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POLYNOMIAL FIRST INTEGRALS
OF THE LOTKA-VOLTERRA SYSTEM

BY

JEAN MOULIN-OLLAGNIER(*)

ABSTRACT. — The so-called Lotka-Volterra system of autonomous differential equations
consists in three polynomial homogeneous equations in three variables of degree 2.
It depends on three parameters:
=V, =2(Cy+2)
y=V, =y(Az + )
z=V.=z2(Bz+y)

A first integral of this system is a non-constant function f that satisfies identity:
a d o
R e
oz Y oy dz
In the present paper. we give all values of the three parameters A, B and C for which the
previous system has an homogencous polynomial first integral.

Our proof essentially relies on ideas of algebra and combinatorics.
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RESUME. — Le systeme d’équations différentielles autonomes de Lotka-Volterra se compose
de trois équations polynomiales homogenes de degré 2 et il dépend de trois paramétres :

=V, = z(Cy4z)
=V, =y(Az+z)
i=V,=2(Bz+y)

=
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On appelle intégrale premiére d’un tel syst¢éme une fonction non constante qui vérifie 1"identité

il oy

V:
“ O Y Oy az

Dans ce travail, nous caractérisons toutes les valeurs possibles des trois parameétres A, B et
C pour lesquelles le systeme précédent admet une intégrale premiére polynomiale.
Notre démonstration s’appuie sur des arguments de nature algébrique et combinatoire.

1. Introduction

The search of first integrals is a classical tool in the classification of
all trajectories of a dynamical system. Let us simply recall the role of
energy in hamiltonian systems.

We are interested here in some systems consisting in three ordinary
autonomous differential equations in three variables:

Il

SECSS
Il
IR

where A, B and C are parameters.

A first integral of this system of equations (or of the corresponding
vector field V) is a non-constant function f that satisfies the partial
derivative equation

(?f af

Ve, e o

dy 0z

That means that f is constant along all trajectories of the one-parameter
local semigroup generated by the vector field V.

0.

The local existence of first integrals in a neighborhood of a regular point
is a consequence of some classical theorems of differential calculus.

The interesting point for us is the search of global solutions; this
problem has an algebraic nature if the coordinate functions V,, V;, and V.
are polynomials in the space variables z, y and z.

A key point is the specification of the class in which we look for first
integrals. In the algebraic case, it seems reasonable to consider the class of
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POLYNOMIAL FIRST INTEGRALS OF THE LOTKA-VOLTERRA SYSTEM 465

all Liouvillian elements over the differential field C(z, y, z) of all rational
fractions in three variables on the constant field C of complex numbers. We
follow the definition of Liouvillian elements given by Michael SINGER [8].

The search of Liouvillian first integrals of polynomial vector fields relies
mainly on the study of the Darboux polynomials of these fields [1-4].

A polynomial f is said to be a Darboux polynomial of the (polynomial)
vector field V if there exists some polynomial A such that

af af af
Vi—+V,—+V.— =Af.
g the A
Later on, we will call A an eigenvalue. With this vocabulary, polynomial
first integrals are simply Darboux polynomials with a 0 eigenvalue.

So far as we know, Henri PoiNncarg (5], [6], |7]) was the first to
notice the difficulty of a decision procedure for the existence of Darboux
polynomials.

No procedure 1s known up to now; Jean-Pierre JouaNoLou gives a
theorem about this subjet but his result is not effective [3].

All that shows the interest of the partial result we present here:
the determination of the set of values of the parameters for which a
special factorisable system, the Lotka-Volterra one [2], has a polynomial
first integral. Necessary conditions on the parameters appear to be a
consequence of a combinatorial approach. Let us remark that all these
cases appear in [2] and have been found with the help of a computer
algebra system.

The crucial point is in fact to tackle the maximum degree of an
irreducible Darboux curve. Indeed, if the degree m and the eigenvalue
A for which we look for a Darboux polynomial of the vector field V' are
given, the task is a classical algebraic elimination problem. The condition
leads to a system of linear equations in which the unknowns are the
coefficients of the sought Darboux polynomial. In order to get a non-
trivial solution the rank has to lower, and this is equivalent to the nullity of
some determinants. These determinants are polynomials in the parameters,
and we are in principle able to solve a system of polynomial equations.

Acknowledgments. — It is great pleasure for me to thank Jean-Marie
StrELCYN (Université de Rouen) for many helpful discussions.
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2. The result

Let us state our main theorem.

THEOREM. — The Lotka-Volterra system

= Ve =a(Cy +2)
z= V; :z(Ba,+y)

ol

has a polynomial first integral if and only if one of the following cases
holds for the triple (A, B, C) of parameters

* Parameters satisfy relation ABC + 1 = 0.
The field has then an homogeneous polynomial first integral of degree 1.

* Parameters are related by C = -1 — 1/A, A = -1 — 1/B and
B = —1—1/C, so that one of the parameters can be freely chosen.
The field has then an homogeneous polynomial first integral of degree 2.

* Parameters are solutions of a system of equations

= —k?g == I/A
A=—-k3—-1/B
B=—k —-1/C

where, up to a permutation (ky, ka, k3) is one of the following triples:
(1,228 (5235  (1.2,4)

In these cases, one of the parameters is a root of a rational polynomial
of degree 2 and the other two can be deduced from it. In every case, an
homogeneous polynomial first integral of degree 3, 4 or 6 respectively can
be found.

3. The proof

This section is devoted to the complete proof of the previous result.
Intermediate results and arguments are gathered in subsections.
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3.1. Homogeneity. — Due to the homogeneity of the three coordinates
of the Lotka-Volterra vector field, it is easy to show that the homogeneous
components of a polynomial first integral are also first integrals. In the
same way, the homogeneous components of a Darboux polynomial are
also Darboux polynomials and the eigenvalue has to be an homogeneous
polynomial of degree 1 (the common degree 2 of the coordinates of the
field minus 1 for the usual partial derivations).

It is therefore sufficient to look for homogeneous first integrals and
homogeneous Darboux polynomials.

Let us remark that homogeneous polynomials are Darboux polynomials
for the special vector field £ = 20, + yd, + z0. according to Euler’s
identity; with respect to E, the eigenvalue of an homogeneous polynomial
is 1ts degree.

3.2. Variables and strict Darboux polynomials. — Suppose now that
some Darboux (homogeneous) polynomial f for a given homogeneous
polynomial vector field V' and an eigenvalue A is splitted as the product
f = gh of two relatively prime (homogeneous) polynomials.

As a polynomial ring is a unique factorization domain, Gauss lemma
shows that the factors g and /& have to be Darboux polynomials for V' with
some eigenvalues A1 and As such that A = Ay + As.

According to this remark, the determination of all Darboux polynomials
of a given polynomial vector field amounts to finding all irreducible
Darboux polynomials for V.

In the case of a factorisable vector field that we are interested in, we
will not consider a complete factorization in irreducible factors of some
first integral or Darboux polynomial.

By the very definition of a factorisable vector field, like the Lotka-
Volterra one, the space variables z, y and z are Darboux polynomials.

Every homogeneous polynomial f writes in a unique way
f =2y

where ¢ is not divisible by z, y or z.

If f is a Darboux polynomial, so is g. Such polynomials as g will
play an important role in our combinatorial analysis. We will call them
strict polynomials.
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3.3. Eigenvalues of strict Darboux polynomials. — Let ¢ be a strict
Darboux polynomial of the Lotka-Volterra vector field which writes

2(Cy + 2)0:9 + y(Az + 2)0yg + 2(Bz + y)9.9 = (Ax + py + vz)g

Polynomial ¢ 1s moreover homogeneous of degree m. As g is supposed
not to be divisible by x, y or z, we can consider the three homogeneous
non-zero two-variable polynomials of degree m obtained by setting
r=0,y=0and z =0 in g and call them P, @ and R respectively.

From the previous relation involving g, we deduce some partial
differential equations concerning these two-variable polynomials.

(ny + vz)P = y2(A0y P + 0.P)
(vz 4+ \2)Q = z2(B0.-Q + 9:Q)
(Az + py)R = zy(CO R + Oy R).

It is not very difficult to prove that there exists 6 natural numbers
£, m, a2, 72, a3 and f3 such that P is a nonzero multiple of
yhan(y— Az)™ 77" Q is a nonzero multiple of 272z%2(z —
Bxz)™=72=% and R is a nonzero multiple of z®y% (z — Cy)" =,

Moreover, these numbers satisfy the following equations and inequations

(A =03 =128,
p=m = azC,
v=aoa3 = 1A,

< /r+m <m,

az + 72 £ m,

La3 + 3 < m.

In particular, the eigenvalue corresponding to a strict Darboux polynomial
of the Lotka-Volterra vector field is a linear form A = Az + py + vz where
A, 1 and v are non-negative integers.

3.4. The restricted problem. — In this subsection, we discuss some
necessary conditions that the parameters A, B and C have to fulfill
in order to allow the existence of a polynomial first integral for the
Lotka-Volterra vector field.
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A polynomial first integral f writes f = z“ y?27g where ¢ is a strict
Darboux polynomial of some degree m with an eigenvalue Az + py + vz
and where o, (3 and v as well as A, ; and v are non-negative integers.

The eigenvalue corresponding to f is 0, which leads to the following
system of equations

A+B8+9B=0

p+v+aC =0

v+a+ BA=0
If one of the coefficients A, p or v is different from 0, the parameter
appearing in the same equation is a positive rational number according
to the results of the previous subsection; this makes the corresponding
equation impossible.

Then, the strict Darboux polynomial g has to be a first integral (or a
constant) and the system of equations reduces to

B+4B =0
¥y+aC =0
a+PBA=0

If one or two numbers among «, (3 and ~ are 0, some of the previous
equations are impossible.
Two possibilities remain:

a = [3 =« = 0 and we have to look for a strict first integral,

afy # 0 and the parameters A, B and C have to be negative rational
numbers with ABC = —1.

In the second case, the condition is obviously sufficient.

ConcLUSION 1. — Moreover, it is easy to show that the condition
ABC + 1 = 0 (without rationality assumption) is sufficient to get a strict
first degree homogeneous first integral like, for instance, Bx: — BCy — z.
This is the first case of the theorem.

From now on, we will only consider triples of parameters for which
ABC + 1 # 0 and restrict our search to looking for strict polynomial
first integrals.

As the last result of the present subsection, let us prove that in case of
a strict polynomial first integral of degree m, the number w = —ABC is
a m-th root of unity, w™ = 1.
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Let then g be a strict polynomial first integral of degree m and suppose
that one of the three parameters A, B or C at least is equal to 0.
Suppose for instance C' = 0. According to a previous discussion about the
eigenvalues of strict Darboux polynomials, polynomial R is a multiple of
z'" whereas polynomial () is a multiple of (y — Az)"™, and the coefficients
of ¥™ in g cannot agree.

Thus, all three parameters are different from 0, P is a multiple of
(y — Az)™, @Q is a multiple of (z — Bz)"™ and R is a multiple of
(x — Cy)™. The coefficients of =", 3" and 2™ in g are related in such
a way that w = —ABC satisfies 0™ = 1.

3.5. Linear algebra and combinatorics. — Consider now some strict
polynomial first integral g of the Lotka-Volterra vector field. The degree
m of g is greater than 1 and w = —ABC satisfies w™ = 1.

Polynomial g writes in the following ways

g=Po(y,2) +z Pi(y,2) + °p(x,y, 2)
9= Qo(z,2) +yQi(z, 2) + y’q(z,y, 2)
= 1?'{}(:1"?? ) + 2 Rl (',I"?y) ¥ ‘227‘(1"19?2)

where Py, Q9 and Ry are the two-variable homogeneous non-zero
polynomials of degree m that we get by setting z = 0, y =0 or z = 0
in g (previously denoted by P, () and R) whereas P’;, )1 and Ry are
homogeneous two-variable polynomials of degree m — 1 and p, ¢ and r
are three-variable homogeneous polynomials of degree m — 2.

There are 2m + 1 coefficients for Py and P; together. Writing that g is
a first integral leads to precisely 2m + 1 linear equations only involving
these coefficients. That the determinant of the corresponding matrix is 0
is a necessary condition to get a non-trivial polynomial g.

The combinatorial computation of this determinant is the key point of
our proof. Of course, analogous results for the linear system coming from
the consideration of Yy and Q1 as of Ry and R; will be used in the
forthcoming conclusion.

With a suitable choice in the order of equations and unknowns, the
square matrix M of our linear system, whose order is 2m + 1, has the

following form
A
=(¢ 3)
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where O is the zero square matrix of order m, A is a rectangular matrix
with m rows and m + 1 columns, C is a rectangular matrix with m + 1
rows and m columns and B is a diagonal square matrix of order m + 1.

There last three matrices look like what follows and they have a lot of
ZEroes.

17 A 0 wieos 0
0 m—-1 24 0 0
0 g 2 ftm—1)4"'0
0 TR 1 mA
1 0 0 \
C+m-1 14+ A4 0 0
o
0 C+1 1+(m-2)A 0
k: iy c 14 (m—1)A)/
Bm 0 0
0 1+B(m-1) 0 0
0 0 (m—1)+B "0
0 0 m

The development of the determinant D,,, of M has only m + 1 non-zero
terms, each of them being of course a product of 2m + 1 factors.

The reason is the following: in every non-zero term of D,,. some of
the diagonal elements of B appear as factors. Trying to avoid diagonal
elements of B yields null terms of D,,. In a similar way, if we take two
diagonal elements of B, the corresponding cofactor is a 2m — 1 determinant,
which is easily transformed. by a permutation in a triangular one with a
zero element in its diagonal.

The determinant 1),,, is thus the sum of products of all diagonal elements
of B by their cofactors; these cofactors are triangular determinants of order
2m and thus easy to compute.
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All that amounts to the following expression of D,,

R _ i—1 _ _
Dm :Z,‘:[](Z-’_(TR_Z)B)H-_ (TIL—J)(1+jA)x
X HJ=E+1 (FJANC +m — j).

Introducing the notation t* for the ascending power Hf‘:_ﬂl (t+1),
binomial-like expansions yield to a factorization of D, :

1 m—1
Dy = A™ 1! (Z 3C 4 1) m(ABC + 1).

As D,, is equal to 0, there exists some integer k2, 1 < k2 < m, such
that 1/A + C' + ky = 0 (recall that ABC + 1 # 0).

Similar results are true if we take into consideration coefficients of ()
and @1 or those of Ry and R;.

Whence a necessary condition to be fulfilled by the parameters in order
to get a strict polynomial first integral of degree m:
there exist three integers k1, k2 and k3 all three strictly positive and less
than or equal to m such that

B=-k-1/C
A=—-k3-1/B
and the product w = —ABC satisfies w' = 1.

3.6. Cyclotomic polynomials. — Eliminating 53 and C' in the previous
system of equations yields

(1 — k1kg)A? + (ky + k3 — ky — kykok3)A + 1 — kyks.
If k1 and k; are equal to 1, this equation has degree 0 so that k3 has
to be equal to 1.

CoNCLUSION 2. — This is in fact a possibility. The parameters are related
by the relations

B=-1-1/C
a1k
A=-1-1/B,
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one of them can be freely chosen, and the two others are computed from it
and the product ABC is equal to I (not to —1!).

In such a case, a simple computation yields a strict polynomial first integral
of degree 2.
A’B%z? 4+ + A%2? — 2ABxy — 2A’Bzz — 2Ayz.
This is the second case of the theorem.
Otherwise, A is an algebraic number as a solution of a second degree
equation with rational coefficients.
It is not difficult to compute w from A

-k1C -1
w ‘ A( C )C’

— —A(kl ___—_k‘.li g T3 1) = k1k2A+ kl

and to deduce a second degree equation that w satisfies:

U(w) = w® + (k1 + k2 + k3 — k1kaoks)w +1 =0
where k1, k2 and k3 are positive integers and not all equal to 1.

Then, w is an algebraic integer of degree 2 but also a m-th root of
unity. The above polynomial ¥ of degree 2 is thus a multiple of the
cyclotomic polynomial ®, where p is a divisor of m such that w is a
primitive p-th root of unity.

Cyclotomic polynomials of degree 1 or 2 only correspond to values 1,

2, 3, 4 and 6 of p.
If p=1, w =1, which has been excluded (first case of the theorem).
Ifp=2 U(-1)=2—k; — ks — ks + k1kak3 = 0, which leads to
1 1 g 2
k1k2 = k1ks e kaoks i k1kaks
with three positive integers.

Up to an evident symmetry, one can assume 1 < k; < k3 < k3. Then
k1 is equal to 1 else the left-hand side would be bounded above 3/4 and
the right-hand side bounded below by 1. We then look for integers A3
and k3(1 < k2 < k3) such that

TS TRl
b ks ks
and the only possibility is ky = k3 = 1.
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This situation has already be treated (second case of the theorem).
If p = 3, ¥ is the cyclotomic polynomial @35 and k1 + ks + ks —k1kaks = 1
which leads to
1 1 1 1
it ke bl ok Rk

with three positive integers.

Still assuming the order 1 < k; < ky < k3, we get k&1 = 1 then
ko = ks =2

Corresponding to this triple (1.2,2) of positive integers, there are two
triples of parameters (A, B, C) as A is solution of an algebraic equation
of degree 2 and B and C are then computed from A.

A computer-aided verification then shows the existence of a strict
polynomial first integral of degree 3 of the Lotka-Volterra vector field
for these triples of parameters.

If p =4, W is the cyclotomic polynomial ®4 and k1 + k2 + ks —k1koks =
0 which leads to

1 1 GRS
R el
with three positive integers.

1

Still assuming the order 1 < k; < ky < k3. we get k&1 = 1 and the
equation

1 1 ; oS,

R R kaks

We have to choose k2 = 2 whence k3 = 3.

i 7

Corresponding to this triple (1,2,3) of positive integers, there are two
triples of parameters (A, B, C) as A is solution of an algebraic equation
of degree 2 and B and C are then computed from A.

A computer-aided verification then shows the existence of a strict
polynomial first integral of degree 4 of the Lotka-Volterra vector field
for these triples of parameters.

If p = 6, ¥ is the cyclotomic polynomial ®¢ and ky+ ks + k3 —k1koks =
—1 which leads to

1 1 A 1
ik b Bk kit
with three positive integers.
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Still assuming the order 1 < k; < k2 < k3, we get k1 = 1 and the
equation

B

k2 ks | Rk

We have to choose k2 = 2 whence k3 = 4.

1.

Corresponding to this triple (1.2,4) of positive integers, there are two
triples of parameters (A, B, C) as A is solution of an algebraic equation
of degree 2 and B and C are then computed from A.

A computer-aided verification then shows the existence of a strict
polynomial first integral of degree 6 of the Lotka-Volterra vector field
for these triples of parameters.

CoNcLUSION 3. — We have thus found the third case of our theorem.

It is worth noting the relationship of these last arithmetic computations
with the so-called Painlevé analysis of the Lotka-Volterra system (see for
instance [2] page 770).

3.7. Conclusion. — The proof by case inspection of our theorem is
now complete. We hope that such combinatorial techniques, bypassing the
decision problem about the maximum degree of an irreducible Darboux
polynomial, will allow to go further towards a description of all triples
of parameters for which a strict Darboux polynomial exists, which would
implies the Liouvillian integrability of the corresponding system [4].
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