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ABSTRACT 

We generalize the well-known Jouanolou non-integrability theorem concerning the system of or- 

dinary differential equations: XI = x;, .x; = x;, s ; = I’;, J E N, s > 2 to an arbitrary prime number 

n 2 3 of variables and arbitrary integer exponent s 2 3. Our proof is completely elementary. 

I. INTRODUCTION 

The Jouanolou system of ordinary differential equations is defined in @” as 

follows: 

where s is a strictly positive integer. 

This paper is devoted to the problem of integrability of this system. Namely, 

we look for Darboux polynomials of this system; indeed, the existence of such 

polynomials is necessary to have a rational or even a Liouvillian first integral 

[71. 
For s = 1 and arbitrary n > 2, this system has a polynomial first integral, e.g. 

the following determinant: 

* Supported bij KBN Grant 2 P03A 017 16. 
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On the contrary, if n = 3 and s 2 2 is an arbitrary integer, Jouanolou [4] proved 
that the system does not possess any polynomial first integral. 

Deciding in which cases the Jouanolou system has a rational first integral 
remains an open question. A negative answer can be suspected for arbitrary 
n > 4 and s > 2 despite the fact that no proof is known. Trying to solve this 
problem, we found an elementary proof for a prime number n 2 5 of variables 
and an exponent s 2 3. This proof also works for n = 3 and s > 5. Taking into 
account some information provided by [8,9] enables us to overcome the lacking 
cases n = 3, s = 3,4 in a simple way. Consequently, we obtain for the first time a 
completely elementary proof (i.e. without any use of algebraic geometry) of 
Jouanolou theorem for all prime numbers n 2 3 of variables and all exponents 
s > 3. 

Unfortunately, our method is not conclusive when n = 3, s = 2. Let us repeat 
that the corresponding integrability problem for s = 2 and a prime n 2 5 is still 
completely open as well as the one for a non-prime n > 4 and s 2 2. 

The main tool is the reduction of our problem for the Jouanolou system (1.1) 
to the same one for the following factorisable quadratic system 

(1.2) 
dyi 
x=Yi(-Yi+s,Vi+l): 1 <i<n, y,+l syl, 

to which we apply the methods of [IO]. 
For the purposes of the present paper, it may be more convenient to use the 

notion of a derivation instead of the one of a system of ordinary differential 
equations. A derivation is a C-linear mapping from the polynomial ring 
C[x,, . . . , x,] into itself that satisfies Leibniz rule for the derivation of a product. 
According to this rule, there is a unique way to define an extension of a deri- 
vation from a ring to the field of fractions of this ring: 

(1.3) d ; = d(P)Q;ZPd(Q), 
0 

Examples of derivations are partial derivatives with respect to the variables, 
that we denote by $, 1 < i I n, in the general n-variable case and also by 
d,, a, & in the three-variable case. In fact, all derivations of @[xi, . . . , xn] are 
linear combinations of partial derivatives with coefficients in polynomial rings, 
thus we will call them polynomial derivations. 

The Jouanolou derivation dJ is thus defined by its values on the variables xi, 
which generate the polynomial algebra, as follows: 

(1.4) dJ(x,) = xi, dJ(x2) = xi, , dJ(x,- I) = x;, dJ(x,J = xf, 

or equivalently by dJ = x@ + xl& + . + x:8,_ I + xf& 
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A polynomial or a rational fraction F, is said to be a constant of the poly- 

nomial derivation d if d(F) = 0. If this F does not belong to the base field @, we 
will also call it afirst integral of d, keeping the simple word constant for the 
elements of the base field, i.e. the common constants of all partial derivatives. 

A polynomial F E @(xl, . . . , x,,] \ @ is said to be a Darbouxpolynomial of the 

derivation d if there exists a polynomial P E @[xl, . . ,x,,] such that d(F) = PF; 

this P is then called the eigenvalue of F. In particular, polynomial first integrals 
are Darboux polynomials with the eigenvalue P = 0. 

Moreover if Fl, F2 E @[xl,. . . , xn] are relatively prime, the fraction Fl /F2 is a 
rational constant of d (or a rational first integral) if and only if FI and F2 are 
Darboux polynomials of d with the same eigenvalue. 

On the other hand, according to the well-known Euler identity, a polynomial 
F of @[xl,... ,x,,] is homogeneous of degree m if and only if F is a Darboux 
polynomial of the Euler derivation E = C x& with the eigenvalue m. 

Refer to [lo, 1 l] for details concerning polynomial derivations, their con- 
stants and Darboux polynomials. 

In his book [4], J.-P. Jouanolou proved the following theorem. 

Theorem 1.1 (Jouanolou, 1979). For n = 3 and any integer s > 2 the derivation 

(1.4) does not admit any Darbouxpolynomial. 

The original proof of this theorem is rather lengthy (pp. 160-192 of [4]). The 
sketch of an alternate proof can also be found on pp. 193-195 of [4]. Written by 
A.H.M. Levelt, the referee of the book, this proof contains very fruitful ideas 
but has a gap. Based on Levelt’s ideas, complete proofs are given in [lo, 111. 
Three different proofs can be found in [3,6, 131. Nevertheless, all above men- 
tioned proofs use some facts and arguments of algebraic geometry (about plane 
algebraic curves) and cannot be considered as truly elementary. Moreover, as 
they use some facts that are specific to the three-dimensional case, these proofs 
cannot be extended to higher dimensions. Let us also remark that some new 
examples of homogeneous systems of ordinary differential equations in @’ 
without Darboux polynomials can be found in [ 141. 

As explained in Section 4 of [4], the existence of one example of a system of 
polynomial differential equations 

(1.5) 2 = j&y,, . . . ,xn), 1 5 i 5 n, 

where all polynomials$ are homogeneous with the same degree s, without any 
Darboux polynomial, implies that the absence of any Darboux polynomial is 
typical for such homogeneous polynomial systems of differential equations. 
Thus, typically, such a system is not integrable. 

In fact, Jouanolou is interested in the existence of Darboux polynomials for 
Pfaff forms, but it turns out that this is equivalent to our problem in the three- 
variable case. 

A consequence of the above-mentioned Jouanolou theorem is then that, for 
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n = 3 and an arbitrary given s 2 2, system (1.5) typically does not admit any 

Darboux polynomial. 

On the contrary, let us remark that. for H = 2 and arbitrary s 2 1, it is easy to 

see that systems like (1.5) always have a linear Darboux polynomial. 

From our results, the same genericity consequence holds for an arbitrary 

prime number fi 2 5 of variables and an arbitrary exponent s > 3. This fact is 

closely related to a problem stated by V.I. Arnold (see Section 10 of [l]) 

concerning ‘the absence of invariant hypersurfaces (or principal ideals)‘, which 

is nothing else but the absence of Darboux polynomials. More precisely, 

V.I. Arnold asked whether the subset of all systems (1.5) without any Darboux 

polynomial constitutes an open dense subset in the space of all such systems. 

For n = 3 and s > 2, this fact was already proved by Lins-Neto [6]. Let us stress 

that the corresponding fact for II 2 4 and s 2 2 remains completely open. 

The present paper is written in a self-contained way and thus can be read 

independently of the given references; it is organized as follows. 

In Section 2 we describe the symmetries of Jouanolou system (1 .I) while in 

Section 3 we show how to reduce our problem to the corresponding one for the 

factorisable quadratic system (1.2). Section 4 is devoted to the proof of the non- 

existence of non-constant polynomial first integrals for the system (1.2) when 

n > 5 is a prime number and s > 3 an arbitrary integer exponent, as well as in 

the case where n = 3, s 2 5; this implies the non-existence of Darboux poly- 

nomials for the Jouanolou system (1.1) with the same n and s. In Section 5, we 

restrict our attention to the case n = 3 to deal with the values s = 3 and s = 4. 

In Section 6, we present a detailed proof of a generic non-integrability theo- 

rem for homogeneous polynomial derivations which is the counterpart of 

Jouanolou’s result for Pfaff forms. 

2. SYMMETRIES OF THE JOUANOLOU SYSTEM 

We will denote by N the set of non-negative integers and by N* = N \ (0) the 

subset of strictly positive integers. 

Let rl be a derivation of @[-XI,. . . , s,~]. A n automorphism g of the algebra 

@[xi,. , IT,,] that commutes with ~1 is called a symmefry of d. A derivation A is 

said to be G-invariant if all elements g of a group G of such automorphisms 

commute with li. 

Let us now assume that d possesses a Darboux polynomial F E C[xl, . . . , xn], 

with a corresponding eigenvalue P. If d is G-invariant, for every g E G, 

F, = g(F) is also a Darboux polynomial of Cz and its eigenvalue is Ps = g(P). 

When the group G of automorphisms is finite, G-invariant Darboux 

polynomials can be obtained from Darboux polynomials: the product 

H = l-I,tcg (F) of all transforms of F is a G-invariant Darboux polynomial of 

d and its eigenvalue is the sum Q = C,, G g(P) of all transforms of P. 

We denote by I, the finite cyclic group of automorphisms of C[xi, . . ,x,?] 

generated by cyclic permutations of the variables. In our considerations, an- 

other finite group A, of automorphisms, which is isomorphic to the multi- 
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plicative group of all roots of unity of orders” - 1, will play a crucial role. If t is 
such a root of unity, g, is the automorphism of the algebra C[xl, . . . , _xn] which is 
completely determined by its values on the set of variables: 

g,(x, ) = 8” Ix,, g,(x2) = F”“-?.Y*. . . . ~ gF(Xn) = F-Y,, 

These automorphisms arise naturally when we look for ‘diagonal’ automorph- 
isms g, i.e. such that g(x;) = aixi, 1 < i 5 n. 

Proving the following lemma is an easy exercise. 

Lemma 2.1. The Jouanolou derivation (1.4) is I?,,-invcrriant us well as A,,-in- 

variant. 

Let us now characterize A,,-invariant polynomials. Given a n-tuple j = 
(jl(. ,j,) of elements of N, a(j) is the following integer: 

(2.1) g(j) = 2 jisfl-‘, 

i=l 

It is easy to check that a polynomial is An-invariant if and only if it is a sum of 
A,,-invariant monomials and that the AH-invariant monomials xi= ,Y~‘x:~. . ..xj 

are exactly those whose exponent j = (j,, . . ,jn) is a n-tuple such that 
o(j) =Omod(s” - 1). 

Using this characterization, we can prove the following lemma 

Lemma 2.2. If Jouunolou derivation dJ dejned in (1.4) hus a Darboux poly- 

nomial, then dJ has also a polynomial first integral i.e. there exists an 

F E @[xl,. ,x,,] \ C such that dJ(F) = 0. 

Proof. As the polynomials defining the Jouanolou derivation are homo- 
geneous with the same degree, all homogeneous components (with respect to 

the total degree) of a Darboux polynomial of d are Darboux polynomials. 

Thus, without loss of generality, we can assume that d has a homogeneous 

Darboux polynomial F of total degree m > 0. 

According to the previous lemma, we can also assume that this F is A,,- 
invariant. Its eigenvalue P is then a A,,-invariant polynomial. If P # 0, its 

degree is s - 1, and there exists a n-tuple j = (jl, ,j,,) such that 
g(j) E 0 mod (s” - 1), while its total degree C:=, j; is equal to s - 1. These two 
properties are contradictory: on the one hand, according to (2.1), c(j) has to 
satisfy 0 < o(j) 5 sn - s; on the other hand, n(j) has to be a multiple of s” - 1. 
This contradiction shows that P has to be 0, which means that F is a poly- 
nomial constant for dJ. 0 

The following lemma gives a relation between the two previously described 

groups of automorphisms, lYn and A,,, of C[xl , ,x,,]; its proof is easy. 
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Lemma 2.3. Let j = (jl , . . . , j,,) be a n-tuple of elements of N such that o(j) is a 
multiple of s” - 1 (which means that the corresponding monomial is A,-in- 
variant). Then, the n-tuple r(j) = (jz, js, . . . , j,,, ji) enjoys the sameproperty. 

3. THE CHANGE OF VARIABLES 

Let us consider the polynomial ring @[xi,. . ,xn] as a subring of the field of 
rational fractions C(xi, . . . , x,). Let dJ denote the Jouanolou derivation defined 
in (1.4) for which we suppose s > 2. Let yj be the n elements of @(xl, . . . , x,) 

defined by 

(3.1) yi = F = *, 15 i<n, x,+1 =x1 
I I 

It is not difficult to check that the yi are algebraically independent by writing 
the Jacobian: 

det a(Yl>. . .,YtY) 

~(Xl,~~~,&) 
= (-1)” (f _ qyI 

x1.. .x,’ 

which is different from 0 ifs > 2. 
Thus, the subring generated by the y, is a polynomial ring in n variables. By 

formula (1.3), the derivation dJ of C[ x1, . . , x,,] extends in a unique way to a 
derivation of @(xl,. . . , x;), and the (polynomial) subring C[yt , . . , y,] is dJ- 
invariant. Let us call b the restriction to the polynomial ring C[yt , . , y,] of 
the extension of dJ to @(xl, . . . , xn). 

It is easy to check that 6 is entirely defined by the image of yi: 

(3.2) s(Yi) = Yi(-Y;+sYi+1), 15 i<n, ynfl =yl. 

Despite the fact that an arbitrary polynomial F of C[xi, . . . , xn] cannot be 
written as a composition F(x) = G(y( x )) w h ere G belongs to C[yi, . . . , yn] and 
y(x) stands for the mapping given by (3. l), some special ones may be written in 
this way. 

Lemma 3.1. Let #J E @[xl,. . . ,x,1 be a A,,-invariant polynomial. Then, there 
exists a uniquepolynomial ~3 E @[yl, . . . , y,] such that 4(x) = @(y(x)). 

Proof. Uniqueness is a consequence of algebraic independence of yi. To ensure 
existence, it suffices to prove that a A,-invariant monomial xj = q1 . . .xk can 
be written as a monomial in yi. The exponent j is an n-tuple for which g(j) is a 
multiple of s” - 1, thus we look for elements ki, . ., k, of N such that 

which, by (3.1), amounts to solving the following system of equations 
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jl = sk, - kl 

j2 = ski - k2 

(3.3) I jn=sk,_l -k, 

The assumption that c(j) is a (non-negative) multiple of S” - 1 allows us to 
solve the previous system with all ki E N. For instance, multiplying the first 
equation by s”- l, the second by s”-=, etc. and adding them up, yields 
(s” - 1) k, = o(j), which gives a non-negative integer value for k,. The same is 
true for the other ki by circular permutations of system (3.3) and application of 
Lemma 2.3. Cl 

We can now state as a corollary the conclusion of this reduction process. 

Corollary 3.2. Ifthe derivation S defined by (3.2) h as no polynomialJirst integral 

(non-trivial constant), then the same is true for the corresponding Jouanolou de- 

rivation dJ defined by (1.4). Then, according to Lemma 2.2, dJ has no Darboux 

polynomial. 

Proof. If the Jouanolou derivation (1.4) has a polynomial first integral, then it 
has also a &invariant polynomial first integral $J. Then, according to Lemma 

3.1, 4(x) = @(Y(X)), h w ere @ is a polynomial first integral of derivation 
(3.2). q 

Finally, let us note that a change of variables like (3.1), which yields the fac- 
torisable form (3.2), goes back to Lagutinskii’s paper [5]. This is also a special 
case of Bruno’s power transformations [2]. 

4. NON-INTEGRABILITY OF JOUANOLOU SYSTEM FOR A PRIME NUMBER n > 5 

OF VARIABLES AND S 2 3 

According to the last corollary of the previous section, to show the non- 
integrability of the Jouanolou system for a prime number n 2 5 of variables 
and s > 3, or n = 3 and s > 5, it is sufficient to prove the following theorem 
concerning the derivation 6. 

Theorem 4.1. Let n 2 3 be a prime number and let s 2 3 be an integer. If 

s > 2 2, then the derivation 6 of C[xl , . . . , x,] dejined as in (3.2) by 

(4.1) S(Xj) = Xj(-Xi+SXi+1), 1 <i<n, X,+1 =X1, 

has nopolynomialJirst integral. 

Proof. Our proof is an example of the so-called Lagutinskii-Levelt procedure 
(LL for short) described in [lo, 111. The various steps of this procedure will 
appear along the proof. 

245 



Suppose that F is a first integral of the derivation 5. As the polynomial coef- 

ficients defining 6 from the partial derivatives are homogeneous of the same 

degree, the homogeneous component of F of highest total degree is also a first 

integral of 6. 

Thus, without loss of generality, we can suppose this F to be homogeneous of 

some degree m 2 1, i.e. a Darboux polynomial of the Euler derivation E with 

eigenvalue 112. 

The first step of the LL procedure consists in choosing some ‘Darboux 

points’ of 6 around which we write the facts that F is a Darboux poly- 

nomial for 6 and E in local coordinates. 

For a homogeneous polynomial derivation d = C Via,, a Darbouxpoint is a 

non-zero vector M = (Xl,. , A’,,) of C” where rl and E are collinear, which 

means that there exists a k in @ such that V;(M) = kX;, 1 2 i 5 II. 

Of course, this property only depends on the one-dimensional vector space 

generated by M, i.e. this is a property of points in the projective space. In the 

present proof, we will only need the Darboux point M,J = (1, . . . , 1). 

Fix the last coordinate x,, = 1 and choose II - 1 local coordinates around Mof 

s; = 1 t-y;, 1 < i 5 n - 1. Homogeneous polynomials in n variables (denoted 

by capital letters) become non-homogeneous polynomials in n - 1 variables 

(denoted by the corresponding small letters). 

Isolating the contribution of the last partial derivative, the Darboux prop- 

erty of F for 6 (6(F) = 0 here) and the homogeneity of F (E(F) = mF) can be 

written as 

,I - I 

CXi(-Xr + J-xi+ 1)8;(F) + x,,(-.x~ + sxl)&(F) = 0, 

(4.4 
i= I 
,z ~ I 

~-d;(F) + -GW’) = mF. 
i=l 

A linear combination of these two equations makes the last partial derivative 

disappear: 

n-l 

(4.3) c Xi[(-X; + SX;+ I) - 3x1 + xn]d;(F) = m(-sx, + x,,)F 
i=l 

This can be expressed in local coordinates around MO: 

n-l 

(4.4) C( *+J; .,+~~;+I-sl.lj~-m[-s(l+~‘,)+IjS, ‘)[- 
i=l 

where the last term of the left-hand side sum deserves a special treatment as 

y, = 0: 
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The second step of the LL procedure consists in the consideration of 

the homogeneous component h of lowest degree 1 < m off. Let us note 

that 1 is nothing else but the multiplicity of F at the chosen Darboux 

point M. 

Looking at terms of lowest degree in (4.5) we get an equation for h: 

To simplify matters, we add the Euler identity for the homogeneous polynomial 

h of degree 1 to (4.6) and then divide by s: 

n-2 

(4’7) c[?;;+, -y,]$-yl&~-~(~; ‘jflh, 
,=I n 

The above relation (4.7) is a linear equation relating h and its n - 1 partial de- 

rivatives with respect to the local coordinates y;, whose coefficients are homo- 

geneous polynomials of degree 1 with respect to y;. 

Let T be the (n - 1) x (n - 1) square matrix whose entries in the i-th row are 

the coefficients of the linear form near ahlay; in (4.7). In our case, the matrix T 

is 

(4.8) 

1 0 0 .‘. 0 0 

0 1 0 .” 0 0 

0 0 1 .‘. 0 

0 
. . . . . . . . . 

0 (j 0 ,:. ; (j 

0 0 0 .‘. 0 1 

0 0 0 .‘. 0 0 1. 

The conclusion of the second step of the LL procedure is that there 

exist non-negative integers ii, , i, _ 1 such that 

n-l N - I 
(4.9) CXkik = -m's~ ')+l, Cik = I, 

k=l k=l 

where A; are the eigenvalues of T. 

In the general case, the right-hand side of the first equation in (4.9) 

has to be replaced by the numerical coefficient before h in (4.7), which 

in turn comes from the right-hand side of the first equation of (4.2), 

this value being 0 in the present case. 

Refer to [lo] for a proof. 

In our case, the characteristic polynomial of T is Q(A) = (-1)” c:zd A’ and its 
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roots are all n-th roots of unity except 1 itself. Choosing some primitive n-th 
root E of unity, we deduce from (4.9) that 

(4.10) 
k=l 

As n is a prime number, Q is the minimal polynomial of E and the polynomial 
defined by the above relation (4.10) has to be a multiple of Q. As their degrees 
are the same, these two polynomials are proportional so that 

jl=j2=...=jn_,= 
m(s- 1) -1 

s 

Summing from 1 to n - 1, (4.9) gives 

(4.11) (n - 1) +;l) -I = 1. 

Asl<m,weget(n - l)e 5 land finally s 5 25. 
Thus ifs > 2 s, the derivation 6 has no first integral. 0 

Now, using Corollary 3.2, we derive two consequences of the previous theorem. 

Corollary 4.2. Let n 2 3 be a prime number and let s E N, s > 3 be such that 
s > 2 2. Then the Jouanolou derivation (1.4) has no Darbouxpolynomial. 

Corollary 4.3. The conclusions of the previous Corollary are valid for a prime 
number n > 5 as soon as s > 3 andfor the prime number 3 when s > 5. 

Thus, the three-variable case needs special arguments when s = 3 or s = 4; this 
is the purpose of the next section. Remark that these arguments will be valid for 
any s 2 3. 

5. THECASEn=3ANDS=3,4 

Theorem 5.1. In the three-variable case, the derivation 6 defined in (4.1) has no 
polynomial constant, when s 2 3. 

Proof. In this three-variable case, the factorisable quadratic derivation 6 turns 
out to be a linear combination 

6 = LV(s+ l,s+ l,s+ 1) - (x+y+z)E, 

where E stands for the three-variable Euler derivation E = x& + y$ + zd,, 
and where LV is the so-called Lotka-Volterra derivation, which can be con- 
sidered as a normal form of a factorisable quadratic derivation in three vari- 
ables and depends on three parameters: 

LV(A, B, C) = x(Cy + z)& + y(Az + x)8, + z(Bx + y)&. 
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We will simply denote LV(s + 1, s + 1, s + 1) by LVS. 
A homogeneous polynomial F of degree m is then a constant of 6 if and only 

if F is a Darboux polynomial for LVS with an eigenvalue m(x + y + z). Due to 
the cyclic symmetry of the problem, without loss of generality, F can be sup- 
posed to be I’3-invariant. In this case, F factors as 

(5.1) F = (xyz)*G, 

where Q is a non-negative integer and G is a strict Darboux polynomial of LVs, 
i.e. G is no longer divisible by x, y or z. 

The eigenvalue of G as a Darboux polynomial for LVS is [m - a(s + 2)] 
(x + y + z) and its degree is equal to m - 3a; moreover, G is also Is-invariant. 

Let us recall an elementary discussion, which can be found in [8,9], about a 
strict Darboux polynomial of the Lotka-Volterra derivation. 

Let G be a strict Darboux polynomial of degree rsZ for LV(A,B,C): 

(5.2) x(Cy + z&G + y(Az + x&G + z(Bx + y)&G = (Xx + ,LLY + vz)G. 

As G is supposed to be divisible neither by x, nor by y nor by z, we can consider 
the three homogeneous non-zero two-variable polynomials of degree ~5 ob- 
tained by setting x = 0 (resp. y = 0, z = 0) in G and call them P (resp. Q, R). 

From relation (5.2) involving G, we deduce some partial differential equa- 
tions concerning these three two-variable polynomials: 

( 

(py + vz)P = yz(Ad,P + &P), 
(YZ + Xx)Q = zx(S&Q + t&Q), 
(Xx + py)R = xy(C&R + al,R). 

Using a partial fraction decomposition (we deal with homogeneous two-vari- 
able polynomials), we have no difficulty to prove that there exist six non-nega- 
tive integers pi, yt, ~2, 72, ~3 and P3 such that P is a non-zero multiple of 
yB1 zll (y _ AZ)” - PI- 71 , Q is a non-zero multiple of z”Pz(z - Bx)‘r’-Y2-a2 and R 

is a non-zero multiple of x”3yp3(x - Cy)“-N3-Pj. 
Moreover, these integers satisfy the following relations 

‘X = 133 = 724 

P = Yl = Q3C, 

= PIA, 

;, I ;: L fi, 

Q2 + 72 5 fi, 

In particular, the eigenvalue corresponding to a strict Darboux polynomial of 
LV is a linear form Xx + py + I/Z where X, p and v are non-negative integers. 

In our case, A = B = C = s + 1 and, as G is l?J-invariant, X = p = u. Thus, 
there exist non-negative integers X and p such that X = (S + l)p, 
X + p 5 deg(G) = m - 3~. 

On the other hand, equality (4.1 l), which we got near the end of the proof of 
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Theorem 4.1, becomes here 2m(s - 1) = I(s + 2), where I is the multiplicity of F 

at the Darboux point Me = (1, 1, 1). As X, _r and z do not vanish at MO, 1 is also 

the multiplicity of G, in such a way that I < deg(G) = m - 3~. 

We can now achieve the proof; if there existed a polynomial first integral F of 6, 

then the previously defined non-negative integers would satisfy the following 

relations 

( Q + 4 = 2m(s - I), 

(5.3) I 

i 

cy(s + 2) = m-X, 

5 m-3a, 

A( 1 + I/(s + 1)) < m - 3a, 

where the last inequality is nothing else but X + p I m - 3o. 

This system (5.3) of equations and inequalities has no solution. Indeed, its 

first equation would yield 

s- 1 
I=2m- 

s + 2’ 

and its first inequality would then give an upper bound for cy: 

(5.4) 
4 - s 

3a < in- 
s + 2’ 

We then recover what we know from Section 4: s 2 5 is impossible. 

From the previous upper bound (5.4) for a and the second equation of (5.3) a 

lower bound for X follows: 

(5.5) 
s - 1 

X>nz- 
3 

On the other hand, as (I: is known from X, s and m from the second equation of 

(5.3) an upper bound for X can be deduced from the second inequality of (5.3): 

(5.6) 
x I m s2 - 1 

s2 + .F + 1 . 

As M and s - 1 are nonnegative, bounds (5.5) and (5.6) for X are contradictory 

as soon as s’ - 2s - 2 > 0, which is true for s 2 3. q 

6. GENERIC NON-INTEGRABILITY OF HOMOGENEOUS POLYNOMIAL 

DERIVATIONS 

The existence of Darboux polynomials is a necessary condition for a poly- 

nomial derivation to have a first integral, which is a polynomial, a rational 

fraction, or even belongs to a Liouvillian extension of C(xr ~ . . . , xn) [7]. There- 

fore, the non-existence of Darboux polynomials is a reasonable definition of 

non-integrability (among many equally reasonable ones). 
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In his book [4], J.-P. Jouanolou proves the following result, that describes the 

fact that, for three variables, the absence of Darboux polynomials is typical 

while their existence is rare. 

Theorem 1.1 of [4] p. 158 : In the projective space X(3,02) of all com- 

plex algebraic Pfaff equations of a given degree m in three variables, 

the subset of equations without algebraic solutions is a countable in- 

tersection of non-empty Zariski open sets. It is then a dense Gh for the 

ordinary topology of the space X(3, m). 

In this last section, we give a counterpart of Jouanolou’s result in the case of 

homogeneous polynomial derivations. We will give two versions of our theo- 

rem. 

The first one, which we will call natural, deals with homogeneous polynomial 

derivations or vector fields. 

In the second version, which we will refer to as the quotient version, we take 

into account the fact that a homogeneous Darboux polynomial f of a homo- 

geneous polynomial derivation 6 of degree s in n variables is also a Darboux 

polynomial of the sum S + c#IE, where E is the n-variable Euler derivation and 

where 4 is an arbitrary homogeneous polynomial of degree s - 1. Of course, the 

eigenvalue changes whereas the fact that f is Darboux remains. Thus, instead of 

considering the finite-dimensional vector space of all homogeneous poly- 

nomial derivations of degree s in n variables, we will consider the quotient 

space of this vector space by the subspace of all qbE. We can then choose deri- 

vations with a ‘zero divergence’ as representatives of elements of the quotient 

space. 

The second point of view agrees exactly with Jouanolou’s theorem in the case 

of three variables. Indeed a Pfaff l-form can be built from the wedge product of 

an homogeneous vector field V and the Euler field E. Conversely, the exterior 

derivative of a Pfaff l-form is a closed 2-form that can be identified with a vec- 

tor field with a zero divergence in the case of three variables. In more variables, 

polynomial derivations and algebraic Pfaff equations cannot be reduced to one 

another. 

A preliminary remark has to be made in order to show the meaning of both 

versions of our theorem. 

We are interested in the finite dimensional vector space of all homogeneous 

polynomial derivations of some degree s in n variables (or, for the quotient 

version, in its quotient by the subspace generated by E ). If a non-zero homo- 

geneous polynomial derivation (with a zero divergence in the quotient version) 

has a Darboux polynomial, the same is true for a non-zero multiple of it in such 

a way that the natural spaces to consider are the projective spaces correspond- 

ing to the previous vector spaces. So, by generic non-integrability, we mean the 

following results: 

In the two previous projective spaces, the absence of Darboux poly- 

nomials is a generic property in the Baire categorical sense. 
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We give now some precise notation and state the main algebraic propositions. 
Let us fix the integers II and s, n 2 2 and s > 1. 
Let l-t,,, denote the finite-dimensional @-vector space of all homogeneous 

polynomials of degree s in n variables. Its dimension is (“‘i ~ ‘) and a natural 
basis is given by products of powers of the variables; in the sequel, coordinates 
will be taken with respect to this basis, which means that we will use the usual 
coefficients of the polynomials of ‘H,,, as coordinates. 

Let U,,, denote the vector space of all homogeneous polynomial derivations 
of degree s in n variables. An element of V,,,,V is given by its n coordinates, which 
belong to 3-1,, and the dimension of Y,,, is then .(n+z-‘). 

In order to state the quotient version of the theorem, let ~JV,,,~ denote the 
quotient space of V,,,Y by the subspace ?f,,__ 1 E of all multiples of E by homo- 
geneous polynomials of degree s - 1, whose dimension is (” z” T 2). 

A natural supplementary subspace of ‘&_ 1 E in V,,, consists of all homo- 
geneous polynomial derivations of degree s whose divergence is 0. Let us recall 
that the divergence of 6 = C V;a; is the sum div(6) = C ai( Vi). 

We will naturally identify the quotient space W,,, with the subspace of U,,, of 
all derivations whose divergence is 0. 

For any vector space V over C, P’(V) stands for the corresponding projective 
space and 7r denotes the canonical mapping from V \ (0) onto P(V). 

Proposition 6.1. Let V,,,,,, be the subset of all non-zero elements of V,,, for which 

there exists a Darboux polynomial of degree m. For every positive integer m, the 
subset r(2),.,,) of P(V,,S) is closed in the Zariski topology. 

Proof. We study the subset of all non-zero 13 in V,,, for which there exists an 
element n of 7& _ 1 such that there exists a non-zero Darboux polynomial f of 
degree m (an element of ‘If,,,) for S with the eigenvalue A, i.e. 6(f) = Af. 

The fact that V,,,,, is a closed Zariski set is the result of a two-step elimina- 

tion process: 
1. the elimination off will show that the set of all non-zero couples (6, A), for 

which there exists a non-zero Darboux polynomial f for 6 with the eigenvalue 
A, is Zariski closed, 

2. the further elimination of the eigenvalue A gives the conclusion. 
The first elimination amounts to saying that a linear system has a non-zero 

solution. The unknowns of this system are the coefficients of the unknown 
Darboux polynomial f of degree m and the equations correspond to coefficients 
of all monomials in the polynomial 6(f) - Af. Coordinates of 5 and A in their 
vector spaces, i.e. coefficients of polynomials 6(x1), . . ,6(x,) and A, appear as 
parameters with a degree 1 in the previous linear equations. 

The existence of a non-trivial solution of this linear system is then equivalent 

to the fact that many determinants are 0. 

These determinants are homogeneous polynomials in the coordinates of 6 

and A, and thus they vanish on a closed Zariski subset Z,,,,, of the projective 

space lVn.s x %_-I ). 
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As the only possible eigenvalue of the derivation 0 is 0, the first projection pi 

of the product vector space V,,, x 7-i,,, _ I defines a regular mapping from Z,,,, 

to p(V,,,) whose image is exactly 7r(Z&s,m). 

Then +%,s,m) IS a closed Zariski subset of lp(V,.,) as the image of a projec- 
tive closed set by a regular mapping. This classical result is stated as Theorem 3 
in the 5th section of the first chapter of [12]. q 

The quotient version of this proposition can be proved in the same manner. 

Proposition 6.2. Let P,,,>, be the subset of all non-zero elements of W,,, for which 

there exists a Darboux polynomial of degree m. For every positive integer m, the 
subset zr(P,,,.,) of P’(Wn,,$) is closed in the Zariski topology. 

We can now derive the announced genericity conclusions from these proposi- 
tions. 

Theorem 6.3. Let G,,, be the subset of all elements of V,~, without a Darboux 

polynomial. If the number n 2 3 of variables is a prime number and ifthe degree s 
is such that s 2 3, then G,,* is a dense Ga for the ordinary topology of V,,, 

The same is true for the subset of all elements of W,,, without a Darbouxpoly- 
nomial. 

Proof. For every integer m, the closed Zariski set Z&,,, is also closed for the 
ordinary topology. Moreover, either it is the whole space or it has an empty 
interior. 

Then, the complement &s of the union of all i9,,,,, in ff,,, is a GS for the or- 
dinary topology and, by Baire category theorem, &,,Y is either dense or empty. 

To conclude that it is dense, meaning that the absence of Darboux poly- 
nomials is generic, it then suffices to show that none of the Z&, is the whole 
space. 

Jouanolou’s argument consists in proving that a given derivation (the one we 
called Jouanolou derivation) has no Darboux polynomial of any degree. 

In our case, that is exactly what we did in Sections 3 and 4 for the announced 
values of n and s. 

All that goes for the quotient version of the theorem as well as it goes for the 
natural version of it. 0 

It is worth noting that Proposition 6.2 allows the following dichotomy result 
which is true for all n 2 3 and s >_ 2. 

Proposition 6.4. Fix n 2 3 and s L 2. Either 6& is a dense Gs for the ordinary 

topology of Vn,S or &,, is empty. 

Finally, let us note that the same genericity results also hold in the real case. 
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