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Abstract 

Moulin Ollagnier, J., Proof of Dejean’s conjecture for alphabets with 5, 6, 7, 8, 9, 10 and 11 letters, 

Theoretical Computer Science 95 (1992) 1877205. 

Axe1 Thue proved that overlapping factors could be avoided in arbitrarily long words on a two- 

letter alphabet while, on the same alphabet, square factors always occur in words longer than 3. 

Francoise Dejean stated an analogous result for three-letter alphabets: every long enough word has 

a factor, which is a fractional power with an exponent at least 7/4 and there exist arbitrary long 

words in which no factor is a fractional power with an exponent strictly greater than 7/4. The 
number 7/4 is called the repetition threshold of the three-letter alphabets. 

Thereafter, she proposed the following conjecture: the re etition threshold of the k-letter alpha- 

bets is equal to k/(k- 1) except in the particular cases k = , where this threshold is 7/4, and k =4, ;P 
where it is 7/5. 

For k=4, this conjecture was proved by J.J. Pansiot (1984). 

In this paper, we give a computer-aided proof of Dejean’s conjecture for several other values: 5,6, 
7, 8, 9, 10 and 11. 

Moulin Ollagnier, J., Proof of Dejean’s conjecture for alphabets with 5, 6, 7, 8, 9, 10 and 11 letters, 
Theoretical Computer Science 95 (1992) 1877205. 

Axe1 Thue a montre que Ton peut eviter les chevauchements dans des mots arbitrairement grands 

sur un alphabet a deux lettres alors que l’on ne peut eviter les car&. On peut ainsi dire que 

l’exposant 2 est le seuil de repetition des alphabets a deux lettres. Francoise Dejean a demontre que 

le seuil de repetition des alphabets a trois lettres est 7/4; elle a alors propose la conjecture suivante: le 

seuil sir de repetition des alphabets a k lettres est bgal a k/(k- 1) sauf pour les cas particuliers 3 et 
4 (Sj = 714, s‘$ = 715). 

Jean Jacques Pansiot a ttabli le resultat pour k=4. 
Nous donnons ici une demonstration assist&e par ordinateur de cette conjecture pour k = 5,6,7, 8, 

9, 10 et 11. 
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0. Introduction 

Consider the alphabet A = (0, 1). There are only finitely many square-free words on 

this alphabet, i.e. words no factor of which has the form UU, where u is not the empty 

word E. 

In order to prove this result, it suffices to enumerate all possible words in alphabeti- 

cal order and to see that they constitute a finite set 

{E, 0, 01, 010, 1, 10, 101). 

Consider now the infinite word of ThueeMorse, which is generated by the mor- 

phism that gives to 0 the image 01 and to 1 the image 10; the finite factors of this word 

avoid repetitions with a strictly greater exponent. If the word uu (u#E) is a factor of 

the infinite word of Morse-Thue and if x is the first letter of U, then uux is not a factor 

of the infinite word (results by Axe1 Thue [S, 61; see, for instance, [2]). 

Then, with a two-letter alphabet, square words (exponent-2 repetitions) are un- 

avoidable as factors of long enough words, while there exist arbitrarily long words in 

which no overlapping factor occurs (a repetition with an exponent strictly greater 

than 2); the exponent 2 is called the repetition threshold of the two-letter alphabets. 

We now give some definitions in order to state Dejean’s conjecture. 

Definition 0.1. Given a k-letter finite alphabet A, a repetition is a pair (p, e) of words in 

A*. where p is not the empty word c, and such that e is a left factor of pe: w =pe=ep’. 

Definition 0.2. The exponent of the repetition (p, e) is the ratio 1 pel/lpl of the lengths of 

w=pe and p; it could be said that M’ is a power word which consists of “Jwl/lpf” 

consecutive copies of the word p. 

The word p is said to be the period of the repetition and e its excess. A repetition 

(p, e) is said to occur in a word u if the word w=pe is a factor of u. 

Call s the following sequence of rational numbers, defined for k> 1: 

s,=2; s,=l/4; .sj=7,‘5; k>4 = s,‘=k/(k- 1). 

FranCoise Dejean proposed the following conjecture: number sk is the repetition 

threshold of the k-letter alphabet; this first means that, in every long enough word on 

such an alphabet, some repetition occurs, whose exponent is at least equal to Sk; that 

also means that there exist arbitrarily long words such that the repetitions occurring 

in them have an exponent at most sk. 

The established results in this direction are the following: 

(i) Case k=2, previously quoted, was solved by Thue [S, 61. 

(ii) The solution for k= 3 was given by Dejean, who thereafter proposed the 

conjecture [ 11. 

(iii) Pansiot [4] proved the result for k =4. 
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(iv) For every k > 4, the first part of the conjecture can be easily settled: every word 

of length k+2 on a k-letter alphabet has a factor, which is a repetition with an 

exponent greater than or equal to k/(k- 1). 

In the present paper, we propose a proof of the conjecture for several other 

particular values of k : 5,6, 7, 8,9, 10 and Il. A coding method due to Pansiot is used, 

which enables us to represent some words on k-letter alphabets by words on the 

alphabet {O, l}; some morphisms on (0, l}* then yield infinite sets of words. The proof 

afterwards reduces to finitely many verifications for which the help of a computer is 

necessary. 

Let us begin by describing more precisely the previously established results. 

1. Known results 

1 .I. Dejean ‘s morphism 

In order to show that long enough words on A = {a, h, c} cannot avoid repetitions 

with an exponent 714, it suffices to enumerate, in lexicographical order, all words on 

this 3-letter alphabet without repetition with an exponent greater than or equal to 7/4; 

it appears that the tree of all these words is finite. 

While, for k=2, reaching the length 4 was enough to see that squares were 

unavoidable, we must here examine all words until length 39: there exist some words 

of length 38 on the alphabet A no factor of which is a repetition with an exponent 

greater than or equal to 7/4, but no word of length 39 has this property. 

To construct infinitely many words on A avoiding repetitions with an exponent 

strictly greater than 7/4, Dejean uses, as Thue did, a morphism. 

Dejean’s morphism m on {a, b, c}* is defined by 

m(a) = abcacbcabcbacbcacba, 

m(b) = bcabacabcacbacabacb, 

m(c) = cabcbabcabacbabcbac. 

Morphism m preserves the set of words without repetition with an exponent strictly 

greater than 7/4, which means that, if the word w has this property, so has its image by 

m; whence the result. 

1.2. Pansiot’s construction 

Dejean also used an enumeration to show that the exponent 715 was unavoidable 

for repetitions in long enough words on a 4-letter alphabet. 

A much deeper search is then necessary: all words of length 122 have at least one 

factor, which is a repetition with an exponent greater than or equal to 715 and some 

words of length 121 avoid such repetitions. 
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In order to establish that 7/5 is the repetition threshold of 4-letter alphabets, 

Pansiot uses a construction more involved that a mere morphism on {a, b, c}*: some 

words on the 4-letter alphabet are coded by words on the two-letter alphabet (0, l} 

and a morphism is build on (0, l}*. 

We shall give further a precise description of his coding method, that we used to 

settle the result for k = 5, 6, 7, 8, 9, 10 and 11. 

I .3. The ,jirst part ,for k > 4 

Let us state the easy first part of the conjecture as a proposition. 

Proposition 1.1. Let k be an integer greater than 4. Every word on a k-letter alphabet 

whose length is k+2 hus a ,factor, which is a repetition with an exponent at least 

k/(k- 1). 

Proof. Indeed, a word w of length k + 2 on such an alphabet A = { 1,. . . , k} has three 

factors of length k. 

If one of these three factors is not built with k different symbols, a repetition with an 

exponent greater than or equal to k/( k - 1) then occurs. Otherwise, within a permuta- 

tion of the symbols, w is the word l2...k12; in this last case, repetition (12...k, 12) 

occurs in w and its exponent is (k +2)/k, which is greater than or equal to 

k/(k-1). 0 

1.4. Pansiot’s coding method 

We are looking for arbitrarily long words in A* no factor of which is a repetition 

with an exponent greater than sk. Such words have an interesting property which 

enabled Pansiot [4] to code them with words on the 2-letter alphabet; we describe this 

property in the following lemma. 

Lemma 1.2. Let w be u word on a k-letter alphabet, no factor of which is a repetition 

with an exponent strickly greater than sk. Then, all its factors of length k- 1 consist 

of k- 1 different symbols. 

Proof. Otherwise, it would appear a factor starting and ending with the same letter, 

with a length less than or equal to k- 1; this factor would then correspond to 

a repetition with an exponent greater than or equal to (k - l)/(k - 2). This last number 

is always strictly greater than sk (even for k= 3 and 4; for k= 2, the remark is 

trivial). 0 

Now, if any k - 1 successive letters in a word w are different, there are only two ways 

to choose the letter at a given place in w when the k- 1 preceding ones are known: 
_ either this new letter is the first of the k- 1 preceding ones (the furthest), 
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_ or it is the unique element of the alphabet which does not appear among the k- 1 

preceding letters. 

The transition is coded by 0 in the first case and by 1 in the second case. Thus, 

“good” words with a length 1 greater than or equal to k - 1 on the k-letter alphabet are 

described by their prefix of length k- 1 and by a word on (0, l}, whose length is 

1-k + 1, which is the code of the transitions. 

For instance, word m(a) of Dejean’s morphism is completely determined by its 

prefix ab and by the word 11010111011101011 which codes successive transitions: 

Let us remark that a modification of the prefix without modification of the coding 

word corresponds to a permutation of the elements of the alphabet; that does not 

modify the exponent of the repetitions occurring in the coded word. 

And the problem that we deal with is in fact a problem on the free monoid {0, l}*; 

this problem of course depends on the cardinal number k of the first alphabet. 

2. Infinite languages on (0, l} 

2.1. The morphism (Tk from (0, l}* in the group <4”k 

The following construction yields a one-to-one mapping between the set of all 

wordsonthealphabetA={l,...,k} written with k- 1 different letters and the group 

Yk of all permutations of the set { 1,. . . , k}. 

Given the word W=alaz...ak_i, we consider the following permutation 

( 

1 2 . . . k-l k 

a, u2 . . . uk-l ) ? ’ 

where “?” stands for the only letter of the alphabet A that does not appear in w. 

With this one-to-one mapping, Pansiot’s coding method corresponds to an action 

on the symmetric group because a transition (coded by 0 or by 1) jumps from a word 

in A* consisting of k- 1 different letters to another such word. It is rather easy to 

verify that this action is the following one: 

~ the transition, coded 0, corresponds to the right multiplication in the symmetric 

group yk by the rotation o0 on the k - 1 first elements of { 1,. . . , k}: 

2 . . . k-2 k-l 

3 . . . k-l 1 

_ the transition, coded 1, corresponds to the right multiplication by the rotation o1 on 

the k elements of (1,. . , k}: 

2 . . . k-2 k-l k 

3 . . . k-l k 1 
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We thus define a monoid morphism ~~ from the free monoid {0, l}* to the 

symmetric group Yk; images cr,, and pi generate Yk so that the morphism is onto. 

2.2. SuJicient conditions 

Let us now resume Dejean’s problem and express it with Pansiot’s coding method, 

that we have just described. 

Given an integer k > 1 and the presumed corresponding repetition threshold sk, we 

look for a language 9, subset of (0, 1 }*, with the three following properties: 
_ if w belongs to _Y and if u is a factor of IV, u also belongs to 044 (Condition FS: 

stability under factor taking); 
_ if w belongs to 9, it can be extended on the right in _Y’, which means that one of the 

two words w 0 or w 1 belongs to 9. If IV belongs to 9, it can be extended on the left 

in 9, which means that one of the two words 0 MI or 1 w belongs to 9. (Condition E: 

words can be extended in the language); 
_ if w belongs to 9, there is no repetition (p, e) on the k-letter alphabet with an 

exponent strictly greater than sk such that the word pe has IV for its code (Condition 

I: interdiction of repetitions with a too large exponent). 

Proposition 2.1. To prove the second part of Dejean’s conjecture for a given integer 

k consists infinding a nonempty language o%for which the three previous properties (FS), 

(E), (I) hold. 

Proof. Such a language 9’ is then infinite and no word on the k-letter alphabet coded 

by an arbitrary initial factor (with pairwise different letters of course) and a word 

in Y for the transitions contains a repetition with an exponent strictly greater 

than sk. 0 

Condition (I) is of course the most difficult to get and we shall give sufficient 

conditions therefore. We must before distinguish repetitions with respect to the length 

of their excess. 

2.3. Short and kernel repetitiom 

A repetition (p, e) on the alphabet { 1, . .., k} is called a short repetition if the length 

lel of its excess e is less than k- 1. If the length of e is greater than or equal to k- 1, 

denote by e’ the left factor of length k - 1 of e: e = e’e”. 

Word e’ is also the left factor of length k - 1 of pe; w = pe is then coded by its initial 

factor e’, and by a transition word W of (0, l} *. Coding word Wis the concatenation 

of P and E, where e’ and P together code word pe’, while e’ and E together code the 

excess e of the repetition. The transition coded by P jumps from e’ to e’, that is to say 

that its image in the symmetric group is the identity of Yk; word P belongs to the 

kernel of the previously defined morphism ok from (0, l}* onto Yk. 



Proof qf Dejean’s conjecture for alphabets 193 

A repetition (P, E) on the alphabet (0, l}, whose period belongs to the kernel of ok is 

then called a kernel repetition. 
We shall no longer deal with the k-letter alphabet and we can use lowercase letters 

for words on {0, l}. 

The exponent of a kernel repetition (p, e) is the exponent of a repetition on (1, . . . , k} 

coded by an arbitrary word consisting in k - 1 pairwise different letters together with 

the elements of the pair (p, e) as transitions. 

The value p((p, e)) of this exponent is 

Let us give some examples (with k = 3). Repetition (abc, a) is short. Repetition (abc, 

ab) is not short; it is coded by the initial word ab and by the kernel repetition (111, E); 

the exponent of the kernel repetition (111, E) is (3 +0+2)/3. 

Condition (I), to be satisfied by languages in order to yield a proof of the conjecture, 

divides into two conditions (IS) and (IK). 

~ if (p, e) is a short repetition with an exponent greater than sk, the word of (0, 1 }* 

coding the transitions of w = pe does not belong to 9 (Condition IS); 
_ if (p, e) is a kernel repetition with an exponent greater than sk, word pe does not 

belong to _Y (Condition IK). 

To fulfil condition (IS), it suffices to exclude a finite number of forbidden words 

from the language; a word is forbidden if it codes the transitions of w = pe, where (p, e) 

is a short repetition with an exponent greater than Sk. Given integer k, a mere 

enumeration gives the finite list of all these words. 

Some sufficient conditions will imply condition (IK) for some morphism-generated 

languages; let us now describe the notion of a free word, which is related to languages 

only satisfying conditions (FS) and (E) (factor stability and extensibility). 

2.4. Free words 

Let the language 9 on (0, 1) satisfy conditions (FS) and (E). A word w of 9 is said 

to be right-determined if only one of the two words w 0 and w 1 belongs to 9: there is 

a unique way to give a right extension to w in 9 with one more letter. On the 

contrary, if both w 0 and w 1 belong to 9, w is said to befree on its right. Correspond- 

ing definitions hold on the left. If a word is free on both sides, then it is simply said to 

be free. 
In order to use free words in the reduction of the forthcoming proofs, we shall 

demand that language 9 satisfies condition (FF) meaning that necessary extensions 

of a word w of _Y’ (on the left and on the right) eventually end: 

~ every word of 9 is a factor of a free word (Condition FF). 

Especially with condition (FF), to get the least upper bound of the exponents of all 

kernel repetitions in 9, it suffices to take into account the kernel repetitions, whose 

excess is a free word, as it will be shown later. 
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2.5. Free kernel repetitions 

Let the language 9’ satisfy conditions (FS), (E), (IS) and (FF). Let (p, e) be a kernel 

repetition such that w =pe belongs to Y; if its excess e is not free in 9, it is possible to 

enlarge repetition (p, e) into another one with a strictly greater exponent. 

Indeed, if the excess e is right-determined, this word is always followed by the 

same letter, say x; word wx =pex= ep’x=exp” belongs to 9’ and corresponds to 

the kernel repetition (p, ex), whose exponent is greater than the one of (p, e). If 

the excess e is left-determined, it is always preceded by the same letter x and 

xw = xpe = xep’ = xqxe = p”xe belongs to 9’. 

As p”x =xp, word p”, which is a conjugate of p, also belongs to the kernel of 

morphism o; the exponent of the kernel repetition (p”, xe) is the greater than the 

exponent of (p, e). If condition (FF) holds for 9, we only need a control on the 

exponent of the kernel repetitions, whose excess is a free word in order to establish 

property (IK), as follows from the next lemma. 

Lemma 2.2. Let the language 2’ satisfy condition (FF); and let (p, e) be some kernel 

repetition such that w=pe belongs to 9. If e is not a free word, there then occurs in 

2 another kernel repetition (p’, e’), with a greater exponent, where e’ is free and e is 
a factor of e’. 

Proof. A repeated use of the previous remark yields the result because the sequence of 

extensions of the excess of a kernel repetition eventually ends as property (FF) 

holds. 0 

In order to verify condition (IK), it then suffices to be sure that there does not occur 

a kernel repetition in 9, whose exponent is greater than sk, and whose excess is a free 

word. Denote by (IKF) this last condition. 

Nonempty languages that satisfy conditions (FS), (E), (IS), (FF) and (IKF) would 

then yield a proof of the conjecture for a given integer k; we shall look for them in the 

class of morphism-generated languages. 

3. Morphism-generated languages 

3.1. Definitions, first properties 

Let 4 be a morphism from (0, l}* into itself; P’$ stands for the language generated 

by 4, which is inductively defined as follows: 

_ words 0 and 1 belong to it, 
_ the image by C$ of an element of _Y+ still belongs to Y,,,, 
_ and every factor of an element of 5~‘~ is an element of P’@. 

According to its very construction, _Y+ satisfies condition (FS). 
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We shall further restrict ourselves to standard morphisms; a morphism 4 is called 

standard if neither 4(O) nor 4(l) is the empty word, if one of these two words at least 

has a length greater than 1, which ensures that the language Yip, is infinite, and if 

arbitrary powers of 0, 1 or 01 do not exist in the language. 

The interest of this standardness assumption is explained by the following simple 

propositions. 

Proposition 3.1. If morphism I#I is standard, then either 0 or 1 is a free word of Y+. 

Proof. Let x be one of the two letters 0, 1. If x is not a free word, then it is either 

left-determined or right-determined. 

Suppose that x is right-determined, i.e. that y always follows x in a word of .Y4. 

Then, y cannot be x as arbitrary powers of x are forbidden in Y+; and x is followed by 

the other letter X. Moreover, as an x cannot appear before another x, x is also 

left-determined. 

Now, if neither 0 nor 1 is free, both words are determined on both sides and every 

word in Y4 is a factor of (Ol)m, which is excluded by the standardness hypothesis. 0 

Proposition 3.2. If none of the two words 4(O) and 4(l) is empty, then, for any integer n, 

there exists an integer m such that every word of 2’+, whose length is greater than or 

equal to m, has a factor, which is the image by morphism 4 of a word of 2’@ of length n. 

Proof. Denote by (I 4 11 the maximum of the lengths 14(O)\ and 1 ~$(l)l. Integer m can be 

chosen as (n + 1) I( 4 I( - 1. 0 

Proposition 3.3. If morphism C#I is standard, then, for every element w of _Y+, there exists 
an integer n such that all words in _Y4, whose length is greater than or equal to n, have 

w as a factor. 

Proof. According to the standardness hypothesis, 0 and 1 are factors of all words of 

Y+, whose length is greater than some no. The previous proposition then gives the 

proof by induction for all words 4k(i), i=O, 1; and the elements of _Y+ are factors of 

them. 0 

Proposition 3.4. Extensibility condition (E) holds for languages generated by standard 
morphisms. 

Proof. For morphism-generated languages, condition (E) is satisfied as soon as 0 and 

1 can be left and right extended. Standardness implies that the language is infinite and, 

if one of the two letters could not be extended on some side, then arbitrary powers of 

the other would exist in Pd. 0 



196 .I. Moulin Ollaynier 

Standardness is then an useful tool for the proof; this assumption can be settled by 

effective verifications. On the other hand, looking down the finite list of all forbidden 

words effectively decides if condition (IS) holds. 

Some more results are to be described in order to reduce the proof of the conjecture 

to a finite number of effective verifications on a well choosen language _Y4. As we said 

above, a nonempty language is convenient if it satisfies sufficient conditions (FS), (E), 

(IS), (FF) and (IKF). It remains to be shown that conditions (FF) and (IKF) can be 

effectively decided for some morphism-generated languages. 

Let us now describe the conjugacy of morphisms, with which the verification of 

these conditions can become effecive. 

3.2. Conjugacy of rnorphisnzs 

After Lentin’s defect theorem, if the images 4(O) and 4( 1) do not constitute a code, 

these two words are powers of a same third word w; _!Y+ is then the set of all factors of 

powers of w and condition (IK) cannot be satisfied. 

We are then interested by morphisms 4 such that 4(O) and 4(l) constitute a code; 

denote by (CC) this code condition. Let morphism 4 satisfy (CC). If 4(O) and 4(l) 

start with the same letter x, denote by .x~‘$.x the morphism defined by 

(~-~~x)(i)=x-~$(i)x for i=O, 1. 

As it will be shown later, the language, that this conjuyate morphism generates, is 

the same as _Y’&. After a finite number of steps, this left conjugacy is no longer possible; 

the two words would otherwise have equal powers and could not constitute a code. 

This allows us to define a mapping L from the set of all morphisms satisfying 

condition (CC) to the free monoid (0, I> * by induction: 

_ if the first letters of 4(O) and 4(l) are different, L(4) is the empty word; 
_ on the contrary, if x is the first letter of these two words, L(4) is the concatenation 

of x and L(x-’ 4.x). 

Right conjugacy and mapping R are defined in a similar way. 

It can be inductively proved that L(q5) is the greatest left-ambiguous word for 4: 

a word is said to be l&-ambiguous if it is a common left factor of two words $(OU) and 

4(1u), and every left-ambiguous word is a left factor of L(4). This property is indeed 

true if the first letters of 4(O) and 4(l) are different, and, when assumed for x-‘4.x, it 

also holds for 4. 

It can also be inductively established that L( 4) is the greatest common left factor of 

all long enough words 4(w), where w belongs to P4. 

Mirror properties hold for mapping R. 

We give now some useful properties, related to the conjugacy of morphisms. 

Remark 3.5. The conjugate of a standard morphism is standard. The conjugate of 

a morphism for which the code condition (CC) holds, also satisfies (CC). 
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Definition 3.6. Given a morphism $I from (0, 1) * into itself satisfying condition (CC), 

denote by $+ or simply by rc/ the so-defined mapping from (0, l}* into itself: 

ti(w)=R(4)4(w)U4). 

Mapping $ only depends on the conjugacy class of morphism 4. 

Proposition 3.7. If conditions (E) and (CC) hold for 4, in particular ifq5 is standard, the 
image $(w) of a word w of Y$ also belongs to the language. 

Proof. Take any long enough extension w1 ww2 of w on both sides; R(4) is then 

a right factor of @(wr) and L(4) a left factor of 4(wz). And G(w) belongs to 2Z4 as 

a factor of $(wlwwz). 0 

Proposition 3.8. Ij” conditions (E) and (CC) hold for 4, language Y$ can also be 
inductively defined with the aid of mapping $: LZ’+, is the smallest language containing 

0 and 1, stable under Ic/ and under factor taking. 

Proof. According to the previous proposition, the so-defined language is contained in 

_Y,; as it is stable under factor taking, it contains 2’@. 0 

Corollary 3.9. If conditions (E) and (CC) hold for 4, language 9’+ depends only on the 

conjugacy class of 4. 

Proof. Language 2’+ can be defined from $, which only depends on the conjugacy 

class of d. 0 

Because 2?+ depends only on the conjugacy class of 4, one of the conjugate 

morphisms can be distinguished to define what are the markable words of the 

language. This useful conjugate is the one, whose image by mapping R is the empty 

word; such a morphism is said to be normalized. 

Proposition 3.10. If conditions (E) and (CC) hold for a normalized morphism 4, the 
image by $ of a free word in Pb is another free word of the language LF4. 

Proof. As w is free, w 0 and wl belong to _Y’+; they can be enlarged in Y+ to w 0 w,, and 

wlwI. And $(w) is a common left factor of 4(wOw0) and 4(wlw,). The letter 

following G(4) in ~(OW,) and $~(lw~) cannot be the same and $(w) is free. 0 

Corollary 3.11. If conditions (E) and (CC) hold for 4, condition (FF) is fulfilled as soon 
as 0 and 1 are factors of free words. 

Proof. Every word of the language is a factor of some e”(i); and if i (i= 0, 1) is a factor 

of a free word w, t/~~(i) is a factor of the free word $k(~). Cl 
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The following proposition shows that if 0 or 1 is not a factor of a free word, then 

repetitions with an arbitrarily large exponent occur in Y4. 

Proposition 3.12. Let 4 be a standard morphism and suppose that a letter x(0 or 1) is not 

a factor of a free word, which means that every word of Y,,, which is not a power of X is 

either left or right determined. Then, there exists a nonempty word w in the language 

whose powers all belong to Y+. 

Proof. An increasing sequence of necessary extensions in L?+, w0 =x, wl, . . , where 

wi + 1 = wixi+ 1 or wi+ I= ,Xi+ 1 wi can be built as x appears in every Wi. 

On one side at least, suppose on the right, there are infinitely many extensions and 

we can consider that all extensions take place on the right: 

Wg=_Y, . . . . Wi+1=WiXi+1,... 

As 4 is standard, some Xi is equal to x (arbitrary powers of X are forbidden) and the 

sequence of all Xi is periodical; and all powers of the period word belong to LY4. 0 

3.3. Interpretations 

Consider a standard normalized morphism 4, i.e. a standard morphism satisfying 

(CC) for which R( 4) = E. We call beginning, a nonempty right factor of 4(O) or 4(l); we 

call end, a nonempty left factor of one of these two words. An interpretation of a word 

w of _!Y$ is a triple (b, u, e), where b is a beginning, e an end and u a nonempty word in 

Y4 such that: 

~ beginning b is a right factor of 4(j), where f‘ is the first letter of u: e’b= 4(f); 
_ end e is a left factor of 4(l), where 1 is the last letter of U: eb’= 4(l); 
_ image 4(u) is equal to e’wb’. 

For instance, if 4(O) = 11 and 4( 1) = 10, (1, 0101 1, 1) is an interpretation of the word 

1 10 11 10 1: we describe how the given word of Y+ is a factor of the image by 4 of 

another word of the language. 

A word of _!Y+ is said to be markable if all its interpretations have the same 

beginning. 

The useful normalized morphisms (with respect to the proof that we look for) will be 

asked to satisfy the following condition: 

_ every long enough word of _Y4 is markable (Condition M). 

Property (M) is decidable for the morphisms that we deal with, as follows from the 

next theorem. A partial proof of a similar result can be found in [3]. 

Theorem 3.13. If there exist arbitrarily long words of Y4 that are not markable, i.e. if 

condition (M) does not hold for 4, then there exists a nonempty word w in Y,+ whose 

powers all belong to P’+. 
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Proof. If condition (M) is not fulfilled, there exists a right infinite word W, whose finite 

factors all belong to P+, with two different decompositions: 

w= uu ~...u,...=vv~...v, . ..) 

where the Ui and vj are images by 4 of 0 or of 1, where u and v are right factors of such 

words, i.e. what we called beginnings (u #v). 

Denote by Ui the concatenation product uul. ..ui (U. then stands for U) and by Vj 

the product DUE . . . Uj (Vo = II). 

For every pair (i, j) of positive integers, either UC is a left factor of Vj, or Vj is a left 

factor of Ui; but, as morphism 4 is normalized, the last letters of 4(O) and 4(l) are 

different and it is possible to decipher from the right so that no Ui is equal to a Vj. 

The infinite word W with a double decomposition, whose existence we supposed, is 

completely determined by the starting pair (u, v) of beginnings, as follows from the 

next construction in which we go further and further in the double decomposition. 

At the first step, we know the starting pair (Ui(O), Vj(0)) =(UO, V,,). One of these 

two words is longer than the other (it is equal to the concatenation of the other and of 

some end e(0)) and is certainly followed by the greatest left-ambiguous word L( 4); the 

shorter one must then be followed by eL( 4), which cannot be left-ambiguous, so that 

we have no choice for the image of a letter to put after this shorter word. 

We are then faced with the same situation and inductively build a sequence of pairs 

(Ui(k), l/j(k)), where the longer of the two words is equal to concatenation of the shorter 

with some end e(k). Moreover, e(k+ 1) only depends on e(k) and our process 

is periodical, which yields the eventually periodical infinite word W. Whence the 

result. 0 

Corollary 3.14. Property (M) is ejfixtively decidable for standard morphisms: either 
condition (M) holds in ~3’~ or the number of words with a given length in the language, 

which is an increasing function of the length, eventually becomes constant. 

Remark 3.15. It is not difficult to state a converse to Theorem 3.13: if there exists 

a nonempty word w whose powers all belong to _Y+, then property (M) does not hold 

for the language. 

Indeed, the length of some of the shortest of these words is at least 2 and then 

I #(w)l> IwI. An infinite descent method then shows that w cannot be markable nor 

any power of it. 

Proof. If condition (CC) does not hold for 4, then ~5’~ consists of all factors of powers 

of some nonempty word w; if this condition holds while condition (M) is not fulfilled, 

there also exists an nonempty word w, whose powers all belong to .Y+, by the previous 

theorem. 

As 4 is standard, all elements of P?+ with a given length occur as factors in every 

long enough word of the language, and in particular in some well chosen power of w; 
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the number of elements of L!‘+ with a given length is then bounded by the length of w, 

which completes the proof. 0 

Property (M) is then decidable for a standard normalized morphism. If property 

(M) holds for a standard normalized morphism, it is an effective task to build the finite 

set of all free nonmarkable words of the corresponding language. 

All free words are then known, as follows from the next proposition. 

Proposition 3.16. Let 4 he a standard normalized morphism for which condition 

(M) holds. Then eoery mark&e .free word w of‘ 5C4 has a decomposition 

w=$(W)=4(W) L(4), where W is a shorter free word qf Y*. 

Proof. If w is markable, all its interpretations have the same beginning. This begin- 

ning is either 4(O) or d(1); otherwise, w would be left determined (if we know the last 

letter of 4(i), we know i). 

This word UJ can then be written w = ~(W)W’, where IV’ is free on its right and left 

ambiguous: such a decomposition exists; if w’ were right determined, so would be w; if 

w’ is not left ambiguous, one can find a shorter one. Word w’ is then equal to the 

greatest left-ambiguous word L( 4). 

Moreover W is free: a determination of W on some side would imply a determination 

of w on the same side. 

It remains to be shown that JGJ < 1)~). 

The only possibility for V? to be as long as IV is that L( 4)=c and that ~5 =xk for 

a letter x such that 4(x)=.x or 4(.x)=X. 

If +(.Y) = x and L( 4) = 8, then 4(-U) = XjL.U and IV = W is a factor of 3., hence a factor of 

4 (4. 
If #(x)=X and L( 4) = E, then 4(.?) = xix and w = Xk is a factor 4(:U). 

In both cases, tv cannot be markable, as it is a factor of 4(x”) and of 4(X). [7 

Remark 3.17. If 4 is a standard normalized morphism for which condition (M) holds, 

then condition (FF) is easily fulfilled. According to previous propositions, it remains 

to be shown that 0 and 1 are factors of free words. Following Proposition 3.12, if either 

0 or 1 is not a factor of a free word, then arbitrary powers of a nonempty word belong 

to LYb, which is excluded by property (M). 

The infinite language Y, then yields a proof of the conjecture if the standard 

normalized morphism 4 satisfies sufficient conditions (IS), (FFOl), (M) and (IKF). 

Conditions (IS), (FFOl) and (M) are decidable; in order to make condition (IKF) 

effectively computable for a given morphism, a new reduction is to be introduced (the 

first reduction was the passage from condition (IK) to condition (IKF)). 

This reduction will allow us to consider kernel repetitions with a free excess, where 

this excess is moreover nonmarkable, to settle condition (IKF). An algebraic condi- 

tion on d is related to this reduction; let us discuss it. 
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3.4. Algebraic conditions 

Let us now introduce an algebraic condition (A) on a morphism #J, relating 4 to the 

previously defined morphism ok from (0, l}* onto the symmetric group yk: 
_ there exists an inner automorphism c( of the symmetric group such that the 

following equalities simultaneously hold (A). 

The important condition for r is to be an automorphism; but, except for the 

symmetric group Y,, all automorphisms are inner ones. This restriction will not 

therefore be an important one. 

Let us remark that condition (A) only depends on the conjugacy class for mor- 

phisms satisfying condition (CC). Condition (A) will be used as follows: if 4(w) belongs 

to the kernel of ok, so does w. 

For k > 2, condition (A) implies that the set { 4(O), $J( l)} is a code (CC). 

3.5. Reduction of kernel repetitions 

Recall that we would like to control the exponent of kernel repetitions that occur in 

a language _Y4 generated by a morphism 4. 

As it has been said previously, if condition (FF) holds, a control of the exponent of 

kernel repetitions, whose excess is free, will be sufficient (that does not depend on the 

generation of the language by a morphism). 

In the case of a morphism-generated language P,, where the standard normalized 

morphism 4 satisfies condition (A), the previously announced second reduction is 

given by the following propositions. 

Proposition 3.18. Let the standard normalized morphism C#I satisfy condition (A). The 

mapping ~1, given by 

transforms a kernel repetition with a free excess that appears in Y* in another one. 

Proof. As 4 satisfies condition (A), 4( p’) belongs to the kernel of crk. Moreover, word 

p’e’ belongs to the language 2, and its image by $ also belongs to 2,. But 

IC/(p’e’)= 4(p’)$(e’), which proves that the kernel repetition p((p’, e’)) occurs 

in 2,. q 

Proposition 3.19. Let the standard normalized morphism 6, satisfy conditions (A). If the 

free excess e of a kernel repetition (p, e) is markable, then (p, e) is the image of another 

suck repetition by p. 
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Proof. If e is a free markable word, e = +(e’) L( 4), where e’ is another free word; if e is 

moreover the excess of a kernel repetition (p, e), pe = ep’ is markable and can be 

written as 

According to condition (A), as p = 4( p’), p’ also belongs to the kernel of rrk. The kernel 

repetition (p, e) is the image by the mapping p of another kernel repetition (p’, e’); e is 

free if and only if e’ is free. 0 

Corollary 3.20. Under the previous hypotheses, every kernel repetition (p, e) whose 

excess is a free word, is the image under some power of p of another such repetition 

(p’, e‘), whose excess is not markable. 

Proof. A repeated use of the previous proposition yields a sequence ( pn, e,) of kernel 

repetitions, whose excess is free and such that (p, e) = p”((p,,, e,)). This sequence goes 

on as long as the free excess is markzble; this must eventually end because the length 

decreases, and the last free excess e’ is not markable according to Proposition 

3.12. 0 

If condition (M) holds, the verification of condition (IKF) consists in the control of 

the exponent of all repetitions p’((p, e)), where e is a free nonmarkable word (there is 

a finite number of such words), where p belongs to the kernel of CT, and where pe 

belongs to the language. 

Sufficient conditions are now to be given in order to make the calculation of 

the least upper bound of the exponents of all repetitions p”((p, e)) from e and 

p feasible. 

Denote by ei (by pi) the number of letters i (i=O, 1) in e (in p). Call a and p the 

numbers of 0 and of 1 in L( 4) (recall that R( 4) is empty for a normalized morphism). 

The notation 1 wji will stand for the number of i (i=O, 1) in the word w. 

Let then M(4) be the 2 x 2 matrix 

and let N(4) be the 3 x 3 matrix 



Proof of‘ Dejean's conjecture for alphabets 203 

The exponent of repetition ,u”( (p, e)) is given by the following ratio. 

P(@((P~ e)))=p 

Sequences (N,) and (D,) are increasing; the points corresponding to these elements 

of N2 lie on a “convex curve”, on a straight line or on a “concave curve” if the 

following quantity q(4) is positive, equal to 0 or negative: 

q(4)=(k- l)(l +det(M(d))-a-d)+a(l +c-d)+p(l +b-a). 

In the convex case (q(4)>0), the maximum of the values of p(p”(( p, e))) is either 

p( (p, e)), or p5 (( p, e)), which represents the limit, as n tends to infinity, of p( $‘(( p, e))). 
This limit can be computed from the column vectors corresponding to p and e. 

In the concave case (q( 4) < 0), if moreover the determinant of M( 4) is negative, this 

maximum of all p(@‘((p, e))) is either p((p, e)), or p(p((p, e))) (Case 1). 

In the special case of an uniform morphism (4(O) and 4(l) have the same length), 

the maximum is reached by p(( p, e)). Indeed, for every kernel repetition, p((p, e)) is 

greater than or equal to p(p((p, e))) (Case 2). 

Thus, in these two particular cases, the verification of condition (IKF), for a stan- 

dard normalized morphism satisfying (IS) and the algebraic condition (A), consists in 

showing, for every nonmarkable free word e, that no kernel repetition (p, e), such that 

its exponent or the exponent of its image by p is greater than the conjectured 

threshold, occurs in the language. 

On the one hand, there are finitely many free nonmarkable words and on the other 

hand, bad repetitions would have a short enough period, so that the verification of 

condition (IKF) is effectively possible. 

4. Conclusions 

4.1. Practical work 

To fulfil the proving scheme that we have described, i.e. to find a morphism on the 

free monoid (0, l}* that satisfies conditions (E), (FFOl), (IS), (A), (M), (IKF) and then 

leads to a proof of Dejean’s conjecture for a given value k of the cardinal number of 

the alphabet, the following tasks are done. 

(1) Determination of all forbidden words to avoid short repetitions with an expo- 

nent strictly greater than Sk. 

(2) Enumeration of all standard normalized morphisms, defined by short enough 

words, that are good candidates; these morphisms satisfy conditions (E), (IS), and (A). 
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(3) In the nonempty list of these morphisms, those that satisfy one of the nice 

conditions allowing an easier proof of the last steps are of special interest: cases 1 

(concave case with negative determinant) and 2 (uniform morphisms). 

(4) The proof is then achieved if such an example satisfies conditions(M) and (IKF). 

Condition (M) is decidable thanks to Theorem 3.13 and it implies (FF); to establish 

the essential condition (IKF), it suffices to show, for every free nonmarkable word e, 

that there does not exist a kernel repetition (p, e) such that its exponent (or the 

exponent of its image by ,L() is greater than sk. 

4.2. Results 

Here are some morphisms giving a proof of Dejean’s conjecture according to our 

proving scheme for cardinal numbers k, 2 <k d 11. 

k=2 

Morphism O+ 11, I --f 10, solves the problem. The corresponding language is the one 

of all words coding the factors of Thue-Morse word. 

k=3 

Morphism 4, defined by 4(O)= I101 and by 4(l)= 11010, leads us to the result. 

The corresponding language on i 1, 2, 3) is different from Dejean’s one [I]: 111011 

does not belong to Y,, while this word is the code of the transitions of hcabcbac, 

which is a word that belongs to Dejean’s language. 

An uniform morphism can also be found, which leads to the proof 

0-1010110, 1-1011011. 

k=4 
The simplest example is Pansiot’s one [4]: 

0+101101, l+lO. 

We did not find an uniform morphism, even much more complicated, that yields the 

proof. 

Among others, the following uniform morphisms solve the conjecture for k = 5,6,7, 

8, 9, IO and 11, and they are the shortest convenient uniform morphisms. 

k=5 

i 

0-+010101101101010110110 

1&+101010101101101101101 

k=6 

0-t010101101101011010110 

1&+101011010110110101101 



k=7 

k=8 
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10110110101101101101010 

1011011010 

0-+101101010110101 

1-+101101010101101 

k=9 

101101101101 

010110101010 

011010101101 

i 

0+101011010110110101011010110110101010 

1-+101010110110110101011011010110101101 

k= 10 

0+101010101101101 

1+101010101101101 

k=ll 

I 0+101010101010110 

1011010101011011011010110 

1010110101010101011010101 

~1101011010110101010110110 

1 1+1010101010101011011011011011011010101101 
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