5. WHAT KINDS OF FIRST INTEGRALS

Up to now, we did not precise the class of functions in which we look for
a first integral of a given polynomial planar vector field, either in the affine
case or in the projective case.

The first problem, that dates back at least to Poincaré and Painlevé
[14, 15, 16, 17, 18, 19, 20, 21, 22], consists in finding a rational first integral
in the affine case or a homogeneous rational first integral of degree 0 in the
projective case. We will call this problem the rational integration of the
vector field.

The only general remark we have to do on this problem deals with linear
algebra: the rational integration of a polynomial planar projective vector
field holds if and only if, for some degree n and cofactor Λ, the Darboux
operator f → Pfx + Qfy + Rfz −Λf has a kernel whose dimension is ≥ 2.
We used this remark in [11] to find necessary conditions (rationality) on
the parameters for the rational integration of the Lotka-Volterra system.
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Let us remark that Poincaré proposed necessary conditions for the ra-
tional integration by looking at the singular points of the 1-form in the
projective plane (the Darboux points of the vector field); he did not really
succeed in giving completely efficient conditions [20, 21, 22].

The other interesting problem of integration of polynomial planar vector
fields can be called liouvillian integration. In this case, we want to decide if
there exists a liouvillian first integral (in the affine case) or a homogeneous
liouvillian first integral of degree 0 (in the projective case).

A liouvillian first integral f is an element of some liouvillian extension
K of C(x, y, z). Liouvillian extensions have been defined by Singer in the
case of several commuting derivations (the partial derivatives here) [23].
As the three partial derivatives are defined on K, the initial vector field V
as well as the Euler field E are defined on K. A homogeneous first integral
of degree 0 is then a constant for both fields, without being a constant for
the three partial derivatives.

Typically, this problem can be solved by a two-step process. First find
sufficiently many Darboux polynomials to build an integrating factor for
the 1-form ω, and then integrate it. If the integrating factor is liouvillian,
so is the first integral [9, 23].

6. THE LOTKA-VOLTERRA SYSTEM

We started the study of the integration, i. e. the search of first inte-
grals, of the Lotka-Volterra system (LV for short) several years ago [4];
because the most difficult, this system was the most interesting example
that we found to illustrate a method of Strelcyn and Wojciechowski, the
compatibility analysis [24]. This Lotka-Volterra system can be written as

LV (A,B,C) = Vx∂x + Vy∂y + Vz∂z,

where

Vx = x(Cy + z), Vy = y(Az + x), Vz = z(Bx + y), ABC 6= 0.

Many people were and are still interested in this system and in related
ones [1].

6.1. Is LV a so particular system ?

LV has three Darboux lines, the coordinates x, y, z. Conversely, if a
quadratic vector field has three Darboux lines without common point, the
equations of these lines can be chosen as coordinates to get a field in factored

form. Thereafter, except in some very exceptional cases, a diagonal linear
change of variable and the addition of a well-chosen multiple of the Euler
field puts it in the LV form.
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Thus, with respect to integrability questions, LV is a class of normal
forms of some quadratic systems.

We say that a Darboux polynomial for LV is strict if it is not divisible
by any of the coordinates x, y, z. The cofactors of strict Darboux polyno-
mials of degree n have the form λx + µy + νz where (λ, µ, ν) is a triple of
nonnegative integers such that λ, µ, ν ≤ n.
Remark that this is a special aspect of the ”finiteness of cofactors”.

Now, if LV has one extra (strict) Darboux polynomial besides x, y, z, the
liouvillian integration holds.

Darboux points (the seven zeroes of ω in the projective plane) are easy
to compute and the local study of Darboux polynomials is a possible com-
putation.

A finite group of automorphisms of the whole family LV (A,B,C), where
(A,B,C) ∈ C

3, allows us to reduce a painful case analysis.

The local study around the three Darboux lines (this point of view is
dual to Levelt’s method) is amenable to combinatorial efforts [10].

In the last section of the present paper, we present a deeper treatment
of this aspect, which turns out to be useful even with only one Darboux
line.

7. INTEGRATION OF THE LOTKA-VOLTERRA SYSTEM

We found necessary and sufficient conditions on the triple (A,B,C) of
parameters to ensure the rational integration [11] of the Lotka-Volterra
system or its liouvillian integration [13].

It is not very easy to describe shortly the arguments that were involved
in these classifications. Nevertheless, it is possible to give some insight
about them.

To be fair, we have to say that these works have first been experimental.
Using a computer algebra system, we look for strict Darboux polynomials
of degree 1, 2, 3, 4, . . . , 12. Indeed, we know that there is a finite number of
possible cofactors (and we know them) of strict Darboux polynomials of a
given degree and we can try.

Thereafter, we performed a classification of the results taking into ac-
count the finite group of symmetries (circular permutations in particular)
of the family.

The hard job was to find necessary conditions to be sure that the list was
complete. A standard idea, dating back to Poincaré, consists in looking for
an upper bound on the the degree of irreducible Darboux polynomials. This
idea is a dream; indeed, we discovered the sporadic family, with unbounded
degree [12].
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Thus, our analysis was different. We used Levelt’s method around the
seven Darboux points, but this was not sufficient. According to the nature
of every Darboux point (saddle, node), we were able to split Darboux
polynomials into branches and we found some arithmetic conditions on the
involved parameters.

Another important tool, that we have previously noticed, was the study
around the three Darboux lines of coordinates; a very interesting combina-
torial treatment was possible, that led to a rather intricate case analysis, in
which the original parameters A,B,C or some functions of them, denoted
by p, q, r, take integer values.

8. WITH ONE DARBOUX LINE (AT INFINITY). . .

In this last section, we describe roughly how the idea of expanding Dar-
boux polynomials around Darboux lines, instead of around Darboux points,
that we used successfully in our work on the integration of the LV system,
can be powerful in a much more general context.

Indeed, if we start from an affine model, the projective one receives a
Darboux polynomial, the extra coordinate z; thus, having a Darboux line
is indeed a common fact, if we have in mind the affine model as a starting
point.

To be clear, we will restrict ourselves to the case of quadratic planar
vector fields and first give a normal form for them.

Afterwards, we will look for necessary conditions on the ”free” param-
eters in order to allow the existence of a Darboux polynomial. Therefore,
we will start by the homogeneous two-variable homogeneous component
of highest degree of this supposed Darboux polynomial F . Thereafter, we
have to look for homogeneous two-variable polynomial solutions of some
linear differential equations.

8.1. A suitable normal form

Thanks to a linear change of variables and to the addition of a multiple
of E, it is possible to choose coordinates in which a quadratic vector field
with a Darboux line can be written with a, b, c, d, e as free parameters:

V = [x (ax + by + y) + cxz + ez2]∂x + [y (by + ax + x) + dyz + ez2]∂y.

Let F be a (homogeneous three-variable) Darboux polynomial for V with
cofactor λx + µy + νz.

Up to a constant, F ”starts” by yα0xα1(x−y)α2 as its (x, y)-homogeneous
component of highest degree, where α0, α1, α2 ∈ N.

The degree of F is α0 + α1 + α2 and λ, µ are given by

λ = α0 + a(α0 + α1 + α2), µ = b(α0 + α1 + α2) + α1.
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8.2. Effective computations

With the previous normal form, it is possible to solve equations providing
successive (x, y)-components of decreasing degree starting from the highest
degree. F can be written as

F = yα0xα1(x − y)α2

(

1 +
∑

k

zkFk

Dk

)

,

where Fk is homogeneous of degree 2k and D = xy(x − y) (the zeroes of
D correspond to the three Darboux points of the vector field on the line at
infinity).
The fact that F is a Darboux polynomial can be written as a sequence of
differential equations for the Fk:

[P2∂x + Q2∂y − kL](Fk) =
[−D(P1∂x + Q1∂y) + (k − 1)M + N)](Fk−1)+
D[−D(P0∂x + P1∂y) + (k − 2)S + T )](Fk−2),

where F0 = 1, F
−1 = 0 and L,M,N, S, T are polynomials computed from

the vector field and from the integer parameters αi.
The differential equation for F1 gives the value of ν. This was our combi-

natorial analysis for the LV system and this first step was almost sufficient.
The differential equation for F2 gives the value of e. The differential equa-
tion for F3 then gives strong constraints on the 4 remaining parameters
a, b, c, d.

With the help of a computer algebra system, we can at least find inter-
esting examples in many situations.
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14. P. Painlevé, Œuvres, tomes 1–3, Ed. du CNRS, Paris, 1972, 1974, 1975.
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