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ABSTRACT

Let k[x,y|] be the polynomial ring in two variables over an
algebraically closed field & of characteristic zero. We call
quadratic derivations the derivations of k[x, y] of the form

B : ey
7 T 07 +alx)y +5(x)) oy’

where a(x), b(x) € k[x]. We are interested in simple derivations
of this type; every such derivation is equivalent to
A, = 9/dx + (y* — p(x))8/dy for a suitable p in kl[x].
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For some p, we are able to decide the simplicity of Ap: if the
degree of p is odd, then A, is simple; if p has degree 2, then A,
is simple if and only if p fulfills an arithmetic condition.

1 INTRODUCTION

Throughout the paper, £ denotes an algebraically closed field of
characteristic zero. A derivation d of a commutative k-algebra R is said to be
simple if R has no other d-invariant ideals than 0 and R. Applications and
various properties of simple derivations can be found in many papers (see,
for example, [2—4, 7, 10, 11]).

Assume that R = k[x,....,Xx,] is the polynomial ring over k in n vari-
ables and consider the derivation dof R given by d(x,) = f,,...,d(x,) = f,. It
would be of considerable interest to find necessary and sufficient conditions on
fis---,f, for d to be simple. This question is obvious only for n = 1.

If n=2, only some sporadic examples of simple derivations of
R = k|x, y] are known. The problem seems to be difficult even with the extra
assumption that d(x) = 1. The description of all simple derivations d of
k[x,y] such that d(x) =1 and d(y) = a(x)y + b(x), where a(x),b(x) are
polynomials of k[x], has been given in [10].

In this paper we study simple derivations d : k[x, y] — kl[x, y| such that
d(x) =1 and d(y) = y* + a(x)y + b(x) for a(x), b(x) € k[x]. It is not difficult
to show (see Proposition 7.2) that the problem of simplicity for such deri-
vations reduces to the same problem for the derivations A, : k[x, y] — kl[x, y]
defined by

A,(x) =1,
A,(») = y* - p(x),
where p = p(x) € k[x].

The main result of the paper is Theorem 6.1, which states that if A, s
not simple, then there exists a A -invariant principal ideal (F) such that
deg, F=1. As a consequence of this fact we are able to describe some
classes of simple derivations of the form A,. For instance, A, is simple if the

degree of p(x) is odd and polynomials p of degree 2 for which A, is simple
are characterized by an arithmetic condition (Theorem 8.3).

2 PRELIMINARIES

Let R = k[x,,...,x,] be a polynomial ring over k. A derivation d of R
is a k-linear mapping d: R — R such that d(FG) = d(F)G + Fd(G) for
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F,G € R. Let us recall (see for example [1, 10]) that every derivation d of R
has a unique decomposition as
2 3 0

d=F — 81 + F, o,
where F,,..., F, € R.

Let d be a derivation of R. An ideal 4 of R is said to be a d-ideal if
d(A) C A. By definition, d 1s simple if there are no other d-ideals than 0 and R.

As in [9, 10], a polynomial F € R is said to be a Darboux polynomial
of dif F¢ k and d(F) = AF for some A € R or equivalently if (F) is a proper
d-ideal of R. Using Gauss lemma (and characteristic 0), it is rather simple to
prove that factors of Darboux polynomials of d are also Darboux poly-
nomials of d. As usual, R? stands for the kernel of the k-linear mapping d.
Recall that R? is a subring of R containing k. If F € R\k, then F is a
Darboux polynomial of R (with the eigenvalue A = 0).

Proposition 2.1. Ifd : k[x,y] — k|x,y] is a derivation such that d(x) = 1, then
d is simple if and only if d has no Darboux polynomial.

Proof. 1t is clear that if d is simple then d has no Darboux polynomials.
Assume now that 4 is not simple. Then there exists a proper d-ideal and
hence (see, for example, [5]), there exists a prime proper d-ideal P of k[x, y|. If
P is maximal, then P = (x — a,y — b) for some a,b € k (since k is algebrai-
cally closed) whence a contradiction 1 = d(x —a) € d(P) C P. Therefore,
the height of P is equal to 1 and hence, P is a principal proper d-ideal. Let

= (F). Then F is a Darboux polynomial of 4. O

Let k[x] and k(x) be the polynomial ring and the field of rational
functions, respectively, over k in one variable x. As usual, k(x) denotes the
algebraic closure of k(x). If r € k(x) ¥’ stands for the derivative of r with
respect to the derivation ’ : k(x) — k(x) which is the unique extension of the
derivation 9/0x : k(x) — k(x) to the field k(x).

3 DARBOUX POLYNOMIALS AND
ALGEBRAIC SOLUTIONS

The aim of this section is to link Darboux polynomials of derivations of
k([x, y| with algebraic solutions of some first-order differential equations with
coefficients in k(x), which will play an important role in the next sections.

Theorem 3.1. Let d be a derivation of kix,y|, let P(x,y) =d(x) and
O(x,y) = d(y). Then the following two conditions are equivalent.
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(1) There exists a Darboux polynomial F € k|x,y| of d such that
deg F > 1. o
(2) There exists an r € k(x) such that P(x,r)r = Q(x,r).

Proof. This is a consequence of the two following more precise proposi-
tions. Ol

Proposition 3.2. Let d be a derivation of klx,y|, let P(x,y) =d(x) and
O(x,y) = d(y). If F € klx,y] = k[x|[y] is an irreducible Darboux polynomial of
d with deg, F > 1, then there exists an r € k(x) such that P(x,r)r' = Q(x,r)
and F(x,r) = 0.

Proof. As deg,F > 1, F has a root r in the algebraically closed field m
Differentiating the identity F(x,r) = 0 with respect to x gives

g(x?r)-l +g—§(x,r)-r’-——0. (3.1)

The Darboux property d(F) = AF can be written more precisely as

%‘(l—,y)P(x:y) : 2 g_fi-(xr }')Q(xﬂ.}) = A(x’ J')F(\"y)‘

and thereafter evaluated at y = r to yield (as F(x,r) = 0)

-g—f(x, r)P(x,r) + g-;(x: r)Q(x,r) =0.
Since F is irreducible, 9F/dy(x.r) # 0, which gives
F(+ »
O(x,r) = = % Plx;r) =7 Plx, r).
7
¥
This completes the proof. O

Proposition 3.3. Let d be a derivation of kix,y|, let P(x,y) =d(x) and
O(x,y)=d(y). If r is a solution in k(x) of the differential equation
P(x,r)r' = Q(x,r), then its primitive minimal polynomial F in k[x|[y| is a
Darboux polynomial of d with deg, F > 1.

Proof. By definition, deg, F > 1. Define H € k[x,y] by

H = H(x.5) = d(F(x.)) = P(x.5) 51 (53) + Q(x.) G (x,3).

Observe that H(x,r) = 0. Indeed:
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Hix r}= PlXT) %‘(‘Y’ r)+ Q(x,r) g—j:(x, r)

OF oF
= P‘-s ey P( ? — ey
(x,r) 8x(r r)+ P(x,r)r ay(r r)

d
= P(x,r) (g{—:(\ r)-1+ r’sg(x,r))
0
= P(x, ")g(f‘“(x,r))

=Mx, ;‘)%(0) =1,

Since F(x,y) is a minimal polynomial of r, H has to be a multiple of F in
k(x)[y], which means that there exists A = A(x, ) € k(x)[y] such that

d(F) = H = AF.

It 1s easy to see (using Gauss Lemma in k(x)[y]) that the content of A
belongs to k[x], meaning that A € k[x, y]. Therefore F is a Darboux poly-
nomial of d, which completes the proof. O

Note the following special case of Theorem 3.1.

Corollary 3.4. Let d : k[x.y] — kl[x,y] be a derivation defined as

dixy=1,
d(y) = a(x)y* + b(x)y + ¢(x),
where a(x),b(x),c(x) € k[x], a(x) #0. Then d has a Darboux polynomial

F € k[x,y] with deg,F > 1 if and only if there exists an algebraic function
r € k(x) such that ¥ = a(x)r* + b(x)r + c(x). O

4 DARBOUX POLYNOMIALS OF THE DERIVATION A,

For p = p(x) € k[x], A, stands for the derivation of k[x, y] defined by

A(x) =1,

A,() =y — p(x).
In this section we study Darboux polynomials of A,. There are no Darboux
polynomials of A, in the subring k[x], thus if F is a Darboux polynomial of
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A, in k[x, y], then deg, F > 1 and F is primitive as a polynomial in k[x][y].
As a special case of Corollary 3.4 we get

Corollary 4.1.  The derivation A, has a Darboux polynomial F € klx,y| with
deg, F > 1 if and only if there exists an algebraic function r € k(x) such that

In the next two propositions we deal with Darboux polynomials F of
A, such that deg, F = 1.

Proposition 4.2. Let F be a Darboux polynomial of A, such that deg, F = 1
and denote by A € klx,y] the corresponding eigenvalue: A,(F) = AF. Write
F = uy+vinklx][y] (with u # 0 and gcd(u,v) = 1). Then

(1) A =y+s for somes € kx|,

(2) su+v=1and sv =1 — pu,

(3) u'—su—2su +5s*u—pu=0,

(4) degp = 2degs (may be both — o).

Proof. Developing the equality A,(F) = AF yields

A-(uy+v) =4A,(uy+v) = u(y> —p)+udy+v =uw?’ +uy+ v — pu,

which implies that A = y + s for some s € k[x] and that
wy? + (su+v)y+sv = (y+ s)uy + v) = w? + 'y + (V' — pu).

Identifying coefficients in y then gives equalities (2): su+ v =" and
sv =1 — pu.
According to these equalities, v can be computed from « and thereafter v
and ¢’ can be eliminated to produce the second-order differential equation (3).
Since u # 0, the equalities (2) imply that p = 0 <= s = 0, that is,
degp = —o0 <= deg = —oco. Now assume that p # 0. Then s # 0 and the
following equalities between degrees are a consequence of (2):

degv =degs+ degu, degs+degv=degp + degu.
As u # 0, deg(u) may be cancelled to give degp = 2degs. O

Proposition 4.3. Let u and v belong to kix| with u # 0 and ged(u,v) = 1.
Let F = uy + v € klx][y] and r = —v/u € k(x). Then the following conditions
are equivalent:

(1) F is a Darboux polynomial of A,.
(2) ’=rr=p,
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Proof. (1) = (2). According to Proposition 4.2, A,(F) = (y+s)F for
some s € k[x|, su +v =1 and sv = v/ — pu. Then, v/ — v* = suv = v'u — pu?
and, as u # 0,

S = I
Pr=——s—==-p=1r'-
u? e 5
(2) = (1). Now r =r*>—p, which can be written as ((vu/ — v'u)/u* =
(v*/u*)) — p and then multiplied by ? to yield
u(v' — up) = v(d —v).
Since gecd(u,v) =1, there exists s € k[x] such that ¢/ —up =sv and
¥ — v = su. Now, simply compute A,(F):
A, (F) = Ay(uy +v)
=y +u(y’ =p)+1'
= wy? + (1 — v)y+ vy + (V' — up)
= 1{}-‘2 + suy + vy + sv
=+ s)(uy + )
= (y + 5)F.

So, F is a Darboux polynomial of A, with the eigenvalue y + s. O

5 ON A CLASS OF RICCATI EQUATIONS

Let us consider a differential Riccati equation of the form

Y =y —p(x), (5.1)

where p = p(x) is a polynomial belonging to k[x]. In relation to the sim-
phc:lty of A,, we are interested in algebralc solutions of this equation, that is,
in the elements y € k(x) such that 3’ = »* — p. An important simplification
occurs: these algebraic functions are in fact rational.

Theorem 5.1. For p € k[x|, the equation (5.1) has no solution y in k(x)\k(x).
In other words, its algebraic solutions are in fact rational.

Proof. Suppose that there exists y € k(x)\k(x) which is a solution of (5.1).
Let

F= F(.\‘: }) i yn = o'lyn_l + 0-2.1"'”—2 R s (_])Ho_"

be the minimal monic polynomial for y over k(x). This polynomial belongs
to k(x)[y] and its degree n is at least 2.
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Let K be the splitting field of F over k(x) and let y,,...,y, be the n
different roots of F in K. By hypothesis, one of them is a solution of the
differential equation (5.1).

First observe that every root y; (i=1,...,n) is a solution of (5.1).
Indeed, since the extension k(x) C K is algebraic, the derivation 9/dx of
k(x) can be extended to a derivation d: K — K in a unique way. If ¢ is a
k(x)-automorphism of K then the mapping odo ' is a derivation of K and it
is an extension of the derivation 9/9x of k(x); hence 6do~! = d. This means
that the automorphisms of the Galois group of K over k(x) commute with
the unique extension of the derivation d/dx of k(x). Therefore, all elements
Vi,...,7, are solutions of (5.1), thatis y.=y? —pfori=1,...,n.

Consider now the discriminant of F:

A= G- ).
I#]
The logarithmic derivative of A is easy to compute:

A’ }."_ == }v"
A Z‘; = ;_ = Z(}‘f+)'j) =2(n— 1)gy.
it 2 j

i#]

From the above equality, it follows that o, is, up to a factor (1/(2
(n—1))), the logarithmic derivative of the discriminant A, which belongs
to k(x). Thus the partial fraction decomposition of ¢, has the form of a
finite sum

e Ay
O'I: 2 2
X

"

where each  belongs to k and each 4, 1s a rational number.
According to Proposition 3.3, the fact that the roots of F are solutions
of (5.1) can be expressed by the following Darboux property of F:

% + (? —p)%’g = (ny + a)F. (5.2)
The eigenvalue (ny + a) 1s easily seen to be a polynomial of degree 1 in y.
The leading term n in this eigenvalue comes from a simple consideration
concerning the coefficients of degree n+ 1 (in y) in (5.2). The “constant
term’’ a has now to be studied in detail.

In (5.2), consider all other degrees in y from n to |1 and then degree 0.
In the corresponding system (X) of n + 1 equations, all coefficients of F are
inductively defined from a and, after substitutions, the last equation
becomes a differential equation for a:
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f 0, = ac, — 0, =@a {eg=1)
20, = ac, — 0 — npoy,
305 = a0, — 0} — (n—1)pay,
%) : 5.3
e ioc; =ao;_| — 0,_, —(n+2—1i)po;_,, G3)
ng, =dac,_ | — g::—-l = 2)00',,_2,
k 0 =ao, — o, — POy

The system (Z) may also be thought of as the inductive definition of a
sequence of rational fractions (g;),i € N, by its two initial values g, = 1,
o, = a and the induction rule io; = ao;,_, — 0., — (n+ 2 — i)po,_,. We then
demand o,,, =0,,,=--=0.

For every pole « of ¢, = a, p 1s not involved in this polar part of the
partial fraction decomposition of each equation of (Z); it follows that a is a
pole of ¢; with an order at most i. Let ; stand for the polar part of a; of
order i at the pole «; @; can be computed by induction:

D G +ti- b

d-&F= ,
(x —a)

1

The last equation of (X£) then gives an equation for 4,:
AAy+1)--- (A, +n)=0.

Thus, all 4, are negative integers in the range [—n, —1].

Assume now that p # 0. We can perform “at infinity” the previous
analysis of the system (Z) that we did around every pole, which means that
we consider the degrees and the leading coefficients of g, ..., a,.

In this projection, p is now strongly involved. As deg(p) > 0, it is easy
to prove by induction that deg(o,;) = ideg(p) and deg(o,,,,) < ideg(p) — 1.
Equality holds for even indices, for instance deg(o,) = 0. For odd indices,
there may be a gap, especially if @ =0, =0, in which case deg(s,) =
—oo < —1.

Denote by p the leading coefficient of p and by 7; the coefficient of g;
corresponding to its nominal highest degree (in x): 5; 1s the coefficient of ¢,;
of degree ideg(p) while 75, is the coefficient of o,;,, of degree ideg(p) — 1.
A =—>" 4, and é = deg(p) are non-negative integers. In (5.3), the follow-
ing relations hold between nominal leading coefficients:
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: o =a= —A,
20, = —np,
363 = ao, —5; — (n—1)poy,

(2i)G5; = —(n+ 2 — 2i)pa;,_5,
{ (2i + 1)T5iy = a0y — 03 — (n—2i + 1)poy ;.

It turns out that &5, = (—1)’p°M,, for even indices and 75, =
—(=1)'p*M,,,, for odd indices, where M, are non-negative rational factors
given by the rules

Ml - A.
Mls :%MZA'—?

M2_§.+1 = (A+55)M:}J+ (n‘l‘ l == ZS)MQJ_I.

If n=2s+11is odd, M, , = M,,,, has to be 0, which is impossible.
Thus, n=2s 1s even and M, , = M,,,, =0, which implies A=4=0
(My, >0=>A+s50=0=A=0and (ass > 0) 6 =0).

We can now conclude; if there existed a strictly algebraic solution to
the differential equation (5.1), p would be a constant and the coeflicient
a = o, would be 0. In this case, F would have an even degree n = 2s and
an easy computation from the above system on &; then showed that
gy = (—1)'(5). Then F would be (3> — p). Since F is supposed to be irre-
ducible, F would equal y? — p with a constant p. But the field k is algeb-
raically closed, so we have a contradiction.

Therefore, we proved that the differential equation (5.1), with a non-
zero polynomial p. has no strictly algebraic solution. In the case p = 0, the
local analysis at infinity also leads to A = 0, meaning ¢, = a = 0. Then, all
o; are 0, whence again a contradiction. This completes the proof. ]

6 SIMPLICITY OF THE DERIVATION A,

Let us recall that, for p = p(x) in k[x], A, stands for the derivation of
k|x,y] defined by

{Apm
A,(»)

I

L,
¥* = p(x).

I
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The following theorem is one of the main results of our paper.

Theorem 6.1. If the derivation A, is not simple, then there exists a Darboux
polynomial F of A, such that deg, F = 1.

Proof. 1Ifp =0 then A, is not simple and F = y is a Darboux polynomial of
A,. So we may assume that p # 0.

Since A, is not simple, there exists (by Proposition 2.1) a Darboux
polynomial F in k[x,y] of A,. As we have previously seen, deg, F> 1.
Hence, by Corollary 4.1, there exists an algebraic function r € k(x) such that
¥ = r* — p. This means that the differential equation )” = y*> — p has an
algebraic solution. According to Theorem 5.1, there is no solution in
k(x)\k(x). Therefore the equation )’ = y*> — p(x) has a solution y in k(x).
Since p # 0, y # 0 and, by Proposition 4.3, the derivation A, has a Darboux
polynomial F € k[x,y] such that deg, F = 1. O

The following results are now consequences of Theorem 6.1 and
Proposition 4.2.

Theorem 6.2. If p is a nonzero polynomial of odd degree, then A, is simple. (]

Proposition 6.3. Every derivation d : k[x,y| — klx,y| of the following form is
simple:

dixy=1.
dy)=y"+x", 0#neN.

Proof. 1If ni1s odd then d is simple, by Theorem 6.2. Let us assume that
n=2m,0#me N, and suppose that d i1s not simple. Then (Theorem 6.1)
there exists a Darboux polynomial F of 4 such that F =uy+ v for
0 # u,v € kx|, and then, by Proposition 4.2 (3),

W' — s'u— 25U + s*u — pu=0, (6.1)
for p = £x>™ and some 0 # s € k[x] with degs = m. Put
S=8 " 45X F 8 Sp5 8 Oy - S F D

Comparing in the equality (6.1) the leading coefficients of the powers of x,
we see that s2, = F1 and we deduce successively that s,,_; =5, _, = ---
= 55= 0. Therefore, 5= x% 0# 5 €k, and 0

1 =
W' — ms, X" 'u—2s, X" = 0.
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Comparing again the leading coefficients we obtain the equality
m + 2degu = 0 which is a contradiction (because m > 0). This completes
the proof. O

Example 6.4. Every derivation d : k[x,y| — klx,y| of the form

d(x) = 1,
dy) = y* = x"+mxX™', 0#meN,

is not simple (since y — x” is a Darboux polynomial of d). O

7 SIMPLICITY AND EQUIVALENT DERIVATIONS

Two derivations d and d of k[x,y] are said to be equivalent if there
exists a k-algebra automorphism ¢ of k[x,y] such that 6 = gdo~'. Clearly, if
d and ¢ are equivalent derivations, then 4 1s simple if and only if J 1s simple.

Proposition 7.1. Let a,b, ¢ € kix| and let d, 6 be derivations of k|x, y| defined
by:

{d(.\-) =1, {5(x) =1,

dy) =y*+ay+b, () =1+ QRo+a)y+b+¢*+ap—¢.

These derivations are equivalent.

Proof. Consider the automorphism o : k[x,y] — k[x,y] such that o(x) = x
and 6(y) =y — ¢. Then § = ado!. O

Proposition 7.2. Let d : kix,y| — klx,v] be a derivation such that
d(x) =1,
{ d(y)=y*+ay+b,
where a, b € k[x]. This derivation is equivalent to the derivation A, where

pzﬁ(a2—4b)~—%a’.

Proof. Use Proposition 7.1 for ¢ = —a/2. OJ

Theorem 7.3. Let d : kx,y] — k|x,y| be a derivation such that

{ d(x) = 1,
dy)=)y*+ay+b,
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where a,b € kix]. The derivation d is not simple if and only if there exists a
Darboux polynomial F of d such that deg, F = 1.

Proof. Let 0 # F € k|x,y]. The derivation d is not simple if and only if the
derivation A, is not simple, where p is such as in Proposition 7.2. We know
(see the proofs of Propositions 7.1 and 7.2) that A, = ado~!, where o(x) = x
and o(y) = y + a/2. This implies that F is a Darboux polynomial of d if and
only if ¢(F) is a Darboux polynomial of A,. Moreover, deg, F =1 if and
only if deg, ¢(F) = 1. Hence, this theorem follows from Theorem 6.1. [J

Theorem 7.4. Let d : klx,y] — k|x,y] be a derivation such that

d(x) =1,
d(y) = y* + ay + b,
where a,b € kix|. If degb is odd and degb > 2 dega, then d is simple.

Proof. It follows from Theorem 6.2 because d is equivalent (by Proposition
7.2) to A, where p is a polynomial of odd degree in k[x]. O

8 THE CASE DEG p(x) = 2

In this section we study the derivations A, for p = Ax*> + Bx + C,
where 4, B.C € k and 4 # 0. First we shall show that the problem of
simplicity for such derivations reduces to the same problem for derivations
of the form é,, for e € k, where 6, = A,._,, that is, J, is the derivation of
k(x,y| defined by

O,(x) = 1,

o.(p)=y2—-x*+e
Lemma 8.1. Ler p = p(x) € k[x], « € k and let q(x) = p(x + «). Then the
derivations A, and A, are equivalent.
Proof. A, =0oA,067", where ¢ is given by o(x) =x+aand o(y) =y. O
Lemma 8.2. Let p = p(x) € k[x], 0 # B € k and let r(x) = p*p(fx). Then A,
is simple if and only if A, is simple.

Proof. Consxder the automorphism t of k[x,y] defined by r(r) px,
1(y) = B~'y. The conclusion follows from the equality A v =f A

Assume now that p = Ax?> + Bx+ C, A,B,C € k, 0 # A, and consider
the derivation d = A,. Since the field k is algebralcally closed, there exists
B € k\{0} such that Aﬁ4 = 1. Let r = r(x) = f*p(Bx). Then we have
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r(x) = B*(4(Bx)* + Bfx + C) = > + B*Bx + p°C.

This means, by Lemma 8.2, that if we study the problem of simplicity of the
above derivation d, then we may assume that 4 = 1. Moreover, by Lemma
8.1, we may also assume that d is of the form o, for e € k.

The next theorem is the second main result of the present paper.

Theorem 8.3. Let e € k. The derivation 9, is not simple if and only if e is an
odd integer.

The proof of this theorem consists of three lemmas.
Lemma 8.4. If F and A are polynomials in klx,y| such that 6,(F) = AF,
F # 0 and degj.F =t then A=yEx

Proof. Let F = uy + v, where u,v € klx|, u # 0. According to Proposition
4.2, A =y + s for some s € k[x] of degree 1. Thus s = ax + b, where a,b € k
with @ # 0 and

' = v+ (ax + b)u, (8.1)
v + (—x* + e)u = (ax + b)v. '

Let #* and v* be the leading forms of the polynomials # and v, respectively.
Then u* # 0, v* # 0 and by the above equalities,

* 2
v* = —axu® and axv* = —x“u’,

and hence ¢ = 1, that is, a = +1.

[t remains to prove that » = 0. Denoting by g = axu + v, we write (8.1)
as

W =ub+g,
(e —a)u+g = (2ax + b)g.
If b were different from 0, then, by the first of the two above equalities,

deg(g) = deg(u), a contradiction with the second equality. Thus, » = 0 and
A=yrx Ol

Lemma 8.5. Let e € k. The derivation o, has a Darboux polynomial F such
that deg, F = 1 if and only if there exists a nonzero polynomial u € kx| such
that

W' —2xu' +(e—Du=0 or u"+2xi'+ (e+ 1)u=0. (8.2)
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Proof. Let F = uy + v, where u,v € k[x], u # 0 be a Darboux polynomial
of d,. By Lemma 8.4 and its proof, v = &/ — axu and v/ = axv + (x> — e)u (see
(8.1)), where @ = +1. Hence, if a = —1 then «” + 2xu’ + (e + 1)u = 0, and if
a=1then " — 2xi/ + (e — 1)u = 0.

Assume now that there exists a nonzero polynomial u € k[x] satisfying
(8.2). If " —2xu' + (e— 1)u=0, then 6,(F) = (y + x)F, where F= uy+
(W —xu). If u"+2xi/ +(e+1)u=0, then J,(F)=(y—x)F, where
F=uy+ (v + xu).

Lemma 8.6. Ler e € k. The derivation 8, has a Darboux polynomial F such
that deg, F = 1 if and only if e is an odd integer.

Proof. Assume that §, has a Darboux polynomial F with deg, F = 1. Then
it follows from Lemma 8.5 that there exists a nonzero polynomial u € k[x]
satisfying (8.2). Without loss of generality, u may be assumed monic:

s—1

Uu=x+a,_,; X +---+ax+a,,

where s > | and ay,....a, | € k. If v’ — 2x1/ + (e — 1)u = 0, then compar-
ing the coefficients of x’ in this equality we get
-2s+(e—1) =0,

that is, e=2s+ 1. In a similar way, if «' +2xt/ + (e + 1)u = 0, then
e=—-2s—1.

Now assume e = 25 + 1, where s > 0. A monic polynomial u, of degree
s 1s defined in k[x] as follows:

up=1, uy=x and for s>2, u,=ax’+a,_ X'+ ---+ax+a,,
where

o> =L
g =
a; :(“‘EE)(“;Z)(JIH, for i=0,1,... 5s—2.

It 1s easy to check that u satisfies the differential equation u! — 2xu/’+
(e —1u, = 0.

Consider now a negative odd integer e = —2s — 1, s > 0. A similar
definition can be given. A monic polynomial v, of degree s is defined in k[x]
as follows: vy=1, vy=x and for s>22, v,=ax*+a,_x'+- -+
a,x + a,, where

I,
:0:

af :—%%la,q_z, fOI‘ i=0,l,...,s—2.
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Here, as it is easily seen, v, satisfies the differential equation v} + 2xvi+
(e+ v, =0.

Hence, if ¢ is an odd integer then, by Lemma 8.5, there exists a
Darboux polynomial F of J, such that deg, F = 1.

Combining Theorem 6.1 and Lemma 8.6 gives the proof of
Theorem 8.3. Ll

Example 8.7. Ife=1,3,5,7 or 9 then 6,(F) = (y + x)F, where F Is given
by the following table.

e F

1 y—Xx

3 xp=x> 1

5 (2> —1)p—2> + 5x

7 (2x2 =3x)y—2x*4+9x2 -3

9 (4x* — 12x3 4+ 3)y — 4x° + 28x3 — 27x

This follows from the proofs of Lemmas 8.4—8.6. O

9 EXAMPLES IN n VARIABLES
Let us recall the following result of Shamsuddin [12] (see also [3, 10]).

Theorem 9.1 [12]. Let R be a ring containing Q and let d be a simple deri-
vation of R. Extend the derivation d to a derivation d of the polynomial ring
R[t] by setting d(t) = at + b where a,b € R. Then the following two conditions
are equivalent.

(1) The derivationd is simple.
(2) There exist no elements r of R such that d(r) = ar + b. O

The next two propositions are consequences of the above theorem.

Proposition 9.2. Let d : k|x,y,z| — klx,y,z| be a derivation such that

dix)=1,
d(y) = f(x,),
d(z) =y,

where f(x,y) € klx.y], deg, f(x,y) > 2. Let 4 : k[x,y| — k[x,y] be the restric-
tion of d to klx,y|. If 0 is simple, then d is simple.

Proof. Suppose that there exists r € k[x,y] such that 6(r) =y. Then
deg,r>1. Let r=rp"+---+ry+r, where n2>1, ry...,r, € klx],
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Fn # 0! and let f(x:y) =fn'l};" il +.fly +f6’ where m =2 fl}it gk '.lfm € k[xla
Ju # 0.
Then

y=dn)=ry'+---+ny+r
+ (= e W o Ry )
Comparing the coefficients of y*"~! we get a contradiction: 0 = nr, f,, # 0.

Hence, there is no polynomial r € k[x, y] such that (r) = y and hence,
by Theorem 9.1, d is simple. O

Proposition 9.3. Let d : k|x,y,z| — k|x,y,z| be a derivation such that

where g(x,y) € klx,y], deg, g(x,y) = 2, a(x), b(x), c(x) € k[x] and b(x) # 0. Let
0 : klx,y] — klx,y] be the restriction of d to kix.y|. If 6 is simple, then d is
simple.

Proof. Suppose that there exists r € k[x,y] such that d(r) = a(x)r+
b(x)y + ¢(x). Then it is clear that deg,» > 1. Comparing the leading coeffi-
cients in y in the above equality, we get a contradiction. Therefore, this
proposition follows from Theorem 9.1. [

Repeating the same argument as in the proofs of Propositions 9.2 and
9.3, and using facts from previous sections, we get the following example.

Example 9.4. Let d, and d, be derivations of k[x,y,z,t,...,t,] defined as
follows
((di(x)=1 [ d(x) =1
di(y) =y +x dy(y) =y +x +2x
dy(z) = y dy(z) = X’z + xy
) di(y) =t +1 < dy(t) = ity + 1
di(t3) = i3 + 1 dy(t;) =Bt +1,
K dl(tn) =l lp + 1, i dz(f,._,) = f;.:_lfn tuzts

The derivations d; and d, are simple. O
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10 FINAL REMARKS
10.1 About the Present Work — Acknowledgments

We started this work while one of us (J.M.O.) visited N. Copernicus
University in Torun. He would like to express his gratitude for the excellent
conditions of that visit.

As a matter of fact, the starting point of our considerations was the
following:

o Kovacic’s algorithm [6] is a very powerful tool to decide whether a
linear differential equation (L) of order 2 with coefficients in (M)
has a nontrivial Ziouvillian solution. A liouvillian solution belongs
to a differential extension of (M) of a special type, called liou-
villian. This algorithm can be used to prove some non-existence
theorems in a rather general setting.

e The existence of a liouvillian solution for (L) is in turn related to the
existence of an algebraic solution for a Riccati type (nonlinear) first
order differential equation (R); this is a folklore result in Differ-
ential Algebra which is well described in Kaplansky’s book [5].
According to Differential Galois Theory, if (L) has a liouvillian
solution, either (L) has an algebraic solution or (R) has an algebraic
solution whose minimal polynomial over C has a degree 1 or 2.

Let us remark that Kaplansky studies “simple linear derivations™ (in
our vocabulary) as an application of the previous result.
Refer also to the work of Magid [8] for Differential Galois Theory.

e Then algebraic solutions for (R) correspond to Darboux poly-
nomials for some derivation that we are interested in: this last fact
is still present and important in our paper.

But all these inspiring remarks and powerful tools (Kovacic’s algo-
rithm, Liouvillian extensions, Differential Galois Theory) had to disappear
from the body of the paper: our Theorem 5.1 now excludes algebraic non-
rational solutions to some differential equations of Riccati type and this is
enough to go further and prove our main results.

Nevertheless, we hope that the reader will forgive us having said some
words about these interesting facts.

10.2 A Technical Remark

Although all results of this paper are formulated and proved for
polynomial rings over an algebraically closed field k, they remain valid for an
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arbitrary field K of characteristic zero instead of k. It is a consequence of the
following proposition given in [10] (see Propositions 13.1.1 and 5.1.4 in [10]).

Proposition 10.1. Ler K C K' be an extension of fields (of characteristic

zero) and let d be a derivation of K|x,,...,x,|. Consider the derivation d' of

K'[x\,...,x,] such that d'(x;) = d(x;) for i =1,...,n. Then d is simple if and

only if d' is simple. ]
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