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ON A RESULT OF DARBOUX

JAVIER CHAVARRIGA, JAUME LLIBRE and JEAN MOULIN OLLAGNIER

Abstract

This paper is concerned with a relation of Darboux in enumerative
geometry, which has very useful applications in the study of polyno-
mial vector fields. The original statement of Darboux was not correct.
The present paper gives two different elementary proofs of this rela-
tion. The first one follows the ideas of Darboux, and uses basic facts
about the intersection index of two plane algebraic curves; the second
proof is rather more sophisticated, and gives a stronger result, which
should also be very useful. The power of the relation of Darboux is
then illustrated by the provision of new, simple proofs of two known
results. First, it is shown that an irreducible invariant algebraic curve
of degreen > 1 without multiple points for a polynomial vector
field of degreem satisfiesn 6 m + 1. Second, a proof is given that
quadratic polynomial vector fields have no algebraic limit cycles of
degree 3.

1. Introduction

Darboux was the first to give the following relation in enumerative geometry [2, pp. 83–84]:

On peut rattacher cette recherche à un lemme relatif à six polynômesA, A′, B,
B ′, C, C′, de degrésl, l′, m, m′, n, n′ satisfaisant à l’identité déjà considérée
(48) AA′ + BB ′ + CC′ = 0;
il est évident que les degrés des produitsAA′, BB ′, CC′ sont égaux.
On a donc déjà

l + l′ = m + m′ = n + n′ = λ.

Cela posé, je dis quela somme du nombre des points communs aux trois courbes

A = 0, B = 0, C = 0,

et du nombre des points communs aux trois courbes

A′ = 0, B ′ = 0, C′ = 0,

est égale à

lmn + l′m′n′

λ
.

We shall refer to this result as theDarboux lemma; it can be stated more precisely
as follows.
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On a result of Darboux

Darboux lemma. LetK be an algebraically closed field, and letA, B, C, A′, B ′ andC′
be six homogeneous polynomials of degreesl, m, n, l′, m′ andn′ in three variables with
coefficients inK such that:

(i) A, B andC are relatively prime, and so areA′, B ′ andC′;
(ii) l + l′ = m + m′ = n + n′ = r, and the followingorthogonalityrelation holds:

AA′ + BB ′ + CC′ = 0; (1)
(iii) the homogeneous ideal(A, B, C, A′, B ′, C′) generated by all six polynomials has no

zero in the projective planeP2(K).

Then the homogeneous ideals generated by the triples(A, B, C) and(A′, B ′, C′) have only
finitely many zeroes in the projective plane.

Denoting byh andh′ the total multiplicitiesI(A, B, C) andI(A′, B ′, C′) of these ho-
mogeneous ideals in the projective plane, there is a relation betweenh, h′ and the degrees:

h + h′ = lmn + l′m′n′

r
= r2 − r(l + m + n) + (lm + mn + nl). (2)

Darboux started the proof of his result as follows.

En effet, soienth le nombre des points communs aux trois courbesA, B, C;
h′ celui des points communs aux trois courbesA′, B ′, C′.

This original proof is wrong; in particular, Darboux paid little attention to the last hypothesis
(no common zeroes), and a counterexample is easy to find. Jouanolou noticed that Darboux’s
result was wrong, and clearly established the formula (2) in his book [4, pp. 183–184], but
his proof is far from being elementary. Jouanolou uses Chern’s classes; for such a seemingly
simple result, it is natural to expect a proof that relies on the use of a simpler technology.

The purpose of this paper is to give two different elementary proofs of the Darboux
lemma, and to propose some applications of this result to the study of polynomial planar
vector fields.

In the first proof, we use standard facts about the intersection index of plane algebraic
curves. This proof is divided into two steps. The first step deals with a special case of the
statement under extra assumptions, and it follows the ideas of Darboux. The second step
consists in reducing the general case to the special case, in order to get the complete result.

Our second proof relies on the elementary use of exact sequences to compute the dimen-
sion of some finite-dimensional vector spaces; we receive a stronger result which could also
be very useful in various applications: an inequality that holds even if the six polynomials
have common projective zeroes. This proof cannot be considered as an elementary version
of Jouanolou’s proof; our decisive remark consists in considering the triple(A′, B ′, C′) not
only as a relation betweenA, B andC, but also as a way to build an interesting idealI of
the polynomial ring from the module of relations betweenA, B andC.

The present paper is written in a self-contained way, and can thus be read independently
of the given references; it is organized as follows. In Section2 we present the results related
to intersection indices that we shall need later on. We give the first proof of Darboux lemma
in Section3, correcting the proof of Darboux. A global projective proof of the Darboux
lemma and an inequality are provided in Section4. Finally, two applications of the Darboux
lemma are given in Section5.

Throughout the paper,K will denote an algebraically closed field. It will be convenient
to denote an ideal generated in some polynomial ring overK by the elementsA1, · · · , Ak

simply by(A1, · · · , Ak). Other notations and definitions will be given as they are needed.
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On a result of Darboux

2. Intersection indices

We first recall some standard facts about homogeneous ideals of the polynomial ring
A = K[x0, . . . , xt ] that have only a finite number of zeroes in the projective spacePt (K).

Let P be a point in the projective spacePt (K). Thelocal ring OP can be defined in two
ways.

First, it is the subring of the fieldK(x0, · · · , xt )0 of homogeneous rational fractions of
degree 0 consisting of all those with a denominator that does not vanish atP .

On the other hand, one of the projective coordinates ofP does not vanish, and there
is no restriction in supposing thatx0(P ) 6= 0, to fix matters. Then the polynomial ring
K[x1, · · · , xt ] is isomorphic to the quotient ring ofK[x0, · · · , xt ] by its ideal generated by
x0 − 1, andOP is the local ringS−1

K[x1, · · · , xt ], whereS is the multiplicative set of all
t-variable polynomials that do not vanish atP .

Let P be a point ofPt (K), and letI be a homogeneous ideal ofA. The idealIP is the
ideal of the local ringOP generated byI. If the quotient ringOP /IP is a finite-dimensional
vector space overK, its dimension is called themultiplicity or theintersection indexof I
atP ; here,IP (I) is a convenient notation for this number. In particular,IP (I) 6= 0 means
thatP is a zero ofI. Thus, ifI is a homogeneous ideal with a finite number of zeroes in
Pt (K), the sumI(I) = ∑

P IP (I) over all zeroes ofI is well defined. It is called thetotal
multiplicity, or the total intersection indexor thedegreeof I.

Proposition 1. Let I be a homogeneous ideal in the polynomial ringA = K[x0, . . . , xt ],
and suppose thatI has a finite number of zeroes inPt (K). Homogeneous components
(A/I)t of the quotient ringA/I are finite-dimensional vector spaces overK that have the
same dimension fort large enough. This common dimension is equal toI(I).

Proof. There is no restriction in supposing that there is no zero on the linex0 = 0. All
zeroes ofI then lie in the affine space in whichx0 can be chosen equal to 1.

Consider the quotient mapε1 from K[x0, · · · , xt ] to K[x0, · · · , xt ]/(x0 − 1) (evaluation
atx0 = 1). Its imageε1(K[x0, · · · , xt ]) is isomorphic toK[x1, · · · , xt ], andI1 = ε1(I) is
an ideal ofK[x1, · · · , xt ] under this isomorphism.

The quotient ringK[x1, · · · , xt ]/I1 is a finite-dimensional vector space overK, whose
dimension is exactly the total multiplicity ofI. A proof of this result can be found in the
book by Fulton [3].

On the other hand,K[x1, · · · , xt ] is isomorphic to the quotient ring ofK[x0, · · · , xt ] by
its ideal(x0). Let I0 denote the image ofI under this isomorphism.I0 is a homogeneous
ideal ofK[x1, · · · , xt ], and it has no projective zero inPt−1(K).

According to the projective Nullstellensatz, there exists a degreet0 such that all homo-
geneous polynomials of degree at leastt0 of K[x1, · · · , xt ] are inI0. In other words, every
homogeneous element of degreet > t0 in A can be written as the sum of an element ofI
and a multiple ofx0, which means that the multiplication byx0 from (A/I)t to (A/I)t+1
is surjective fort > t0 − 1.

Thus, the sequence of dimensions decreases fort > t0 − 1, and must eventually become
constant; that is, there exists at1 such that the multiplication byx0 from (A/I)t to (A/I)t+1
is bijective fort > t1.

It is now easy to check that the quotient map from(A/I) to K[x1, · · · , xt ]/I1, restricted
to (A/I)t , is a bijection fort > t1.
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On a result of Darboux

In the case of two or morethree-variablehomogeneous polynomials overK,A1, · · · , Ak,
the intersection indexIP (A1, · · · , Ak) at some pointP of P2(K) can be defined as the
corresponding index for the homogeneous ideal generated byA1, · · · , Ak, when this index
is finite. We then note thatIP (A1, · · · , Ak) = IP (A1, · · · , Ak).

In particular, ifA1, · · · , Ak (with k > 2) are relatively prime,IP (A1, · · · , Ak) is defined
at every pointP . On the other hand, if they have a non-trivial greatest common divisorD,
IP (A1, · · · , Ak) is defined at all pointsP of P2(K) whereD(P ) 6= 0.

Here are some standard properties of the intersection index whose proof can be found
in Fulton’s book [3]. The first two are general.

(i) IP (A1, · · · , Ak) depends only on the ideal(A1, · · · , Ak) of A.

(ii) In fact, IP (A1, · · · , Ak) depends only on the ideal generated byA1, · · · , Ak in OP : if
B(P ) 6= 0, thenB is invertible inOP andIP (BA1, A2, · · · , Ak) = IP (A1, A2, · · · , Ak).

The next two properties are specific to the three-variable case.

(iii) If B has no non-trivial common factor withCC′, thenIP (B, CC′) = IP (B, C) +
IP (B, C′) (addition formula).

(iv) If F andG are two homogeneous polynomials without a non-trivial common factor,
they have a finite number of common projective zeroes andI(F, G) = deg(F )·deg(G)

(Bézout’s theorem).

3. Correcting the proof given by Darboux

Using standard properties of the intersection index, we propose now a correct proof of
the Darboux lemma. Let us begin with some definitions and notations.

We shall call a family[A, B, C, A′, B ′, C′] of homogeneous polynomials inK[x, y, z]
anorthogonal system of polynomialsif

(i) A, B andC are relatively prime, and so areA′, B ′ andC′;
(ii) deg(A)+deg(A′) = deg(B)+deg(B′) = deg(C)+deg(C′) = ρ(A, B, C, A′, B ′, C′),

in which caseρ(A, B, C, A′, B ′, C′) is called thedegreeof the system,

(iii) the orthogonalitycondition (1), thatAA′ + BB ′ + CC′ = 0, holds.

We shall say that an orthogonal system of polynomials[A, B, C, A′, B ′, C′] is without
projective zeroif A, B, C, A′, B ′ andC′ have no common zero in the projective plane.

If [A, B, C, A′, B ′, C′] is an orthogonal system of polynomials, thenA, B andC are rel-
atively prime, the total intersection indexI(A, B, C) is well-defined, and so isI(A′, B ′, C′).

Now denote the degrees of the polynomialsA, B, C, A′, B ′ andC′ by l, m, n, l′, m′
andn′, respectively, and the degree of the orthogonal systemρ(A, B, C, A′, B ′, C′) by r,
to simplify the discussion.

The ratio
lmn + l′m′n′

r
= r2 − r(l + m + n) + (lm + mn + nl)

is a well-defined positive integer, which is 0 whenr = 0. We then denote

1(A, B, C, A′, B ′, C′) = I(A, B, C) + I(A′, B ′, C′) − lmn + l′m′n′

r

= h + h′ − lmn + l′m′n′

r
,

and we call this difference thegapof the orthogonal system.
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On a result of Darboux

With these definitions, the Darboux lemma can be stated as follows.

The gap is zero for an orthogonal system of polynomials without projective zero.

We first give the result under the additional assumption that all six polynomials are
pairwise relatively prime, except maybeA andA′, B andB ′, C andC′; in other words,
we suppose that there is no non-trivial common factor toAA′, BB ′, CC′, and we then say
that the orthogonal system isirreducible. This proof follows the ideas of Darboux. We shall
reduce the general case to this special case later.

In our opinion, it is convenient and non-confusing to identify a homogeneous non-zero
three-variable polynomialF with the projective planar curveF = 0 that it defines. We thus
follow the free intuitive notations of Darboux.

For instance, the notation ‘P∈ A ∩ B ’ means that the pointP of P2(K) is a common
zero of the two homogeneous polynomialsA andB, and belongs to the intersection of the
two curvesA = 0 andB = 0, as well as the alternative notation ‘A(P ) = 0 andB(P ) = 0’.

Proposition 2. Let[A, B, C, A′, B ′, C′] be an irreducible orthogonal system of polynomi-
als without projective zero. Then1(A, B, C, A′, B ′, C′) = 0.

Proof. We first notice thatIP (A, B, CC′) = IP (A, B,−AA′ − BB ′) = IP (A, B) at
every pointP of P2(K), according to Section2. We want to prove the following equality at
P ∈ A ∩ B:

IP (A, B) = IP (A, B, CC′) = IP (A, B, C) + IP (A, B, C′). (3)
From the orthogonality relation (1), P ∈ CC′ and, by replacingA, B andC by A′, B ′ and
C′, there is no restriction in supposing thatC(P ) = 0.

If C′(P ) 6= 0, thenIP (A, B, C′) = 0. According to Section2, we know that
IP (A, B, C) = IP (A, B, CC′) = IP (A, B),

and equality (3) holds in this case.
We now suppose thatC′(P ) = 0. SinceA∩A′ ∩B ∩B ′ ∩C ∩C′ = ∅, eitherA′(P ) 6= 0

or B ′(P ) 6= 0, and there is no restriction in supposing thatA′(P ) 6= 0. Then, according to
Section2,

IP (A, B, C) = IP (A′A, B, C) = IP (B, C),

IP (A, B, C′) = IP (A′A, B, C′) = IP (B, C′),
IP (A, B, CC′) = IP (A′A, B, CC′) = IP (B, CC′).

As B has no non-trivial common factor withC or C′, equality (3) follows from the
addition formula of the intersection index:IP (B, CC′) = IP (B, C) + IP (B, C′). The use
of the addition formula is the only place where the extra assumption that the orthogonal
system is irreducible plays a role.

Summing the intersection indices at all pointsP ∈ A ∩ B, relation (3) leads to

lm = I(A, B)

=
∑

P∈A∩B

IP (A, B)

=
∑

P∈A∩B

IP (A, B, CC′)

=
∑

P∈A∩B

IP (A, B, C) +
∑

P∈A∩B

IP (A, B, C′)

= h + (lm − h), (4)

which means that the total intersection indexI(A, B, C′) is lm − h.
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Similar considerations lead to the next two equalities.
The first one,

ln′ = I(A, C′)
=

∑
P∈A∩C′

IP (A, C′)

=
∑

P∈A∩C′
IP (A, BB ′, C′)

=
∑

P∈A∩C′
IP (A, B, C′) +

∑
P∈A∩C′

IP (A, B ′, C′)

= (lm − h) + (ln′ − (ln − h)), (5)

means that the total intersection indexI(A, B ′, C′) is ln′ − lm + h.
The second one,

m′n′ = I(B ′, C′)
=

∑
P∈B ′∩C′

IP (B ′, C′)

=
∑

P∈B ′∩C′
IP (AA′, B ′, C′)

=
∑

P∈B ′∩C′
IP (A, B ′, C′) +

∑
P∈B ′∩C′

IP (A′, B ′, C′)

= ln′ − lm + h + h′, (6)

means that the total intersection indexI(A′, B ′, C′) is m′n′ − ln′ + lm − h. From this last
result, we deduce that1(A, B, C, A′, B ′, C′) = 0.

In order to prove the Darboux lemma in the general case, we need a way to reduce
non-irreducible orthogonal systems to irreducible ones. Let[A, B, C, A′, B ′, C′] be a non-
irreducible orthogonal system of polynomials. The orthogonality relation easily implies that
two polynomials of the same triple have a non-trivial greatest common divisor (gcd), and
there is no restriction in supposing thatD = gcd(A, B) /∈ K to describe what a reduction is.

According to the orthogonality relation,D also dividesC′ as it is coprime withC, and we
haveA = DA1, B = DB1, C

′ = DC′
1, with gcd(A1, B1) = 1. So[A1, B1, C, A′, B ′, C′

1]
is another orthogonal system of polynomials. If[A, B, C, A′, B ′, C′] is without projec-
tive zero, so is[A1, B1, C, A′, B ′, C′

1]. We say that[A1, B1, C, A′, B ′, C′
1] is a one-step

reductionof [A, B, C, A′, B ′, C′].
There are as many possible one-step reductions of an orthogonal system of polynomials

as there are pairs of non-coprime polynomials of the same triple. Thus, after at most six
successive one-step reductions, we get an irreducible orthogonal system that can be called
the complete reductionof the original one.

The following lemma is then the key to deducing the general case of the Darboux lemma
from the special case of irreducible orthogonal systems.

Lemma 3. Let[A, B, C, A′, B ′, C′]be a non-irreducible orthogonal system of polynomials
without projective zero and such thatD = gcd(A, B) /∈ K. If [A1, B1, C, A′, B ′, C′

1] is the
corresponding one-step reduction of[A, B, C, A′, B ′, C′], then

1(A, B, C, A′, B ′, C′) = 1(A1, B1, C, A′, B ′, C′
1).
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Proof. Let us denote bys the degree ofD, so that

deg(A1) = l1 = l − s,

deg(B1) = m1 = m − s,

deg(C′
1) = n′

1 = n′ − s,

ρ(A1, B1, C, A′, B ′, C′
1) = r1 = r − s.

(7)

Here,h1 will stand forI(A1, B1, C) andh′
1 for I(A1, B1, C).

With these notations, after straightforward cancellations, proving the result amounts to
proving that

(h − h1) + (h′ − h′
1) = ns. (8)

This relation (8) will come fromh − h1 = ns andh′ − h′
1 = 0.

We first show thath−h1 = ns by proving the following equality for allP ∈ A∩B ∩C:

IP (A, B, C) = IP (A1, B1, C) + IP (D, C). (9)

Let P belong toD ∩ C. SinceA ∩ A′ ∩ B ∩ B ′ ∩ C ∩ C′ = ∅, eitherA′(P ) 6= 0 or
B ′(P ) 6= 0, and there is no restriction in supposing thatA′(P ) 6= 0.

LetD′ then be the greatest common divisor ofB andC: B = D′B2, C = D′C2. As A,B
andC are relatively prime,D′ is relatively prime withD, and it dividesB1: B1 = D′B3; it
also dividesA′, and thusD′(P ) 6= 0. Then, according to Section2,IP (B, C) andIP (B1, C)

are well-defined and the following equalities hold:

IP (A, B, C) = IP (AA′, B, C) = IP (B, C),

IP (A1, B1, C) = IP (A1A
′, B1, C) = IP (B1, C).

Now, the addition formula of the intersection index gives

IP (B, C) = IP (B2, C2) = IP (B3, C2) + IP (D, C2) = IP (B1, C) + IP (D, C).

Thus, for aP in D ∩ C, equality (9) holds.
Consider now a pointP in A ∩ B ∩ C that does not belong toD. ThenIP (D, C) = 0,

whereasIP (A, B, C) = IP (A1, B1, C), and equality (9) also holds.
Now, summing equality (9) over allP ∈ A ∩ B ∩ C gives

h = I(A, B, C) = I(A1, B1, C) + I(D, C) = h1 + sn, (10)

according to Bézout’s theorem.
Now we show thath′ − h′

1 = 0 by proving thatIP (A′, B ′, C′) = IP (A′, B ′, C′
1) at all

pointsP of A′ ∩ B ′ ∩ C′.
If P belongs toA′ ∩ B ′ ∩ C′ without being inD, then, according to Section2, we see

thatIP (A′, B ′, C′) = IP (A′, B ′, DC′
1) = IP (A′, B ′, C′

1).
If P belongs toA′ ∩ B ′ ∩ D, thenP does not belong toC, and

IP (A′, B ′, C′) = IP (A′, B ′, CC′) = IP (A′, B ′) = IP (A′, B ′, CC1) = IP (A′, B ′, C′
1).

We can now draw the following conclusion.

Corollary 4 (Darboux lemma). Let[A, B, C, A′, B ′, C′]be an orthogonal system of poly-
nomials without projective zero. Then1(A, B, C, A′, B ′, C′) = 0.
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Proof. If [A1, B1, C1, A
′
1, B

′
1, C

′
1] is the complete reduction of[A, B, C, A′, B ′, C′], then,

according to Lemma3, 1(A, B, C, A′, B ′, C′) is the same as1(A1, B1, C1, A
′
1, B

′
1, C

′
1)

and, according to Proposition2, 1(A1, B1, C1, A
′
1, B

′
1, C

′
1) = 0 for an irreducible orthog-

onal system of polynomials.

4. A global projective proof and an inequality

In the present section, we give another proof of the Darboux lemma. Instead of looking
at all points of the intersection of several curves in the projective plane, we shall deal
directly with the global multiplicity of a homogeneous ideal inK[x, y, z] with finitely
many zeroes. Moreover, this enables us to produce a stronger result when the assumption
that the orthogonal system of polynomials has no projective zeroes does not hold.

In this section, where we deal with modules overK[x, y, z], it is convenient to denote
this polynomial ring byA. The ringA is graded by the degree, its homogeneous compo-
nentsAk are finite-dimensional vector spaces overK, and their dimensions are given by
dim(Ak) = δ(k), for every nonnegative integerk, where the integer functionδ is defined
by

δ(k) = (k + 1)(k + 2)

2
, ∀k ∈ N. (11)

This functionδ will also be useful to express the dimension of homogeneous components
of A

3 for a suitable graduation.

Proposition 5. Let A, B andC be three homogeneous polynomials without a non-trivial
common factor inA, and letl, m andn be their degrees. The total multiplicityI(A, B, C)

is equal to

δ(k) − δ(k − l) − δ(k − m) − δ(k − n) + dim(R(A, B, C)k,

for every large enough integerk, whereR(A, B, C)k is the homogeneous component of
degreek of the moduleR(A, B, C) of all relations betweenA, B and C. The relevant
graduation ofR(A, B, C) is induced by the graduation of theA-moduleA

3 in which the
homogeneous component of degreek is the productAk−l × Ak−m × Ak−n.

Proof. In order to begin the computation ofI(A, B, C), first consider the exact sequence
of A-modules:

0
0−→ R(A, B, C)

i−→ A
3 •V−→ A

s−→ A/(A, B, C)
0−→ 0, (12)

in which

(i) the first A-module R(A, B, C)is a submodule ofA3, and consists of all relations
[r1, r2, r3] betweenA, B, C: [r1, r2, r3] ∈ R(A, B, C) ⇔ r1A + r2B + r3C = 0;

(ii) the morphism•V from A
3 to A is the ‘scalar product by the vectorV = [A, B, C] of

K(x, y, z)3’: •V ([r1, r2, r3]) = r1A + r2B + r3C and R(A, B, C)is thus its kernel;

(iii) s is the surjective quotient map fromA to its quotient by the ideal(A, B, C).

By stating that, for every nonnegative integerk, the homogeneous component(A3)k of
degreek of A

3 is Ak−l × Ak−m × Ak−n, we define a graduation onA3; endowed with this
graduation,A3 is a gradedA-module and so is its submodule R(A, B, C). Moreover, all
morphisms of the exact sequence (12) are homogeneous and have the degree 0.
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On a result of Darboux

Given a degreek, the dimension of(A/(A, B, C))k is related to dim(R(A, B, C)k) by
the alternate sum of dimensions in an exact sequence of finite-dimensional vector spaces:

dim((A/(A, B, C))k) = dim((A)k) − dim((A3)k) + dim(R(A, B, C)k).

If k > max(l, m, n), it is easy to see that dim((A3)k) = δ(k − l)+ δ(k −m)+ δ(k −n),
from which we deduce that

dim((A/(A, B, C))k) = δ(k) − δ(k − l) − δ(k − m) − δ(k − n)

+ dim(R(A, B, C)k).
(13)

As I(A, B, C) = dim((A/(A, B, C))k) for a large enoughk according to Proposition1,
we get the required formula for the index.

If Proposition5 relies on the classical idea to compute the total intersection index from a
consideration of the homogeneous components of the module of relations, the next propo-
sition uses the orthogonality relation (1) between the two triples[A, B, C] and[A′, B ′, C′]
to link the unknown number dim(R(A, B, C)k) to some numerical invariants related toA′,
B ′ andC′.

Proposition 6. Let [A, B, C, A′, B ′, C′] be an orthogonal system of polynomials. Then
it is possible to construct anA-linear homogeneous map from the moduleR(A, B, C) of
relations betweenA, B andC to A, whose kernel is the principalA-module generated by
the particular relation[A′, B ′, C′], and whose imageJ is a homogeneous ideal ofA such
that:

(A′, B ′, C′) ⊂ J ⊂ (A′, B ′, C′) : (A, B, C). (14)

Moreover, the following relation holds:

I(A, B, C) + I(J) = lmn + l′m′n′

r
, (15)

wherel, m, n, l′, m′ andn′ are the degrees ofA, B, C, A′, B ′ andC′, andr is the degree
of the orthogonal system.

Proof. First define anA-linear homogeneous map∧W from A
3 to A

3:

∧ W([r1, r2, r3]) = [B ′r3 − C′r2, C
′r1 − A′r3, A

′r2 − B ′r1]. (16)

It is easy to check that if[r1, r2, r3] ∈ R(A, B, C), then∧W([r1, r2, r3]) is collinear toV

in K(x, y, z)3. As V is irreducible,∧W([r1, r2, r3]) has to be a multiple ofV by some
polynomialφ([r1, r2, r3]). The desired mapφ is thus defined.

As W is irreducible,φ([r1, r2, r3]) = 0 if and only if [r1, r2, r3] is a multiple
of [A′, B ′, C′].

We then get a second exact sequence:

0
0−→ A

−→
W−→ R(A, B, C)

φ−→ J
0−→ 0, (17)

in which
−→
W stands for the mapP → P [A′, B ′, C′] from A to A

3.
The second inclusionJ ⊂ (A′, B ′, C′) : (A, B, C) comes inherently from the definition

of φ: if φ( [r1, r2, r3]) ∈ J, the coordinates ofφ([r1, r2, r3])V = ∧W([r1, r2, r3]) belong
to (A′, B ′, C′) and thusφ([r1, r2, r3]) brings(A, B, C) to (A′, B ′, C′).
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To prove the first inclusion(A′, B ′, C′) ⊂ J, it suffices to check thatA′, B ′ andC′ are
in J. We simply remark that[0, C,−B] is a relation, and that

∧W([0, C,−B]) = [−B ′B − C′C, A′B, A′C] = A′[A, B, C],
according to the orthogonality relation.

With respect to the graduation defined in Proposition5 on A
3,

−→
W is homogeneous of

degreer, andφ is homogeneous of degreer − l −m−n; then, for any degreek, we deduce
an exact sequence ofK-linear maps between finite-dimensional vector spaces overK and
the corresponding formula relating the dimensions of these vector spaces:

dim(R(A, B, C)k) = dim(Jk+r−l−m−n) + dim(Ak−r ). (18)

Formula (15) now comes from identity (13), together with identity (18) and the following
self-evident equality:

dim(Jk+r−l−m−n) = dim(Ak+r−l−m−n) − dim((A/J)k+r−l−m−n). (19)

Adding the three equalities (13), (18) and (19), fork large enough, leads to

I(A, B, C) + I(J) = δ(k) − δ(k − l) − δ(k − m) − δ(k − n)

+δ(k − r) + δ(k + r − l − m − n)

= r2 − r(l + m + n) + lm + mn + nl.

(20)

This is the required result, which does not depend onk.

Corollary 7. Under the hypotheses of Proposition6 and with the notations of its proof, the
following inequality holds:

I(A, B, C) + I(A′, B ′, C′) > r2 − r(l + m + n) + lm + mn + nl = lmn + l′m′n′

r
. (21)

Proof. This is an easy consequence of the inclusion(A′, B ′, C′) ⊆ J.

Our second corollary gives the result of Darboux; first, however, we need a lemma to
complete its proof.

Lemma 8. LetI1 andI2 be two homogeneous ideals inK[x0, · · · , xt ] with a finite number
of projective zeroes. If the homogeneous component(I1 + I2)k is equal toK[x0, · · · , xt ]k
for k large enough(we shall say thatI1 + I2 is full in high degree), thenI(I1) = I(I1 : I2).

Proof. The quotient idealI1 : I2 is equal to the quotientI1 : I3, whereI3 = I1 + I2 and
I3 is full in high degree, which means that all homogeneous polynomials of degree large
enough are elements ofI3.

As I1 has a finite number of projective zeroes, there is no restriction in supposing that it
has no zero on the linex0 = 0. Thus, referring to the proof of Proposition1, there exists a
degreek0 such that a homogeneous polynomialf of degreek > k0 belongs toI1 as soon
asx0f belongs toI1.

As I3 is full in high degree, for every homogeneousf of degreek > k0 in I1 : I3, there
exists a powerxd

0 of x0 such thatxd
0f belongs toI1. Thus,f itself belongs toI1.
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Corollary 9. Under the hypotheses of Proposition6, if moreover there is no common pro-
jective zero to all six polynomialsA, B, C, A′, B ′ andC′, the Darboux formula holds:

I(A, B, C) + I(A′, B ′, C′) = r2 − r(l + m + n) + lm + mn + nl = lmn + l′m′n′

r
.

Proof. It suffices to prove thatI(A′, B ′, C′) = I(J).
From the double inclusion(A′, B ′, C′) ⊂ J ⊂ (A′, B ′, C′) : (A, B, C), we know that

I(A′, B ′, C′) > I(J) > I((A′, B ′, C′) : (A, B, C)).

The additional assumption that there is no common projective zero to all six polynomials,
A, B, C, A′, B ′ andC′, shows that the sum of the two homogeneous ideals(A, B, C)

and(A′, B ′, C′) is full in high degree; thus, according to Lemma8, the total multiplicities
I(A′, B ′, C′) andI((A′, B ′, C′) : (A, B, C)) are the same.

Remark 1. In this second proof, the two triples play different roles;[A, B, C] is given,
and[A′, B ′, C′] is some relation betweenA, B andC, with additional properties.

It is not always true that there exists a relation for which the Darboux relation (2) holds.
For instance, if[A, B, C] is [x2, xy, y2], any irreducible relation[A′, B ′, C′] will be equal
to [A′

1y, −A′
1x−C′

1y, C′
1x] for some coprime polynomialsA′

1 andC′
1 of the same degreed.

In this case,I(A, B, C) = 3 andI(A′, B ′′, C) = (d + 1)2, whereas the right-hand side
of the relation (2) is equal to(d +3)2 −6(d+3)+12 = d2 +3. These two numbers cannot
agree.

Remark 2. It would also be very interesting to check the following converse of the Darboux
lemma: if the Darboux relation holds for some orthogonal system of polynomials, is it
necessary that this system be without projective zero?

This natural question is not simple, and the answer will probably be the subject of another
paper. Let us simply say that no pointP can be a local complete intersection of both ideals
(A, B, C) and(A′, B ′, C′) under the assumption thatI(A′, B ′, C′) = I(I).

5. Applications

An affine polynomial vector fieldX = p∂/∂x + q∂/∂y in C
2 can be thought of as

a C-derivation of the ringC[x, y], wherep, q ∈ C[x, y]. We say that thedegreeof X is
the maximum of the degrees ofp andq.

A projective polynomial vector fieldX = P∂/∂X + Q∂/∂Y + R∂/∂Z in P2(C) of
degreed is aC-derivation of the ringC[X, Y, Z], whereP, Q, R ∈ C[X, Y, Z] are homo-
geneous polynomials with the same degreed. Thus, the triple[P, Q, R] defines a map from
the projective planeP2(C) into itself, with some singularities. We note that, together with
the Euler vector fieldE = X∂/∂X+Y∂/∂Y +Z∂/∂Z, all theC-derivationsX+AE , where
A is an arbitrary homogeneous polynomial inC[X, Y, Z] of degreed − 1, define the same
homogeneous projective Pfaff 1-form of degreed + 1, providing the same homogeneous
foliation of C

3 and thus the same foliation ofP2(C); for more details, see [2,1].
If we have an affine polynomial vector fieldX = p∂/∂x + q∂/∂y of degreed in C

2, it
can be thought of as a projective one, makingp andq homogeneous with the same degreed

in the variablesX, Y andZ as follows:

p
∂

∂x
+ q

∂

∂y
→ Zdp

(
X

Z
,
Y

Z

)
∂

∂X
+ Zdq

(
X

Z
,
Y

Z

)
∂

∂Y
,

where we takeR = 0.
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If we have a projective polynomial vector fieldX = P∂/∂X + Q∂/∂Y + R∂/∂Z

of degreed in P2(C), it can be thought of as an affine one, considering the vector field
ZX − RE and takingZ = 1.

Let f ∈ C[x, y]. The algebraic curvef (x, y) = 0 is aninvariant algebraic curveof the
affine polynomial vector fieldX if, for some polynomialk ∈ C[x, y], we have

Xf = ∂f

∂x
p + ∂f

∂y
q = kf.

The polynomialk is called thecofactorof the invariant algebraic curvef = 0.
It is easy to verify that iff (x, y) = 0 is an invariant algebraic curve of degreer for the

polynomial vector fieldX with cofactork(x, y), thenF(X, Y, Z) = Zrf (X/Z, Y/Z) = 0
is an invariant algebraic curve of degreer for its projective vector field with cofactor
K(X, Y, Z) = Zr−1k(X/Z, Y/Z); that is,

XF = ∂F

∂X
P + ∂F

∂Y
Q + ∂F

∂Z
R = KF,

whereR = 0.
If F(X, Y, Z) = 0 is an algebraic curve ofP2(C) of degreer, let p = (X0, Y0, Z0)

be a point ofP2(C). Since the three coordinates ofp cannot be zero, we can assume
without loss of generality thatp = (0, 0, 1). Then suppose that the expression ofF(X, Y, Z)

restricted toZ = 1 is

F(X, Y, 1) = Fi(X, Y ) + Fi+1(X, Y ) + . . . + Fr(X, Y ),

where 06 i 6 r, and whereFj (X, Y ) denotes a homogeneous polynomial of degreej in
the variablesX andY for j = i, . . . , r, with Fi different from the zero polynomial. We say
that i = mp(F) is themultiplicity of the curveF = 0 at the pointp. If i = 0, then the
pointp does not belong to the curveF = 0. If i = 1, we say thatp is asimplepoint for the
curveF = 0. If i > 1, we say thatp is amultiplepoint.

Proposition 10. Let f (x, y) = 0 be an irreducible invariant algebraic curve of degree
r > 1 without multiple points for the affine polynomial vector fieldX of degreed. Then
r 6 d + 1.

Proof. SinceF = 0 is an invariant algebraic curve ofX with cofactorK, we find that

∂F

∂X
P + ∂F

∂Y
Q = KF

in P2(C). By using the Euler theorem for the homogeneous functionF of degreer, this
equation becomes

∂F

∂X

(
P − 1

r
XK

)
+ ∂F

∂Y

(
Q − 1

r
YK

)
+ ∂F

∂Z

(
−1

r
ZK

)
= 0. (22)

Now we take in the Darboux lemma:

A = ∂F

∂X
, B = ∂F

∂Y
, C = ∂F

∂Z
, A′ = P − 1

r
XK, B ′ = Q − 1

r
YK, C′ = −1

r
ZK,

and

h = I (A ∩ B ∩ C), h′ = I (A′ ∩ B ′ ∩ C′).

We note that, by assumption,h andh′ are finite. Moreover, asA ∩ B ∩ C = ∅, we see that
h = 0.
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SinceA, A′, B, B ′, C andC′ satisfy equality (22), the Darboux lemma can be used
to obtain

h + h′ = d3 + (r − 1)3

d + r − 1

= d2 + (r − 1)(r − d + 1). (23)

By the Bézout theorem, the number of intersection points of the curvesA′ = 0, B ′ = 0
andC′ = 0 is at mostd2, taking into account their multiplicities; that is,h′ 6 d2. Hence a
lower bound forh is as follows: 0= h > (r − 1)(r − d − 1), and 16 r 6 d + 1.

Remark 3. We are not the first to notice the previous result (see, for instance, [1]), but, in
our opinion, the Darboux lemma provides a simple and elegant means of obtaining it.

More-involved proofs of this fact can be obtained by taking into consideration the ex-
actness of the Koszul complex built on the vector of partial derivatives of an irreducible
homogeneous three-variable polynomial corresponding to a smooth algebraic curve.

On the other hand, Tsygvintsev used the genus-degree formula for a non-singular curve
and the Riemann–Hurwitz formula to achieve his proof [5].

In [1], the first two authors have proved the following result, which we shall need later on.

Theorem 11. Let f (x, y) = 0 be an irreducible algebraic curve of degreer > 1, which
is invariant with cofactork 6= 0, for the affine polynomial vector fieldX of degreed > 1.
If d2 is the total number of solutions of the system

rP − XK = 0, rQ − YK = 0, ZK = 0, (24)

in the projective plane, taking their multiplicities or numbers of intersections into account,
thenX has a rational first integral.

We recall that alimit cycleof a real affine polynomial vector fields is an isolated periodic
orbit in the set of all periodic orbits of the system. Analgebraic limit cycleof degreer is
an oval of an irreducible invariant algebraic curvef (x, y) = 0 of degreer, which is a limit
cycle of the system.

Theorem 12. Real affine quadratic polynomial vector fields have no algebraic limit cycles
of degree3.

Proof. Let f = 0 be an invariant algebraic curve of degree 3 of a real affine polynomial
vector field of degree 2. If the cubic curvef = 0 has multiple points, then it is rational (its
genus is 0) and there is no oval in it. Iff = 0 has no multiple points, equation (23) in the
proof of Proposition10 implies thath′ = 22 = 4. According to Theorem11, the system
has a rational first integral, and thus no limit cycle.
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