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ABSTRACT. – The Lotka–Volterra system of autonomous differential equations
consists in three homogeneous polynomial equations of degree 2 in three variables.

This system, or the corresponding vector fieldV (A,B,C), depends on three non-zero
parameters and writesV (A,B,C)= Vx∂x + Vy∂y + Vz∂z where

Vx = x(Cy + z), Vy = y(Az+ x), Vz = z(Bx + y).

Similar systems of equations have been studied by Volterra in his mathematical approach
of the competition of species.

For us,V (A,B,C) is a normal form of a factorisable quadratic system and the study
of its first integrals of degree 0 is of great mathematical interest.

A first integral is a non-constant functionf which satisfies the identity

Vx
∂f

∂x
+ Vy ∂f

∂y
+ Vz ∂f

∂z
= 0.

As V (A,B,C) is homogeneous, there is a foliation whose leaves are homogeneous
surfaces in the three-dimensional space (or curves in the corresponding projective plane),
such that the trajectories of the vector field are completely contained in a leaf. A first
integral of degree 0 is then a function on the set of all leaves of the previous foliation.

In the present paper, we give all values of the triple(A,B,C) of parameters for which
V (A,B,C) has an homogeneous rational first integral of degree 0.

Our proof essentially relies on ideas of algebra and combinatorics, especially in
proving that some conditions are necessary. Elsevier, Paris

1 E-mail: Jean.Moulin-Ollagnier@polytechnique.fr.
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438 J. MOULIN OLLAGNIER

RÉSUMÉ. – Le système d’équations différentielles autonomes de Lotka–Volterra se
compose de trois equations polynomiales homogènes de degré 2 et il dépend de trois
paramètres non-nuls. On noteV (A,B,C) le champ de vecteurs correspondant dont les
coordonnées sont

Vx = x(Cy + z), Vy = y(Az+ x), Vz = z(Bx + y).

Dans son étude mathématique de la compétition des espèces, Volterra a rencontré et
étudié de semblables systèmes d’équations.

Pour nous,V (A,B,C) est une forme normale de système quadratique factorisable et
il est intéressant d’étudier ses intégrales premières de degré 0.

On appelle intégrale première d’un champ de vecteursV une fonction non constante
qui vérifie l’identité

Vx
∂f

∂x
+ Vy ∂f

∂y
+ Vz ∂f

∂z
= 0.

Comme le champV (A,B,C) est homogène, il existe un feuilletage dont les feuilles
sont des surfaces homogènes dans l’espace à trois dimensions (ou des courbes dans le
plan projectif) tel que chaque trajectoire du champ soit entièrement contenue dans une
feuille. Une intégrale première de degré 0 est alors une fonction sur l’espace des feuilles.

Dans ce travail, nous caractérisons toutes les valeurs possibles du triplet(A,B,C) de
paramètres pour lesquelsV (A,B,C) admet une intégrale première rationnelle homogène
de degré 0.

Notre démonstration s’appuie sur des arguments de nature algébrique et combinatoire,
particulièrement pour ce qui est d’établir des conditions nécessaires sur les paramètres.
 Elsevier, Paris

1. Introduction

The search of first integrals is a classical tool in the classification of all
trajectories of a dynamical system. Let us simply recall the role of energy
in Hamiltonian systems.

We are interested here in some systems consisting in three ordinary
autonomous differential equations in three variables:ẋ = Vx, ẏ =
Vy, ż= Vz.

A first integral of this system of equations (or of the corresponding
vector fieldV ) is a non-constant functionf that satisfies the partial
derivative equation

Vx
∂f

∂x
+ Vy ∂f

∂y
+ Vz ∂f

∂z
= 0.
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That means thatf is constant along all trajectories of the one-para-
meter local semi-group generated by the vector fieldV .

The local existence of first integrals in a neighborhood of a regular
point is a consequence of some classical theorems of differential calculus.

The interesting point for us is the search ofglobal solutions; this
problem has an algebraic nature if the coordinate functionsVx , Vy andVz
are polynomials in the space variablesx, y andz. Related to this problem
is the study of singular integrable differential forms, which is of great
interest [2–5].

A key point is the specification of the class in which we look for
first integrals. In the algebraic case, we follow the classical way of
“Integration of differential equations in finite terms” [17–19]. In this
frame, it seems reasonable to consider the class of all Liouvillian
elements over the differential fieldC(x, y, z) of all rational fractions in
three variables on the constant fieldC of complex numbers. We follow
the definition of Liouvillian elements given by Michæl Singer [20].

Despite some specific methods [21], the search of Liouvillian first
integrals of polynomial vector fields relies mainly on the study of
particular solutions whose use dates back to a memoir by Darboux [6]
are we are now used to calling themDarboux polynomialsof these vector
fields [12]. With this vocabulary, polynomial first integrals are Darboux
polynomials with theeigenvalue0.

So far as we know, Henri Poincaré [14–16] was the first to notice
the difficulty of a decision procedure for the existence of Darboux
polynomials.

No procedure is known up to now; Jean-Pierre Jouanolou gives a
theorem about this subject but his result is not effective [8].

The Lotka–Volterra vector fieldV (A,B,C) [7], that we study here,
can be considered as a normal form of a factorisable vector field of degree
2 in three variables, at least in what concerns the search of first integrals
of degree 0, i.e., first integrals ofV (A,B,C) that are also first integrals
of the vector fieldE = x∂x + y∂y + z∂z, that we call the Euler field for
evident reasons.

Some necessary conditions may be given to allow the existence of a
Liouvillian first integral of degree 0 for factorisable vector fields and a
categorical result can be obtained: non-integrability is generic [10].

Many sufficientconditions can be given that ensure the existence of
a Liouvillian first integral of degree 0: it suffices to exhibit a fourth
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Darboux polynomial, i.e., a Darboux polynomial with is not divisible by
any of the variablesx, y andz.

A systematic search of such Darboux polynomials of a given degree
can be carried out with the help a computer algebra system [1]. Looking
carefully to the lists of parameters produced by such a search shows that
the situation remains very intricate.

We turned therefore our interest to the determination of all values of the
parameters for whichV (A,B,C) has a first integral of degree 0, which is
not only Liouvillian, but is a rational fraction. This means that the space
of leaves of the foliation generated by the field together with the Euler
field, can be well described as an algebraic variety.

In other words, one can consider the 1-formω0 = iV iEΩ , whereΩ
is the 3-formdx dy dz. This 1-form is projective, i.e.,iEω0 = 0, and
satisfies the Pfaff conditionω0 ∧ dω0 = 0, which allows the search of
an integrating factorφ, according to a theorem of Frobenius, andφ has
to be a rational fraction such thatφω0 has a rational primitive.

This problem, that can be calledrational integration, turned out to be
amenable and its solution is the subject of the present work. In a previous
article [13], we were able to determine all cases in whichV (A,B,C) has
a polynomial first integral. Here too, a combinatorial approach of some
systems of linear equations is a key tool to deduce necessary conditions
on the parameters.

The present paper is organized as follows. In Section 2, we described
useful tools. Some of them are of general interest in the study of
the integrability of polynomial vector fields: Darboux curves, Levelt’s
method, and so on. Others are specific toV (A,B,C): inspection of
the linear algebra problem associated to the Darboux property of a
polynomial. In Section 3, we prove that some necessary conditions have
to be fulfilled by the triple(A,B,C) in order to allow a rational first
integral of degree 0 forV (A,B,C). This analysis leads to a classification
of candidate triples. In Section 4, we show how to perform the rational
integration in all cases of this classification.

So, this paper essentially consists in the proof of the following
theorem.

THEOREM 1. –The Lotka–Volterra vector fieldV (A,B,C) has a
rational first integral of degree0 if and only if all three parametersA, B
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andC are rational numbers and moreover, the triple(A,B,C) belongs,
up to a natural transformation, to one of the following sets:
• P1 = {(A,B,C),ABC + 1= 0},
• P2 = {(A,B,C),C + 1/A=A+ 1/B = B + 1/C =−1},
• P3, the set of all triples such thatB = 1 and−1/A−C is a positive

integer while−C and−1/A are not both positive integers,
• P4, the set of all triples such thatB = 2, C + 1/A=−1 and either
A− 1 or −1/2−A is a positive integer,
• the isolated tripleP5 = {(−7/3,3,−4/7)},
• the isolated tripleP6 = {(−3/2,2,−4/3)}.
Our redaction will be essentially, but not completely, self-contained.

In particular, the reader is asked to refer to [11] for details about Levelt’s
method.

2. General and specific tools

2.1. Some vocabulary of differential algebra

Given a fieldk, ak-derivation of an extension fieldK of k is ak-linear
map δ from K in itself that satisfy Leibniz’s rule for the derivation of
a product.K is then called adifferential field. The kernel ofδ is then a
subfield ofK and an extension ofk. It is known as thefield of constants
of the derivation.

WhenK is the fieldk(x, y, z) of rational fractions in three indetermi-
nates, the usual partial derivatives∂x , ∂y and∂z are derivations and they
commute with one another. Their common field of constants is exactly
k. In what follows,k is some finite extension ofQ by parameters and
can be thought of as being a subfield of the fieldC of complex numbers.
A polynomial vector fieldV = Vx∂x +Vy∂y +Vz∂z, whereVx , Vy andVz
are homogeneous polynomials of the same degree ink[x, y, z], defines
a k-derivationδV of K . WhenL is an extension ofk(x, y, z) such that
∂x , ∂y and∂z have been extended as commutingk-derivations ofL, δV is
extended toL by the fact.

In particular we will consider the special vector fieldE = x∂x +
y∂y + z∂z and call it the Euler field. Indeed, an elementf of k(x, y, z)
is homogeneous of degreem if and only if δE(f ) = mf , according to
Euler’s relation. In an differential extension fieldL, this identity may be
viewed as a definition of homogeneity.
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We will also use freely in the frame of differential algebra the ideas of
differential calculus such as exterior derivatives orn-forms.

A 1-form is an elementωx dx + ωy dy + ωz dz in the 3-dimensional
vector spaceK3 expressed in the “canonical” base{dx, dy, dz}. The
exterior derivative of an elementf is the 1-form∂x(f ) dx + ∂y(f ) dy +
∂z(f ) dz.

Given a polynomial vector fieldV , we callhomogeneous first integral
of degree0 an elementf of some differential extension fieldL of K
that satisfiesδV (f ) = δE(f ) = 0 (f is then a constant for these two
derivations) without being a constant as we reserve the wordconstantfor
elementsc such thatdc = 0 (meaning thatδx(c)= δy(c)= δz(c)= 0).

2.2. Darboux polynomials

Consider a vector fieldV = Vx∂x + Vy∂y + Vz∂z, whereVx , Vy andVz
are homogeneous polynomials in the space variablesx, y andz and have
the same degreem .

A polynomialf is said to be aDarboux polynomialof V if there exists
some polynomialΛ such that

Vx
∂f

∂x
+ Vy ∂f

∂y
+ Vz ∂f

∂z
=Λf,

whereΛ is the correspondingeigenvalue.
As V is homogeneous, the consideration of the homogeneous compo-

nent of highest degree of the above identity shows thatΛ has to be an
homogeneous polynomial of degreem− 1.

Moreover, the homogeneous componentf + of highest degree of a
Darboux polynomialf is a Darboux polynomial. It is therefore sufficient
to study homogeneous Darboux polynomials.

Suppose now that some homogeneous Darboux polynomialf for a
given homogeneous polynomial vector fieldV and an eigenvalueΛ
factors as the productf = gh of two relatively prime homogeneous
polynomials.

As a polynomial ring is a unique factorization domain, Gauß’s lemma
shows that the factorsg andh have to be Darboux polynomials forV
with some eigenvaluesΛ1 andΛ2 such thatΛ = Λ1 + Λ2. Thus, the
determination of all Darboux polynomials of a given polynomial vector
field V amounts to finding all irreducible Darboux polynomials forV .
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According to Euler’s identity, homogeneous polynomials are Darboux
polynomials for the Euler field; with respect toE, the eigenvalue of a
homogeneous polynomial is its degree.

2.3. Levelt’s method around Darboux points

As we have previously seen, a homogeneous first integral of degree 0
of some homogeneous polynomial vector fieldV belongs to the common
kernel of V and E, i.e., its derivative is proportional to the 1-form
ω0 = iV iEΩ , whereΩ is the 3-formdx dy dz and we are led to find
an integrating factor of the Pfaff formω0.

In this framework, the lines (or points of the projective plane) where
ω0 vanishes are of special interest and we call themDarboux points.

When the degree ofV is 2, there are generically seven Darboux points;
in the special case ofV (A,B,C), these points can be described more
precisely.

Three of them correspond to the axes and we can choose homogeneous
coordinates such thatM1 = [1,0,0], M2 = [0,1,0], M3 = [0,0,1],
three others lie on the “sides” and can be parameterized asM4 =
[0,A,1], M5 = [1,0,B], M6 = [C,1,0], and a seventh one has (in
general) all its coordinates different from 0:M7 = [AC − A+ 1,BA−
B + 1,CB −C + 1].

In his book [8], Jean-Pierre Jouanolou studies local properties of Dar-
boux polynomials around Darboux points. This allows him to prove the
generic absence of Darboux polynomials. A more elementary approach
than Jouanolou’s one, due to Levelt, is also very powerful. We studied
Levelt’s method in details and refer the reader to our paper [11], espe-
cially to its Section 2.4 entitled “local analysis”, for a complete exposi-
tion.

To be short, when there are three variables and the degree ofV is 2, a
linear change of variables can be found such that the Darboux pointM

under consideration has new coordinatest = 1, u = 0, v = 0 while the
Darboux property of a polynomialg of degreem writes:

(
ρut2+ tα2(u, v)+ α3(u, v)

)
gu + (σvt2+ tβ2(u, v)+ β3(u, v)

)
gv

= (χt2+ tγ1(u, v)+ γ2(u, v)
)
g,
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whereρ andσ are the eigenvalues of some 2× 2 scalar matrix, where
χ is a constant and whereαi, βi, γi are homogeneous two-variable
polynomials of degreei (in u andv).

Then g can be ordered as a polynomialg = ∑ tm−igi(u, v) in the
variablet whose coefficientsgi(u, v) are homogeneous polynomials in
u andv.

The lowest possible degreeµ of such a coefficient is the multiplicity
of the “curve” g = 0 atM . The corresponding coefficientgµ satisfies
identityρu∂gµ/∂u+ σv∂gµ/∂v = χgµ and there exist two non-negative
integersj andk, whose sum isµ, such thatjρ + kσ = χ .

Let us remark that numbersρ,σ,χ may be freely multiplied by the
same factor without any trouble, in such a way that we can make a further
choice in the “local coordinates” to ensureρ + σ = 1 for instance.

In the case ofV (A,B,C), we will only consider Levelt’s approach
around the pointM7 to deduce a necessary condition of Diophantine kind
for the vector field to have a rational first integral of degree 0.

2.4. Darboux polynomials of the Lotka–Volterra vector field

By the very definition of a factorisable vector field, likeV (A,B,C),
the space variablesx, y andz are Darboux polynomials.

Every homogeneous non-zero polynomialf writes in a unique way

f = xαyβzγ g,

whereg is not divisible byx, y or z.
If f is a Darboux polynomial, so isg. Such polynomials asg will play

an important role in our combinatorial analysis. We will call themstrict
Darboux polynomials.

Let g be a strict Darboux polynomial of degreem for V (A,B,C),
which writes

x(Cy + z)∂xg+ y(Az+ x)∂yg + z(Bx + y)∂zg = (λx +µy + νz)g.

As g is supposed not to be divisible byx, y or z, we can consider
the three homogeneous non-zero two-variable polynomials of degreem

obtained by settingx = 0, y = 0 andz= 0 in g and call themP , Q and
R, respectively.
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From the previous relation involvingg, we deduce some partial
differential equations concerning these two-variable polynomials

(µy + νz)P = yz(A∂yP + ∂zP ),
(νz+ λx)Q = zx(B∂zQ+ ∂xQ),
(λx +µy)R = xy(C∂xR+ ∂yR).

It is not very difficult to prove that there exists six non-negative integers
β1, γ1, α2, γ2, α3 andβ3 such thatP is a non-zero multiple ofyβ1zγ1(y−
Az)m−β1−γ1,Q is a non-zero multiple ofzγ2xα2(z−Bx)m−γ2−α2 andR is
a non-zero multiple ofxα3yβ3(x −Cy)m−α3−β3.

Moreover, these numbers satisfy the following equations and inequal-
ities 

λ = β3 = γ2B,

µ = γ1 = α3C,

ν = α2 = β1A,

β1 + γ1 6 m,

α2 + γ2 6 m,

α3 + β3 6 m.

In particular, the eigenvalue corresponding to a strict Darboux polyno-
mial of V (A,B,C) is a linear formΛ= λx+µy + νz whereλ, µ andν
are non-negative integers.

2.5. Factorisable vector fields

In the present subsection, we try to explain to what extend the Lotka–
Volterra vector fieldV (A,B,C) may be considered as a normal form of
a factorisable vector field.

A quadratic vector fieldV = Vx∂x + Vy∂y + Vz∂z, whereVx, Vy and
Vz are homogeneous quadratic polynomials inx, y andz, is said to be
factorisableif x dividesVx , y dividesVy andz dividesVz. In other words,
coordinates are Darboux polynomials.
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So far as we are interested in integration, a linear change of coordi-
nates preserves qualitative properties of the vector field. A factorisable
quadratic vector field is then a vector field with three linearly indepen-
dent first degree Darboux polynomials. Taking these polynomials as co-
ordinates leads to the factored form:Vx = xφx,Vy = yφy,Vz = zφz.

As we look for homogeneous first integrals of degree 0,V may be
freely translated by some multiple of the Euler fieldE. We then get a first
normal form of the factorisable vector fields that we study, by removing
“diagonal elements”:

Vx = x(Cy +C ′z), Vy = y(Az+A′x), Vz = z(Bx +B ′y).

Thereafter, it is possible to perform a diagonal change of variablesx′ =
ax, y′ = by, z′ = cz or a permutation of the variables.

If A,A′,B,B ′,C,C ′ are all different from 0, such a diagonal change
of variables can be done to put the vector field in Lotka–Volterra normal
form, whereA′ = B ′ = C ′ = 1 andABC 6= 0. In this case, the field is
conjugate withV (A,B,C), which justifies our claim thatV (A,B,C) is
a normal form.

The only exceptions occur when there are some zeroes among
A,A′,B,B ′,C,C ′.

In all these exceptional cases, either the vector fieldV is not
irreducible, and we have to study a linear or even a constant vector
field [9] instead of a quadratic one, orV is linearly equivalent to
x∂y + (Bx + y)∂z with B 6= 0 or to someV (A,B,C) with ABC = 0.

We leave the study of these exceptional cases to the reader: it is
then possible to prove that there is no rational first integral of degree 0.
Slight generalizations of the arguments of Section 2.4 together with the
consideration of a system equations similar to the system (2) in the proof
of Lemma 3 will be the tools to achieve this task.

2.6. Natural symmetries of the problem

As we have just noticed, some linear changes of variables preserve the
factorisable form of the given vector field. Adding thereafter a multiple
of the Euler field and making a conjugacy by a diagonal linear change
of variables gives a new vector field, which is in Lotka–Volterra normal
form for some triple(A′,B ′,C ′) of parameters.
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As we have previously seen, permutations of the coordinates are
such transformations. Applying a circular permutation yields a circular
permutation of the parameters, in which(A,B,C) becomes(B,C,A)
or (C,A,B) while exchanging two coordinates changes(A,B,C) for
(1/B,1/A,1/C),(1/C,1/B,1/A) or (1/A,1/C,1/B).

We will refer to such transformations as “natural transformations” of
the triples of parameters. When(A′,B ′,C ′) is the image of(A,B,C) by
a natural transformation, it is clear that the vector fieldV (A,B,C) has a
rational (Liouvillian) first integral of degree 0 if and only ifV (A′,B ′,C ′)
has such a first integral.

In some cases, the factorisable form can also be preserved by linear
changes of variables, different from diagonal and permutations. In
particular, when there exists a fourth Darboux polynomial of degree 1,
it is possible to take it as a coordinate, together with two amongx, y and
z and thus to change variables. This happens whenABC + 1= 0 and
also when one of the parameters, for instanceB, is equal to 1.

In this last case,y − Az is a Darboux polynomial with eigenvaluex.
It is then possible to choose new variables{X = x,Y = y,Z = y −Az}
or {X = x,Y = y − Az,Z = z} to get two natural transformations; the
first one transforms(A,1,C) in (A,1,1−C− 1/A) and the second one
transforms it in(A/(A− 1−AC),1,C).
2.7. Darboux polynomials and linear algebra

Consider some strict Darboux polynomialf for V (A,B,C) of degree
m and eigenvalue

Λ= λx +µy + νz.
Identity

Vxfx + Vyfy + Vzfz −Λf = 0

appears as a homogeneous linear system ofN equations in then
coefficients of a three-variable homogeneous polynomial of degreem as
unknowns. This system is thus supposed to have a non-zero solution.

Unknowns are parameterized by triples(i, j, k) of non-negative inte-
gers summing tom and there aren= (m+2

2

)
of them. Equations are para-

meterized by triples(i, j, k) of non-negative integers summing tom+ 1
and there areN = (m+3

2

)
of them.
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The corresponding matrix is very sparse; there are at most 3 non-zero
coefficients per row or per column and they are given by affine forms of
the indices: 

m(i,j,k),(i+1,j,k) = j +Bk − λ,
m(i,j,k),(i,j+1,k) = Ci + k−µ,
m(i,j,k),(i,j,k+1) = i +Aj − ν.

(1)

As this over-determined system is supposed to have a non-trivial
solution, determinants of maximal order are equal to 0 but most of them
are not easy to compute.

On the contrary, the extra assumption thatf is a strict Darboux
polynomial (or only thatx does not dividef ) means that the linear square
subsystem whose unknowns have their indexi equal to 0 or 1 and whose
equations have their indexi equal also to 0 or 1 (except(0,0,m+1) and
(0,m+ 1,0)) is not Cramer and that its determinant, that we callX, is
equal to 0.

It turns out that combinatorial computations yield to a factorization
of determinantX. Then saying thatX = 0 becomes a useful necessary
condition on parameters(A,B,C) of the vector field and parameters
λ,µ, ν,m of the polynomial.

The same is true for analogous determinantsY and Z defined in
a natural way by a “circular permutation”. We give this interesting
factorization in the following lemma.

LEMMA 1. – Up to factors that cannot vanish, determinantsX, Y and
Z factor as follows:

X≡ [1/A− β1]β1 [C − γ1]γ1 [1/A+C + 1]m−β1−γ1−1X4,

Y ≡ [1/B − γ2]γ2 [A− α2]α2 [1/B +A+ 1]m−γ2−α2−1Y4,

Z≡ [1/C − α3]α3 [B − β3]β3 [1/C +B + 1]m−α3−β3−1Z4,

with X4 = {m(1+ABC)− λ(1+AC)−µ(1−B)+ νC(1−B)} and
correspondingY4 andZ4.
m is the degree of the supposed strict Darboux polynomial andα2 =

ν,α3, β1, β3 = λ, γ1 = µ,γ2 are the previously introduced non-negative
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integers. The notation[t]k for the rising factorial power will be explained
in the proof.

Proof. –With a suitable choice in the order of equations and un-
knowns, the square matrixM of our linear system, whose order is
2m+ 1, has the following form

M=
O A
C B

 ,
whereO is the zero square matrix of orderm, A is a rectangular matrix
with m lines andm+ 1 columns,C is a rectangular matrix withm+ 1
lines andm columns andB is a diagonal square matrix of orderm+ 1.

These last three matrices look like what follows and they have a lot of
zeroes.

A=



m−µ A− ν 0 · · · · · · 0

0 m− 1−µ 2A− ν 0 · · · 0

· · · · · · · · · · · · · · · · · ·
0 · · · 0 2−µ (m− 1)A− ν 0

0 · · · · · · 0 1−µ mA− ν


,

C =



1− ν 0 · · · · · · 0

C +m− 1−µ 1+A− ν 0 · · · 0

· · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · ·
0 · · · C + 1−µ 1+ (m− 2)A− ν 0

0 · · · · · · C −µ 1+ (m− 1)A− ν


,
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B =



Bm− λ 0 · · · · · · 0

0 1+B(m− 1)− λ 0 · · · 0

· · · · · · · · · · · · · · ·
0 · · · 0 (m− 1)+B − λ 0

0 · · · · · · 0 m− λ


.

The development of the determinantX of M has onlym + 1 non-
zero terms, each of them being of course a product of 2m+ 1 factors. As
all corresponding permutations have the same signature, this leads to the
following expression

X=
m∑
i=0

(i + (m− i)B − λ)
i−1∏
j=0

(m− j −µ)(1+ jA− ν)

×
m∏

j=i+1

(jA− ν)(C +m− j −µ).

The reason is the following: in every non-zero term ofX, some of
the diagonal elements ofB appear as factors. Trying to avoid diagonal
elements ofB yields null terms ofDm. In a similar way, if we take
two diagonal elements ofB, the corresponding cofactor is a 2m − 1
determinant, which is easily transformed by a permutation in a triangular
one with a zero element in its diagonal.

The determinantX is thus the sum of products of all diagonal elements
of B by their cofactors; these cofactors are triangular determinants of
order 2m and thus easy to compute.

Using the notation[t]k for the rising factorial power
∏k−1
i=0(t + i) and

expressingλ, µ andν in terms of other parameters lead to

X=
m∑
i=0

(i + (m− i)B − β3)

i−1∏
j=0

(m− j − γ1)(1+ jA− β1A)

×
m∏

j=i+1

(jA− β1A)(C +m− j − α3C),
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X=Am
m∑
i=0

(i + (m− i)B − β3)

i−1∏
j=0

(m− j − γ1)(1/A+ j − β1)

×
m∏

j=i+1

(j − β1)(C +m− j − α3C),

X=Am
m∑
i=0

(i + (m− i)B − β3)[m− i + 1− γ1]i[1/A− β1]i

×[i + 1− β1]m−i [C − γ1]m−i .
The terms of the sum betweenβ1 andm − γ1 are the only non-zero

ones since[i + 1− β1]m−i = 0 if i < β1 and [m − i + 1− γ1]i = 0 if
i > m− γ1, whence the expression

X=Am
m−γ1∑
i=β1

(i + (m− i)B − β3)[m− i + 1− γ1]i[1/A− β1]i

×[i + 1− β1]m−i[C − γ1]m−i .
Whenm= β1+ γ1, there is only one term in this sum, and some non-

zero factors may be ignored to get

X≡Am(β1+ γ1B − β3)[1]β1[1/A− β1]β1[1]γ1[C − γ1]γ1,

X≡ (β1+ γ1B − β3)[1/A− β1]β1[C − γ1]γ1.

Whenn=m− β1− γ1− 1> 0, there are many terms in the sum, and
the first factor,(i+ (m− i)B−β3) can be written as a linear combination
φ(i − β1)+ψ(m− γ1− i), whereφ andψ are constants with respect to
the indexi.

These constants are determined by the linear system

φ −ψ = 1−B,
−β1φ + (m− γ1)ψ =mB − λ,

which can be solved in

(m− β1− γ1)φ=mB − β3+ (m− γ1)(1−B),
(m− β1− γ1)ψ =mB − β3+ β1(1−B).

DeterminantX is then equal toAm (m−β1)!(m−γ1)!
n! (φX1+ψX2), where
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X1= [1/A− β1]β1+1[C − γ1]γ1

m−γ1∑
i=β1+1

n!
(i − β1− 1)!(m− γ1− i)!

× [1/A+ 1]i−β1−1[C]m−γ1−i ,

X2= [1/A− β1]β1[C − γ1]γ1+1
m−γ1−1∑
i=β1

n!
(i − β1)!(m− γ1− i − 1)!

× [1/A]i−β1[C + 1]m−γ1−i+1.

Forgetting some factors, that cannot vanish, we get

X ≡
[

1

A
− β1

]β̄1

[C − γ1]γ1{T0+ T1},

where

T0=
[

1

A
+C

]m−β1−γ1

(mB − β3+ β1(1−B))
and

T1= (m− β1− γ1)

(
1−B
A

)[
1

A
+C + 1

]m−β1−γ1−1

.

Finally, X may be written as announced, which includes the special
casem= β1+γ1, the rising factorial power[1/A+C+1]−1 correspond-
ing in this case to some non-zero factor.

Similar expressions forY andZ can be obtained in the same way.2

3. Necessary conditions

In the present section, we present necessary conditions to be fulfilled
by the triple(A,B,C) of non-zero parameters in order to make possible
the existence of a rational first integral of degree 0 forV (A,B,C).

3.1. Rationality

Our first lemma gives strong limitations to such triples.

LEMMA 2. – If V (A,B,C) has a rational first integral of degree0,
then the three parametersA, B andC are rational numbers.
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Proof. –LetN/D be such a first integral, whereN andD are relatively
prime homogeneous polynomials of the same degreem. N andD are
Darboux polynomials with the same eigenvalueΛ= λx + µy + νz and
so is any linear combinationαN + βQ of them.

It is then possible to find a linear combination which is a strict Darboux
polynomial and thus the coefficientsλ, µ andν of the eigenvalueΛ have
to be non-negative integers.

The corresponding system (1) of linear equations has then a kernel
whose dimension is at least 2 and all determinants of square sub-matrices
of sizen or n− 1 have to vanish.

First consider the determinantX obtained by taking alln unknowns
(i, j, k), i + j + k = m, and the correspondingn equations(i +
1, j, k), i + j + k = m. Due to the sparse structure of this subsystem,
there is only one non-zero term in the development ofX which writes

X = ∏
(i,j,k)

(j +Bk− λ).

One of the factors(j + Bk − λ) has to be 0. Call(i1, j1, k1) the
corresponding index.

Now consider another sparse determinant, of sizen − 1, the one you
get by erasing fromX the unknown(i1, j1, k1) and the corresponding
equation(i1 + 1, j1, k1). There is only one term in the development of
this new determinant, which factors in a very similar way, and there is
another index(i2, j2, k2) for which the factor(j + Bk − λ) vanishes, so
that

j1+Bk1− λ= j2+Bk2− λ = 0,

which proves thatB is a rational number.
The same is true for parametersA andC by a circular permutation. 2

3.2. Arithmetic conditions

A second remark will help us to use the previously well-factored
determinants (Lemma 1) in a more efficient way when a rational first
integral exists.

LEMMA 3. – If V (A,B,C) has a rational first integral of degree0,
then eitherABC + 1= 0 or the three parametersA, B andC satisfy the
following three conditions:
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• one of the three numbers1/A, C or −C− 1/A is a positive integer,
• one of the three numbers1/B, A or −A− 1/B is a positive integer,
• one of the three numbers1/C, B or −B−1/C is a positive integer.

Proof. –As shown in Section 2.7, the existence of a Darboux polyno-
mial of degreem and eigenvalueλx +µy + νz which is not divisible by
x implies that the corresponding determinantX vanishes.

This determinant can be written as the product of four factors, among
which the fourth is the only one depending onλ,µ, ν,m in a linear way:

X4(m,λ,µ, ν)

=m(1+ABC)− λ(1+AC)−µ(1−B)+ νC(1−B).
When there exists a rational first integralN/D of degree 0, the

1-formN dD − DdN is a multipleφω0 of the Pfaff formω0 by some
homogeneous non-zero polynomialφ whose degree is 2m − 4. This
polynomialφ is a Darboux polynomial for the vector fieldV with the
eigenvalueΛ′ = 2Λ− div(V ), div(V ) being the divergence of the vector
field V .

Factoring out powers ofx, y andz, φ writesxαyβzγψ , whereψ is a
strict Darboux polynomial with eigenvalueΛ′′ = λ′′x + µ′′y + ν′′z and
degreem′′, whereλ′′, µ′′, ν′′, α, β andγ are non-negative integers.

All these numbers are then related by the following system of
equations: 

m′′ + α+ β + γ + 3 = 2m,

λ′′ + β + 1+ (γ + 1)B = 2λ,

µ′′ + γ + 1+ (α + 1)C = 2µ,

ν′′ + α + 1+ (β + 1)A = 2ν.

(2)

The coefficients ofA, B andC in (2) are non-zero integers and the
subsystem consisting in the last three equations is a Cramer one with
respect to these three unknowns; we then get another proof of the fact
thatA, B andC are rational numbers.

Applying toψ what we have applied to a linear combination ofN and
D, we would obtainX(m,λ,µ, ν)=X(m′′, λ′′,µ′′, ν′′)= 0.

It is impossible to getX4(m,λ,µ, ν)= 0 andX4(m
′′, λ′′,µ′′, ν′′)= 0

unlessABC + 1= 0.
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Indeed, these numbers are related by the previous system (2) of
equations and the difference 2X4(m,λ,µ, ν)−X4(m

′′, λ′′,µ′′, ν′′)writes
(α+ 1)(1+ABC).

Thus, eitherABC + 1 = 0 or the product of the first three factors
of X(m,λ,µ, ν) or of X(m′′, λ′′,µ′′, ν′′) has to be 0. Our assertion on
numbersA, C and−C − 1/A is then an easy consequence of one of
these factors being equal to 0.

The same is true by a circular permutation.2

3.3. Levelt’s method aroundM7

Let us denote by∆ the discriminant of the second degree equation
satisfied by local eigenvaluesρ and σ at the Darboux pointM7 of
V (A,B,C) whereABC + 1 6= 0 and the convention thatρ + σ = 1.
This number writes as follows:

∆=∆(A,B,C)= 1+ 4
ω(p+ 1)(q + 1)(r + 1)

(ω+ 1)2
,

wherep =−A− 1/B, q =−B − 1/C, r =−C − 1/A andω=ABC.
The following necessary condition will be very useful.

LEMMA 4. – If V (A,B,C), whereABC + 1 6= 0, has a rational first
integral of degree0, then∆(A,B,C) is the square of a rational number.

Proof. –Let us use Levelt’s method around the pointM7. If there exists
a rational first integralF =N/D of degree 0, then the non-proportional
polynomialsN andD are Darboux polynomials with the same degree and
the same eigenvalue. The corresponding linear algebra problem has then
a kernel whose dimension is at least 2. Translating this property in the
“local” coordinates, we get the fact that eigenvaluesρ andσ atM7 have
to satisfy two different relationsjρ + kσ = χ andj ′ρ + k′σ = χ , which
implies thatρ andσ are rationally dependent. Due to the normalization
ρ + σ = 1, they are rational numbers and their discriminant∆ is the
square of a rational number.2

3.4. Finding candidates

Using the arguments of the previous lemmas, we can now discuss
the various cases where a rational first integral of degree 0 can occur.
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The necessary condition we give in the next proposition appears as a
disjunction of possibilities.

Later on, an additional restriction (Lemma 6) will be given which has
been inspired by the actual possibility to find a first integral (next section:
Sufficient conditions).

PROPOSITION 1. – If V (A,B,C) has a rational first integral of
degree0, then, up to a natural transformation, the triple(A,B,C) of
rational parameters belongs to one of the following sets:
• P1= {(A,B,C),ABC + 1= 0},
• P2= {(A,B,C),C + 1/A=A+ 1/B = B + 1/C =−1},
• P3, the set of all triples such thatB = 1 and r = −1/A − C is a

positive integer,
• P4, the set of all triples such thatB = 2, C + 1/A=−1 and either
A− 1 or −1/2−A is a positive integer,
• the isolated tripleP5= {(−7/3,3,−4/7)},
• the isolated tripleP6= {(−3/2,2,−4/3)}.
Proof. –ThatABC + 1= 0 cannot be excluded and this gives the first

setP1 of parameters.
Otherwise, ifABC+1 6= 0, the triple(A,B,C) of rational parameters

satisfies the following conditions of Lemma 3 which can then be written
• 1/A orC or r is a positive integer,
• 1/B orA or p is a positive integer,
• 1/C or B or q is a positive integer,

wherep =−A− 1/B, q =−B − 1/C, r =−C − 1/A.
Discussing how this conjunction of disjunctions can be fulfilled gives

a classification of the remaining possible triples (setsP2 to P6). We will
use natural transformations to reduce possibilities and Lemma 4 to derive
subsequent reductions.

Among numbersp, q and r , some have to be positive integers; we
take into account how many of them are positive integers, and, due to
symmetries coming from natural transformations, we can choose which
ones.

The first choice is that none ofp, q and r is a positive integer.
Then either one amongA, B, and C is equal to 1 or all three are
positive integers or inverse of positive integers. These two last options are
equivalent by a natural transformation and they are to be avoided since
∆(A,B,C) is strictly negative forA> 2,B > 2,C > 2 and thus cannot
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be the square a a rational number. So, up to a natural transformation,
this first choice leads toB = 1 and 1/A ∈ N?, which can be transformed
in B = 1, r = −1/A − C ∈ N according to the discussion developed in
Section 2.6. This is the setP3 of parameters.

The second choice is that one amongp, q andr is a positive integer
and we can chooser to be this one. ThenB has to be a positive integer
or the inverse of a positive integer. We chooseB to be a positive integer.
Then, eitherB = 1 orA is a positive integer. IfB = 1, the triple(A,1,C),
wherer =−C − 1/A is a positive integer, belongs toP3. If A = 1, the
triple (1,B,−r − 1) can be transformed to belong toP3.

Thus, within our second choice, it remains to consider triples(A,B,C)

of rational numbers whereB ∈ N, B > 2,A ∈ N, A> 2 andr =−C −
1/A is a positive integer.∆(A,B,−r − 1/A) is strictly negative and
thus cannot be the square a a rational number except forA > 2,B =
2,C =−1− 1/A. This constitutes one of the possibilities in the setP4

of parameters.
The third choice is that there are two positive integers amongp, q and

r and we can choosep andr to be these ones. Then eitherB or 1/C is a
positive integer. We chooseB to be a positive integer.

If B = 1, the triple(−p−1,1,−r +1/(p+1)) can be transformed to
belong toP3.

Thus, within our third choice, it remains to consider triples(A,B,C)
whereB ∈ N, B > 2 andp andr are positive integers.
∆(−p− 1/B,B,−r +B/(pB + 1)) is then strictly negative and thus

cannot be the square of a rational number except
• for B = 2,C = −1− 1/A,A = −1/2− p,p ∈ N?, which consti-

tutes the other possibility in the setP4 of parameters,
• and for two other exceptional triples(−7/3,3,−4/7) and(−3/2,2,
−4/3) (subsetsP5 andP6).

The last and fourth choice consists in the assumption thatp, q andr
are positive integers.

In this case,C writes as a rational function ofA, B as a rational
function ofC andA as rational function ofB.

Combining these relations gives an equation of degree two to be
satisfied by the rational numberA; its discriminant is equal to(pqr −
p− q − r + 2)(pqr − p− q − r − 2).
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Thus, the integerD = (pqr − p − q − r)2 − 4 has to be the square
of an integer. ButD + 4 is already a square and the only possibility is
D = 0.

Thus, we have to solve the equation(pqr−p−q−r)2 = 4 in positive
integers.

Within a permutation of(p, q, r), corresponding to a natural transfor-
mation of(A,B,C), the only possibilities are(1,1, r), (1,2,5), (1,3,3)
and(2,2,2). The first one can be solved in(A,B,C) if and only if r = 1
while the other three lead to triples(A,B,C) such thatABC + 1= 0.

Thus, within our fourth choice, the only novelty is exactly the setP2

of parameters. 2

4. Sufficient conditions

This section is devoted to proving that the previous necessary condition
on the triple(A,B,C) of rational non-zero parameters is in fact sufficient
for the existence of a rational first integral ofV (A,B,C).

In the case ofP3, it turns out that an additional assumption is to be
made in order to perform the rational integration: that−1/A and−C are
not simultaneously positive integers. A final complementary lemma will
then show that this restriction is in fact necessary, and our main theorem
will be completely proved.

Our proof relies on various computations to deal with the six cases
of Proposition 1. A general well-known idea will also be useful in that
context and we state it as a lemma.

LEMMA 5. – If V (A,B,C) has an algebraic first integral of degree
0, it also has a rational one.

Proof. –Our assumption means the following: there exists an algebraic
field extensionL of k(x, y, z), the derivationsδx , δy and δz can be
extended toL in a unique way, which gives an extension of derivations
δV and δE. The supposed algebraic first integral of degree 0 is then an
elementF of L such thatδV (F ) = δE(F ) = 0 while the three partial
derivativesδx(F ), δy(F ) andδz(F ) are not all equal to 0.

Consider now the minimal unitary polynomial ofF with coefficients
in the fieldk(x, y, z) of rational fractions:

P(t)= tn + pn−1t
n−1+ · · · + p0.
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Applying a derivationδ to identityP(F)= 0 leads to

P(F)+ P ′(F )δ(F )= 0,

whereP ′ is the usual derivative ofP in the polynomial ringk(x, y, z)[t]
while P is the polynomial ofk(x, y, z)[t] obtained by applying compo-
nent-wise derivationδ to the coefficients ofP . This P has a degree at
mostn− 1.

In the case ofδV and δE, δ(F ) = 0 and thusP(F) = 0. As P
is supposed to be the minimal polynomial ofF , P has to be the 0
polynomial in k(x, y, z)[t], which means that the coefficients ofP are
in the common kernel ofδV andδE.

With respect toδx , δy andδz, one of the coefficientspi of P at least is
not a constant, otherwiseF would be a constant andpi is then a rational
first integral of degree 0.2

We give now the headlines of the computations: the use of a computer
algebra system has been very useful to carry out some of them.

COMPUTATION 1. – If the rational parametersA, B andC are such
that ABC + 1 = 0, then V (A,B,C) has a rational first integral of
degree0.

Proof. –In the present situation, there exists a polynomial first integral
l = ax + by + cz of degree 1, where the non-zero triple of integers
(a, b, c) satisfiesb = −aC, c = −bA, a = −cB, due to the rank
condition on this system.

Polynomialsx, y and z are Darboux polynomials with respective
eigenvaluesCy + z, Az + x and Bx + y and, due to a similar rank
condition, a non-trivial triple(α,β, γ ) of integers can be found such
that xαyβzγ is a rational first integral ofV (A,B,C). Its degree isδ =
α+ β + γ .

Then, the rational fractionxαyβzγ l−δ is the sought first integral of
degree 0. 2

COMPUTATION 2. – If the triple of (A,B,C) of rational parameters
belongs toP2, thenV (A,B,C) has a rational first integral of degree0.

Proof. –In the present situation, one amongA, B andC is positive.
Using symmetries, we can chooseB to be positive and less than or equal
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to 1 without restricting the proof. Thus, there exist two relatively prime
positive integersp andq such that

0< p 6 q, B = p
q
, A=−p+ q

p
, C =− q

p+ q .

Then a Darboux polynomialφ of degree 2 and eigenvalue 0 can be found:

φ =X2− 2XY − 2XZ+ Y 2− 2ZY +Z2,

where the linear change of variables is given byX =−p(p + q)x,Y =
pqy,Z =−q(p+ q)z.

It is thereafter possible to build an algebraic field extensionL =
Q(u, v,w) of Q(x, y, z)=Q(X,Y,Z) by setting

X= (u+ v −w)(−u+ v −w),
Y = 2v(−u+ v +w),
Z= 2w(−u+ v +w).

DerivationsδX, δY andδZ can be extended in a unique way toL and so
areδV andδE.

The factors appearing inX, Y andZ are homogeneous of degree 1/2
and they are Darboux elements; it turns out that the following elementF

of L is a first integral of degree 0, i.e., it satisfiesδV (F )= δE(F )= 0:

F =
(
(u+ v−w)(−u+ v−w)

v(u− v +w)
)p ( w(u+ v−w)

(−u+ v +w)(u− v +w)
)q
,

which also writes (up to a constant factor)

F =
(
Z(4WY −Z2)

WY (Z − 4W)

)p(
W(4WY −Z2)

Z2(Z− 4W)

)q
,

whereW =w2 is a root of the second degree polynomial

16YW 2+ (4XZ− 4YZ− 4Z2)W +Z3= 0.

F is thus algebraic of degree 2 overQ(X,Y,Z), F is not a constant
and it satisfiesδV (F )= δE(F )= 0. This achieves the proof. To be more
precise, the product ofF by its conjugate is a constant, while the sum of
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F and its conjugate is not a constant and thus provides the sought rational
first integral of degree 0.2

COMPUTATION 3. – If the triple of (A,B,C) of rational parameters
belongs toP3, i.e., ifB = 1 andr =−1/A−C is a positive integer and if
moreover−C and−1/A are not both positive integers, thenV (A,B,C)
has a rational first integral of degree0.

Proof. –When B = 1 and A 6= 0, there exists a fourth Darboux
polynomial of degree 1,φ = y−Az. We then get an integrating factorψ
for the Pfaff formω0:

ψ = x−2y
1
A−1zC−1φ−C−

1
A

which is algebraic whenA andC are rational.
The closed formψω0 then writes

ψω0= d
(
F

x

)
+ θ

(
y

z

)
d

(
y

z

)
,

whereF is a homogeneous algebraic function of degree 1 ofy and z
solely whileθ is the one-variable algebraic function

θ(t)=−(t −A)
r t1/A

t
.

If the primitives ofθ are algebraic functions of one variable, the proof is
achieved.

To check that last point, denote 1/A by −p/q with relatively prime
integersp,q and positiveq.

Using the new variableu = t1/q , which is algebraic overt , the
following algebraic functionχ of u remains to be integrated

χ(u)= u−p−1(uq −A)r .
Primitives ofχ are algebraic provided that the exponent−1 does not
appear in the development ofχ as a finite linear combination of rational
powers ofu. This is equivalent to saying that there is no integerl in the
range[0, r] such that−p−1+ lq =−1, i.e., thatp/q is not an integer in
the range[0, r]; this is precisely what is excluded by the extra assumption
that−1/A and−C are not simultaneously positive integers.2
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COMPUTATION 4. – If the triple of (A,B,C) of rational parameters
belongs toP4, i.e., if B = 2,C = −1− 1/A andA is either a positive
integer(A> 2) or equal to−k − 1/2, wherek is a positive integer, then
V (A,2,−1− 1/A) has a rational first integral of degree0.

Proof. –WhenB = 2,C =−1− 1/A andA 6= 0, there exists a fourth
Darboux polynomial of degree 2,φ = (y − Az)2− 2A2xz. We then get
an integrating factorψ for the Pfaff formω0:

ψ = xA−1y−2zAφ−A−
1
2

which is algebraic whenA andC are rational.
But, this is not the easiest way to achieve the proof. It is more

convenient to parameterize the projective surfaceφ = t2 like in our
second computation. We can therefore build an algebraic field extension
L=Q(u, v,w) of Q(x, y, z) by setting

x = (v−Aw)2− u2, y = 2A2vw, z= 2A2w2.

In the new variables,V becomes an homogeneous vector fieldṼ of
degree 3, butw is a common factor of the components ofṼ and it suffices
to find a rational (with respect tou, v,w) first integral of degree 0 for the
vector fieldW = Ṽ /w.

It turns out that this homogeneous vector fieldW has 4 Darboux
polynomials of degree 1 (inu, v,w): u, v, v−Aw+ u andv−Aw− u.
W is therefore factorisable and can be put in Lotka–Volterra normal form
to becomeV (1/A,1,1− 2A) so that we have reduced our study to a
previous one.

It is indeed sufficient to find a rational first integral of degree 0 for
V (1/A,1,1− 2A).

If A is an integer greater than 1, this is true according to Computa-
tion 3. If −1/2− A is a positive integer, the triple(1/A,1,1− 2A) is
equivalent through a natural transformation to(1/A,1,A) and Computa-
tion 3 can be applied to this last triple.2

COMPUTATION 5. –The Lotka–Volterra vector fieldV (−7/3,3,−4/7)
has a rational first integral of degree0.

Proof. –A solution is x7y3z4fg−3, wheref and g are irreducible
homogeneous polynomials of degrees 4 and 6:
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f =−259308x3z− 185220x2yz+ 259308x2z2+ 567xy3

−13230xy2z− 71001xyz2− 86436xz3+ 324y4+ 3024y3z

+10584y2z2+ 16464yz3+ 9604z4,

g= 9529569x4z2+ 2722734x3yz2− 12706092x3z3

−333396x2y3z− 388962x2y2z2+ 3630312x2yz3

+6353046x2z4− 47628xy4z− 444528xy3z2− 1555848xy2z3

−2420208xyz4− 1411788xz5+ 729y6+ 10206y5z+ 59535y4z2

+185220y3z3+ 324135y2z4+ 302526yz5+ 117649z6.

2

COMPUTATION 6. –The Lotka–Volterra vector fieldV (−3/2,2,−4/3)
has a rational first integral of degree0.

Proof. –A solution is x3y2z4fg−3, wheref and g are irreducible
homogeneous polynomials of degrees 3 and 4:

g= 324x2z2+ 288xy2z+ 216xyz2− 324xz3+ 16y4

+96y3z+ 216y2z2+ 216yz3+ 81z4,

f = 108x2z+ 6xy2+ 180xyz− 108xz2+ 8y3+ 36y2z

+54yz2+ 27z3.

2

4.1. A special final trick

The purpose of the following lemma is to prove that the sub-cases of
P3 in which we were unable to perform the rational integral are in fact to
be excluded.

LEMMA 6. – WhenB = 1 while a = −1/A and c = −C are both
positive integers,V (A,B,C) does not have a rational first integral of
degree0.

Proof. –The consideration of some special determinants of small order
of the linear system studied in Subsection 2.7 is the tool to get this further
restriction on the possible candidate triples. We use freely the notations
and ideas of this subsection.
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Suppose that there exists some strict Darboux polynomialf of degree
m for V (A,B,C) and consider the square subsystem (with a non-trivial
kernel) of the corresponding linear one consisting in the unknowns
(0, j,m − j), 0 6 j 6 a, and (1, j,m − 1 − j), 0 6 j 6 a − 1, on
the one hand, and of the equations(0, j,m + 1− j), 1 6 j 6 a, and
(1, j,m− j), 06 j 6 a − 1 on the other hand.

According to computations similar to previous ones, the determinant
of this subsystem finally writes:

[1/A+C + 1]a−1 (m− λ),
up to some non-zero factors.
[1/A + C + 1]a−1 cannot vanish andλ has to be equal tom. Then,

trying to solve level by level to find thex-homogeneous components of
f shows that the Darboux polynomial has to be a multiple of(y −Az)m.

Thus, there is only one fourth Darboux irreducible polynomial,y−Az.
But it it impossible to find a non-constant rational first integral of

degree 0, that would writexαyβzγ (y − Az)δ with α,β, γ, δ integers.
Such a non-trivial quadruple[α,β, γ, δ] of integers would indeed satisfy
equationsα + β + γ + δ = 0, β + γ + δ = 0, Cα + γ = 0 and
α +Aβ = 0. 2

5. Conclusion and remarks

We have thus proved that the rational integration of factorisable
quadratic homogeneous three-variable vector fields is a decidable ques-
tion by giving a complete characterization of all triples(A,B,C) for
whichV (A,B,C) has a rational first integral of degree 0.

Lists of parameters(A,B,C) can be written down, for which there
exists a fourth Darboux polynomial ofV (A,B,C) with the help of which
the Liouvillian integration of the field can be achieved, whereas the
rational integration of it is impossible. Unfortunately, the problem of the
Liouvillian integration ofV (A,B,C) cannot be considered as solved up
to now, because no effective bound is known on the degreem of possible
Darboux polynomials for a given triple(A,B,C) of parameters.

On the contrary, it can be thought that the specific linear algebra tools,
that we have developed in the present paper to find necessary conditions
of rational integrability, will find a wider use, for instance in the study
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of the rational integrability of general quadratic homogeneous three-
variable vector fields.
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