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REsuME. — En nous inspirant de la démonstration d’un théoréme de non-intégrabilité de
J.-P. JouanoLou, nous décrivons une méthode générale pour prouver 1’absence de constantes
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196 J. MOULIN OLLAGNIER, A. NOWICKI AND J.-M. STRELCYN

AgsTrACT. — Inspired by the proof of JouanoLou’s non-integrability theorem, we describe
a method for proving the non-existence of non-trivial constants of some derivations in
polynomial rings K [z, ..., z,], where K is a field of characteristic 0.

In some cases, even the non-existence of non-trivial constants of derivations in quotient
field K (z,, ..., ®¥,) can be proved.

When K = R or C, this is equivalent to proving the non-existence of polynomial,
respectively rational, first integrals for some systems of polynomial ordinary differential
equations. Several examples, among which JouaNoLoU’s one, are described in details.

1. Introduction

1.1. THE PROBLEM

The problem studied in this paper is rooted in the classical theory of
ordinary differential equations and in the classical mechanics where the
search of first integrals is one the main tools of investigation.

Let us consider a system of polynomial ordinary differential equations

d ;
(1.1) b e 0 R Y ey
dt
in which all f; belong to the polynomial ring K [z1, ..., @] in n

variables where K is either R or C.

A non-constant element ¢ of K [z1, ..., x,] is said to be a first integral
of the system (1.1) if the following identity holds

n 8
(1.2) Z,':] f; % =0

It is well-known and easy to be proved that ¢ satisfies (1.2) if, and
only if, ¢ is constant on the orbits of system (1.1) of ordinary differential
equations.

Given an arbitrary field K, the mapping d from the polynomial ring
K [z1, ..., x| to itself defined by

n 8
(1.3) d@)=) ., f a_f

is not only K-linear but also satisfies Leibnitz’s rule

Va, BE K|z, ..., 2], d(aB)=d(a)B+ ad(B).
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ON THE NON-EXISTENCE OF CONSTANTS OF DERIVATIONS 197

In the vocabulary of differential algebra, d is a K-derivation or simply
a derivation of the polynomial ring K [z1, ..., x,]| and identity (1.2)
means that ¢ belongs to the kernel of d, i.e. that ¢ is a non-trivial constant
of derivation d.

Let us note that the derivation d is completely defined by its values on
the z;, that are generators of the K-algebra K [z1, ..., z,],

(1.4) dltiy =50, ), LZI15m

and by the fact that it is equal to 0 on K.

Although we are first of all interested in differential equations, one of
our aims is to consider a more general field K instead of R or C, or
even some commutative rings.

At a first glance, it seems feasible to look for a polynomial solution
¢ of a given degree p of equation (1.2) by the method of “indeterminate

coefficients”. A polynomial ¢ of degree p in K [z1, ..., z,] can indeed
be written

& B e B :Z a; it gin

( 5) @( 1, ] n) [}Si1+---+i,,ﬁp AT 1 n >

so that the right-hand side of equation (1.5) can be substituted to ¢ in
equation (1.2).

All that leads to a linear system L (p) for the unknowns {a;, i }.
In principle, for a given p, it is possible to write down the system L (p)
and to solve it; but, finding a general rule to get £ (p) for an arbitrary
p 18 much more difficult.

In fact, the general problem of the existence of non-trivial (i.e. that
do not belong to K') constants of derivations is known to be difficult
and so is the corresponding problem of the existence of non-trivial (i.e.
non-constant) first integrals of systems like (1.1). We are faced with the
lack of a general method and have to deal with examples case by case.

Given a ring R endowed with a derivation d, i.e. an additive mapping
from R to R that satisfies Leibnitz’s rule, the subring of its constants is
denoted by R?:

R®={a€R, d(a) =0}
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198 J. MOULIN OLLAGNIER, A. NOWICKI AND J.-M. STRELCYN

Recall that when R is without zero divisors, the derivation d can be
extended in a unique way to its quotient field by setting

d(ﬁ):d(P)Q—Pd(Q).

Q Q?

We shall use the above notations for the ring K [z1, ..., ;] and its
quotient field K (1, ..., ), the field of all rational functions in 7
indeterminates with coefficients in K:

Klzi, ..., za]* = {P € K[z, ..., Za], d(P) =0}

Kizi, ...,z = {f € K |z1, .., za], d(f) = O}

Although all results of this paper are formulated and proved for C-
derivations, they remain valid if instead of C one considers an arbitrary
field K of characteristic zero or even an arbitrary commutative ring
without zero divisors which contains Z as a subring. This will be proven
in Section 7.

1.2. JOUANOLOU’S THEOREM

In Chapter 4 of his fundamental book [8], J.-P. JouanoLou gives the
following beautiful non-integrability result.

TuEOREM 1.1. — Let s > 2 be a natural number and let d be the
C-derivation from Clz, y, z| to itself defined by

(1.6) d(z)=2*, d@)=z°, dR)=vy"

Then, for every polynomial P in Clz, y, z|, the following equation

(1.7) d(F) = PF

does not admit a non-trivial solution F in Clz, y, z]. In particular, the
field of constants C(z, vy, 2)? reduces to C, or equivalently, the system
of differential equations

_ dz 5 L dz -
&8 a o mee . X

does not admit any non-trivial rational first integral.

S
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ON THE NON-EXISTENCE OF CONSTANTS OF DERIVATIONS 199

The theorem would fail for s = 1; the subfield of constants does not
reduce to C as 23 + % + 23 — 3xyz for instance is a constant of d.
Moreover, in this case, equation (1.7) has very simple solutions with
P # 0; for example, P=1and F =z + y + 2.

Let us note that the passage from non-solvability of equation (1.7) to the
triviality of the subfield of constants C(z, y, z)? is very easy. Consider
indeed an element P/Q of C(z, y. 2)? i.e. a constant of derivation d.
Without lost of generality, polynomials P and ) can be supposed to
be relatively prime and d (P/Q) = 0 writes d(P)Q = d(Q) P so that
there exists a polynomial G in C(z, y, z) such that d(P) = GP and
d(Q) = GQ. By Jouanolou’s theorem, P and ) are constants and P/Q
belongs to C.

In fact we are here in presence of the completely general statement

concerning any C-derivation d : C[zy, ..., z,]—=C[z1, ..., z,]. f F

and G are non-zero relatively prime polynomials from C[z1, ..., z,]then
d(F/G)=0

(1.9) if and only if

d(F) = PF and d(G) = PG,

for some-P € Clry, ..., m]

Consider now equation (1.7) for P = 0, i.e. try to find some non-
constant polynomial, that will be a first integral of system (1.8). At the
present time, we do not know any direct proof of the fact that no such first
integral does exist, even for the most simple case s = 2. The remarks of
the previous section about intrinsic difficulties of the computations of the
linear system £ (p) of equations are fully confirmed here. In particular,
we have to make use of computer algebra to write down £ (10) and no
general rule for £ (p) appears.

In what concerns non-solvability of equation (1.7), the direct proof
for second degree polynomials F' is already astonishingly long and
complicated.

1.3. ON THE PROOF OF JOUANOLOU'S THEOREM

In JouanoLou’s book, two different proofs of his theorem are given. The
first one, described on pages 160-192, is due to JouanoLou and the second
one, sketched on pages 193-195, is due to the referee of the book. Both
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200 J. MOULIN OLLAGNIER, A. NOWICKI AND J.-M. STRELCYN

of them essentially use some elementary facts from algebraic geometry
in their conclusion.

Trying to understand the second proof, we have gradually realized that
the starting point of it relies on some very clever and general ideas, which
can be applied to many other derivations, mainly but not exclusively to
derivations where polynomials f; (see 1.4) are homogeneous polynomials
of the same degree.

This class of derivations is already very large and far from being
understood and the same is true in what concerns the corresponding
systems (1.1) of ordinary differential equations.

In fact, all arguments used here apply without any significant change
to the larger class of derivations where all polynomials fi are quasi-
homogeneous of the same appropriate degree.

The first place where a link between algebraic geometry and the search
of first integrals or equivalently with the search of constants of derivations
has been made, seems to be the famous memoir [2] by Darsoux in which
non-trivial solutions of equation (1.7) are the main tool of investigation.
See also the POINCARE’s papers [15]-[17] related to DarBOUX’s ideas. It
will not therefore be surprising to find relations with some of DARBOUX’S
ideas in the proof under consideration.

The second proof of Jouanolou’s theorem is unfortunately written in
an extremely concise way and there is a gap at the end of it: in fact,
the conclusion only holds for a natural integer s > 1 that satisfy s # 1
(mod 3). Nevertheless, the proof is complete in the crucial case s = 2.

1.4. ORGANIZATION OF THE PAPER

The aim of the present paper is twofold: first, we give a complete proof
of Jouanolou’s theorem together with a detailed discussion of all its steps;
second, we show on examples how some of the ideas, on which this proof
is based, can be used to derive the non-existence of non-trivial constants
of derivations.

More precisely, the proof under consideration divides in two parts,
the “local analysis”, which is fairly general and the “global analysis”
which relies on elementary algebraic geometry and is very specific to
Jouanolou’s example.
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ON THE NON-EXISTENCE OF CONSTANTS OF DERIVATIONS 201

This is a remarkable fact that in many non-trivial examples, local
analysis is sufficient to yield the non-existence of non-trivial constants
of derivations.

The paper is then organized as follows: in Section 2 all general notations
and useful facts are presented, Section 3 consists in a detailed description
of the proof of Jouanolou’s theorem.

In Sections 4-6, we consider three multidimensional examples for which
local analysis is a sufficient tool to derive the non-existence of a non-trivial
constant of derivation in C[z1, ..., z,] or even in C(z1, ..., z,).

In the vocabulary of differential equations, this means the non-existence
of polynomial, or even rational, first integrals for the corresponding systems
of ordinary differential equations.

The short Section 7 contains an extension of the results of this paper
from the field C to the general case of fields of characteristic zero or
even to some rings.

Let us finally underline that, as we planned to make this paper self-
contained and intended for a wide audience, only a standard mathematical
background is required.

Some examples from this paper were presented by the third author
in March 1992 at Dynamical Systems Seminar of the Mathematical
Department of Warsaw University. During this seminar, the problem
of finding a more analytico-geometrical proof of Jouanolou’s theorem was
formulated.

Recently, one of the participants to this seminar, H. ZotADEK, gave in
[19] such a proof. As we learnt form this paper two more proofs of
Jouanolou’s theorem were given in [1] and [12].

2. Preliminaries

2.1. HOMOGENEITY AND DARBOUX POLYNOMIALS

One of the main tools in our investigations is the well-known Euler’s
theorem on homogeneous functions ([3], [4]): if Q is an homogeneous

polynomial of degree s > 1 in Clz1, ..., z,], then
n 9Q
(2.1) ZE:I B sQ.
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202 J. MOULIN OLLAGNIER. A. NOWICKI AND J.-M. STRELCYN

Let now Vi, .... V,, be n homogeneous polynomials of the same
degree s in C|z1, ..., z,] and consider the derivation dy- defined by

(2.2) dy (zi) = Vi 1<t<mn.

If polynomial F is a constant of dy- in C[z1, ..., x,] i.e. satisfies
n oF

(22 dv (F) = Zi:] Vi dx; T

then this identity also holds for all homogeneous components of F'. Thus,
when studying the equation (2.3), without any restriction of generality,
one can suppose that the unknown non-constant polynomial solution F' of
equation (2.3) is a homogeneous polynomial of some degree m > 1.

In fact, we shall be interested by the more general equation

n OF
(2.4) dv (F)=) ._ Vi 5~ PE
in which F is an unknown polynomial of some degree m > 1, while
the “eigenvalue” P is some unknown element of Clz1, ..., z,]. In fact
P is an eigenvalue of the linear differential operator dy- for which F is
an eigenvector.

Let us now make precise some notions that date back to DARBOUX’S
memoir [2]. We are of course responsible for the names given to these
notions.

A non-trivial solution F' of equation (2.4) will be called a Darboux
polynomial of derivation dy and the algebraic hypersurface {F =0} in
C" a Darboux manifold.

When F is non-constant and homogeneous, then instead of C" one
considers the Darboux manifold { F' = 0} in the projective space P"~1(C).
In this case, when n = 3, Darboux manifolds are called Darboux curves.
Let us remark that the notion of a Darboux polynomial is still meaningful
if the polynomials Vi, .... V,, are not homogenecous.

Darboux polynomials with P # 0 are well-known in the theory of
polynomial differential equations; they coincide with the so-called partial
first integrals: although F is not a first integral of the vector field
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ON THE NON-EXISTENCE OF CONSTANTS OF DERIVATIONS 203

V.= (V1, ..., Vp), even if P # 0, the subset of C" where F = 0
consists of full orbits of the system (1.1).

The homogeneity of polynomials Vi, ..., V,, together with the fact that
they are of the same degree, has the following consequence.

Lemma 2.1. — Consider the derivation dy defined by (2.2) and its
Darboux polynomial F which satisfies (2.4). Then P is homogeneous and
all homogeneous components of F also satisfy (2.4).

Proof. — If equation (2.4) is satisfied, then

n OFTt
(2.5) dy (FY)=3 "V === PrEh

where GT denotes the homogeneous component of the highest degree of
the polynomial G.
Let us note that if the equation (2.4) is satisfied then also

oF~—

(2.6) dy (F7) =3 Vim—

=P I,

where G~ denotes the homogenous component of the lowest degree of G.
Let us write now

vtk p+l

the homogeneous decomposition of P and F respectively. We suppose
that P, # 0, R,:.H, 75 0, JFH # 0 and Fﬂ-f-’ 5= O

Comparing the degrees of both sides of the equalities (2. 5) and (2.6)
one obtains that

s=1+p+l=@w+k)+(n+!) andthats—1+p=v+u

respectively. Consequently & = 0 and thus P is homogeneous.
Now our assertion is evident. W

Then when proving the non-existence of the non-trivial solution F' of
the equation (2.4), without any restnctlon of generality one can suppose
F and P to be homogeneous.
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204 J. MOULIN OLLAGNIER, A. NOWICKI AND J.-M. STRELCYN

Let us note that even for the derivation dy- defined by (2.2), its Darboux
polynomials are not necessarily homogeneous. Indeed, let n = 2 and let
d(z1) = 21, d(z2) = 2. Then d(F) = 2F for F = z} + 3.

Let us also note that for n = 2 and for any derivation dy defined
by (2.2) with V;, V2 homogeneous polynomials of the same degree, a

Darboux polynomial always exists. Indeed, when F' = x4 Vo—22V1 #0
than dy (F) = PF, with

Vi OV

P=—+4+—.
3$1 3:82

When F = 0, then it is easy to see that dy (z1 — x2) = (z1 — x2) g for
some g € Clz1, x2].
Thus in future, when studying the non-existence of Darboux polynomials,
we will only consider the case n > 3. ;
Independently of homogeneity conditions, Darboux polynomials enjoy
the following stability property.

LemMa 2.2. — Let F be a Darboux polynomial of the derivation d defined
by (1.3). Then all factors of F are also Darboux polynomials of d.

Proof. — First, let G be an irreducible factor of polynomial F', which writes
F = G® H, where G and H are relatively prime in C[z1, ..., z,] and «
is a strictly positive integer. Let P be the eigenvalue corresponding to F*:

d(F)=aG*'Hd(G)+G*d(H) = PF = PG*H.
As G and H are relatively prime, G must divide d(G), i.e. G is a
Darboux polynomial of d.
Now, as a product of Darboux polynomials is also a Darboux polynomial,
every factor of F' is a Darboux polynomial of d. W

Thus, looking for non-trivial Darboux polynomials of a given derivation
d reduces to looking for irreducible ones. Moreover, if a rational function
which a first integral of derivation d is written as a quotient of two
relatively prime polynomials, then all irreducible factors of its numerator
and denominator are Darboux polynomials of d.

2.2. DEGREE AND MULTIPLICITIES OF PLANE ALGEBRAIC CURVES

In the two-dimensional projective case, irreducible homogeneous
polynomials (in three variables) define plane algebraic curves. The
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ON THE NON-EXISTENCE OF CONSTANTS OF DERIVATIONS 205

multiplicities of a curve at various points of P?(C) and the degree
of the curve are related by an inequality which plays a crucial role in the
second part of the proof of Jouanolou’s theorem.

Let us now make the definition precise and state this inequality.

Let F' be a homogeneous irreducible polynomial of degree m in
Clz, y, 2].

Take some point M of the projective plane P? (C) and let (a, b, ¢) be
a representation of M in homogeneous coordinates. In order to define the
multiplicity of F' at M, we have to choose local affine coordinates; without
lost of generality, we can assume that ¢ # 0 and that it can be set to 1.

Denote then by f the (non-homogeneous) two-variable irreducible
polynomial defined by f(z, y) = F(z, y, 1). Polynomial f is not 0
and its degree is at most m, the degree of F.

Consider now the Taylor’s development of f around point (a, b):

m
f:Zi:U h,-(w—a, y"b):
where each /; is an homogeneous two-variable polynomial of degree i.

Let 1 be the lowest degree ¢ for which A; is not 0; this natural number
does not depend on the choice of local affine coordinates, but only on
polynomial F' and point M. Thus, it can be written py; (F) and defined
as the multiplicity of F' at M.

The multiplicity is strictly positive (par (F') > 0) iff F(M) =0 i.e. if
curve {F' = 0} passes through point M. Points at which the multiplicity
of a given F' is 1 are the ordinary points of the curve and those where
par (F) > 1 are multiple points of it. It is a well-known fact that an
irreducible curve has only finitely many multiple points in the projective
plane P2 (C) (see for instance [5], p. 69).

Moreover, if F' and G are relatively prime homogeneous polynomials
in C[z, y, z], the set of their common zeroes in P? (C) is finite. More
precisely, according to a theorem due to BEzour (see [5], p. 112),

ZMePz{c) par (F) par (G) < deg (F') deg (G).

This result applies to polynomial F' together with one of its non-zero
partial derivatives to yield

@D D epe e 4 (F) (mar (F) = 1) < deg (F) (deg (F) - 1).
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206 J. MOULIN OLLAGNIER, A. NOWICKI AND J.-M. STRELCYN

In fact, a stronger inequality holds for an irreducible homogeneous
polynomial F' (see [S] p. 117):

(2.8) Zﬂepg(c) s (F) (par (F)—1) < (deg (F) —1) (deg (F) —2).

Strangely enough, inequality (2.7) is not sufficient to conclude the proof
of Jouanolou’s theorem; we need the full strength of inequality (2.8).

2.3. DARBOUX POINTS

Let us now resume our study of equation (2.4); we are looking for
an homogeneous irreducible non-trivial polynomial F* of some degree m
and an homogeneous polynomial P of degree s — 1 such that equations
(2.4) and (2.1) hold:

n oF
: (F) = V; — = PF,
(2.9) dy (F)=)__ ra i
n oF
(2.10) PR L

Adding the product of equation (2.9) by =, and the product of equation
(2.10) by (—V,), we get an equation in which the partial derivative of F
with respect to the last variable z,, no longer appears:

@) Y (@a Vi -2 V) STF . P iy

According to Euler’s formula (2.10), equation (2.9) and (2.11) are in
fact equivalent for homogeneous polynomials F' of degree .

A point Z € P"~1(C) will be called a Darboux point of derivation
dy if vector V (2) = (Vi(z), ..., Van(2z)) is proportional to vector
z=(z1, ..., zn) for every system z of homogeneous coordinates of Z.

Let then Z be a Darboux point of derivation dy-; without lost
of generality, we can suppose that the last coordinate z, of z =

(21, .--, zn) is equal to 1. By the very definition of a Darboux
point, all differences V; (21, ..., 1) — 2zi Vs (21, ..., 1) vanish so that
[P(21; oo D) =mVa(z1, ..., D] F (21, «+., 1) = 0. Let usstress the
fact that we cannot a priori exclude the possibility that F (21, ..., 1) # 0.
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ON THE NON-EXISTENCE OF CONSTANTS OF DERIVATIONS 207

Choose now the local affine coordinates w;, ..., y,—1 defined by
1 =21+Y, ..., Tn—1 = 2p—1 + Yn—1. This change of coordinates
sends the studied Darboux point Z to the origin of our new coordinate
system.

In what follows, we will adopt the following convention: if some

homogeneous polynomial in n variables 21, ..., z, is denoted by a capital
letter, we denote by the corresponding small letter the non-homogeneous
polynomial in n — 1 variables y1, ..., y,—1, that we get from the

homogeneous polynomial in n variables. For instance, we define f by

(2.12) f(yla ceey yu—l) = F(zl +v, ... Zn—1+Yn-1, ]-)

In this local system of coordinates, equation (2.11) becomes

n—1 d
(2.13) Zi:l (vi — (zi + i) vn) ()—i = (p—muwy,) f.
The study of this equation will be called the local analysis of our derivation
dy . Looking simultaneously at many or all such equations in various
Darboux points and at their relationships will be called a global analysis
of the derivation.

2.4. LocAL ANALYSIS

We are interested by equation (2.13), that we need study around the
point (0, ..., 0) of C"~!. The involved polynomials are in general non-
homogeneous polynomials in n — 1 variables and can be decomposed into
their homogeneous components:

deg (0)
¢ = Zi:() Py

where polynomial ¢;) is homogeneous of degree i; in particular, ¢, is
the constant term of polynomial ¢.

Let p17 (F) be the lowest integer such that f(;) # 0, i.e. the multiplicity
of F' at point Z.

When p(0) # muv, (0), the minimal degree on the right-hand side
of equation (2.13) is uz (F') while it seems to be pz (F) — 1 on the
left-hand side. The contradiction is only apparent since constant terms
(vi = (zi + yi) va)(o) are all 0. Indeed, Z is a Darboux point of dy .
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208 J. MOULIN OLLAGNIER, A. NOWICKI AND J.-M. STRELCYN

Comparing now the terms of minimal degree pz (F') of both sides of
equation (2.13) yields

n—1 dh
(2.14) 2521 (vi — (zi + yi)'U-u)(l) ()TJF =(p- mt:,,_)(“] h,

where £ is the non-trivial (i.e. non-zero) homogeneous component f(,,, (r))

of lowest degree of f.

In equation (2.14), partial derivatives of h are multiplied by linear
homogeneous polynomials and h by a constant.

Then, homogeneous polynomial £ is an eigenvector of a linear derivation

(linear differential operator) dy : C[t1, ..., t,]— Clt1, ..., t,] defined
by
v doh
(2.15) dp(R) =2 o higgy =P
where coefficients [; are linear forms in variables t1, ..., {y;

corresponding matrix.
Of course, inour case, t; = ¢;, 1 <1 <n-—1, xis the constant term
(p — muy) (o) while the /; are the linear components (v; — (zi + yi) vn)(1)-
When the matrix L is diagonalizable, the following lemma is easy to be
proved. We present below two different proofs of it in the general case.

Lemma 2.3. — Let h be a homogeneous polynomial eigenvector of
derivation dj, defined in equation (2.15) where x is the corresponding
eigenvalue. Denote by p1, ..., p, the v eigenvalues of L.

Then, there exist v non-negative integers i1, ..., %, such that

Z;l Piti =X
>y i =deg(h)

First proof. — It is not difficult to see that a linear change of variables
preserves the form of the problem in the following way: the eigenvalue x
remains the same while matrix L is replaced by a suitable conjugate L' of it.

(2.16)
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ON THE NON-EXISTENCE OF CONSTANTS OF DERIVATIONS 209

We thus choose a new basis of C” in which the matrix L’ of the operator
has the Jordan’s form with the ones under the main diagonal.

Let us call ug, ..., u, the coordinates in the new basis. Interval [1, v]
divides in k subintervals [1, 1], [1 + 1, 2], ..., -1 + 1, 1 = V],
corresponding to the various Jordan’s cells of L/, in such a way that
coefficients of matrix L’ are given by

L;j=pi6(, )+ (G +1, 3) 1z
where 6 i1s the Kronecker symbol, 1{ } is the indicator of a subset and i*

stands for the right end of the subinterval to which 7 belongs. Due to the
form of Jordan’s cells, p; only depends on the its cell i.e. p; = p;+.

Keeping the same name A for the transformed polynomial in the Jordan’s
basis, equation (2.15) becomes

v 8]], Bh
2.1 E [T e = '
(2.17) g ti Ou; - Zi#” - Ouit1 A

Here z,¢_+ denotes the sum extended over all indices that are not at
! [ 4

the end of Jordan cells.

Let p be the degree of the non-zero homogeneous polynomial h; h is
a linear combination of monomials u“ of total degree p. Such an « is a
v-tuple (a1, .... a,) of non-negative integers whose sum, noted w ()
and called the weight of «, is equal to p; u® then stands for the product
ugt - cudr.

Polynomial % then writes in a unique way as

h= ZG_ At

Let us now introduce some new notations to conclude the proof. Call e;
the unit v-tuple with coordinate 1 in the ¢-th place and 0 elsewhere.
Equation (2.17) leads to a linear system of equations, in which the
unknowns are the A,

X/\a = (Zi:I Pi (}if) /\o . Zi#ﬁ ) (a,—+1 + 1) /\ﬂ—ei+€z‘+| >

or equivalently
v
e za:x P} A = Zi#ﬁ.m#l) (@41 +1) Aa—eitesss-
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Call § the defect function defined on v-tuples of weight p by

§() = Z:’zl a; (it — i),

where the same notational convention as in (2.17) is used. A value O for
the defect means that the v-tuple has only non-zero coordinates at the
places that are right ends of subintervals.

The above linear system (2.18) is then “triangular” with respect to defect
9, which means that the equation corresponding to « allows us to compute
Ao from some other unknowns with a strictly smaller defect of indices,
provided that the corresponding coefficient x — (Zy pi ;) is not 0.

This system is supposed to have some non-trivial solunon. Let then
3 be a v-tuple of lowest defect among those for which A, # 0. The
equation of system (2.18) corresponding to this 3 can only be satisfied if

the difference x — ZV L Pi B; is 0. So [ is the sought v-tuple.
;e

Second proof. — Let L' be the same matrix as in preceding proof.
Then L' = D 4+ N, where D is the diagonal matrix, N nilpotent one and
DN = N D. This decomposition leads to the decomposition dpr = dp+dx
of the linear derivation dz.. Since N is nilpotent then it is not difficult

to see that for every f € C[t1, ..., t,] there exists such natural number
n that (dy)" (f) =4

Now let dr (h) = x h and let s be the smallest natural number such
that h = (dy)*~1(h) # 0 and dy (h) = 0. Then h is a non-trivial
homogeneous polynomial of the same degree as h. As dy dp = dp dx,
then dp (;l.) = xiz. Hence, the problem is reduced to the easy diagonal
case. H

The following almost obvious proposition will be used in next sections.
We leave its proof to the reader.

ProPOSITION 2.4. — Let us consider the equation

v dh
(2.19) D Btig =xh,
where p1, ..., py, X € C and h is a non-constant homogeneous
polynomial.
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2.4.1. Assume that h = I_] h;j, where h; are monomials (of the same
j=1 -7 .

degree). Then for every j, 1 < j < p, h; also satisfies the equation (2.19).
2.4.2. If the unique solution in non-negative integers of the system (2.16)
is such that ij, # 0 and i; = 0 for all j # jo, 1 < 7 < v, then

ho= ca;(-leg (k)

3 , for some ¢ € C.

2.5. A USEFUL DETERMINANT

The following elementary fact, whose proof is omitted, is well known
(see for example Section 60 of [13]).

Let n > 2 and let ap, ..., a,—1 belong to C. Consider the n X n
matrix A:
0 1 ' N 0 0
0 0 1 0 0
=i ; : : :
0 0 o 0 1
1 el VB e € 0L SR CECDEE  FT ) IEEE s U 0|

Its characteristic polynomial P (\) = det (A — A I) equals
P (’\) = (_l)n (0—'() s e p—1 /\n—l *F /\ﬂ')

This immediately implies the following special case, which will be
useful in the sequel: Let n > 2. Consider the n X n matrix M,,:

-1100 --- 00
£ 01 0 -0 0
-1 001 -- 00
(2.20) e SRR e S
-1 0 0 0 1 0
-1 0 0 0 gi1
-1.0 0 0 0 0/

Its characteristic polynomial P ()) equals

PO)=(D"A"+XA""1+- 4 A4+ 1) = (-1)" Z:’ZO A

so that the eigenvalues of matrix M,, are all (n + 1)-th roots of 1, except
1 itself.
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3. Proof of Jouanolou’s theorem

In the present section, we prove that, for s > 2, the equation

, OF s OF . OF
e £ Oz s Ay 2 9z =
does not admit a non-constant homogeneous polynomial solution F' in
C |z, y, z] for any homogeneous polynomial eigenvalue P of degree
s—1in C|[z, y, z|. As already noticed in Section 2.1 the limitation to
the homogeneous F is not restrictive. Thanks to Lemma 2.2, the unknown
F can be supposed to be irreducible without any restriction of generality.

The first step consists in finding all Darboux points of Jouanolou’s
derivation defined by (1.6), i.e. points of the projective complex plane
where vectors (z, y, z) and (z°, z°, y°) are proportional. That leads to
the following three equations

.‘ITS+1 = yz"’: y,s+1 . ZIS; z.¢+1 = :L.ys

whose corresponding non-trivial solutions represent the coordinates of
S = s2 + s + 1 different points of P? (C). An easy computation shows
that the z-coordinate can be chosen equal to 1 for all these points and

that they are represented by all triple (¢, €571, 1), where £ runs in the
set Ug of all S-roots of unity.

In this particular situation, equation (2 11) writes

(3.2) (z“""l —zy°) = + (z2° —y — =(Pz—-my’)F

where m > 1 is the degree of the sought homogeneous polynomial F'. For
such an F', equations (3.1) and (3.2) are equivalent.
3.1. LocAL ANALYSIS

Let us suppose that equation (3.2) admits a non-constant solution F' in
C [z, y, 2] and let us fix such a solution.

We have now to perform a local analysis of equation (3.2) around every
Darboux point (&, &1, 1) of our derivation.

Choose the following local affine system (u, v) of coordinates

=&(1+u); y =& (1+0).
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Although these coordinates are slightly different from those used in
Section 2.4, all considerations from this section remain valid here with
inessential modification. In this new system of coordinates, equation (3.2)
becomes

((1-e@+u) e 1 +o))e %
(3.3) ¢ S ([6(1 i u)]e — [‘Eh‘+1 (]_ + ’U)]S+1)f_(—s+1} %
i =(p-m[et 1+0)°) f
where

{f(u, v)=F(z,y 1)=F(Q1+u), & (1+v), 1)
p(u, v)=P(z,y,1)=P(EQ+u), £ (1+v), 1).

According to equation (2.14), we have to compute homogeneous
components of degree 1 of the factors by which the partial derivatives
of f are multiplied and the constant term of the right-hand side factor
in equation (3.3).

[(1-€(1+w) [ 1+ 0)°) Y0y = —€7 (u + sv)
[([EQ+w)° - [T Q+o) ey = (su—(s+1)v)
[(p—m[E°t (1+0)))o) =€ (EP(E, £, 1) —m).

Call now 1 (£) the multiplicity of F' at the Darboux point (&, £+ 1)
and h the non-zero homogeneous component of f of degree p (£) < m.

Polynomial /& would satisfy equation (2.14). After a multiplication by
the factor —&, this becomes

(34)  [u+ sv] —g—: + [—su+ (s +1)v] %

=[-¢P (&, &1, 1) + m]h.
The left-hand side of this equation does not dependent on £. Let p; and
p2 be the eigenvalues of the matrix corresponding to the linear differential

operator from on the left-hand side of equation (3.4).
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They are equal to the two complex conjugate numbers p1 = (s + 2 —
isv3)/2 and p3 = (s + 2+ isV/3)/2.

According to Lemma 2.3, there then exists two non-negative integers
i1 (&) and 7 (§) such that

{ i1 (&) + 42 (§) = (),
pri1(€) +p2i2(§) = —EP(E &1, 1)+ m.

The arithmetic relations (3.5) are the departure point for the global
analysis of our derivation.

(3.5)

3.2. GLOBAL ANALYSIS

Denote now be I; and I the sums of numbers i; (£) and 2 (£) at
various Darboux points of the studied derivation and call M the sum of
the multiplicities of the Darboux polynomial F' at all these points :

L= ZEGL’S 11 (§), by ZEEL'}; 2 (£), M = Z{et’s 1 (€).

Summing now all identities (3.5) for all £ in Ug yields

36) hL+hL=M, ph+ph=Sm=(s%+s+1)m.

Indeed, P is an homogeneous polynomial in three variables and its degree
is s — 1. The corresponding one-variable polynomial & P (¢, £°*1, 1) has
a degree at most s and its constant term is O so that it writes

PR Y- Y

and consequently

2

Yo trEet=5. BiE A Tiah

Indeed, for every positive integer j smaller than S, Z&el’ & =0.

As I; and I, are integers, as eigenvalues p; and py are complex
conjugate numbers, and as m > 1, the second identity of (3.6) implies that

v =50 4 1 and equations (3.6) write

(3.7) 2I=M, (s+2I=(s>+s+1)m.
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Applying inequality (2.8) to F' yields

B8) D e, HOWO =D)<Y L, o) o0 (F) (1 (F) = 1)
<(m-=1)(m-2)
so that

2 4 = =
(3.9) ders () < (m—1)(m—-2)+ M.
Now, as the total number of all £ is s* + s + 1,

M? = (deys p(€)’ < (s +s+1) Eeet's (1 (©)°

which, together with (3.7) and (3.9) gives the following inequality involving
I, m and s:

(3.10) 41 f(82+8+1)[(Tn—1)(7?1—2)-{-2”.

3.3. CONCLUSION OF THE PROOF: FIRST CASE

According to (3.7), numbers I, m and s are also related by equality

(3.11) (s+2)I=(s*+s+1)m.

Numbers s + 2 and s> + s + 1 may be relatively prime or not; if they
are so, it will be rather easy to conclude that inequality (3.10) cannot hold,
which will achieve the proof of Jouanolou’s theorem for such s. If they
are not, this proof needs supplementary arguments.

In the first case, where s + 2 and s® + s + 1 are relatively prime, there
exists a positive integer r such that I = r (s> + s+ 1) and m = 7 (s + 2).
After substitutions, the inequality (3.10) becomes

T.,.('r):3827’2—(232—3—4)7'—250.

It is easy to see that the quadratic polynomial T (r), where s is a
strictly positive integer, takes strictly positive values for all strictly positive
integers r. This contradiction completes the proof of Jouanolou’s theorem
in the case where numbers s + 2 and s® + s + 1 are relatively prime, and
then in particular in the crucial case s = 2.
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3.4. THE SECOND CASE

The greatest common divisor of s + 2 and s> + s + 1 is easily seen to
be either 1 or 3. It remains to be supposed that it is 3. In this case, there
exists a natural number ¢ > 1 such that

s=3q+1, s+2=3(¢g+1),
S=s524+354+1=33¢+3qg+1)
and numbers ¢ + 1 and 3¢ + 3¢ + 1 are relatively prime.

(3.12) {

Thus, by (3.11), there would exist some positive integer r such that
I=7(3¢*+3q+1)and m = r(¢g+ 1) and inequality (3.10) would be

T, ()= @ +6q+1) -36¢ +3¢g—1)r—6<0.

For every natural number ¢, 7, (1) < 0 and T,__, (r) > 0 for every natural
number © > 2. Thus we get a contradiction for » > 2; the unique case
which is not excluded up to now is the one of a Darboux polynomial
of degree ¢ + 1. We need supplementary arguments to prove that such a
polynomial cannot exist.

When r =1, I = 3¢®> + 3¢+ 1 and the total multiplicity M of F at all
Darboux points of the derivation, which, according to (3.7), is equal to

(3.13) M=2I=23¢+3q+1),

can be decomposed as follows

s L =l
Z{EE[‘S_p, (&)>1} + ZKEUS-H-(&)EQ} (au‘ (&) )

The first term is simply the total number R of points of curve {F = 0}
among all Darboux points. Thanks to inequality (3.8), the second term
(m—-1)(m-2) _q(g—1)

2
(3.13), yields a lower bound for R:

is bounded above by

, which, together with

: —1
(3.14) Rz2(3q2+3q+1)—‘”q—21.

On the other hand, consider the decomposition of the non-trivial
homogeneous polynomial F' as a sum of monomials:

= Z e < ‘I'i 'Zk
it itk=m=gil fz.;. k yJ

TOME 119 — 1995 — N° 3



ON THE NON-EXISTENCE OF CONSTANTS OF DERIVATIONS 4

The one-variable polynomial ¢ defined by (see (3.12))
() =F( €, H=EE £, 1)

= ., £(39+2) 5
Zi+j+k=m:q+1 fl"‘J'}' ¢

vanishes for R different values of £ in the finite set Ug.

The map (2, j, k)— (i + (3¢ + 2)j) is easily shown to be injective
from the set of all triples of non-negative integers whose sum is ¢ + 1 to
the interval [0, (3¢ + 2)(q + 1)] of integers. As one of the coefficients
fi.j.i at least is not 0, polynomial ¢ is not zero. Its degree is then at
most (3¢ + 2)(q + 1).

As ¢ vanishes in R different points at least, we get an upper bound for R:

(3.15) R<(3q+2)(g+1).

The lower (3.14) and upper (3.15) bounds on R are contradictory: for
a natural number ¢, the double inequality

: -1
232 +3¢+1) - LV < R<3042) (g +1)
leads to the inequality
: -1
(3q+2)(Q+1)—2(3q2+3q+1)+$—2—): —%(5(}—&-3) =0

But this last inequality only holds for ¢ = 0. This contradiction concludes
the proof of Jouanolou’s theorem.

Let us note that the case ¢ = 0 is not excluded by the proof. It
correspond to s = 1 for which we know that some Darboux curves do
exist, as explained in Section 1.2.

3.5. COMMENTS AND REMARKS

3.5.1. — As shown in [14], in three variables, Darboux curves are not
only related to the existence of rational first integrals of an homogeneous
polynomial vector field, but also to the existence of first integrals in a
wider class of functions.

If there are not sufficiently many Darboux curves, it would indeed be
impossible to find a homogeneous Liouvillian first integral for the vector
field.

BULLETIN DES SCIENCES MATHEMATIQUES



218 J. MOULIN OLLAGNIER, A. NOWICKI AND J-M. STRELCYN

The notion of a Liouvillian function in the multivariate case was
introduced by Michael SINGER [18]; it is a way to make precise what
can be defined “in finite terms”, i.e. by means of algebraic extensions,
primitives, and exponentials.

In particular, the Jouanolou’s system does not admit any Liouvillian
homogeneous first integral.

Let us incidently note that another very interesting way to give a precise
meaning to “finite terms” can be found in in A. G. KHovanski’s works
(see [9], [10], where other references can be found).

3.5.2. — In algebraic terms, Jouanolou’s theorem is equivalent to the fact
that derivation d from C [z, y, 2] to itself defined by (1.6) does not admit
any non-trivial principal differential ideal, i.e. an ideal A € C [z, vy, 2]
which is generated by exactly one element of C [, ¥, 2] and such that
d(A) Cc A.

Nevertheless, derivation d has some non-trivial differential ideals, as for
instance, the two-generator ideal A = (y—=, z-12).

3.5.3. — Let us note that from Jouanolou’s theorem (by considering the
terms of highest degree on the both sides of (2.4)) one deduces immediately
the non-existence of Darboux polynomials for any C-derivation of the form

d(z) =2"+ f(z, y, 2)
d(y) =2"+g(z, y, 2)
d(2) =y° +h(z, y, 2),
where 5 > 2, g, h € C[z, y, 2], deg(f) < s, deg(g) < s, deg(h) < s.

3.54. - Let d be a C-derivation of C|[zy, ..., Zy] and let o be a
C-automorphism of C|[z1, ..., z,]. Define the derivation § = o do—1
of C[z1, ..., z,]. Then the non-existence of non-trivial constants or of

Darboux polynomials for d is equivalent to their non-existence for &.

As an example, let us apply this remark to Jouanolou’s derivation
d (for s = 2) and to the linear -C-automerphism o (z, y, z) =
(y +2, ©+ 2, £+ y). Then we obtain the non-existence of Darboux
polynomials for §; = 0 do~! and 6, = 6~ do. The computations gives

() =22 +zz—ay+yz
61(y) =2 +yz —yz + 2z
61(z)=y2+zy—z:1:+z:y

TOME 119 — 1995 — N° 3



ON THE NON-EXISTENCE OF CONSTANTS OF DERIVATIONS 219

82 (z) = 2° + (z — y)?
8 (y )—I +(y~2)2-
8 (2) =y* + (2 — )’
355. — In the proof of Jouanolou’s theorem, the non-trivial

homogeneous component of lowest degree is used. In some cases, the
consideration of components of highest degree may also lead to the
non-existence proof.

As an example, let us consider derivation d from C [z, 3] to itself
defined by

diz)="1way’svw dly)=2" =371
where s > 1 is a natural number. This derivation arises from the left-hand
side of equation (3.2) when z = 1.

Let us now prove that, for s > 1, derivation d does not admit any
non-trivial constant, i.e. that C[z, y]? = C. Indeed, let us suppose
some f € C|[z, y]\ C satisfies d (f) = 0 and let us denote by fT the
homogeneous component of highest degree of f. Then fT # 0 and

8f s+1 _‘?_Ji

The Euler’s theorem on homogeneous functions yields

= 0.

which implies that f* = 0. This contradiction concludes the proof.

Nevertheless, for 8 = 1, derivation d has a non-trivial Darboux
polynomial. Indeed d(f) = pf, where f =z +y+1land p=1—y.

3.5.6. — The analogue of Jouanolou’s theorem fails in positive
characteristic. Let indeed R be any commutative ring of prime
characteristic p > 0 and take s = p. In this case,

dz+y+z)=2?+y*+2P=(x+y+2)
=(@@+y+2) " (z+y+2),
where the derivation d is defined by (1.6).
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3.5.7. — A natural question arises: what happens when more three
variables are considered. More precisely, let us consider the polynomial
ring C[z1, ..., @] and its derivation d defined by

d(z1) =25 and d(z;) =z for 2<i<w
1—1

What about the solvability of equation d (F) = PF for F' and P in
Cleypaa aal?

4. Factorisable derivations

In this section, we describe the first of the three examples in which the
above method, together with specific arguments, leads to the proof that a
typical homogeneous factorisable derivation has no non-trivial polynomial,
or even rational, constants.

Let us recall the following well known notion. Let 7' be a subset of

C and let E be a complex vector space. A finite subset {e1, ..., ex }
L.

of E will be called T-independent if the equality Z : t; e; = 0, where
T

t1, ..., tr € T, implies that t; = --- =t} = 0. In what follows we

will consider exclusively the cases when T' = Z or T' = Zt, where Z*
denotes the set of non-negative integers.

Letn > 2 and let Wq, ..., W, € Clzxy, ..., z,] be homogeneous
Z-independent polynomials of the same degree s > 1.

The C-derivation

(4.1) d(z;) = i Wi, FEisw,

as well as the corresponding system of ordinary differential equations is
called factorisable.

Let us note that usually in the definition of factorisable systems the
conditions of homogeneity and of Z-independence are not required. The
factorisable systems of ordinary differential equations was intensively
studied from a long time; see for example [7] and [6], where many
references on this subject can be found.

One of the main features of factorisable derivations is the fact that
the polynomials z1, ..., T, are always Darboux polynomials of 1it.
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Consequently any polynomial of the form

n 5
4.2) cll.. =%
where C' # 0 and o1, .... «a, are non-negative integers, is also a Darboux
polynomial of it.

First let us prove the following statement which will be useful in the

next section.

ProPOSITION 4.1. — Let d be a factorisable derivation defined by (4.1).

Let us suppose that all its homogeneous Darboux polynomials are of the
form (4.2). Then:

(4.1.1) All its Darboux polynomials are also of this form,

4.1.2) Elatssiv2a)ti= G
Proof. — (4.1.1). Let F € C[zy, ..., x,] be a Darboux polynomial, i.e.
d(F) = PF for some homogeneous P € C[z1, ..., z,]. Let F = ZF,—

be the homogeneous decomposition of F'.

If F; # 0 for only one 7, our conclusion is evident. If this is not the
case, one can find two different indices ¢ and j, such that F; # 0 and
F; # 0. From Lemma 2.1 we know that

(4.3) d(F;)=PF, and d(F;)= PF,.

In virtue of our assumptions we know that F; = az]"

that F; = b:c‘f‘ :cf,“, b # 0, where

mln
e Zn™; 6 %0 and

(4.4) ey B o U PR - 5

As F; and Fj; are Darboux polynomials of d, then one immediately
obtains that

A(F) =a (Y ax Wi)af" ... 2,
d(E) =5 B W)z ...zl

Now, (4.3) implies that
P=ZGL-W;.- = ZﬁA-Wk
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and thus Z (g — Br) Wi = 0. From the assumption on Z-independence
of Wi, ..., W, one deduces that o = G for 1 < k < 7.7 ‘Ths
contradicts (4.4). Then F; # 0 for only one i and (4.1.1) is proved.

(4.1.2) Let us suppose that F/G € Er Ty . oas ﬂzn)d, where F,
G € Clz1, ..., x,) and F, G are relatively prime. Then, as already
noticed in Section 1.2 (see (1.9)), d(F) = PF and d(G) = PG for
some P € C[zy, ..., x,]. We known from (4.1.1) that F = C} oz
and G = Cy [] ;r:ff‘ for some C7 # 0, Cy # 0 and some non-negative
IMEgers ag, ..., Gn, A, «:-, PBy- From the proof of (4.1.1) we know
that o; = f3;, 1 < i < n, and thus F and G are not relatively prime. This
contradiction finishes the proof of (4.1.2). W

Let us now introduce a new notation. If W is a homogeneous polynomial
of degree s, then W*) denotes the coefficient of the monomial x7. which
appears in W.

THEOREM 4.2. — Let d be a factorisable derivation defined by (4.1).

(4.2.1) If for some k, 1 < k < n, the numbers Wl{k), ,(,“ a
ZT -independent, then

re

¥

(4.5) Cley, o B =L

Equivalently, the system of differential equations

dx;

(4.6) g7

=z; Wy sy < n,

does not admit a non-constant polynomial first integral.

(4.2.2) If for some k, 1 < k < n, the numbers W;k}, Wrﬂ“ are
Z-independent, then

4.7) Cldyliicy 3:,,)d =

Equivalently, the system (4.6) does not admit a non-constant rational first
integral.

Proof. — (4.2.1) Suppose that for some F £ 0, F € Elxs. 2. %,
deg (F) = m > 1 one has d (F) = 0. As we have previously noticed, we
can assume that F' is homogeneous of degree m.
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Moreover, without any restriction of generality we can suppose that

k = n, i.e. that the numbers Wl{ "'), W,(,") are Z™-independent.
Let us consider the Darboux point z = (0, ..., 0, 1) € P"71(C) of
the derivation d and introduce local affine coordinates (%1, ..., yn—1)

around 2z, deﬁncd"by
i =15 for 1<i<n-1
il =1
Equation (2.13) now writes

aof

n—1 5 " 2
Z'—l yi (Wi (y) — Wa (9)) B =-mW, () f,
1= ys
where y = (y1, --., yn—1, 1), and equation (2.14) writes
7 n 1 ah
Z"_ (W;‘( = W,(, 3)) Y — = —m W,(,n) h.
i=1 i
In virtue of Lemma 2.3, there exist non-negative integers 1, .... i,—1
such that
n—1 - - ; ;
(4.8) Z):l i (W Z W) = —m W
and
—3
(4.9) 0< Z;’: ij=p<m.

Let us note #,, = m — p > 0 so that (4.8) yields

n . £03 ReEs

This equality together with (4.9) contradicts the Z™-independence of
W™, ..., W™ which achieves the proof of (4.2.1).

(4.2.2) From Section 1.2 (see (1.9)), it follows that, in order to prove
(4.7), it suffices to prove that, for a given P € C [z, ..., z,], if two non-
zero polynomials Fy, F» € Clz1, ..., x,] are such that d (F;) = PF;
i = 1, 2, then they are proportional.

First we will consider the particular case when F7 and F5 are homo-
geneous polynomials.

BULLETIN DES SCIENCES MATHEMATIQUES



224 J. MOULIN OLLAGNIER, A. NOWICKI AND J.-M. STRELCYN

In agreement with the notations from Section 2.4 we will denote by
h; the non-trivial homogeneous component of the lowest degree of f;,
where (see (2.12))

f?. (yla T yﬂ—]) = Ff (yl-; SRy ?J-n—l: 1)1 1 - 11 2
Exactly in the same way as in the proof of (4.2.1), passing through the
equality (2.13) we obtain the existence of non-negative integers i1, ..., i,
and k1, ..., k, such that

(4.10) Z;’:l i; W™ :Z;'_l L = PO 03,

and

n x n
ijl 4 = degF11 Zj:]. kj = d(‘g Fz.

Indeed, this follows from Lemma 2.3 applied to h; and hy respectively.
From (4.10) it follows that Z’_’ (i = kj) W™ = 0. Our assumption
}:

of Z-independence of Wl(”), 3 W,{,”) implies that ¢; = k;, for

1 < 7 < n, and that these numbers are the unique non-negative integer
numbers satisfying (4.10).

Consequently h; and hs are two proportional monomials, that is,
hi1 = rhy for some r € C\ {0}.

Let us consider now the polynomial F3 = F; — r F5. We have two
possibilities; either I3 # 0 or F3 = 0. In the first case F3 is a homogeneous
Darboux polynomial of d with the same P as for F; and F;. Itis easy to see
that the degree of the lowest homogeneous component /3 of corresponding
polynomial f3 is greater then deg (h1). Repeating now the same arguments
as above, but with respect to the polynomials I} and F3 we conclude that
deg (h1) = deg(h3). This contradiction proves that F3 = 0, i.e. that F}
and F5 are proportional.

Let us pass now to the general case when F; and F5 are not supposed
to be homogeneous. In virtue of Lemma 2.1 all non-zero homogeneous
components of F7 and F> are Darboux polynomials for d with the same
P as above. Thus from the first part of our proof we deduce that all
these homogeneous components are of the same degree and mutually
proportional. This concludes the proof (4.2.2). W
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Before finishing this section let us note that the assumptions of
Theorem 4.2, even in strengthened form, cannot exclude the existence
of Darboux polynomials which are not of the form (4.2).

Indeed, let A = —A" be a skew-symmetric 7 x n matrix with complex
entries; A = [a;;]. Let p1, ..., pp € C and let bij = aij +pj, 1 < 14,
Pt o

Consider linear polynomials
n
W,‘:ZJ:I bij z;, 1 <s<n

together with the corresponding factorisable derivation defined by (4.1).

Then an easy reasoning proves that one can always find a non-
trivial homogenous linear polynomial F such that d(F) = PF with

n
P = E i
=1

S. The z;xz;41 system

In this section, we describe a factorisable derivation for which
Theorem 4.2 of the preceding section cannot be applied. Nevertheless
the above method, together with specific arguments, leads to the proof that
derivation has no polynomial constants and even no rational constants.

Let us consider the C-derivation d of C(zi, ..., x,) defined for
n > 2 by
(5.1) d(zi) = zizip1, 1<i<n,

where the index n + 1 is identified with the index 1, i.e. x,41 = 7.

For n = 2, polynomial 21 — x> is a non-trivial constant of the derivation
d, and thus the subring C [z, .‘Bg]d of constants of d is larger than C.

For n > 3, we will now prove the following

THEOREM 5.1. — Let d be the derivation defined in (5.1) where n > 3;
then d does not admit any other Darboux polynomial than the products of
powers of coordinate functions, i.e. the equation

(5.2) diF)=PF
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has no other solution than P = Z e ol CH Sl,;\ for some
element C € C and some n-tuple (A, ..., \,) of non-negative integers.

As a consegiience, the subfield C (z1, ..., .'Bn)d of constants of d is
equal to C or equivalently, the system of differential equations

dz;
dt
where x,4+1 = x1, has no non-trivial rational first integral.

(5.3)

= T Tkl 1<315mn,

Proof. — The proof divides in two parts.

We will first prove that the subring C [z, ..., :1:,,]" of constants of d
reduces to C, i.e. that equation (5.2) has no non-trivial solution F' for the
eigenvalue P = 0. This means that the system (5.3) has no polynomial
first integral. In the second part we will study Darboux polynomials of d.

The first part of the proof relies on the local analysis around the Darboux
point (1, .., 1) and yields the non-existence of a non-trivial homogeneous
polynomial first integral.

Following the procedure described in Section 2.3, let us introduce local
affine coordinates (41, ..., yn—1) around the Darboux point (1, .., 1) of
P"~1 (C). These coordinates are defined by

(5.4) ;=149 for I1<i<n-—1,
and T ="1.

According to (2.12), a homogeneous polynomial first integral ' would
become a (non-homogeneous) polynomial f (y1, ..., yn—1) of degree at
most e that satisfies equation (2.13), which writes

O+ ) (4 pie) = (1490 ()] o

dy;
=-m(l+uy)f,
where y, = 0.
After cancellations, this becomes
n—2 af é)f
5.5 il Yy i S L 1 n—1) sl
(5.5) Z;=1 (1 + i) (yi+1 yl)ay; y(1+y 1)()%_1
=-m(l1+wy)f.
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Let h be the non-trivial homogeneous component of lowest degree of
[: call then 1 the degree of h. Polynomial h has to satisfy the following
equation

n—2 dh oh
5.6 11— — = —mbh.
(5.6) ZE:] (Yi+1 —y1) L m
By Lemma 2.3, there would exist non-negative integers ai, ..., ap—1
such that
n—1
(5.7) > .., @ipi=-m
and
(5.8) % S0
. S ai=

where the p; are the eigenvalues of the corresponding square matrix of
size n — 1. This matrix coincides with the matrix M,,_; defined by (2.20),
so that its eigenvalues are all n-th roots of unity except 1.

As 1 = deg (h) < deg(f) < m, then from (5.7) and (5.8) one obtains
that

n—1 n—1
(5.9) m=|) _apnl<Y  ai=p,
and consequently that ¢ = m, ie that deg(h) = deg(f), and

consequently that A = f. We will consider separately two cases; when
n 1s even and when n is odd.

If n is odd, then p; € R for 1 < ¢ < n — 1, and thus from (5.9) one
deduces than m < p, which contradicts pu < m.

If n is even, as among the eigenvalues p1, ..., p,—1 there is exactely
one real which is equal —1, say p;, = —1, then from (5.9) one deduces
that a; = O for all 7 # 7. Passing by the basis in which the matrix M,,_;
is diagonal, from Proposition 2.4 one easily deduces that

(5.10) h= f = (l1 n+---+lh— yn_l)m,
where l1, ..., l,—1 € C. Substituting (5.10) to (5.6) yields
(5.11) h =~k s =ss={-1"{51.

BULLETIN DES SCIENCES MATHEMATIQUES




228 J. MOULIN OLLAGNIER, A. NOWICKI AND J.-M. STRELCYN
From the other side substituting (5.10) to (5.5) one obtains that

n—2
z_l (1+y) Wiv1 —y1)li —y1 L+ yn—1)ln—1 = —(1 +31) h.

Putting here 351 = y2 = --- = yn—1 = 1, one deduces that e
Taking in account (5.11), we obtain that & = 0, which contradicts h # 0.
This finishes the first part of the proof.

Let us pass now to the second part of the proof; i.e. to the proof that a
Darboux polynomial of d, which is not divisible by any of the coordinate
polynomials x;, has to be a constant of the derivation d.

We will prove that all Darboux polynomials of the derivation d are
of the form (4.2). In virtue of the Proposition 4.1.1, it is sufficient to
consider only the homogeneous Darboux polynomials F'. As the factors
of Darboux polynomials are also Darboux polynomials then, without any
restriction of generality, one can suppose that F' is not divisible by any
of the polynomials z;.

The polynomial P, such that d(F) = PF, is a linear form P =
ZT_I)\ ;x; with coefficients \; in C. Denote by G; the polynomial
obtained from F by setting z; = 0. For every value of index i, the
defining identity

n OF 7
ek

can be ordered with respect to variable z; and the corresponding constant
term yields the following equation for polynomial G; (in all variables
except ;)
0G;
Zjafi—l.j#i S ¢ (ZJ# % 2i) s

Both members of this equation can now be ordered with respect to
variable z;41; looking to the homogeneous part of highest degree in ;41
of the last equation, one deduces Aj+1 = 0.

And, as that is true for all indices, the polynomial P has to be 0, which
concludes the second part of the proof. H
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6. The (z; + z;+1)° system

Let s > 1 be a natural number. In this section, we will consider the
C-derivation d of C[z1, ..., z,] defined for n > 2 by

(6.1) d(zi) = (zi + ziy1)®’, 1<i<nm,

where, like in Section 5, the index n + 1 is identified with the index 1,
L2 Taxy = £j.
Forn =2, 1 — 3 € Clx, :1:2]‘1'.

THEOREM 6.1. — Let d be the derivation defined by (6.1). Then for all
8§ > 1landn =3

Gy, :B,,]d = .
Equivalently, the system of differential equations
dzx;

dt

has no non-constant polynomial first integral.

=A(zi +zda)’, I1<t<n

Proof. — The proof is along the same line as the proof of Theorem 5.1.
Thus we will only sketch it. It is based on the local analysis around the
Darboux point (1, ..., 1) of P"~1(C).

Let F' be a non-trivial homogeneous polynomial of degree m > 1 such

that
s OF

n
E et (.’IZJ = :I:;+1)" 81;‘,; =
Consequently (see (2.11))

n—1 R
(6.2) Zi:l (@n (@i + Zig1)” — @i (Tn + 21)°) Ox;

=—=m{zy+ 21)° F.

In the local coordinates (y1, ..., y,—1) defined by (5.4), the equation
(2.13) applied to (6.2) writes
n—2 2 > dF
(6.3) Do Wity +2° = 1 +w) 2+n)*) an
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oF
ayn—l
= —m (2+y1)° f.

+((yn-1 + 2 —(14+yn-1) (24+w0n)°)

Let h be the non-trivial homogeneous component of lowest degree of f,
deg (h) = p > 0. Polynomial h satisfies the following equation (see 2.14))

dh n—2 oh
(6.4) (—2y1 + sy2) @ s o Zi:? (—sy1 + (s — 2) yi + syi+1) Ty,
dh
+(_3y1 +(3_2) yn—l) 9 = —2mh.
YUn-1

Applying one time more Euler’s theorem on homogeneous functions,
one deduces from (6.4) that

n—2 dh oh 2m+(s—2)p
: SRS — — h.
G.5) ¥ (ki =) By, L = ?

Now we will apply Lemma 2.3 to the equation (6.5). The corresponding
matrix coincides with the M,,_; defined by (2.20), whose eigenvalues are

p1. ...pn—1. For some non-negative integers ayq, ...a,—1 one has
n—1 2m+ (s —2) p
(6.6) 21.:1 Gp= - 3 :

as well as the equality (5.8).
As 0 < ju < m, then taking in account (6.6) and (5.8) one obtains that

2m+(s—-2)p O iy el
s S _|Z-j:1 a’pflgzizl a; = L.

Consequently x4 = m and thus h = f.

To conclude we proceed now exactly in the same way as in Section 5.
We distinguish two cases of n even and of n odd.

When n is even we repeat word for word the argument from Section 5.

When n is odd, like in Section 5, we obtain the formula (5.10).
Substituting (5.10) to (6.3) and putting y; = —2, one obtains that for
all y2, ..., yn—1 € C one has

: n—2 % .
hy+ Z.,‘:z Ly +yiv1 +2)° + 11 (yno1 +2)° =0,
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which easily implies that [y =l = --- = [,_1 = 0.
Thus A = 0 which is a contradiction. I

Let us note that for s = 1, the derivation (6.1) admits ' = 21 +-- -4z,
as a Darboux polynomial. Indeed d(F) = 2 F.

7. An algebraic supplement

Let R be a commutative ring without zero divisors, which contains the
ring Z of integers.

We will now show the transfer principle, already announced in Section 1,
that all our results remains valid when instead of the field C of complex
numbers, one considers the above ring R.

The proof is based on the well known fact (see for example [11]):

Let K be a field of characteristic zero, i.e. it contains the field Q of
rational numbers as a subfield. Let S be a finite subset of K. Consider
the smallest subfield of K, noted by Q (S), which contains S. Then there
exists a field embedding of Q (S) in C.

ProposiTioN 7.1. — Let d : Z[z1, ..., zn]|—Z[z1, ..., Tn] be the
derivation defined by

n 0
d= 25:1 fi 52
WHETE J§, - -5, Ju C 612 vy En)
Consider the equation

(7.1) d(F)y= PF.
If this equation does not admit a solution F, P € C|[x1, ..., x,] with
F & C, then this equation has no solutions F', P € R[z1, ..., x,] with

F & R, where R is a ring as above.

Proof. — Assume that F', P € R[z1, ..., z,]), F € R is a solution of the
equation (7.1). Denote by Ry the field of fractions of the ring R. Consider
now the finite set S C R of all coefficients of polynomials F', P and the
field K = Q (S5), the smallest subfield of Ry containing S.
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It is clear that the polynomials F° and P are the solutions of the
equation (7.1) in K [z1, .. 5 &a).C Ro 21, -+ . Tu)

In virtue of the above mentioned fact we may assume K C C. Therefore
we obtain a contradiction, because by our assumption the equation (7.1)
does not admit any solution in C [z1, ..., x,] with F non-constant. W

The just proved transfer principle applies to the derivation studied
in Section 3. The exactly same argument also works in what concerns
equation d(F) = 0. Thus, the transfer principle also applies to the
derivation studied in Section 6.

In what concern the factorisable derivations studied in Sections 4
and 5, the situation is slightly different, because they always have non-
trivial Darboux polynomials. Moreover, in Section 4 the coefficients
of polynomials Wy, ..., W, defining the derivation, are not necessary
integer.

Nevertheless the transfer principle adapted to factorisable systems can
be easily formulated and proved along the same line as above, but now
the set S also contains all coefficients of polynomials Wy, ..., W,,.
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