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On first integrals of linear systems,
Frobenius integrability theorem

and linear representations of Lie algebras

Jean MOULIN OLLAGNIER*
Jean-Marie STRELCYNt

Abstract

A necessary condition to be satisfied by n - 1 vector fields in lRn in order
to have a common first integral is supplied by the compatibility condition of
Frobenius integrability theorem. This condition is also generically sufficient
for the local existence of such a common first integral. We study here the
question of the existence of a global common first integral for compatible
linear vector fields in lRn

•

For the dimension 3, we prove that any two compatible linear vector
fields have a common global first integral.

On the contrary, we give an example for the dimension 4, in which three
compatible linear vector fields cannot have a common global first integral.

This leads us to ask many simple and natural questions, some of them
about representations of Lie algebras by Lie algebras of linear vector fields.

Some historical comments and abundant references are also provided.

1 Introduction

Let us consider two systems of homogeneous linear differential equations with
constant coefficients in ]R3;

(1)

where u belongs to ]R3 and where Al and A2 are real 3 x 3 matrices.
The point of departure of the present paper is the problem of the existence of

a common non-trivial first integral for both systems (1). This problem seems to
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have never been studied before. If F is such a common integral, the level surfaces
{F = const.} are tangent to both vector fields L1 and L2 • The compatibility
condition from the Frobenius integrability theorem is thus necessarily satisfied,
i.e. at any point u of IR3 , the three vectors L1(u), L2(u) and [L1,L2 ](u) are
linearly dependent. As usual, [Lb L 2 ] denotes the Lie bracket of the two vector
fields; here, as L1 and L2 are linear, one has [LI,L 2 ](u) = -[AI,A2 ](u), where
[AI, A2] = A1A2 - A2A1 is the matrix commutator.

The compatibility condition is equivalent to the following one:

(2)

for every u in IR3 •

It is worth noting that this property does not imply that the three vector
fields L1 , L2 and [L 1 , L2 ] are linearly dependent over JR.

Itt the following, any two, not necessarily linear, smooth vector fields satisfying
condition (2) will be called compatible.

Although the Frobenius integrability theorem guarantees that two compatible
vector fields have a common first integral around any point at which these vector
fields are linearly independent, nothing can be said on the existence of a global
first integral without a further study of the concrete framework.

Our first result asserts that two compatible linear vector fields defined on IR3

always have a common first integral, typically with some singularities.
Let us note that a similar result was also obtained by P. Basarab-Horwath

and S. Wojciechowski [4].
Let us give an example. Consider the two matrices Al and A2

A 2 =
001

The following function F(x,y,z) is easily shown (cr. [77,32]) to be a common
global first integral for both systems (1) corresponding to the matrices Al and
A2

y2 - 2xz
F(x,y,z) = 2z2 -l- log j e ] .

Having succeeded in proving the existence of a common global first integral
for systems (1), we learnt that the solution of this problem was in fact almost
entirely, but implicitly, contained in the classical works of C. G. Jacobi [36] and
D. Poisson (cr. [24]). Their result are clearly stated in the classical textbooks of
E. Goursat [31] and E. L. Ince [35].

Our point of view is somewhat different so that our solution has some special
features. In particular, we consider very carefully the question of the uniformity of
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our integrals; we also use the intrinsic, coordinate free, very economical approach
with the differential forms.

After having sought a common first integral of two linear compatible vec�
tor fields in IR3 , we were naturally led to consider a similar problem in higher
dimensions.

Let L1, ... ,Lk be some smooth vector fields defined on IRn , 2 :5 k < n, satis�
fying for all indices i and j and every point u in IRn the compatibility condition
of the Frobenius integrability theorem:

Recall that the Frobenius integrability theorem asserts that the compatibility
condition (3) is sufficient to find, around any point u at which the k vectors
L1(u), . . . , Lk(u) are linearly independent, n-k functionally independent common
first integrals <PI, ... , cI>n-k.

The level manifolds {<PI = CI, ... , <Pn-k = Cn-k} thus define a smooth k-
dimensional foliation of some neighborhood of u. This local foliation can be
extended to a global one [76].

The simplest higher dimensional problem is the following one. Is is true that
three linear compatible vector fields in IR4 always have a common global first
integral, perhaps with some singularities? The answer is surprisingly no and
we give an example; this is our main result and the true "raison detre" of this
paper.

Anticipating a little, let us say that, in this example, all but two global leaves
of the associated foliation are everywhere dense in IR4 •

Let us stress that such an example is of direct interest in control theory in
relation with the notion of set of accessibility (cf, [28, 78]). Indeed, we have here
an approximate controlability despite of the compatibilty (integrability) of our
linear vector fields.

All this leads us to ask many simple and natural questions, some of them
about representations of Lie algebras by Lie algebras of linear vector fields, that
do not seem to have been formulated before.

Although completely independent and self­contained, the present paper is a
sequel of [77] and of [32] where the compatibility condition (2) is used as an
effective tool for the search of first integrals of some non­linear systems of three
autonomous ordinary differential equations.

The paper is organized as follows. In section 2, we recall some facts from
exterior calculus; in section 3, we describe, in the exterior form framework, the
integrability results in IR3 and give the outline of the proof. The complete proof of
the result is presented in section 4 while section 5 consists of the description of our
example of non­integrability in IR4 and its easy extension to higher dimensional
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cases. In section 6, we formulate some questions and give additionnal remarks,
mainly of historical nature.

The problems related to those studied in the present paper were intensively
investigated by many people. See, for example, [1, 2, 3, 4, 8, 9, 10, 11, 13, 21,
22,23,24,26,27,30,31,32,35, 36, 37,38,39,41,42,43,44,47,50, 51, 54,55,
56, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 77, 81], and this list is very far from
being complete.

Let us stress that the important books by D. Cerveau and F. Mattei [11] and
by J.-P. Jouanolou [37] are devoted to problems directly related to ours.
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2 Some facts from exterior calculus

We recall now some well-known and useful definitions and results about ex-
terior differentiation, inner products and volume form (d. [7, 18, 53, 58, 76] for
more details) as well as Euler's theorem on homogeneous functions.

All differential forms and vector fields are supposed to be defined and suffi-
ciently differentiable on a non-empty open subset U of IR1l

• We denote by wT an
exterior r-form.

The exterior differentiation. The exterior derivative is a linear map d
from the set of differential forms into itself that increases the degree by 1 (so
that dw =°for n-forms), whose square dod is the null map; moreover, d is an
antiderivation with respect to the exterior product of differential forms, i. e.

(4)
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The inner product. The inner product i(X).(.) by a vector field X is a
linear map from the set of differential forms into itself that decreases the degree
by 1; thus i(X).(J) = 0 for O-forms, i. e. functions. If wPis a p-form, i(X).(wP)
is the (p - 1)-form given by

i(X).(wP) (VI'"''Vp-I) = wP(X,Vb·'" vp-d

where VI,"', Vp-I are vector fields.
With respect to the differential forms, the inner product is an antiderivation:

i(X).(wPAwq
) = (i(X).(wP» Awq +(-l)P wPA (i(X).(wq». (5)

On the other hand, the inner product is obviously anticommutative with
respect to the vector fields and, in particular, two successive inner products by
the same vector field yield O.

n

In coordinate form, the inner product i(X).(w) of a l-form w = L Widxi by
i=I

n n

a vector field X =L Xi8 I8Xi is equal to L:x.e; .
i=I i=I

In particular, a smooth function F is a first integral of a vector field X if it
satisfies:

n

i(X).(dF) = X(dF) = LXi 8FI8xi = O.
i=l

Volume form. Denote by Xl, ... , Xn the cartesian coordinates in JRn. The
volume form n is the exterior n-form n = dXl ... dxn •

Given n vectors Xb · · · ,Xn in JRn, n(Xb · · · ,Xn) is equal to the determinant
det«XI, .. ·,Xn»,where (Xl'''''Xn ) is the n x n matrix, whose columns are
the vectors Xb · · · ,Xn •

Euler's theorem on homogeneous functions. A function f defined on
JRn is said to be homogeneous of degree k if, for every point X in JRn and every
positive real number t, f( tx) = t k f( x).

The famous Euler's theorem on homogeneous functions in JRn asserts that a
smooth function f defined on JRn is homogeneous of degree k if and only if the
following identity holds:

n

LXi 8118xi = k I:
i=l

From the previous identity, a generalized Euler's formula can be deduced; if w
is a p-form in JRn, all of whose components are homogeneous functions of degree

n

k, and if I is the so-called radial vector field I = LXi 8/8xi, then the following
i=l

identity holds:
i(I).(dw) +d(i(I).(w» = (p+k)w. (7)
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Euler's original identity (6) is a special case, when p is equal to 0, of the
generalized one and can then be written as:

i(I).(df) = k f.

3 Integrability in lR3: outline of the proof

In this section, we give the outline of the proof of the following theorem:

Any two compatible linear vector fields in lR3 have a global common
first integral.

We must first carefully define the notion of a global first integral; let us give
it in a general context, not only for linear fields.

Let us consider a smooth vector field X defined on lRn or on some open subset
U of it. A global first integral F of X is a smooth function defined on a dense open
X -invariant subset V of U, which satisfies the identity X F = i(X).(dF) =0 at
every point of V, and which is not constant on any open subset of V.

A subset E of U is said to be X-invariant if it consists of complete trajectories
of the field X; this means that no segment of an X-trajectory can join a point
of E to a point of U \ E. Equivalently, E and U \ E are locally X -invariant, i. e.
invariant under the local flow induced by X.

Let us remark that the escape to infinity in finite time cannot be generally
excluded, so that the complete X -trajectories are not necessarily described by a
time parameter going from -00 to +00. Nevertheless, this phenomenon never
occurs with linear vector fields.

A linear vector field in lRn is a vector field whose components are homogeneous
linear polynomials with respect to the space variables Xl,"', X n . In the case
n = 3, we write naturally the variables Xl, X2, X3 as X, y and z.

Due to the algebraic aspect of the problem, the invariant subset V, on which
we define the common first integral of two linear vector fields on lR3 will be the
complement of the set of zeros of a finite number of real polynomials, i. e. a dense
Zariski open subset of lR 3 •

Given two linear vector fields L l and L 2 , denote by w the l-form defined
by w = i(Ld.(i(L2 ).(ll )) where II is the volume 3-form II = dx dy dz. These
two vector fields are compatible if and only if w is integrable i. e. satisfies the
integrability condition:

w 1\ dw = O. (8)

If w vanishes everywhere, L l and L 2 are either linearly dependent vector fields
or multiples of the same constant vector field. In this case our theorem relies on
the easily proven fact that a linear or constant vector field has always a global
first integral.



249

We shall therefore only consider pairs (L1,L2 ) of compatible linear vector
fields such that the 1-form w, whose coefficients are homogeneous quadratic poly-
nomials in the space variables, does not identically vanish; this I-form w is then
different from 0 on a dense open subset U of m3 •

The derivative dF of a common first integral of the two fields is everywhere
colinear to W; indeed, consider the obvious identity n 1\ dF = 0, take its inner
product by L2 , then by L 1 (d. (5» to get W 1\ dF = 0, which means that the
two I-forms w and dF are colinear.

The first step then consists in finding an integrating factor for w, 1. e. a
function <p such that d(<pw) = O. A primitive F of this closed l-form will then
be the desired first integral, provided that F is uniform, i. e. univalued on its
domain of definition.

The Frobenius integrability theorem yields the local existence of an integrat-
ing factor for a l-form w satisfying the integrability condition (8). But we are
interested in a global solution to the problem; we show that there exists a non-
zero homogeneous cubic polynomial Q such that l/Q is the desired integrating
factor of w. Our proof is then in fact independent of the Frobenius theorem.

Let us first suppose that u: is irreducible (and this is typically the case), which
means that the components of w have no non-trivial polynomial common factor.

Consider the homogeneous cubic polynomial P = i(I).(w), where I is the
radial linear vector field I = x a/ox + y0/ay + z a/oz. If P does not vanish
identically, let V be the dense open subset of U where P is different from O. In
this case, 1/P can be choosen as an integrating factor of w on V. Moreover P
satisfies dP 1\ r =0 where r == dw is the exterior differential of w.

When P = i(I).(w) vanishes identically, the inverse l/Q of a cubic homoge-
neous non-zero polynomial Q is an integrating factor for w if and only if dQ I\r = 0;
and such polynomials do exist; and, in this case, we call V the dense open subset
of U where Q is different from O.

We are then faced with two global problems. Knowing that w/Q is a closed 1-
form defined on the dense open subset V ofm3 , on which wand Q do not vanish,
we have to integrate it, 1. e. to study the topology of the connected components
of V; in order to show that V is natural with respect to our problem, we must
also prove that it consists of complete trajectories of the two original linear vector
fields L 1 and L 2 •

To solve the first geometrical question, we apply the classification of the closed
non-zero 2-forms r in m3 , whose coefficients are homogeneous linear polynomials,
under the action of SL(3,IR); and we give, in each case, a description ofthe vector
space of all homogeneous cubic polynomials Q such that dQ 1\ r = O.

In this way, besides the fact that such non-zero cubic polynomials always
exist, it also appears that the connected components of the complement of the
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set of zeros of any such polynomial are either simply connected, or of degree of
connectivity two, i. e. their fundamental group is isomorphic to the group 7£ of
all relative integers.

On a simply connected component Va of V, a closed l-form is exact and we
get our first integral. Otherwise the integration of wlQ can lead us to consider
a first integral with values in the circle 51 = IRlk7£ instead of the real line IR,
where k is the smallest strictly positive jump of the integral on a closed non
contractible curve in yo.

This kind of multivalued first integral can nevertheles be considered as a good
parametrization of the set of leaves of the foliation given by the l-form, Let us
note that whenever such a first integral F is known, G(u) = sine¥u) defines a
first integral in the usual sense.

On the other hand, to prove that the involved open set V = {Q i- 0,w i- O}
consists of complete trajectories, we prove the local invariance of its comple-
ment under the two linear vectors fields. More precisely, we prove that the set
{Q =0, w i- O} is locally invariant for any polynomial vector fields X such that
i(X).(w) = O. To prove the local X-invariance of {w = O}, we use essentially
the fact that w is irreducible; if w is not irreducible, the result follows from the
consideration of some irreducible I-forms of lower degree.

4 Integrability in JR3: the proof

We begin this section with a classification of the closed 2-forms in IR3 , whose
coefficients are real homogeneous linear polynomials, with respect to a linear
change of variables in IR3 •

This classification relies on the corresponding classification of linear vector
fields in IR3 , which in turn is nothing else but the well-known classification of
linear mappings from IR3 to itself. In what follows, we do not distinguish between
linear vector fields and linear mappings.

In IR3 , it can indeed be easily verified that the mapping <p

Lx alax +Ly alay +Lz ajaz i i(lx ajax + Ly alay + l, ajaz).(n)

establishes an isomorphism between the vector space of all linear vector fields
L = Lx aIax +Ly alay +t, aIaz in IR3 and the vector space of all 2-forms whose
coefficients are homogeneous linear polynomials in .JR3.

Moreover, this mapping <p commutes with a linear change of variables, pro-
vided that this change belongs to the special linear group 5 L(3, IR), which pre-
serves the volume form n.

Indeed, let PL be the image PL = <p(L) = i(L).(n) of a linear vector field L
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under <p. Recall that, for any point u of IR3 and any two vectors A and B of IR3

PL(u)(A,B) = det(Lu,A,B).

Now, if T is an invertible linear mapping from IR3 to itself, it can easily be
shown that

PL(Tu)(TA,TB) = det(T) PT-ILT(U)(A, B).

Thus, up to a non-zero multiplicative constant, the classification of our 2-
forms under the action of GL(3, IR) is the same as the real linear classification of
3 X 3 real matrices; and, similarly, the classification under the action of SL(3, IR)
of the 2-forms, whose coefficients are linear polynomials, agrees with the corre-
sponding classification of matrices.

Moreover, the 2-forms r, that we are interested in, are closed; this corresponds
to the vanishing trace of the linear mappings L = <p-1(r). Let us now state a
general remark: a smooth function Q is a first integral of a smooth vector field
X defined on IR3 if and only if dQ 1\ (i(X).(fl)) = O.

As we are interested in the description of the vector space of all cubic homo-
geneous polynomials Q which are first integrals of L, i. e. such that dQ 1\ r = 0,
our classification is more detailled than the linear classification of vanishing trace
linear mappings.

Proposition 1 Consider the following nine canonical forms Ll,"', L9 of van-
ishing trace linear mappings of IR3

Let L be a vanishing trace linear mapping of IR3 • Then L is conjugate in
GL(3,IR) with exactly one of the canonical forms. Moreover, if L = TLiT-1,
where L; is one of the canonical form, mapping T can be choosen in SL(3,IR).
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Proof. We built this classification according to the multiplicity and non�
nullity of eigenvalues.

The nine cases then correspond to:

1. three different real non­zero eigenvalues,

2. three different real eigenvalues, one of them is 0,

3. three different non­zero eigenvalues, with only one of them real,

4. three different eigenvalues, one of them 0 and the two other conjugate,

5. a double (real, non­zero) eigenvalue, diagonalizable case,

6. a double (real, non­zero) eigenvalue, non­diagonalizable case,

7. a triple 0 eigenvalue, rank 2,

8. a triple 0 eigenvalue, rank 1,

9. a triple 0 eigenvalue, rank 0, i. e. the 0 matrix.

It is not difficult to verify, in each case, that matrices with an arbritrary real
determinant exist in the commutant of a canonical matrix; then, the element T
ofGL(3,JR) such that L =TLiT-1 can be choosen in SL(3,JR). •

The above proposition implies immediately the following one.

Proposition 2 Let r be a non-zero closed 2-form in JR3
, the coefficients of which

are homogeneous linear polynomials. Under a linear change of variables belonging
to S L(3, JR), r is conjugate to one and only one of the following canonical forms:

1. r = A x dy A dz + J.l y dz A dx + v z dx A dy
with A f: 0, J.l f: 0, v f: 0, A f: J.l f: v f: A and A+ J.l + v =0

2. r = A x dy A dz ­ A y dz A dx, with A f: 0
3. r = (a x ­ by) dy A dz + (b x +a y) dz A dx ­ 2a z dx A dy

with a f: O,b f: 0
4. r = -b y dy Adz + b x dz A dx, with b f: 0
5. r = a x dy A dz +a y dz A dx ­ 2 a z dx A dy, with a f: 0
6. r = (a x + y) dy Adz + a y dz A dx ­ 2 a z dx A dy, with a f: 0
7. r = y dy A dz + z dz A dx

8. r = zdy Adz



253

It is now easy, although slightly cumbersome, to compute the general form of
a cubic homogeneous polynomial Q such that dQ 1\ r = 0 in each of the previous
cases. These computations are summarized in the following proposition.

Proposition 3 In each case of the previous classification, the corresponding vec�
tor space of all third degree homogeneous real polynomials Q such that dQ 1\r = 0
is generated by the following polynomials:

1. Ql = xyz,

2. Ql xyz and Qz = z3,

3. a. (xz+yZ)z,

4. Ql (x Z+ yZ)z and Qz = Z3,

5. Ql xZz, Qz = xyz and Q3 = yZz,

6. a. yZz,

7. Ql z3 and Qz = z(y2 - 2xz),

8. Ql y3, Q2 = yZz, Q3 = yz2 and Q4 == z3.

After these algebraic preliminaries, we pass on to the heart of the matter.
Let us denote by w an arbitary exterior I-forrn defined in JR3, whose coeffi-

cients are homogeneous quadratic polynomials in the space variables z , y and z;
r stands for the closed 2-form dw and the integrability condition w 1\ r = 0 holds.

Let us now describe how inverses of cubic polynomials can be used as inte-
grating factors for such exterior l-forms.

Proposition 4 If the inverse of a non­zero homogeneous polynomial Q is a in�
tegrating factor for w, then Q satisfies dQ 1\ r = O.

Proof. The hypothesis means that the l-form w/Q is closed on the open set
W = {u E JR3,Q(U)::p O}, i. e. that the following identity holds on W (cf. (4»

d (w/Q) = (1/Q2)(Qdw - dQ 1\ w) = O.

Differentiating the numerator yields the result

0= d (Qdw - dQ 1\ w) = 2dQ 1\ r,

That completes the proof. •
Proposition 5 Let P be the cubic homogeneous polynomial P = i(I).(w). If P
does not vanish identically, then 1/P is a integrating factor for ui; if P = 0, then
for every non­zero cubic homogeneous polynomial Q such that dQ 1\ r = 0, I/Q
is a integrating factor for w.
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Proof. When P is different from 0, it suffices, in order to show that 1/P
is an integrating factor w, to prove that the numerator of d(wfP) is equal to 0,
i. e. that Pdw = dP 1\ w. Thanks to the generalized Euler's formula (7), applied
to the homogeneous I-form w, the following identity holds

3w = i(I).( r) + dP.

Exterior multiplication by w yields

o i(I).(r) 1\w + dP 1\w.

(9)

The desired equality then follows from the inner product by I of the identity
w 1\ r = 0 (cf. (5))

o = i(I).(w 1\ r) = i(I).(w) r + i(I).(r) 1\ w.

Comparing the last two equalities, one obtains P dw = dP 1\ w as needed.
When P is equal to 0, formula (9) allows us to define w from its exterior

differential dw = r by 3w = i(I).(r). To prove that the inverse l/Q is an
integrating factor for w it suffices to show that

Qr = dQ 1\ w.

To prove this identity, we apply the inner product by I to equality dQ 1\r = 0
(d. (5) and (6)):

o = i(I).(dQ 1\ r) = i(I).(dQ) r - dQ 1\ i(I).(r)

And the proof is now complete.

3Q r - 3dQ 1\ w.

•
The following proposition is the key result to show that an exterior integrable

l-form, whose coefficients are homogeneous quadratic polynomials, has a global
first integral. To formulate this proposition in a concise manner, as explained
at the end of section 3, by functions we will not only understand real-valued
functions, but also circle-valued ones.

Proposition 6 Let r be a non-zero closed 2-form defined in IR3 , whose coeffi-
cients are linear homogeneous polynomials, and let Q be a non-zero cubic homo-
geneous polynomial such that dQ 1\ r = O.

Then the closed form (lfQ)i(I).(r) is exact on every connected component of
the open dense set W = {u E IR3,Q(u) f. O}.

Proof. The above mentioned property does not depend on a linear change
of variables; it then suffices to show it for any canonical form of r listed in
Proposition 2.
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In all cases, the connected components of Ware easily shown either to be
simply connected, or to have a fundamental group isomorphic to the group 7Z of
all relative integers.

In the first case, a closed l-form is exact, which means that a real-valued
function F such that dF = (l/Q)i(I).(r) does exist. The same is true in the
second case, if the value k of the integral of (l/Q)i(I).(r) on a closed curve
corresponding to a generator of the fundamental group is equal to O. If this
value k is not zero, the l-form is the derivative of a function from W to the circle
IR/k7£. This situation cannot be avoided in some cases of the classification (cases
3 and 5). _

We need now a proposition to ensure that, if the cubic polynomial Q yields
an integrating factor for a Lform w, then the subset {Q ::J 0, w ::J O} consists of
global leaves of the foliation defined by w.

Proposition 7 Let w be a smooth integrable i-form defined on some open subset
U of IR3 on which it does not vanish. Let Q be a smooth function defined on U
such that Q dw = dQ A 'W, i. e. such that 1/Q is an integrating factor of w
on the set {u E U,Q(u)::J O}. Let m and m' be the beginning and the end of a
smooth path lying in some leaf of the foliation of U defined by wand suppose that
Q(m) = O. Then, Q(m') also vanishes.

Proof. Because w does not vanish on U, a smooth vector field X such
that i(X).(w) = 1 can be defined on U. The inner product by X of the identity
Q dw = dQ A w yields (d. (5))

Qi(X).(dw) = i(X).(dQ)w - dQ. (10)

Consider now a smooth path lying in the leaf of m from m to m'. This path
is a smooth mapping </Y from some real interval [0,aJ to U. Denote by 7jJ the
function Q 0 </Y.

Because the tangent vector d</Y/dt, 0 :s; t :s; a, is everywhere tangent to the
leaf, the previous equality (10) yields by an inner product by d</y/dt

7jJ(t) i(d</y/dt).( i(X[</y(t)]).( dw[</y(t)])) = -d'I/J/dt.

The continuous function i(d</y/dt).(i(X[</y(t)J).(dw[</y(t)])) is bounded on the
compact interval [0, aJ and we deduce an a priori estimate

I d7jJ/dt I :s; C I 7jJ I (11)

everywhere on the interval [0,a] with some positive constant C.
But as Q(m) = 0, 7jJ(0) = 0 and, thanks to a Gronwall lemma, 7jJ(a) is also 0,

i. e. Q(m') = 0, which completes the proof. _
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Given an integrable l-form w, a first integral of w is any smooth function q>
such that dq> = aw for some function a and such that q> is not constant on any
open set.

We can now conclude with two theorems.

Theorem 1 Let w be an integrable non-zero I-form defined in JR3, whose co-
efficients are homogeneous quadratic polynomials. This form has a global first
integral defined on a open dense subset V of JR3 consisting of global leaves of the
foliation given by w.

Proof. It follows from the identity (9) and from Propositions 3-7. More
precisely, let as usual P be the inner product P i(I).(w).

If P f:. 0, 1/P is an integrating factor for wand w / P can be written

w/P = (I/3)(dP/P +(i(I).(r))/P)

where r = dw.
The closed form dP/P is exact and the I-form (i(I).(r))/P is exact on the

connected components of the open set V {u E JR3 , P(u) f:. 0, w( u) f:. O}.
If P = 0, then w is equal to (l/3)i(I).(r) (d. (9)), where r = dw. Let then

Q be a non-zero homogeneous cubic polynomial such that dQ 1\ r = 0; r does
not vanish identically and such polynomials do exist according to the previously
described classification given in Proposition 3.

Function I/Q is then an integrating factor of won the open set V defined by
V = {u E JR3 ,Q(u ) f:. O,w(u) f:. O} and the l-form i(I).(r)/Q is exact on the
connected components of V.

In both cases, a closed form can be integrated up to a real or circle valued
function on the connected components of the set V.

Finally Proposition 7 shows that the open set V consists of global leaves of
the foliation defined by w on the open set U {u E JR3 , w(u) f:. O}. •

Let us now recall that a non-zero l-form w = wxdx + wydy + wzdz defined
in lR3

, whose coefficients are homogeneous real polynomials, is irreducible if wx ,

wyand W z have no non-trivial polynomial common factor.
If a polynomial S is a common factor of the coefficients of w, then the reduced

form w/S defines the same foliation as w, but perhaps on a larger open subset
of lR3

; it is therefore natural to consider irreducible f-forms.
The next proposition shows the interest of this assumption for the trajectories

of vector fields that are orthogonal to such a form.

Proposition 8 Let w be an integrable I-form defined on JR3 , whose coefficients
are homogeneous polynomials of the same degree. Let X be a non-zero vector
field defined on JR3, whose coefficients are homogeneous polynomials of the same
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degree; suppose that the identity i(X).(w) = 0 holds on lR3 and that w is irre�
ducible.

Then, the subset {w = O} is locally X ­inuariani, so that the open subset
{w :I O} consists of complete trajectories of the field X.

Proof. Consider the integrability relation w /\ dw = 0 and take its inner
product by X to get w /\ (i(X).(dw» = O.

The polynomial l-forms wand i(X).(dw) are then colinear on some non-
empty open subset of lR3

, and there exists an irreducible rational function NJD
such that i(X).(dw) = (NJD)w, i. e. such that Nw = Di(X).(dw).

Because w is irreducible, the polynomial D is a constant and we thus get

i(X).(dw) (12)

where N1 is some polynomial.
Recall now the well known formula for the Lie derivative £xw of an exterior

form with respect to a vector field X (cf. [53, 58])

£xw = i(X).(dw) + d[i(X).(w)].

As i(X).(w) 0, i(X).(dw) is the Lie derivative £xw. Taking into account
(12), an a priori estimate, like (11), can then be established showing that, if
w(m) = 0, then w remains equal to 0 along the trajectory of the field X passing
through m, which proves the result.

As proven by easy examples, the irreducibility assumption is essential here. _

Theorem 2 Any two compatible linear vector fields L 1 and L 2 defined in JR3

have a common global first integral defined on a open dense subset of lR3 consist�
ing of complete trajectories of both fields.

Proof. Consider the l-form w = i(Lt}.(i(L2 ).(Q» . If w =0, the fields are
proportional and it is a well known fact that a global first integral exists for a
linear field.

If w :I 0, Theorem 1 shows that an integrating factor IJQ exists for w. As
i(Lj).(w) =°for i = 1,2, the function F, defined on V = {w f; 0,Q f; O} and
such that dF is proportional to w, is a first integral for both fields.

To prove that this integral is a global one, it remains to be shown that the
open dense subset V consists of complete trajectories of L 1 and L 2 • It therefore
suffices to show that the subsets {Q = 0, w :I O} and {w = O} are locally L�
invariant, L being one of the two linear vector fields L 1 , L 2 , or more generally
some vector field with polynomial coefficients such that i(L).(w) =0.
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As far as the first subset is concerned, take the inner product by L of the
usual equality Q dw = dQ 1\ w to get

Q i(L).(dw) = i(L).(dQ) w.

As w is supposed to be different from °in some neighborhood of a point m
at which Q(m) = 0, this relation yields one more time an a priori estimate like
(11) and Q vanishes on the L-trajectory around m.

As far as the second subset is concerned, Proposition 8 gives the proof if w is
irreducible.

If w is not irreducible, we replace it by a simpler irreducible l-form w' = ui]S,
whose coefficients are of the same degree 0 or 1. To complete the proof in this
case, we must find an integrating factor I/Q for w such that S is a factor of Q.
Then the open subset on which the first integral is defined is {Q' =1= 0, w' =1= o}
where Q' Q / S.

In the case where Q = i(I).(w) =1= 0, S is of course a factor of Q. Otherwise,
(1/3) i(I).(r) is irreducible in each ofthe eight cases but two (5 and 8) of the clas-
sification given by Proposition 2. These are precisely the two cases in which one
of the eigenvalues has a two-dimensional eigenspace. It is nevertheless possible
to choose, in the vector space of all cubic polynomials Q such that dQ 1\ r = 0,
a non-zero polynomial which is a multiple of the greatest common divisor of the
coefficients of i(I).(r). _

Let us finally note that the present proof of the existence of a common first in-
tegral also gives an algorithm to find it. For each of the canonical forms Ll,"', Ls
of r = dw, it is easy to see that the corresponding first integral is expressed in
finite terms. In what concerns case L g , it follows from identity (9) that the cubic
homogeneous polynomial P i(I).(w) is a common global first integral.

Let us underline that the appearence of an arctan means that the integral is
in fact circle-valued.

5 An example of non-integrability in lR4

We shall now find three compatible linear vector fields L1 , L2 and L3 in lR4

which generate together a three dimensional foliation with dense leaves. This
foliation is also defined by the J-form w = i(L1).(i(L2).(i(L3 ).(Q))), where Q is
the volume 4-form n = dx dy dz dt, The coefficients of w are cubic homogeneous
polynomials and w satisfies the integrability condition w 1\ dw = O.

In our example, a local integrating factor for w is easily found: it is equal to
1/P, where P = i(I).(w), I being the radial vector field I = xa/ax + ya/ay +
z a/az + t a/at.
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The local situation is thus very similar to the three dimensional one.
On the other side, the global non-integrability relies on the density of all

non-singular leaves of the foliation, which impedes the existence of a continuous
common first integral for the three fields.

The example. Let a and (3 be two rationally independent real numbers.
Consider now the three linear vector fields L1 , L2 and L3 :

L 1 = (x - y) a/ax + (x + y) a/ay
L2 (z - t) a/az + (z + t) a/at
L3 -ay a/ax +ax a/ay - (3t a/az + (3z a/at.

These three vector fields commute with one another, i. e. the three pairewise
Lie brackets vanish, and they are thus compatible.

The l-form 10 = i(L1).(i(L2).(i(L3).(D))) is equal to

10 (3 (Z2 + t2)«x + y) dx + (y - x) dy)
a (x 2+ y2)«Z + t) dz + (t - z) dt).

Let then P be the fourth degree homogeneous polynomial

This polynomial is different from 0 outside of the two 2-dimensional planes
x2+ y2 =0 and z2+ t2 = O. Function «(3 - a) /P is an integrating factor of 10 on
the complement of these two planes in IR4

•

The closed form «(3 - o ) w / P is equal to

«(3 - a) 10/P (3 «x + y) dx + (y - x) dy)/(x2+ y2)
a «z + t) dz + (t - z) dt)/(z2 + t2 )

and it can be formally integrated up to

The rational independence of a and (3 then prevents us from giving any sig-
nification to the sum "(3arctan(y/x) -

We now give a more precise explanation of this fact by showing that every
leaf of the foliation of the open invariant set V = {m E IR4 , P(m) =I=- O} defined
by the l-form 10 is dense in V.

To prove this, it suffices, given two points m and m' of V, to find a path
starting from m, lying in the leaf of the foliation passing through m, and ending
in a point arbitrarily close to mi. Denote by (x, y, z, t) the coordinates of m and
by (z", y/, z/, t/) those of m', Such a path then consists of three pieces.
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The first piece is a path from (x,y,z,t) to (Xt,Ybz,t), where X1 2 + Y1 2

x/2 + s", the second one is a path from (xt,Yl,Z,t) to (Xt,Yt,Z2,t2), where
Z22 +t22 = z/2+t/2; and the third path goes from (Xt,Yt,Z2,t2) to (X3'Y3,z3,t3),
where X32+Y32 = x/2+s", zi +t32 z/2+t/2, and where (X3, Y3,Z3, t3) is close
to (x/, y/, z'; t/).

Each of the three pieces follows the trajectory of one of the three linear vector
fields Lt, L2 an L3 • Taking polar coordinates (p,8) in th xv-plane and (p/, 8') in
the zt-plane, we get

L1 P8/8p + a/88
L2 P' a/ ap' + a/ (j()'
L3 a 8/88 + (3 8/88'.

Trajectories of L1 are the logarithmic spirals {p = Ceo, z = Zo, t = to} and
those of L2 are the logarithmic spirals {p' =Ceo', x = Xo, Y = Yo} while, due to
the rational independence of a and (3, every trajectory of L3 is dense in the two
dimensional torus {p = Po, p' Pb} in which it lies.

As suggested by P. Cartier, a similar construction can be done in higher
dimensions. Indeed, there exist n + 1 compatible linear vector fields in JR2n,

which define together a foliation of an invariant dense open subset V of JR2n,

whose every leaf is dense.
Therefore choose cartesian coordinates Xi, Vi, for i between 1 and n and cor-

responding polar coordinates Pi,8i and consider n rationally independent real
numbers al,"', an' Define then n "spiral" linear vector fields Ll , " ' , Ln by
L; = Pi 8/8pi +8/88i and another linear vector field L by L = Lai 8/80i. The
open set V is the set where all Pi are positive.

Following trajectories of the Li' we can draw a path from an arbitrary point m
of V to some point m/ of an arbitrary fixed n-dimenaional torus {PI = Tl,' .. ,Pn =
Tn} without leaving the leaf of m; thereafter, the L-trajectory passing through
m' approaches arbitrarily any given point mil of the torus.

This construction can be used to show that there exist n + 2 compatible linear
vector fields in JR2n+l , which define together a foliation of a dense open subset
V of JR2n+l , whose every leaf is dense. For this aim, it suffices to consider the
(2n + 1)-th coordinate t and to add the (n + 2)-th linear vector field L' = t 8/8t
to the previous ones. In this case, V is the invariant dense open set where all
Pi are positive and where t ::j:. 0 and the n-dimensional torus are defined by
{PI = Tt,"',Pn = Tn,t = to}.
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6 Questions and final remarks

The positive result on the integrability of two arbitrary compatible linear
vector fields in IR3 and the negative result that non-integrability can occur for
thre compatible (even commuting) linear vector fields in IR4 lead in a natural
way to many interesting questions. Let us formulate some of them.

Let us fix natural numbers k and n, 2 ::; k < n. Describe, or rather classify,
the set of all k-tuples of compatible linear vector fields in IRn , which are linearly
independent at some point of IRn . Such a k-tuple will be noted shortly CLVF.

It will also be interesting to study the set of all k-tuples of CLVF, viewed as
an algebraic manifold.

In fact we are rather interested in the global foliation of IRn (of the (n - 1)-
dimensional real projective space) corresponding to such a k-tuple in virtue of
Frobenius integrability theorem. For k = 2 and n = 3, such a classification can
in principle be deduced from our results. But in general the problem seems to be
quite intricate (cf. (37)).

Let us note, by the way, that the important Hermann-Nagano refinement of
Frobenius integrability theorem ([33, 57], cf. also [28] and Sec. 3.1 of [78]) applies
to our framework.

Given a k-tuple A of CLVF in JRn , we define its index, ind(A), as the number
of its global functionally independent first integrals (0::;ind(A) ::; n - k). More
precisely, the preceeding problem can be stated as a problem of the description
of the level set of the function ind, when k and n are fixed.

From a more algebraic point of view, it seems that particular attention should
be paid to the first integrals whose gradients consist of rational functions. As
proved before, this is always the case when k =2 and n =3. It is rather doubtful
that this is a general feature (d. [13, 32]); nevertheless such integrals seem to
appear quite frequently.

Given a k-tuple of CLVF in IRn , one can ask for a maximal dimension of
the closure of an individual leaf of the assiociated k-dimensional foliation and its
relation to the number of functionally independent global first integrals.

For a given n 2: 4 one can also ask for a minimal number k = k(n) 2: 2 such
that there exists a k-tuple of CLVF with dense leaves. As follows from Sec. 5,

k < { p + 1 if n = 2p
(n) - p + 2 if n = 2p+ 1

where p 2: 2. Are p+1 and p+2 the true lower hounds? If not, determine k(n).
In particular, is it true that two CLVF in IR4 always have a global first integral ?

Although the description of all k-tuples of CLVF in IRn seems to be quite
complicated, there is a natural subclass of them, which seems to be much easier
to handle.
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A k-tuple (AI,"', .11k) of CLVF in IRn will be called IR-compatible (IR-CLVF)
if it generates a k-dimensional real Lie algebra, i. e. if for every 1 ::; i < j ::; k

k

[.111 , AJ] L C[JAr
r=l

for some real numbers {Ci,i}'
The foliation associated to k-tuples of IR-CLVF have a simple description in

terms of linear representations of Lie algebras.
Let A be a k-dimensional real Lie algebra and let 7i : A - £( IRn

) be an in-
jective linear representation of A in the space £(IRn ) of all linear mappings of IRn

into itself. To any basis (al,' .. ,ak) of A we assiociate the k-tuple (AI,' .. , .11k)
of IR-CLVF defined on IRn by

for u E IRn .

Although (Al,···,Ak) depends on the choice of the basis (al,"',ak), the
associated global k-dimensional foliation of IRn (at least of an open dense subset
of it) does not depend on it, but only depends on the linear representation 7i.

When 7i in not injective, one considers the global foliation of IRn associated
to the induced representation

which is injective.
Thus to any linear representation 7i of a real Lie algebra A, one associates in

a canonical way a foliation of the space in which the representation acts.
Consequently, all properties of these foliations can be described in terms of

algebraic properties of A and n , in particular the density of leaves, the existence
or non-existence of first integrals and so on.

Explanation of these points is a very important problem. As an example, let
us note that the commuting linear vector fields on IRn with dense leaves described
in Sec. 5 arise from a representation of the commutative Lie algebra IRn , but some
other linear representations of the same Lie algebra have many independent first
integrals.

The study of IR-CLVF would only be a first step because, already in IR3
, there

exist foliations corresponding to some pairs of CLVF that do not correspond to
any pair (M,N) of IR-CLVF.

Consider indeed such an example, due to W. Hebisch: the foliation in spheres
centered at the origin. This foliation corresponds, for instance, to the pair
(Lx,Ly ) of CLVF, where Lx y8j8z - z8j8y and L y = z8j8x - x8j8z,
which generate the rotations around the z-axis and the y-axis respectively.
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Let us note that a linear vector field whose trajectories lie on spheres centered
at 0 is always given by a matrix in so(3, IR). Consider now two non-proportional
such linear vector fields M and N. Then, their Lie bracket [M, N] is not a linear
combination of them. This proves that the foliation in spheres cannot correspond
to a pair of IR-CLVF.

It will be interesting to distinguish geometrically the global foliations corre-
sponding to IR-CLVF among those corresponding to CLVF.

A careful examination proves that pairs (A,B) of non-commuting IR-CLVF
in IR3 are rather rare. Indeed, taking into account that there exists only one non-
commutative 2-dimensionnal Lie algebra, one can assume, without any restriction
of generality that [A, B] = A. Then, tr(A) = 0 and B can only be found in cases
L7 and L8 of the classification of Prop. 1.

It will be interesting to obtain a detailled analysis of the same phenomenon
in higher dimension.

It is also natural to ask if there exist some classes of Lie algebras of dimension
at least three for which the global foliation corresponding to an arbitrary injective
linear representation of any algebra of the class always has a first integral.

As we were informed by W. Hebisch, an example of such a class is given
by compact semisimple real Lie algebras, where a quadratic first integral always
exists.

Indeed, according to H. Weyl's theorem, for an injective linear representation
¢ of such an algebra L, any connected Lie group corresponding to ¢(L) is compact.
The result now follows from a standard argument: integration of the translates
of some positive definite quadratic form with respect to the Haar measure (see
[82, 72]).

It is worth noting that the above remark admits a far reaching development
in invariant theory, a topic intimately related to ours (see, for instance, Chap. 5
of [25] and also [67] for a development in another direction).

Although up to now the complete classification of all Lie algebras does not
exist, it exists for small dimensions [59]. In particular, one has exactly nine types
of three dimensional Lie algebras (see [59] and also [18]). The first stage in the
realization of the above program will be the careful study of the possibilities
occuring for their linear representations in low dimensional Euclidean spaces.

Three variations of our topics arize in a natural way.
First, instead of considering real linear vector fields, one can study affine

vector fields, i. e. vector fields A(u) = Bu +b where A E £(IRn ) and b E IRn •

Secondly, the complex space en and the complex time can be considered
instead of their real counterparts.

Finally, as the Frobenius integrability theorem remains valid in infinite di-
mensional setting (d. [5, 7, 15, 19, 48]), it is natural to ask similar questions
about it.

In fact, such problems can be considered in every specific framework where a
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counterpart of Frobenius integrability theorem is proved. See, for example, Sec.
9.4 of [5] for manifolds over valued fields with a non-zero characteristic.

Let us finish with some scattered remarks, mainly of historical nature.
We apologize for the complete lack of any explicit mention of contributions of

differential algebra to the problem of the integration in finite terms of ordinary
differential equations.

Our main tool was the search of an integrating factor written in finite terms,
for integrable Lforms. The method of the integrating factor goes back to 1. Euler
([22, 23], d. also [75]).

In particular, for n = 2, he knew the first part of our proposition 5. The
second one is implicit in C. G. Jacobi's paper [36]. The search of integrating
factors and the related problem of the search of a first integral for l-forms, mainly
in two dimensions, were very intensively studied during the nineteenth century.
This is clearly shown in the treatises of A. R. Forsyth [26] and E. Goursat [30].
Let us stress the wealth of examples collected in the problems at the end of the
corresponding chapters of these treatises.

This research culminated at the end of the nineteenth century in the funda-
mental works of G. Darboux [13], P. Painleve [60, 61, 62, 63, 64, 65] and A. N.
Korkine [41, 42, 43, 44]. Already in Darboux's paper [13] the close relations with
algebraic geometry appears. This aspect was strongly emphazised by P. Painleve
[60,61, 62, 63, 64, 65] and H. Poincare [68, 69, 70].

After this fruitful period, partly as a consequence of the growing influence
of the qualitative methods, this research was (almost) completely abandoned,
although many open problems remain.

It is a pity that nowadays no published survey is available on the history and
results obtained in this area up to the second world war.

One of the inherent difficulties in the preparation of such a survey is the fact
that many interesting texts in this and related fields were published in Russian,
some in journals and books which are now very difficult to find. It is worth noting
that the strong activity of russian mathematicians in this area during the second
half of the nineteenth century was the direct consequence of the great interest of
P. 1. Chebyshev in these problems [12, 29].

The lack of such a survey is only partly compensated by the historical notes
at the end of B. M. Koialovich's book [38], which provides a very interesting
annotated bibliography. The same remains true for D. Morduhai-Boltovskoi's
book [55] and E. Vessiot's survey [80J.

On the other hand, the unpublished thesis [52] of N. V. Lokot' is a very
comprehensive study of the history of integration in finite terms of elementary
functions.

Let us also quote [49] and the recent books [2, 16, 17] and [40J. In a forth-
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coming paper [6], we will publish an incomplete but nonetheless quite extensive
bibliography of the subject up to the second world war.

Until recent times, integration in finite terms and related topics seemed to
be marginal compared to the main stream of mathematics. But now, with a
revival of the interest in the explicit integration of differential equations (d. [58,
73, 34]), in the problem of non-integrability (d. [46]) and above all with the
development of the applications of computer algebra to the automatised study
of differential equations (d. [45, 20, 74, 79]), we hope that many of these, now
almost completely forgotten works, will regain their importance and will find a
contemporary understanding and development.

Let us stress that the Liouville theory of integration in finite terms resulted one
hundred and fifty years later in the computer algebra programs for the integration
of elementary functions (cf. [14] and bibliography therein).

The Liouville theory, together with the ideas of S. Lie, E. Picard and E.
Vessiot on the Galois theory of differential equations finally resulted one century
later in the computer algebra programs for the integration of second order linear
differential equations with rational coefficients (d. [20] and [45]).

As the algorithmic search for integrating factors written in finite terms is
capital in the effective study of differential equations, one can look forward to an
algorithm and then to a computer algebra program for an automatised search for
them.

A. N. Korkine's papers and B. M. Koialovich's book will surely be very useful
for this purpose. Recently the algorithm of B. M. Koialovich was substantial
for the elaboration of a computer algebra program used for the discovery of new
cases of integrability of Abel's differential equation of second kind yy' y =R(x)
for hundreds of appropriate functions R [83].
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