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Abstract 

Founded by J.F. Ritt, Differential Algebra is a true part of Algebra so that constructive and 
algorithmic problems and methods appear in this field. In this talk, I do not intend to give 
an exhaustive survey of algorithmic aspects of Differential Algebra but I only propose some 
examples to give an insight of the state of knowledge in this domain. Some problems are known 
to have an effective solution, others have an efficient effective solution which is implemented in 
recent computer algebra systems, and the de~idabili~ of some others is still an open question, 
which does not prevent computations from leading to interesting results. 

Liouville’s theory of intention in finite terms and Risch’s theorem are examples of prob- 
lems that computer algebra systems now deal with very efficiently (implementation work by M. 
Bronstein). 

In what concerns linear differential equations of arbitrary order, a basis for the vector space 
of all liouvillian solutions can “in principle” be computed effectively thanks to a theorem of 
Singer’s [ 17,221; the complexity bound is actually awful and a lot of work is done or in progress, 
especially by M. Singer and F. Ulmer, to give realistic algorithms [20,21] for third-order linear 
differential equations. 

Existence of liouvillian first integrals is a way to make precise the notion of integrability of 
vector fields. Even in the simplest case of three-dimensional polynomial vector fields, no decision 
procedure is known for this existence. 

Nevertheless, explicit computations with computer algebra yield interesting solutions for special 
examples. In this case, the process of looking for so-called Darboux curses can only be called a 
method but not an algorithm; for a given degree, this search is a classical algebraic elimination 
process but no bound is known on the degree of the candidate polynomials. 

This paper insists on the search of liouviliian first integrals of polynomial vector fields and 
a new result is given: the generic absence of such liouvillian first integrals for factorisable 
polynomial vector fields in three variables. 

ReSum4 

L’algGbre diffirentielle a Ctt fond&e par J.F. Ritt et c’est devenu une partie de l’alg?bre oti 
apparaissent des questions et des m&hodes de nature algorithmique. Dans cet expo&, je n’ai pas 
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la pretention de donner une VW exhaustive des aspects algorithmiques de l’algebre differentielle. 
Je propose seulement quelques exemples pour donner une idee de ce qu’est l’etat de I’art sur ces 
questions. On sait que certains probltmes ont une solution algorithmique ; pour d’autres, cette 
solution peut 2tre consideree comme efficace et elle est implantte dans les systemes de calcul 
formel recents ; pour une autre categoric de problemes, des questions de decidabilite ne sont 
pas encore resolues, ce qui n’empbche pas que des calculs effectifs donnent deja des resultats 
inttressants. 

La theorie de Liouville de l’integration en termes finis et le theoreme de Risch sont des 
exemples de ce que les systemes actuels de calculs formel savent mettre en ceuvre efficacement 
(citons en particulier le travail d’implementation realise par Manuel Bronstein). 

Pour ce qui est des equations differentielles lineaires d’ordre quelconque, on peut en principe 
determiner une base de l’espace vectoriel des solutions liouvilliennes grace a un theoreme de 
Michael Singer [17,22]. Mais la complexite rend ce resultat theorique impraticable. Beaucoup 
de travail a CtC realis ou est en tours pour traiter de facon realiste le cas des equations du 
troisieme ordre (par Michael Singer et Felix Ulmer en particulier) [20,21]. 

L’existence d’integrales premieres liouvilliennes est une maniere de preciser ce que peut etre 
l’integrabilite des champs de vecteurs. MEme dans le cas le plus simple des champs de vecteurs 
polynomiaux B trois dimensions, aucune procedure de decision de cette existence n’est actuelle- 
ment connue. On ne peut qualifier la recherche de courbes de Darboux que de methode et non 
d’algorithme : pour un degre donnt, cette recherche est un probleme classique d’elimination 

algebrique, mais on ne sait toujours pas bomer a priori le degre d’eventuelles courbes de Dar- 
boux pour un champ de vecteurs donne. 

Ce travail insiste sur la recherche d’integrales premieres liouvilliennes et presente un resultat 
nouveau : l’absence generique de ces integrales premieres pour des champs de vecteurs polyno- 
miaux factorisables a trois variables. 

1. Three problems in differential algebra 

We shall deal with the following definition of a difSerentia1 field K. 
Let K be a field of characteristic zero. A derivation d of K is an additive map- 

ping from K to itself that satisfies Leibnitz rule d(xy) = d(x)y + xd(y) for the 

derivation of a product. K is then said to be a differential field. The usual rule 

for the derivation of a quotient can easily be derived from the definition. The sub- 

set C of all elements of K whose derivative is 0 is a subfield of K, the field of 

constants. In certain cases, it can be useful to consider many commuting deriva- 

tions, in order to mimic the usual partial derivatives with respect to space 

variables. 

I will now say some words on three problems in this domain: elementary integration, 

liouvillian solutions to linear ODE and liouvillian first integrals of polynomial vector 

fields in order to emphasize the importance of algebraic and algorithmic approaches 

in differential algebra. I will only give a brief and very incomplete survey of the first 

two; I will be more explicit on the third. 
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2. Elementary Integration 

2.1. Hemen tary extensions 

This question dates back to the work of Joseph Liouville who stated the following 

definition of elementary extensions of a given differential field K of functions. 

Let (K,d) be a differential field. A differential extension field (L,d) is said to be 

elementary if there exists a finite tower of intermediate differential fields 

such that each Ki is generated over the previous one Ki-1 by a single element Hi which 

is an elementary generator, i.e. , 

either f1, is algebraic over K,_I, in which case the derivation d on K, is uniquely 

defined, 

or 8, is transcendental and an exponential over K,_,, which means that there exists 

an element r~ in K2-_I such that d is defined on K, by d(Hi) = O,d(q), 

or Oi is transcendental and a logarithm over K,_ I, which means that there exists an 

element q in K,-l such that d is defined on Ki by d( f9,) = d(q)/y. 

2.2. Lioucille’s principle 

Let J’ be an element of some differential field (K,d). If J‘ admits an elementary 

integral, i.e. if there exists an elementary differential extension (L, d) of (K, d) and an 

element F of L such that d(F) = f, then, this elementary integral F writes 

F = Z:O + 2 Ci log iii, 
i=l 

where 00 belongs to K and the other u, to some extension K of K by a finite number 

of algebraic constants, whereas the ci are constant elements of ??. 

2.3. Algorithmic aspects 

Liouville gave an rather analytic proof of his statement. In his “Integration in finite 

terms“, Ritt [ 161 still used analytic arguments. Rosenlicht [ 151 was the first to give a 

purely algebraic proof of this result, which is algebraic in its nature. 

This algebraic result turned into an algorithmic one thanks to Risch [14]. 

Let (K, d) = (C(x, 81,. . . , &), d) be a differential field where C is the effective sub- 

field of constants. Moreover, suppose that each Hi is a transcendental exponential or 

logarithm over K,_l. Then there exists an algorithm that, given an element f of K, 
either gives an elementary integral of ,f or decides that no such integral exists. 

Generalizations of this theorem have been given by Davenport [4] (a first algebraic 

step is allowed in the tower defining K from C) and by Bronstein [l] (real elementary 

integration) among others. 
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3. Linear ordinary differential equations 

3.1. First-order linear ODE and liouvillian extensions 

Let us begin with the first-order affine ODE with coefficients in a given differential 

field (K,d) in which we also denote the derivation d by a quote: y’ = ay + b. 
A solution to this problem divides classically in two steps, solving the corresponding 

linear ODE y’ = ay and then making the integration constant vary to achieve the 

solution with an integration. 

This splitting method leads to the definition of what is now called a liouvillian 

extension of a differential field. 

Let (K,d) be a differential field. A differential extension field (L,d) is said to be 

Ziouvillian if there exists a finite tower of intermediate differential fields 

Wo,d> = (K,d)c(Kl,d)c...c(K,,d) = (Ld), 

such that each Ki is generated over the previous one Ki_i by a single element 6i which 

is an liouvillian generator, i.e. 

either Bi is algebraic over Ki-1, in which case the derivation d on K, is uniquely 

defined, 

or 8i is transcendental and an exponential-integral over Ki_ 1, which means that there 

exists an element y in Ki-1 such that d is defined on Ki by d(Bi) = 8iy, 
or Bi is transcendental and a integral over Ki- 1, which means that there exists an 

element y in Ki-1 such that d is defined on Ki by d($i) = q. 
According to the previous definition, a first-order affine ODE can then be solved in 

a liouvillian extension (L,d) of the base differential field (K,d). 
Moreover, the extension field L can be built with the same field of constants C as 

K provided that we can decide what are the derivatives and logarithmic derivatives in 

a differential field. 

3.2. KovaEic’s theorem 

In the classical literature on these subjects, the constant field C is always supposed 

to be algebraically closed in order to use the so-called Differential Galois Theory of 

Picard-Vessiot extensions. 

This is especially the case in KovaEic’s algorithm that deals with the second-order 

linear differential equation with coefficients in c(x), where 6) is the field of complex 

numbers. 

After standard reductions, the equation to be considered writes y = ry, where r E 

a=(x). 
KovaEic’s theorem [8] states that there are precisely four cases that can occur 

Case 1. The DE has a solution of the form exp(J o), where w E c(x). 

Case 2. The DE has a solution of the form exp(J o), where VJ is algebraic over 

c(x) of degree 2 and case 1 does not hold. 
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Cuse 3. All solutions of the DE are algebraic over c(x) and cases 1 and 2 do not 

hold. 

Case 4. The DE has no liouvillian solution. 

If Cc is changed for a effective algebraically closed subfield of it, the proof of the 

theorem leads to a true decision procedure. 

Let us remark that the field of constants does not need to be algebraically closed to 

perform algorithms [6,23]. 

3.3. Algorithms ,for linear ODE 

Thanks to an algorithm of Michael Singer [17, 181, it is possible to decide in principle 

if the nth order ODE with coefficients in a finite algebraic extension of Q(x), or even 

with liouvillian coefficients, has a liouvillian solution; but this algorithm is far from 

being efficient. 

Recent algorithmic progresses have been done by Michael Singer and Felix Ulmer 

to deal with third-order ODE [20,21]. 

Another algorithmic question is to find solutions to ODE is the field of coefficients; 

let us simply quote a work of Manuel Bronstein [2] about that. 

4. Liouvillian first integrals 

4.1. First integrals 

In this section, we shall consider 3-dimensional vector fields; the following definitions 

about liouvillian extensions are also meaningful in higher dimensions while the sole use 

of the Euler’s field as a symmetry is typical of the study of 3-dimensional homogeneous 

vetor fields. 

Let V = yTG:(?, + V,?,. + V,& be a vector field whose coordinates belong to some 

differential field K (for the three commuting derivations d,, dJ and ?z). 

A first integral of V is an element f of a differential extension field L of K that 

satisfies 

~/,a,~.f’ + v,.ayf + vza,f = 0. 

To be of any interest, f is supposed not to be constant (one of the partial derivatives 

of ,f at least is not 0). 

This is an algebraic translation of a well-known analytical property: to be constant 

on the trajectories of the local semi-group generated by the vector field. 

A vector field (or the corresponding system of autonomous differential equations) 

is usually said not to be integrable if there does not exist any first integral of it 

in a prescribed class. This class strongly depends on the speaker; we are interested 

in liouvillian first integrals, i.e. in first integrals that belong to liouvillian differential 

extensions of the base field. 



120 J. Moulin Ollagnierl Theoretical Computer Science 157 (1996) 115-127 

4.2. Liouvillian extensions with several derivations 

By analogy with the ordinary differential case, Singer [19] defined the notion of a 

liouvillian extension of a differential field K when K has several commuting derivations 

di. 

This definition still relies on the construction of a tower with finitely many levels. 

Let (K, {di}) be a differential field with several commuting derivations {d,}. 

A differential extension field (L, {di}) IS said to be liouvillian if there exists a finite 

tower of intermediate differential fields 

(Ko, Idi)) = (K {di)) C(KI, {di}) C.. C(&, {di}) = (4 {di}), 

such that each Ki is generated over the previous one Ki_1 by a single element Bi which 

is an liouvillian generator, i.e., 

either fIi is algebraic over Ki- 1, in which case all derivations di on Ki are uniquely 

defined (and they still commute with one another), 

or fIi is transcendental and an exponential-integral over K;_1, which means that there 

exists elements nj in K2_l such that d, is defined on Ki by dj(&) = Qiqj, 

or Bi is transcendental and a integral over Ki- 1, which means that there exists ele- 

ments qj in Ki_1 such that d, is defined on Ki by dj(0i) = qj. 

In these last two cases, elements qj have to satisfy the property of the cross- 

derivatives, dk(qj) = dj(qk), in Ki_1. 

4.3. 3-dimensional polynomial vector jields 

Let V = V,&+ V,d,+ V,& be a polynomial homogeneous vector field, which means 

that its coordinates are homogeneous polynomials of the same degree in the three space 

variables x, y, z with coefficients in a given field of constants C. 

The base field of the construction is then K = C(x, y,z), the field of rational fractions. 

This field K is then a differential field for derivations &, a], and a,. 

Due to the homogeneity of the problem, it seems natural to look for liouvillian first 

integrals f that are moreover homogeneous of degree 0. 

According to Euler’s formula in the case of polynomials, f will be said to be 

homogeneous of degree 0 if it is a first integral of Euler’s field E = x& + yaY + z&, 

i.e. if x&f + y&f +z&f = 0. 

It can be shown [9] that such a homogeneous polynomial vector field V has a 

liouvillian first integral of this kind if and only if there exists some l-form o = w,dx+ 

Wydy + w,dz with coordinates in the polynomial ring C[x, y,z] with the following 

properties: 

w is orthogonal to the given field V, i.e. V,o, + VYoY + VZu, = 0, 

w is not projective, i.e. XW, + ywY + zm, # 0, 

CL) is integrable, i.e. satisfies Pfaff s condition w A dw = 0, where dw is the exterior 

derivative of U. 

A similar result without l-forms can be found in [ 181. 
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As in Liouville’s principle or in KovaEic’s theorem, this means that if a solution is 

in a prescribed class (here the first integral J’ belongs to a liouvillian extension of K) 

it has to be of a very special form (here ,f’ is built from o which has very special 

properties). 

4.4. Darhoux- curves 

The notion of Darboux functions is closely related to this problem and dates back 

to a memoir by Darboux [3]. 

A homogeneous polynomial ,f is said to be a Darboux polynomial of the homoge- 

neous polynomial vector field V if the polynomial V,?,f’+ V,.S,.J’+ V,C:,f‘ is a multiple 

of J’: 

where .4 is some homogeneous polynomial in K[x. _v, z]. 

This is an algebraic translation of an analytic fact: the subset where ,f’ = 0 is 

invariant under the action of the local semi-group generated by V. 

Irreducible factors of a Darboux function are Darboux functions and we will call 

them Darboux curves because they define plane projective algebraic curves. 

Relations of Darboux functions with our integrability result are the following. 

If (0 is a good l-form in the sense of the previous result, the inner product XW, + 

j’ctir + z~, is a Darboux function. 

On the other hand, if there are sufficiently many Darboux curves [3, 181, it is easy 

to build a good l-form w from a linear combination of the logarithmic derivatives 

of these functions. 

These relations can then be used in two different ways. In one direction, finding 

sufficiently many Darboux curves leads to an integrability proof. In the other direction, 

proving the nonexistence of Darboux curves excludes integrability. 

4.5. 11 result oJ’ Jouanolou and an gffktivtwess problem 

Jouanolou considers the general homogeneous polynomial 3-dimensional vector field 

of a given degree m [7]. He proves that such a field is generically not integrable (here 

the constant field is the field @ of complex numbers and genericity refers to Baire 

category classification). 

To get this result, as we have just said, it suffices to prove that a generic vector 

field has no Darboux curve. 

Moreover, due to simple algebraic remarks about Zariski closed sets, it is even 

sufficient to prove that there exists some vector field without any Darboux curve. 

For a given m>2, Jouanolou chooses the special vector field 

and proves that this vector field V, has no Darboux curve. 
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His proof is very clever and uses subtle arithmetic properties. 

In a recent work with Andrzej Nowicki and Jean-Marie Strelcyn [IO], we gave some 

development of these ideas in more than 3 dimensions in particular. 

A difficult algorithmic question, that dates back to some papers of Poincart [ 1 l- 

131, remains open: effectively decide if a given vector field in integrable or not, in 

the previous sense, or at least, decide if there are sufficiently many Darboux curves. 

Given the degree, it is not too difficult, in principle and with the help of computer 

algebra systems, to decide if there is a Darboux function of a given vector field with 

this prescribed degree: it is a matter of algebraic elimination. But there is no known 

reason in general to give a bound to the degree of the candidate functions. 

In order to get some insight in this decision problem, we studied a special family 

of 3-dimensional quadratic vector fields that are called factorisable. The last section of 

this paper is devoted to this study. 

5. Integrability of factorisable vector fields 

5.1. Factorisable vector fields 

Consider 3-dimensional quadratic vector fields of the following form: 

where &, +Y and & are linear forms i.e. first degree homogeneous polynomials in x, 

y and z (in [IO] we only asked that the $i are homogeneous polynomials of the same 

degree, not necessarily 1). 

Such vector fields are called factorisable. Sonia Kovalewska was apparently the first 

to consider these vector fields and to ask when they are integrable. 

A factorisable vector field is characterized by 9 parameters, the coefficients of the 

three linear forms. 

It is possible to do some reductions in order to restrict the problem to a 3-parameter 

one by only considering vector fields V,,B,C, where 

v, = x(Cy + z), vy = y(Az + x), v, = z(Bx + y). 

In this form, we give the vector field the name of Lotka-Volterra, because the corre- 

sponding system of autonomous differential equations appears in the study of a predator- 

prey system by Lotka and Volterra. 

The first argument for the previous reduction consists in the following remark. We 

are interested in finding liouvillian first integrals homogeneous of degree 0 for a fac- 

torisable vector field. The problem is then invariant by addition of a multiple of Eu- 

ler’s field to our field, in such a way that we can choose canonical elements of the 

corresponding equivalence classes: factorisable vector fields for which the “diagonal” 

coefficients &, $YY, & are 0. We thus restrict ourselves to a six-parameter problem. 
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A second argument can be used to reduce the space of parameters: our problem is 

invariant under the action of the (3-dimensional) diagonal group of linear changes of 

variables. By only excluding some rare cases it is then possible to choose the previous 

Lotka-Voltetra normal form with only three parameters. 

The problem is then to study for which triples of parameters (A,B, C), the vector 

field &. B,C has a good l-form o. 

5.2. Integruhility results for Lotku- Volterra vector fields 

Let us call K = Q(A,B, C) the field of constants. A good 1 -form w exists if and only 

if we can find a closed l-form W with coefficients in K(x, y,z) which is orthogonal to 

V. Indeed, we can choose W = oJP, where polynomial P = x(0, + ym, + ZQ,. In the 

other direction, we get o from W by a multiplication and, as W is closed, its multiples 

satisfy Pfaff’s integrability condition. 

By the very definition of factorisable vector fields, curves x, y and z are Darboux 

curves. We will say that a factorisable vector field has a fourth Darboux curve if there 

exists a Darboux function f which is not a multiple of x, y or z. In such a case, we 

get four Darboux functions x, y,z and J‘ with the eigenvalues Cy + z, AZ + x, Bx + J 

and .4 = &.x + i, Y y + izz. 

The four linear forms cannot be linearly independent and some non-trivial linear 

combination with coefficients in K, (cc(Cy+z)+/3(Az+x)+;~(Bx+y)+~A) is equal to 0. 

Then (cz(dx/x) + b(dy/y) + 7(&/z) + s(df/,f)) is the sought closed l-form i5 and 

the vector field is integrable. 

Careful computations with a specially designed computer algebra program allowed 

us to find all values of (A, B, C) for which such a fourth Darboux curve exists up to 

degree 6. There are general families of such triples and also exceptional ones that seem 

to be of a special arithmetic type. 

We were able to state a genericity result for which we give some details below: 

generically, VA,B,C has no fourth Darboux curve. 

As we have seen above, a fourth Darboux curve is a sufficient reason to have a 

liouvillian first integral but this reason is not necessary. 

Another way to build such a liouvillian first integral is to find some nonconstant 

rational fraction F = N/D where the denominator D is a product of powers of the 

coordinates, where the numerator and denominator are homogeneous of the same degree 

and where vY6,F + V,.dL.F + V&F is a first degree homogeneous polynomial. 

A good l-form can then be built as a linear combination of the exterior derivative 

dF of F with the logarithmic derivatives of the coordinate functions. 

There are examples of triples (A, B, C) of parameters (for instance (A, B, C) = 

(- 1. I/2.0)) for which no fourth Darboux curve exists while a substitute fraction can 

be used to prove integrability [9]. This show that the original method of Darboux is 

not the only one to get liouvillian first integrals. 

It is also possible to state a genericity result in this case: generically, y4,B.(‘ has no 

substitute fraction. We give the details below. 
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It is not difficult to show that a fourth Darboux curve or a substitute fraction are the 

only two possibilities to build a good l-form. Thus, generically, a factorisable vector 

field has no homogeneous liouvillian first integral of degree 0. 

5.3. Generic absence of a fourth Darboux curve 

The announced result of the generic absence of a fourth Darboux curve for factoris- 

able 3-dimensional polynomial vector fields refers to the Baire category classification 

of “small” and “big” subsets of I@ or Ck. 

This result relies on the two following propositions. 

Proposition 5.1. Let V = VA,B,C be a factorisable vector jield in Lotka-Volterra 

normal form. Then, if A, B and C are not rational numbers, a fourth Darboux 

function f for V has to be a polynomial jirst integral, i.e. the eigenvalue A has to 

be 0. 

Proof. Let f be some Darboux function for V of degree m and suppose that f in not 

a multiple of x, y or z. This means that the three 2-variable homogeneous polynomials 

of degree m, P(y,z), Q(x,z) and R(x, y) obtained by setting X, y or z to 0 in f, are 

different from 0. 

Identity 

x(Cy + z>fx + y(Az + x)f Y + z(Bx + y)fi = (3~ + my + vz>f 

yields 

AyzPy + yzPz = (PY + vz>p, 

xzQx + BxzQz = (h + vz)Q, 

CxyR, + xyRY = (/zx + py)R. 

Consider now the terms of highest degree in the variable x in the last two equations. 

The second equation shows that 3, is an integral multiple of B while the third shows 

that 2 is an integer. As B is not a rational number, /. has to be 0. The same is true in 

what concerns ,LL and v, which achieves the proof of the proposition. U 

Proposition 5.2. Let V = VA,B,C be a factorisable vector field in Lotka-Volterra 

normal form. If f is a polynomial Jirst integral of V which is not a multiple of x, y 

or z, then (-ABC)m = 1, where m is the degree of f. 

Proof. With the notations of the above proposition, we get 

AyzPy + yzPz = 0, 

xzQx + BxzQz = 0, 

CxyR, +xyR, = 0. 
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It can easily be shown that P has then to be some multiple of (y - AZ)“; in the 

same way, Q is a multiple of (z - BxY and R a multiple of (x - Cv)‘“. 

Comparing now the coefficients of xm, ym and zM in f yields (-ABC)” = 1. 7 

Now, if the triple (A,B, C) of complex parameters belongs to the countable inter- 

section of the Zariski open dense subsets of C3 given by conditions 

.45!Q, B$!Q, C@Q, tinl~N(-ABC)“‘#l, 

the corresponding factorisable vector field V A,~,(‘ does not admit any fourth Darboux 

curve. 

5.4. Generic clhsence of u substitute fraction 

The purpose of this section is to prove the following result: the set of all triples 

(A, B, C) of parameters for which there is no substitute fraction contains the intersection 

of a countable family of Zariski dense open subsets of C3. 

This substitute fraction would write 

where c(, j and 7 are natural numbers and ,f’ is an homogeneous polynomial of degree 

r+B+;’ such that v,F, + V,F, + VZFZ = A, where n is some linear form Lx++~_v+ W. 

Moreover, J‘ is not proportional to the denominator x7,vfizY’. 

This leads to the fact that the polynomial 

x(Cy + z ).f; + y(Az + x)fl; + z( Bx $- y)f, 

-.f’(x(Cy +z) + B(Az +x) + y(Bx + y)) 

is equal to some multiple clxzy~z7 of x’ylizY. 

For every triple of natural numbers (u, j$ ;1), the existence of such an J‘ is a linear 

algebra problem in the coefficients of the unknown polynomial ,f of degree x + [j + ;I 

(setting to 0 some linear combinations). 

Classical elimination by determinants shows that this problem has a non-trivial so- 

lution if and only if (A, B, C) belongs to some Zariski closed subset of C3. 

Either a Zariski closed set is the whole space or its interior is empty. To conclude 

the proof, it remains to show that none of these sets (depending on (c(,/j,;:)) is the 

whole space C3. 

At that point, our proof is similar to Jouanolou’s proof it suffices to find one triple 

of parameters for which no substitute fraction exists. 

Choose (A, B, C) = (O,O, 0), i.e. V, = XZ, V, = yx, V; = zy. A substitute fraction F 

would be of the form F = f/x”_yfizi., with for instance, x # 0 so that f would not be 

divisible by X. 
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Now call P the homogeneous 2-variable non-zero polynomial obtained by setting 

x = 0 in f. This polynomial P would satisfy identity 

zyPz - P(cxz + ry) = 0. 

In order to balance terms of maximal degree in z, a has to be 0, which is a contradiction 

that achieves the proof. 
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