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Abstract

Founded by J.F. Ritt, Differential Algebra is a true part of Algebra so that constructive and
algorithmic problems and methods appear in this field. In this talk, I do not intend to give
an exhaustive survey of algorithmic aspects of Differential Algebra but I only propose some
examples to give an insight of the state of knowledge in this domain. Some problems are known
to have an effective solution, others have an efficient effective solution which is implemented in
recent computer algebra systems, and the decidability of some others is still an open question,
which does not prevent computations from leading to interesting results.

Liouville’s theory of integration in finite terms and Risch’s theorem are examples of prob-
lems that computer algebra systems now deal with very efficiently (implementation work by M.
Bronstein).

In what concerns linear differential equations of arbitrary order, a basis for the vector space
of all liouvillian solutions can “in principle” be computed effectively thanks to a theorem of
Singer’s [17, 22]; the complexity bound is actually awful and a lot of work is done or in progress,
especially by M. Singer and F. Ulmer, to give realistic algorithms [20, 21] for third-order linear
differential equations.

Existence of liouvillian first integrals is a way to make precise the notion of integrability of
vector fields. Even in the simplest case of three-dimensional polynomial vector fields, no decision
procedure is known for this existence.

Nevertheless, explicit computations with computer algebra yield interesting solutions for special
examples. In this case, the process of looking for so-called Darboux curves can only be called a
method but not an algorithm; for a given degree, this search is a classical algebraic elimination
process but no bound is known on the degree of the candidate polynomials.

This paper insists on the search of liouvillian first integrals of polynomial vector fields and
a new result is given: the generic absence of such liouvillian first integrals for factorisable
polynomial vector fields in three variables.

Resumé

L algebre différentielle a été fondée par LF. Ritt et c’est devenu une partie de 'algébre ou
apparaissent des questions et des méthodes de nature algorithmique. Dans cet exposé, je n’ai pas
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la prétention de donner une vue exhaustive des aspects algorithmiques de 1’algebre différentielle.
Je propose seulement quelques exemples pour donner une idée de ce qu’est I’état de ’art sur ces
questions. On sait que certains problémes ont une solution algorithmique ; pour d’autres, cette
solution peut étre considérée comme efficace et elle est implantée dans les systémes de calcul
formel récents ; pour une autre catégorie de problémes, des questions de décidabilité ne sont
pas encore résolues, ce qui n’empéche pas que des calculs effectifs donnent déja des résultats
intéressants.

La théorie de Liouville de l’intégration en termes finis et le théoréme de Risch sont des
exemples de ce que les systémes actuels de calculs formel savent mettre en ceuvre efficacement
(citons en particulier le travail d’implémentation réalisé par Manuel Bronstein).

Pour ce qui est des équations différentielles linéaires d’ordre quelconque, on peut en principe
déterminer une base de 1’espace vectoriel des solutions liouvilliennes grice a un théoréme de
Michael Singer [17,22]. Mais la complexité rend ce résultat théorique impraticable. Beaucoup
de travail a été réalis¢ ou est en cours pour traiter de fagon réaliste le cas des équations du
troisiéme ordre (par Michael Singer et Felix Ulmer en particulier) [20, 21].

L’existence d’intégrales premiéres liouvilliennes est une maniere de préciser ce que peut étre
I’intégrabilité des champs de vecteurs. Méme dans le cas le plus simple des champs de vecteurs
polynomiaux a trois dimensions, aucune procédure de décision de cette existence n’est actuelle-
ment connue. On ne peut qualifier la recherche de courbes de Darboux que de méthode et non
d’algorithme : pour un degré donné, cette recherche est un probleme classique d’élimination
algébrique, mais on ne sait toujours pas borner a priori le degré d’éventuelles courbes de Dar-
boux pour un champ de vecteurs donné.

Ce travail insiste sur la recherche d’intégrales premiéres liouvilliennes et présente un résultat
nouveau : ’absence générique de ces intégrales premieres pour des champs de vecteurs polyno-
miaux factorisables a trois variables.

1. Three problems in differential algebra

We shall deal with the following definition of a differential field K.

Let K be a field of characteristic zero. A derivation d of K is an additive map-
ping from K to itself that satisfies Leibnitz rule d(xy) = d(x)y + xd(y) for the
derivation of a product. K is then said to be a differential field. The usual rule
for the derivation of a quotient can easily be derived from the definition. The sub-
set C of all elements of K whose derivative is 0 is a subfield of K, the field of
constants. In certain cases, it can be useful to consider many commuting deriva-
tions, in order to mimic the usual partial derivatives with respect to space
variables.

I will now say some words on three problems in this domain: elementary integration,
liouvillian solutions to linear ODE and liouvillian first integrals of polynomial vector
fields in order to emphasize the importance of algebraic and algorithmic approaches
in differential algebra. I will only give a brief and very incomplete survey of the first
two; I will be more explicit on the third.
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2. Elementary Integration

2.1. Elementary extensions

This question dates back to the work of Joseph Liouville who stated the following
definition of clementary extensions of a given differential field KX of functions.

Let (K,d) be a differential field. A differential extension field (L,d) is said to be
elementary if there exists a finite tower of intermediate differential fields

(Ko.d) = (K.d) C(K,,d) C - - - C(K, d) = (L, d),

such that each K; is generated over the previous one K;_; by a single element ¢; which
is an elementary generator, i.e. ,
either 0; is algebraic over K; |, in which case the derivation d on X; is uniquely
defined,
or #; is transcendental and an exponential over K;_;, which means that there exists
an element # in K;_, such that d is defined on K; by d(0;) = 0:d(n),
or 0; is transcendental and a logarithm over K;_;, which means that there exists an
element # in K;_; such that d is defined on K; by d(8;) = d(n)/n.

2.2. Liouville’s principle

Let f be an element of some differential field (K,d). If f admits an elementary
integral, i.e. if there exists an elementary differential extension (L,d) of (K,d) and an
element F of L such that d(F) = f, then, this elementary integral F writes

n
F=uvy+Y ¢ log v,
i=1
where vy belongs to K and the other v, to some extension K of K by a finite number
of algebraic constants, whereas the ¢; are constant elements of K.

2.3. Algorithmic aspects

Liouville gave an rather analytic proof of his statement. In his “Integration in finite
terms”, Ritt [16] still used analytic arguments. Rosenlicht [15] was the first to give a
purely algebraic proof of this result, which is algebraic in its nature.

This algebraic result turned into an algorithmic one thanks to Risch [14].

Let (K,d) = (C(x,06,...,0,),d) be a differential field where C is the effective sub-

field of constants. Moreover, suppose that each 8; is a transcendental exponential or

logarithm over K;_;. Then there exists an algorithm that, given an element f of K,

either gives an elementary integral of f or decides that no such integral exists.

Generalizations of this theorem have been given by Davenport [4] (a first algebraic
step is allowed in the tower defining K from C) and by Bronstein [1] (real elementary
integration) among others.
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3. Linear ordinary differential equations

3.1. First-order linear ODE and liouvillian extensions

Let us begin with the first-order affine ODE with coefficients in a given differential
field (K,d) in which we also denote the derivation d by a quote: y' = ay + b.

A solution to this problem divides classically in two steps, solving the corresponding
linear ODE y’ = ay and then making the integration constant vary to achieve the
solution with an integration.

This splitting method leads to the definition of what is now called a liouvillian
extension of a differential field.

Let (K,d) be a differential field. A differential extension field (L,d) is said to be
liouvillian if there exists a finite tower of intermediate differential fields

(Ko,d) = (K,d) C(Ky,d) C - - - C(Kp,d) = (L, d),

such that each K; is generated over the previous one K;_| by a single element 6; which
is an liouvillian generator, i.e.

either 6; is algebraic over K;_|, in which case the derivation d on K; is uniquely

defined,

or 8; is transcendental and an exponential-integral over K;_,, which means that there

exists an element # in K;_; such that d is defined on K; by d(0;) = 0in,

or 6; is transcendental and a integral over K;_;, which means that there exists an

element # in K;_; such that d is defined on K; by d(6;) = 7.

According to the previous definition, a first-order affine ODE can then be solved in
a liouvillian extension (L,d) of the base differential field (K, d).

Moreover, the extension field L can be built with the same field of constants C as
K provided that we can decide what are the derivatives and logarithmic derivatives in
a differential field.

3.2. Kovacic's theorem

In the classical literature on these subjects, the constant field C is always supposed
to be algebraically closed in order to use the so-called Differential Galois Theory of
Picard-Vessiot extensions.

This is especially the case in Kovacic’s algorithm that deals with the second-order
linear differential equation with coefficients in C(x), where C is the field of complex
numbers.

After standard reductions, the equation to be considered writes y = ry, where r €
C(x).

Kovacic’s theorem [8] states that there are precisely four cases that can occur

Case 1. The DE has a solution of the form exp( [ w), where w € C(x).

Case 2. The DE has a solution of the form exp( [ w), where w is algebraic over

C(x) of degree 2 and case 1 does not hold.
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Case 3. All solutions of the DE are algebraic over C(x) and cases 1 and 2 do not

hold.

Case 4. The DE has no liouvillian solution.

If C is changed for a effective algebraically closed subfield of it, the proof of the
theorem leads to a true decision procedure.

Let us remark that the field of constants does not need to be algebraically closed to
perform algorithms [6, 23].

3.3. Algorithms for linear ODE

Thanks to an algorithm of Michael Singer [17, 18], it is possible to decide in principle
if the nth order ODE with coefficients in a finite algebraic extension of Q(x), or even
with liouvillian coefficients, has a liouvillian solution; but this algorithm is far from
being efficient.

Recent algorithmic progresses have been done by Michael Singer and Felix Ulmer
to deal with third-order ODE [20, 21].

Another algorithmic question is to find solutions to ODE is the field of coefficients;
let us simply quote a work of Manuel Bronstein [2] about that.

4, Liouvillian first integrals

4.1. First integrals

In this section, we shall consider 3-dimensional vector fields; the following definitions
about liouvillian extensions are also meaningful in higher dimensions while the sole use
of the Euler’s field as a symmetry is typical of the study of 3-dimensional homogeneous
vetor fields.

Let V' = V.6, + V0, + V.0. be a vector field whose coordinates belong to some
differential field X (for the three commuting derivations ¢, ¢, and 0;).

A first integral of V is an element f of a differential extension field L of K that
satisfies

Vv(qrf + V\alf + Vzazf =0.

To be of any interest, f is supposed not to be constant (one of the partial derivatives
of f at least is not 0).

This is an algebraic translation of a well-known analytical property: to be constant
on the trajectories of the local semi-group generated by the vector field.

A vector field (or the corresponding system of autonomous differential equations)
is usually said not to be integrable if there does not exist any first integral of it
in a prescribed class. This class strongly depends on the speaker; we are interested
in liouvillian first integrals, i.e. in first integrals that belong to liouvillian differential
extensions of the base field.
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4.2. Liouvillian extensions with several derivations

By analogy with the ordinary differential case, Singer [19] defined the notion of a
liouvillian extension of a differential field K when K has several commuting derivations
d i

This definition still relies on the construction of a tower with finitely many levels.

Let (K, {d;}) be a differential field with several commuting derivations {d;}.

A differential extension field (L, {d;}) is said to be liouvillian if there exists a finite
tower of intermediate differential fields

(Ko, {di}) = (K, {di}) C(Ky, {d:}) C - - C(Ky, {di}) = (L. {d:}),

such that each K; is generated over the previous one K;_; by a single element 6; which
is an liouvillian generator, i.e.,
either §; is algebraic over K;_;, in which case all derivations d; on K; are uniquely
defined (and they still commute with one another),
or 0; is transcendental and an exponential-integral over K;_;, which means that there
exists elements #; in K;_; such that d; is defined on K; by d;(0;) = 0,
or 8; is transcendental and a integral over K;_;, which means that there exists ele-
ments #; in K;_| such that d; is defined on K; by d4,(t) = ;.
In these last two cases, elements n; have to satisfy the property of the cross-
derivatives, di(7;) = d;(nc), in K;—1.

4.3. 3-dimensional polynomial vector fields

Let V = V0, +V,0,+ V.0, be a polynomial homogeneous vector field, which means
that its coordinates are homogeneous polynomials of the same degree in the three space
variables x, y, z with coefficients in a given field of constants C.

The base field of the construction is then K = C(x, y,z), the field of rational fractions.
This field K is then a differential field for derivations 0y, 0, and 0,.

Due to the homogeneity of the problem, it seems natural to look for liouvillian first
integrals f that are moreover homogeneous of degree 0.

According to Euler’s formula in the case of polynomials, f will be said to be
homogeneous of degree 0 if it is a first integral of Euler’s field £ = xd, + yd, + z¢,,
ie. if X0 f + y0,f +2z0.f =0.

It can be shown [9] that such a homogeneous polynomial vector field ¥ has a
liouvillian first integral of this kind if and only if there exists some 1-form @ = w,dx+
w,dy + w.dz with coordinates in the polynomial ring C[x, y,z] with the following
properties:

w is orthogonal to the given field ¥, ie. Viows + V0, + Vo, = 0,

 is not projective, i.e. xwy + yw, + zo, # 0,

w is integrable, i.e. satisfies Pfaff’s condition w A dw = 0, where dw is the exterior

derivative of w.

A similar result without 1-forms can be found in [18].
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As in Liouville’s principle or in Kovacic’s theorem, this means that if a solution is
in a prescribed class (here the first integral f belongs to a liouvillian extension of K')
it has to be of a very special form (here f is built from @ which has very special
properties).

4.4. Darboux curves

The notion of Darboux functions is closely related to this problem and dates back
to a memoir by Darboux [3].

A homogeneous polynomial f is said to be a Darboux polynomial of the homoge-
neous polynomial vector field V if the polynomial V&, f + V¢, f+V.C.f is a multiple
of

Vxer/l =+ V\C\f + Vzazf - Afa

where A is some homogeneous polynomial in K[x, y,z].

This is an algebraic translation of an analytic fact: the subset where f = 0 is
invariant under the action of the local semi-group generated by V.

Irreducible factors of a Darboux function are Darboux functions and we will call
them Darboux curves because they define plane projective algebraic curves.

Relations of Darboux functions with our integrability result are the following.

If w is a good I-form in the sense of the previous result, the inner product xw, +

yw, + zw; is a Darboux function.

On the other hand, if there are sufficiently many Darboux curves [3, 18], it is easy

to build a good 1-form « from a linear combination of the logarithmic derivatives

of these functions.

These relations can then be used in two different ways. In one direction, finding
sufficiently many Darboux curves leads to an integrability proof. In the other direction,
proving the nonexistence of Darboux curves excludes integrability.

4.5. A result of Jouanolou and an effectiveness problem

Jouanolou considers the general homogeneous polynomial 3-dimensional vector field
of a given degree m [7]. He proves that such a field is generically not integrable (here
the constant field is the field C of complex numbers and genericity refers to Baire
category classification).

To get this result, as we have just said, it suffices to prove that a generic vector
field has no Darboux curve.

Moreover, due to simple algebraic remarks about Zariski closed sets, it is even
sufficient to prove that there exists some vector field without any Darboux curve.

For a given m =2, Jouanolou chooses the special vector field

.
Vig =20y +x"0, + y"0:

and proves that this vector field V,, has no Darboux curve.
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His proof is very clever and uses subtle arithmetic properties.

In a recent work with Andrzej Nowicki and Jean-Marie Strelcyn [10], we gave some
development of these ideas in more than 3 dimensions in particular.

A difficult algorithmic question, that dates back to some papers of Poincaré [11-
13], remains open: effectively decide if a given vector field in integrable or not, in
the previous sense, or at least, decide if there are sufficiently many Darboux curves.
Given the degree, it is not too difficult, in principle and with the help of computer
algebra systems, to decide if there is a Darboux function of a given vector field with
this prescribed degree: it is a matter of algebraic elimination. But there is no known
reason in general to give a bound to the degree of the candidate functions.

In order to get some insight in this decision problem, we studied a special family
of 3-dimensional quadratic vector fields that are called factorisable. The last section of
this paper is devoted to this study.

5. Integrability of factorisable vector fields

5.1. Factorisable vector fields

Consider 3-dimensional quadratic vector fields of the following form:
V = x¢.0x + y$,0, + 2¢,0;,

where ¢y, ¢, and ¢, are linear forms i.e. first degree homogeneous polynomials in x,
vy and z (in [10] we only asked that the ¢; are homogeneous polynomials of the same
degree, not necessarily 1).

Such vector fields are called factorisable. Sonia Kovalewska was apparently the first
to consider these vector fields and to ask when they are integrable.

A factorisable vector field is characterized by 9 parameters, the coefficients of the
three linear forms.

It is possible to do some reductions in order to restrict the problem to a 3-parameter
one by only considering vector fields V, gc, where

Ve=x(Cy+z), Vy=y(dz+x), V.=z(Bx+y).

In this form, we give the vector field the name of Lotka-Volterra, because the corre-
sponding system of autonomous differential equations appears in the study of a predator-
prey system by Lotka and Volterra.

The first argument for the previous reduction consists in the following remark. We
are interested in finding liouvillian first integrals homogeneous of degree 0 for a fac-
torisable vector field. The problem is then invariant by addition of a multiple of Eu-
ler’s field to our field, in such a way that we can choose canonical elements of the
corresponding equivalence classes: factorisable vector fields for which the “diagonal”
coefficients ¢y, ¢y, ¢, are 0. We thus restrict ourselves to a six-parameter problem.
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A second argument can be used to reduce the space of parameters: our problem is
invariant under the action of the (3-dimensional) diagonal group of linear changes of
variables. By only excluding some rare cases it is then possible to choose the previous
Lotka-Volterra normal form with only three parameters.

The problem is then to study for which triples of parameters (4, B, C), the vector
field V, 5¢ has a good I-form w.

5.2. Integrability results for Lotka-Volterra vector fields

Let us call K = (4, B, C) the field of constants. A good 1-form w exists if and only
if we can find a closed 1-form @ with coefficients in K(x, y,z) which is orthogonal to
V. Indeed, we can choose @ = w/P, where polynomial P = xw, + yw, + zm.. In the
other direction, we get @ from @ by a multiplication and, as @ is closed, its multiples
satisfy Pfaff’s integrability condition.

By the very definition of factorisable vector fields, curves x, y and z are Darboux
curves. We will say that a factorisable vector field has a fourth Darboux curve if there
exists a Darboux function f which is not a multiple of x, y or z. In such a case, we
get four Darboux functions x, v,z and f with the eigenvalues Cy 4z, 4z + x, Bx + v
and A = 2x + 4,y + /:z.

The four linear forms cannot be linearly independent and some non-trivial linear
combination with coeflicients in K, (a(Cy+z)+ f(Az+x)+7y(Bx+y)+0A) is equal to 0.

Then (adx/x) + B(dy/y) + w(dz/z) + o(d f/f)) is the sought closed 1-form @ and
the vector field is integrable.

Careful computations with a specially designed computer algebra program allowed
us to find all values of (4, B,C) for which such a fourth Darboux curve exists up to
degree 6. There are general families of such triples and also exceptional ones that seem
to be of a special arithmetic type.

We were able to state a genericity result for which we give some details below:
generically, ¥V, p¢ has no fourth Darboux curve.

As we have seen above, a fourth Darboux curve is a sufficient reason to have a
liouvillian first integral but this reason is not necessary.

Another way to build such a liouvillian first integral is to find some nonconstant
rational fraction F = N/D where the denominator D is a product of powers of the
coordinates, where the numerator and denominator are homogeneous of the same degree
and where V.0 F + V,0,F + V.C.F is a first degree homogeneous polynomial.

A good l-form can then be built as a linear combination of the exterior derivative
dF of F with the logarithmic derivatives of the coordinate functions.

There are examples of triples (4,B,C) of parameters (for instance (4,B,() =
(—1,1/2,0)) for which no fourth Darboux curve exists while a substitute fraction can
be used to prove integrability [9]. This show that the original method of Darboux is
not the only one to get liouvillian first integrals.

It is also possible to state a genericity result in this case: generically, V4 g has no
substitute fraction. We give the details below.
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It is not difficult to show that a fourth Darboux curve or a substitute fraction are the
only two possibilities to build a good 1-form. Thus, generically, a factorisable vector
field has no homogeneous liouvillian first integral of degree 0.

5.3. Generic absence of a fourth Darboux curve

The announced result of the generic absence of a fourth Darboux curve for factoris-
able 3-dimensional polynomial vector fields refers to the Baire category classification
of “small” and “big” subsets of R or CF.

This result relies on the two following propositions.

Proposition 5.1. Let V = V,pc be a factorisable vector field in Lotka-Volterra
normal form. Then, if A, B and C are not rational numbers, a fourth Darboux
Sfunction [ for V has to be a polynomial first integral, ie. the eigenvalue A has to
be 0.

Proof. Let f be some Darboux function for V' of degree m and suppose that f in not
a multiple of x, y or z. This means that the three 2-variable homogeneous polynomials
of degree m, P(y,z), O(x,z) and R(x, y) obtained by setting x, y or z to 0 in f, are
different from 0.

Identity

X(Cy+z)fe+ WAz +x)fy +2(Bx+ y)f. = (X +puy +vz)f
yields

AyzP, + yzP, = (uy +vz)P,

xzQy + BxzQ, = (Ax +vz)Q,

CxyR. +xyR, = (Ax + py)R.

Consider now the terms of highest degree in the variable x in the last two equations.
The second equation shows that A is an integral multiple of B while the third shows
that 4 is an integer. As B is not a rational number, /4 has to be 0. The same is true in
what concerns p and v, which achieves the proof of the proposition. [

Proposition 5.2. Let V = V,pc be a faciorisable vector field in Lotka-Volterra
normal form. If [ is a polynomial first integral of V which is not a multiple of x, y
or z, then (—ABCY" = 1, where m is the degree of f.

Proof. With the notations of the above proposition, we get
AyzP, + yzP. = 0,
xzQ, + BxzQ. =0,
CxyRx +xyR, = 0.
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It can easily be shown that P has then to be some multiple of (y — 4z)"; in the
same way, Q is a multiple of (z — Bx)” and R a multiple of (x — Cy)™.
Comparing now the coefficients of x™, y" and z™ in f yields (=4BC)" =1. ]

Now, if the triple (4,B,C) of complex parameters belongs to the countable inter-
section of the Zariski open dense subsets of C3 given by conditions

4¢ Q, B¢ Q C¢ Q, VmeN(—4ABC)" #1,

the corresponding factorisable vector field V5 does not admit any fourth Darboux
curve.

5.4. Generic absence of a substitute fraction

The purpose of this section is to prove the following result: the set of all triples
(4, B, C) of parameters for which there is no substitute fraction contains the intersection
of a countable family of Zariski dense open subsets of C3.

This substitute fraction would write

__/

o oxapbz

where a, f and y are natural numbers and f is an homogeneous polynomial of degree
a+ B+ such that V.F,+V F,+V,F. = A, where A is some linear form Ax+puy+vz.
Moreover, f is not proportional to the denominator x*yfz".

This leads to the fact that the polynomial

x(Cy + Z).fx + VV(AZ + X)fy -+ z(Bx + y)f:
—f(dCy +z)+ B(Az + x) + 7(Bx + »))

is equal to some multiple Ax*y#z7 of x*yPz’.

For every triple of natural numbers («, 5, 7), the existence of such an f is a linear
algebra problem in the coefficients of the unknown polynomial f of degree x + f§ + 7
(setting to 0 some linear combinations).

Classical elimination by determinants shows that this problem has a non-trivial so-
lution if and only if (4,B,C) belongs to some Zariski closed subset of C°.

Either a Zariski closed set is the whole space or its interior is empty. To conclude
the proof, it remains to show that none of these sets (depending on (o, f3,7)) is the
whole space C°.

At that point, our proof is similar to Jouanolou’s proof: it suffices to find one tripie
of parameters for which no substitute fraction exists.

Choose (4,B,C) = (0,0,0), i.e. Vy =xz,V, = yx,V. = zy. A substitute fraction F
would be of the form F = f/x*yPz7, with for instance, x # 0 so that f would not be
divisible by x.
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Now call P the homogeneous 2-variable non-zero polynomial obtained by setting
x =0 in f. This polynomial P would satisfy identity

zyP, — P(az +yy) = 0.

In order to balance terms of maximal degree in z, « has to be 0, which is a contradiction
that achieves the proof.
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