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A method already introduccd by the last two authors for finding the integrable cases of
three-dimensional autonomous ordinary differential equations based on the Frobenius integ-
rability theorem is described in detail. Using this method and computer algebra, the so-called
three-dimensional Lotka—Volterra system is studied. Many cases of integrability are thus
found. The study of this system is completed by the application of Painlevé analysis and the
Jacobi last multiplier method. The methods used are of general interest and can be applied to
many other systems.

1. Introduction

Given a system of ordinary differential equations (ODEs) depending on
parameters, the question arises, how to recognize the values of the parameters
for which the equations have first integrals? Except for some simple cases, this
problem is very hard and no satisfying methods to solve it are known. To date,
the most successful approach is offered by the so-called Painlevé analysis (see
refs. [1-4]), the roots of which can be found in the seminal work of S.
Kovalevskaya on the rigid body problem [5, 6]. Unfortunately this method, of
high practical value, is not based on a firmly established mathematial ground.
Moreover, the Painlevé analysis method puts emphasis on complex analytic
integrals and is not well adapted to the search of integrals in the real domain.

In ref. [7) a method for finding first integrals for ODEs in R’ based on the
Frobenius integrability theorem was presented together with some simple
examples. Anticipating a little, we can say that the main point of the method
introduced in ref. [7] is to detect the values of the parameters for which the
system can have first integrals which at the same time are integrals of some
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non-trivial, linear system of three differential equations with constant coeffici-
ents. i.e. first integrals of linear vector fields in R Surprisingly. at least for
threc-dimensional systems, such integrals occur much more frequently that one
would a priori expect. In what follows, this method will be called lincar
compatibility analysis method.

This method can be considered as a kind of generalization of the well known
Lie symmetry method for finding first integrals of differential equations when
applied to three-dimensional systems (cf. refs. [8-11]).

The full power of this method, when applied to specific examples, is in
general unattainable without use of computer algebra. Indeed the amount of
simple and elementary computations is so big that it is impossible to perform it
by hand computations.

The main purpose of this paper is to give a thorough examination through
the linear compatibility analysis method of one of the most interesting exam-
ples among those studied in ref. [7]. namely the so-called three-dimensional
Lotka-Volterra system (3D L-V system) which is traditionally written in the
form

dx

— =x(Cy+z+

i x(Cy A),

dy

- = x + + . 11
o =t Az ) (1.1)
dz

——=z(Bx+ty+v),

de -

where A, B, C. A, u and v are real or, sometimes, complex parameters. Using
computer algebra we manage to find all cases where the linear compatibility
analysis method of ref. [7] can be applied to the 3D L-V system and in all
cases except one, we find explicitly at least one first integral.

The first paper, to our knowledge, wherc the integrals of the 3D L-V system
were systematically studied was ref. {4]. where the Painlevé analysis approach
was used to detect some integrable cases. But in fact, alrcady as soon as
Deccember 1884, S. Kovalevskaya in a letter to G. Mittag-Leffler (letter 57
from ref. {12]) announced that she was working on the problem of the
integrability for systems of three quadratic homogeneous ODEs in R*, in
particular for systems of the form

dx

EAXLI(X. y,g),

dy

— =y ) 1.2
=Ly, 7) (12)
dz

a zL(x, vy, 2),
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where L, L,, L, are homogeneous linear forms in x, y, z. Unfortunately, she
never published any paper about this problem.

The second goal of this paper is to complete the study of 3D L-V system
begun in ref. [4] by writing down all the integrable cases which can be obtained
by Painlevé analysis. For this purpose, we first present the so-called ARS
algorithm [1, 2], and then apply it to the 3D L-V system. Our presentation can
thus be used as an introduction to the Painlevé analysis method.

These two approaches, together with the Jacobi last multiplier method,
enable us to complete our list of first integrals of 3D L-V system obtained
before. Therefore, we supply the most complete list ever published of integra-
ble cascs together with the corresponding first integrals for 3D L-V system.

Finally, the third purpose of this paper is to serve as a model example for the
investigation of integrability of three-dimensional systems. Thus the paper is
written in a completely self-contained style and the knowledge of refs. [4, 7] is
not assumed.

The paper is organized as follows. In section 2 the complete list of all known
integrable cases for 3D L-V systems is provided in tables I-III together with
their first integrals. In section 3 the method of linear compatibility analysis is
presented while in section 4 we discuss the case of quadratic systems of ODEs
in R*. The application of the above method to the study of 3D L~V system via
computer algebra is described in section 5, where the obtained results are
reported in tables 1V and V. In section 6 examples of explicit computation of
first integrals are given. In section 7 the Painlevé analysis approach is recalled
and its application to 3D L-V system is presented. In section 8 we recall the
method of the Jacobi last multiplier which has been used to complete the list of
first integrals (table 1II). Some open problems and comments suggested by our
study arc formulated in section 9.

The main results of this paper are collected in tables I to V. To avoid errors,
the contents of these tables were verified using the symbolic manipulation
language REDUCE.

2. First integrals of the 3D L-V system

Let us consider a smooth C* vector field X defined on R3, Or on some open
subset of it. For simplicity we will consider exclusively the case of R”. As X is
defined on a non-compact space, the escape to infinity in finite time along the
orbits of X is not excluded. A subset V C R’ is called X-invariant (or invariant,
for short) if it contains only complete trajectories of X.

By a first integral of X we understand any smooth function F defined on
some open, dense, X-invariant subset V C R’, non-constant on any open subset
of V and constant along any orbit of X, i.e. XF =0. The introduction of the
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subset V is necessary, because, as will be seen in the examples, the first
integrals considered in this paper have typically singularities which are located
in an X-invariant subset R\V. Let us note that grad F # 0 on an open dense
subset of R”.

We will now write down in tables I-II1 all values of parameters A, B, C, A, u
and v for which we know at least one first integral of the 3D L-V system. As
we consider a three-dimensional system, the number of functionally indepen-
dent first integrals is at most cqual to two. Let us stress that in this paper we
consider only time-independent first integrals, although in some cases (cf. ref.
[4]) time-dependent first integrals also exist. Before presenting tables I-11I, let
us note that the 3D L~V system (1.1) is invariant with respect to the
simultaneous cyclic permutation of A, B, C, of A, u, v and of x, y, z. More
preciscly after a such a permutation the three equations (1.1) undergo a similar
one. Thus if for some values of A, B, C and of A, u. v we know some first
integral F of (1.1), by cyclic permutation as above inside it, F transforms into a
first integral F of the transformed system. Consequently, to avoid useless
repetitions in our listing of first integrals, we will write down the values of A,
B. C and of A, u. v up to simultancous cyclic permutation only.

Let us note also the following important feature of the 3D L~V system. The
coordinate planes x = (), y = and z =0 arc invariant, i.e. if some orbit has one
point on one of thesc planes, then the whole orbit is contained in it. Con-
sequently. the eight octants. i.c. the connected components of {(x, v, z) € R’
xyz # 0} are also invariant. Morcover, for some particular values of the
parameters, therc exist additional invariant surfaces (mostly planes) which.
together with the coordinate planes, divide R’ into invariant regions. In
particular, whenever the absolute value or the logarithm of some expression
appears in any of the following tables, it will always be true that its value is
finitc and non-vanishing outside such invariant surfaces.

In table T we list all the known integrable cases for the 3D L-V system. for
which there exists at lcast one first integral which is also a first integral of some
lincar field Z given at the right of the table and written down in tables IV and
V. We also list the corresponding first integrals. All these first integrals were
obtained by compatibitity analysis (cf. section 3) except for case 1 and the
integral F, of case 4, which were first obtained by different methods. Still, they
could easily have been deduced from compatibiity analysis.

This table is an exhaustive onc except for the case A=pu = » =0 and

x£+)’£+z£‘Z[,F:O, (2.1)

ax ay oz

i.c. the case where Fis a first integral of the vector field Z, (x, y, z)=(x, y, 2).
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Table I

Up to simultaneous cyclic permutation of A, B, C, of A, w, v and of x. y, z. this is a full list of all
cases of integrability of the 3D L-V system obtained by linear compatibility analysis. Z is the
compatible vector field (cf. tables 1V, V).

No. A, B, C AL p, v First integrals 4
1 AB(+1:(J /\:,LLIV F:‘XI AB’.V’R'ZI ]’X*C_V‘FACZ’/‘Hin}I Zul
2 A=B=1, A=p=v F=lx||, "z =ylz] ¢ Z,
C#0
3 ~-B- —u= F=¥ y gt z
: A=B=1, A=u=vr =% og‘ Z oy
C=0
4 ABC+1=0 v=uB-AAB F, =|x]""y] ¥z|, z,
F,= ABx+y— Az + vlogly| — p log|z| Z,
5 A=1,BC=-1 A=upu F=Bx+y—z+vlogly+ Bx| — Alog|z| .
2xz+y -
6 A=1,B=2, A=p=v F=2x+y—2z-Alog »u_yz Z,,
C=-1 '
4’ + 20z + vz
7 A=1.B=-2. A=p=v F=2v—y+: +A|(yg‘i—%z—l~% Z,
=1 Y
8 AF—1. A#0, A=p=v Le[u~Ar+(A+1)v+A(A+l)zzmd
| K=u —4A(A+1)yz. then
- VK
A+ F = \/-+/\(A+1)log(*7_1?). z,
. A+1 _
(i*»T If moreover 1= Ax + (A + 1)y~ A(A + 1)z,
then K =0 +4A(A + 1)xz and
VK i+VK
F, ]05( #\/—T{:) + A ]()E(7~\/?'>. Z“l
9  A=1,C#0 A=p,v=0 F=lx] Yy "|Cy - x|z Z
; [yl
0 A=1.C=0 A= =0 f‘:i+Blog‘—1¥l—10g\z[ z,
v — 2
I A=1,8=0 ASpor=0 P e z,
2 A=B=C=1 A=u2\=p F:uv—l+)\l()g< "’)) z,
y byl "
x—Cv)(y— '
13 A=B=1 A=0. = FZQ—;“)‘—(’\——Z—)rCulogi z,
= Cy)(y - 9
14 A=B=1 A= v=0 F:(i——“—g(—"——z)ﬂlog%\ z,
z[(B + 1)'x + By]
15 A=1,B#*-1 —p=v= A LN R :
; A=su=v=0 F (B+ixry B((B + 1)x + y] z,
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Probably. here, some cases arc missing, where the integral could be found in
closed form.

In two cases. 4 and 8, the compatibility analysis leads to two independent
integrals. In the cases 2, 3, 9. 10, 11. 13, 14, 15, the Jacobi last multiplier
method allows us to obtain the second integral (sce table 111). This is also true
in some subcases of case S (which include cases 6 and 7). Except for case 8. all
integrals of table I are real when A, B, C, A, u and » arc real. In fact, as we
will discuss below, in case 8 also one can write down two real first integrals.
The first integral is never defined in a unique way. For our tables we have
chosen the form which seemed to us the most convenient one.

The first integrals of table I arc written in an unambiguous way except in
case 8. The ambiguity in the latter casc is due to the fact that neither the
quadratic polynomial K nor the expressions (v + VK)/(u—VK) and
(it + VK)/(& — VK) are non-negative everywhere. The detailed discussion of
these integrals will be given in section 6.

Among the above fifteen cases, only case 1 when AB — B + 1 =0 (which is
also a subcase of case 4). the following four subcases of case 1 (up to cyclic
permutations of AL B and C) {A, B.C}y={-3/2, -2, -1/3}. {-3, - 1/2.
=273} {=2.=1.~1/2} or {—~1.-1.-1} and casc 8 can be detected by
Painlevé analysis (sce section 7). In table H we write down the five remaining
cases which can be found by Painleve analysis and for A= pu = v =0 we give
the corresponding first integrals, which are homogencous polynomials. This
topic goes back to ref. [4]. but the details are published here for the first time.
The interesting teature of the above five cases is that for them A. B and C are
truly complex numbers.

At this point we must stress that, as follows from above, if one considers
only real A, B and (. the Painlevé analysis approach does not furnish any new
cases in comparison with linear compatibility analysis.

Let us note that if A, B. C. A, p. v are complex numbers and F is a
corresponding integral of the 3D L-V system, then Fis a first integral for the
case A, B, C. X. . v. where 2 denotes as usually the complex conjugation.

As usually, we denote j= {(~1+iV3).

Let us observe that the measure m defined by dm = dx dy dz/xvz 18 invariant
under the (local) fiow induced by the 3D L-V system. Indeed div( fX) =0,
where f(x, v, z) = 1/xyz and X denotes the 3D L-V vector field given by the
right-hand side of egs. (1.1) (cf. ref. [13] for details about invariant measures).

When the density of the invariant measure is known and when one also
knows a first integral for three-dimensional systems, in some cases, the Jacobi
last multiplicr method (sec section 8) allows to find a second functionally
independent first integral. In table III are collected all the integrals obtained in
this way, using the first integrals from table I, except the cases when two
independent integrals were already known.
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Table 11

Up to simultaneous circular permutation of A4, B, C and x, y, z and up to simultaneous complex
conjugation of A, B and C, when A = u = v, these five cases were obtained by Painlevé analysis.
Here, we present the polynomial first integrals when A=u = v =0.

No. A,B, C First integrals for A=p=v =20

16 A=-2-/, 42+ Xy =3pCz + (L+ )y’ + (=14 ayz = 3(1 + )xz®
B=-1-], + (14219 +y’zj+ (—1+j)yz" ~ 2°
C=(-2-/)/3

17 A=(=3+1i)/2, 4(=7+24i)x* +16(2 + 110)x"y + 8(— 31 + 171)x’z + 24(3 + 4i)x°y’
B=—1+i, +8(—13 — 9i)x’yz + 12(=24 — 7)x°2> + 16(2 + i)xy’
C=(-2+i)/5 +40(3 — )xy’z + 8(7 — 24i)xyz” + 4(—17 = 31i)xz” + 4y*

+8(3—i)y’z + 12(4 = 3i)y"2” + 4(9 — 13i)yz" + (7 — 24i)2*

18 A=-2+i (7 + 24i)x" + 49 + 131)x°y + 4(— 17 + 31i)x’z + 12(4 + 3i)xy’
B=(-1+1i)/2, +8(11 + 2i)x’yz + 12(—24 + Ti)x’2" + 8(3 + i)xy’
C=(-3+i)y/s + 8(13 — 9i)xy’z + 40(— 1 — Ti)xyz” + 8(— 31 — 17i)xz" + 4y*

+16(2 — 1)y’z + 24(3 - 4i)y’z* + 16(2 — 11i)yz* + 4(—7 — 24i)z*

19 A=(—4+))/3, 27(37+360j)x° + 162(62 + 149))x"y + 54(—286 + 397/)x°z
B=-1+], +405(39 + 55)x°y" + 324(—87 + 62))x'yz + 135(— 323 + 37j)x*2’
C=(-2+j)/7 +540(19 + 18/)x’y’ + 54(94 + T1/)x’y’z + 378 (— 149 — 87))x’yz’

+60(— 683 — 286j)x’z + 405(8 + 5j)x°y* + 54(179 — 29j)x°y’z
+27(— 104 — 947))x°y’2" + 18(— 1427 — 2074/ )x*y2’

+45(—360 ~ 323/)x7z* + 162(3 + j)xy’ + 162(18 — j)xy’z
+108(52 — 41/)xy’z” + 36(73 — 328/ )xy°z" + 126(~23 — 94j)xyz*
+6(—397 — 683))xz” + 27y° + 54(4 — [}y z + 135(5 - 3j)v*2’
+60(17 — 20/)y’2* + 45(16 — 39j)y’z* + 6(25 — 211j)yz’

+ (=37 -3605)2"

20 A=-2+}, (323 + 360j)x° + 6(236 + 211/)x"y + 6(286 + 683/)x"2
B=(—14+/)/3, +45(55 + 39/)x"y? + 36(236 + 211/ )x’yz + 45(— 37 + 323j)x*2’
C=(—4+))/7 + 60(37 + 207)x°y’ + 126(94 + 23j)x’y*z + 18(— 211 + 25j)x’y2”

+ 60(—397 + 286j)x’2° + 135(8 + 3j)x°y* + 54(135 - 29j)x"y’z
+27(104 — 843j)x°y° 2" + 54(— 795 — 782/ )x"yz"

+ 135(=360 — 37j)x"2* + 54(5 + j)xy’ + 1134(2 — j)ay'z

+108(26 ~ 125j)xy’°z" + 108(— 167 — 424/ )xy’2’

+162(—323 — 360)xyz* + 54(— 683 — 397j)xz" + 27y" + 162(2 — j)y’z
+405(3 - 5j)y'z° + 540(1 — 18§)y’°z" + 405(— 16 — 557)y°z*
+162(—87 — 149/)yz" + 27(— 323 — 360j)z°

The integrals in table III were obtained assuming that the trajectory lies in an
invariant region of R’ such that the quantities appearing through an absolute
value (or a logarithm) in table I are all positive. For a different choice of the
invariant region, the final form of the integral @ may be different. Moreover,
in each region, it is possible to find the initial integration point depending
smoothly on F only, such that the integrand be finite throughout the integra-
tion domain. For example, in case 2 one can choose as initial point
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Table 111
Integrals obtained through the Jacobi last multiplier method. Note that in the last three cases. the
integrals presented are the exponentials of those directly obtained. In the cases 2, 3, 5, 9. 10 and
11, F denotes the corresponding integral from table 1. When performing the integration. F is
considered as a constant under the integral, and only after the integration is £ replaced by its
expression in terms of x, y and z. Note that the integrals of cases 9, 10 and 11 can be expressed in
terms of the incomplete beta and gamma functions.

No. A, B.C Ao v First integrals from Jacobi last multiplier method
v z) (v — Cy b - dr
2 A=B-1. A== q»:(;—)(-‘—é)rm[ SELA S
C+#0 ¥ (F=r))(1=n
x(y—2) J v dr
3 A = = = = p P o= —= 1 e
) ‘ B =1 A= g ! y A (F ~log r)(1 - 1r)
C=40 - <
5 - | A= ifA=p=0 &=5I '—ijm B .
! 2(7; 1 o AT TP y o r+vlogr—F
—ifA=pu=r d=(/v)'2Bxry -2)'
(subcase of case I compatible with Z“‘)
—if =0 @ =(x/v)'z
6 A=1 B=2. A=p=v These two cases are subcases of both case 1 and
C=-1 case 5. [n these two cases, the quantities F(5) — F(6)
and F(5) + F(7) respectively, where F(n) means the
7 A=1, B=-2 A=pu=vr integral of case n from table 1, are functions of the
C= new integral @ of the second subcase of case 5,

given above, of the form Alog(a/® + ).
(a. B) being (1, 4) and (4. 1) respectively.

9 A=l C#0 A=p, =0 q):,\;(jw)uog% e ( rUN e = " ar

10 A=1.C=0 A=p.ov=10 b =x 'f/\log{fc ! l P tetdr

1 A=1.B=0 A= =0 b = X (J (r+ A)dr
A=1.B= =p.ov= = oy
Xz | v
13 A=8B=1 A=0, u=v (‘b:; 177
Xz | . xz| O
14 A=B=1 A=p.v=0 (b;T (‘777‘,‘
15 A=1.B#-1. A=p=v=0 (p—(f‘,ﬂ+,.‘;)“,\”
B =1 B =p=v= = - SN
T B+1

(1+ F7"“)"" The obtained integral is thus smooth in each invariant region of
R’

Finally, comparing tables I and 1lII, one sees that among the 16 integrable
cases of table I we were able to find a second first integral for all cases but 1, 12
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and the full case 5. It seems reasonable to think that the tables I-III do not
contain all cases of integrability (in closed form) of the 3D L-V system and the
problem of finding all such cases is largely open. The case when A=u = v =0
is already very interesting.

3. First integrals via Frobenius integrability theorem

If a smooth vector field in R* admits a first integral F then R’ is foliated into
two-dimensional level surfaces of F and a typical leaf of this foliation is an
invariant manifold of this vector field. Let X and Y be two smooth vector fields
on R’ such that the set U of points x € R* where the vectors X(x) and Y(x) are
linearly independent is open and dense in R’ Let us suppose that F is a
common first integral of both X and Y. Without any restriction of generality,
one can suppose that F(x)#0 for every x € U. Then, by the Frobenius
integrability theorem, the vectors X(p), Y(p) and [X, Y](p) are linearly
dependent at every point p = (x, y, z) € U, that is

[X.Y]=aX+BY (3.1)

and consequently, by continuity of the vector fields X, Y and [ X, Y], for every
pER’

det{X(p), Y(p),[X, YI(p)} =0. (3.2)

Here, [X, Y] denotes the commutator of X and Y while « and 8 are some
functions of p. This last condition is, at least locally in a sufficiently small
neighborhood of any point x € U, equivalent to (3.1), with some smooth
functions a and 8. We shall say that two vector fields X and Y are compatible if
and only if condition (3.2) holds.

Conversely, if the compatibility condition (3.2) is satisfied for two vector
fields X and Y, then every point p € R’ such that X(p) and Y( p) are lincarly
independent has a neighbourhood in which there exists a two-dimensional
foliation tangent to X and Y. Each leaf of such a local foliation can be
extended to a maximal connected one. However, the two-dimensional foliation
thus obtained is not, in general, globally defined by level surfaces of some
function. In what follows we shall consider only the case when such a function
can be explicitly constructed and restrict ourselves to the algebraic aspect of
the method.

Let u( p) and v( p) be two functionally independent first integrals of Y, i.e.
Yu = Yv = 0. In fact on some two-dimensional submanifold, grad u and grad v
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are allowed to be parallel (in particular one or both of them can be equal to
zero). In some neighbourhood of a point p € R’ where grad u and grad v are
not parallel, any other first integral of Y is of the form f(u, v) for some function
f of two variables.

Now, let us return to the vector field X compatible with Y. If X( p) and Y( p)
are linearly independent, then the two-dimensional foliation tangent to X and
Y and defined in some neighbourhood of the point p is of the form F = const.
for some smooth function F. As this foliation is tangent to both vector fields X
and Y, Fis a first integral of X and Y. Thus by the above remark, X admits
(locally) a first integral of the form F = F(u, v).

How does one find F= F(u, v)? We know that F satisfies

aF aF OF Xu oF
0=XF=""" Xu+ - Xu:(Xu)<,— 22 ,ﬂ)
du Jv du Xv du
IF aF)
= o +—. 3.3
(Xv)(au Gu.v) + —— (3.3)

The coefficient G(u, v) = Xu/Xv is a priori a function of p =(x, y, z) but in
fact, at least locally, it is a function of u, v only. Indeed, condition (3.1)
implics

Y(Xu/Xv) = (Xv) > {(YXu)(Xv) — (Xu)(YXv))
= (Xv) {(aXv)(Xu) — (Xv)(aXu)} =0

and, thereforc, Xu/Xv is also a first integral of Y. But for three-dimensional
autonomous systems, any three first integrals are funtionally dependent and
this implies our assertion.

Solving eq. (3.3) is thus equivalent to finding a first integral F = F(u, v) of
the two-dimensional system

du dv
— = G(u, v), FTe

- (3.4)

More precisely if F(u, v) is a first integral of (3.4) then

F(x. y. 2) = Fu(x, y, 2), v(x, y, 2))

is a first integral of the vector field X.

The function G can admit singularities arising from the zeroes of the vector
field Y. Outside these singularities, the system (3.4) admits at least locally a
first integral. Indeed, this is a direct consequence of the standard linearisation
theorem of vector fields around non singular points (cf. ref. [14], section 7).
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However, from the local existence of a first integral one cannot deduce its
global existence (cf. ref. [15] for a particularly interesting example of this kind,
see also ref. [16]).

In all examples considered here

_ P(u,v)
C Q(u,v)’

where P and Q are some polynomials. Thus instead of system (3.4) it is more
convenient to consider the system

G(u,v)

%% = P(u,v), %lti = Q(u,v), (3.9)
the first integrals of which are exactly the same as for system (3.4). There is no
rule for finding the first integrals of system (3.4) or (3.5) and the success in
their search is a matter of skill.

A class of vector fields in R’ the first integrals of which are completely
understood is the class of affine vector fields. In fact, for the 3D L-V system,
we performed not only the linear, but also the affine compatibility analysis i.e.
the compatibility analysis with an affine vector field Y(p)= Zp + g, where
ZEeL(R’ R’) and ¢ €R’ is a fixed vector. Although some cases of compati-
bilty with genuinely affine vector fields were found, this did not provide any
new functionally independent first integral compared to those listed in table 1
and obtained by studying the compatibility with a linear vector field Z, i.e. for
g = 0. For this reason, in what follows, we will not consider the affine case, but
we will limit ourselves to the linear case.

Finally, let us remark that if in (3.1) 8 =0, i.e. if [X, Y] = a X, we recover
the Lie symmetry condition for the vector field X with “symmetry” Y (cf. refs.
[8—11}).

4. Quadratic systems of ODEs in R’

First, let us consider a vector field X in R’, all components of which are
homogeneous polynomials of order m. Such a vector field X is always
compatible with the linear vector field Z, (x, y, z) = (x, y, z), as a consequence
of the Euler theorem on homogeneous functions, namely

[X, Zn‘] = (1 - m)X

and therefore the compatibility condition (3.1) is satisfied. For the vector field
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Z,, the simplest choice of first integrals is
u=x/z and v=y/z.
Thus according to section 3 we look for an integral of the form
F(u,v)=F(x/z, y/z).

We write down the corresponding system of eqs. (3.5) and look for first
integrals of it. But even in the simplest case m =2, when one considers
homogeneous quadratic vector fields, for instance the homogeneous Lotka—
Volterra vector field,

X(x, v,2)={x(Cy + z2), y(x + Az), 2(Bx + y)} . (4.1)

only in very exceptional cases are we able to find the first integral F of system
(3.5) in closed form.

Let us consider now the general inhomogeneous quadratic vector field X
without constant term, i.e. X = K + L, where K is a homogeneous quadratic
vector field and L is a linear homogeneous one. Let us write down the
compatibility condition (3.2) where instead of a general vector field Y we
consider a linear vector field Z.

Eq. (3.2) now writes

det(K+ L, Z,[K+L,Z])=0. (4.2)
This determinant is a non-homogeneous fifth-degree polynomial in x, y and z.

Thus all its homogeneous polynomial terms are equal to zero. The equations
for the fifth-, fourth- and third-order terms respectively write

det(K, Z,[K, Z]) =0, (4.3)
det(K, Z,[L, Z]) +det(L, Z,[K, Z]) =0, (4.4)
det(L, Z,[L, Z])=0. (4.5)

Now, (4.3) and (4.5) imply that the linear vector field Z is compatible
separately with each of the homogeneous terms K and L. Moreover eq. (4.3),
which is independent of L, suggests that the first step to obtain Z is to find a
linear vector field compatible with the homogeneous quadratic vector field K.
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Our main problem is now the following: Under what condition on parame-
ters A, B, C, A, u and v of the Lotka—Volterra system (1.1) can one find a
non-trivial compatible linear vector field Z. Whenever this happens, compute
the first integral of the corresponding 3D L-V system (if possible). As already
stated, the Lotka—Volterra system is invariant with respect to the simultancous
cyclic permutation of x, y, z, of A, B, C and of A, u, v. Thus if one knows a
first integral for some values of A, B, C and of A, u, », then one can also find it
for C, A, B, v, A, p and for B, C, A, u, v, A.

5. Compatible linear vector fields

In this section, we will exceptionally denote x =x,, y =x,, z =x,. We will
study the linear vector fields compatible with the vector field corresponding to
the 3D L-V system. Let us note indistinctly by Z a linear mapping in R’ or the
m?trix Z ={z,} < ;=3 corresponding to this mapping in the canonical basis of
R

First let us consider the homogeneous 3D L-V system, and the correspond-
ing homogeneous quadratic vector field K. Condition (3.2) gives

X, (Cxy +x3) 2y X, 20,5, F205%, Plx), x,, x3)
det| x,(x; + Axy)  zyx, + 200X, + 25505 Oxy, x5, %3) | =0 (5.1)
Xy(Bxy +x,)  Zy X, F z3,%, + Z3x; R(xg, xy, x5)

for all x|, x,, x; €ER, where P,  and R are homogeneous quadratic polyno-
mials defined by [K, Z](x) = { P(x), Q(x), R(x)}. We do not write down here
the explicit expressions for P, Q and R as they are too cumbersome. Moreover
it is practically impossible to compute determinant (5.1) by hand without error.
Thus, from now on all reported results concerning eq. (5.1) and other
equations of this type will be obtained using computer algebra.

We already know one non-trivial solution of (5.1) namely Z=aZ, , @ €R,
le. z;,=ad,, 1=<i, j<3 (§; is the Kronecker delta). To find all solutions of
(5.1) we will proceed as follows. Eq. (5.1), when written in the form

Z s Mili2i3(Z, A, B, C)xillx;z)é? =0

Osiy iy iy
i +iyt+iz=5

for every x,, x,, x; ER, where the coefficients M, ,,;, are quadratic homoge-
neous polynomials on the {z,}, is equivalent to the following system of 21

equations:

M, (Z A B,C)=0, 0<i, i, i,<5 i +i,+i,=5. (5.2)
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In fact we have here only 18 non-trivial equations, because M,,, My, and
M s vanish identically.

We ask for which values of the parameters A, B and C this system has a
non-trivial solution {z,}. We look for 12-uples (A, B, C, {z;}), in which the
z;; are not all equal to zero, that verify the 18 nonlinear equations (5.2).

Six among these 18 equations, corresponding to M, ,,, My, M .. My,
M,,,, M,,, are particularly simple. Indeed,

s10= 23(25 + BCzy — Bz ) = 2, L, =0,
s = Zy(23 + BCzy — Bz ) =2z, L, =0,

(5.3)
ot = 212(ACz5, = Czyy + 24,) = 2,L, =0,

M
M
M 0=2,(AC24 — Cz,, + 2,5) = 25,1, =0,
M
M o, =2,,(Az33 — 25— ABz(3) = 2,3, =0,
My, =2z (Az3— 2,5 — ABz3))=2z,,L, =0,

where L, = L, (A, B, C,{z;}), 1 =k =3. The set of all solutions of system
(5.3) can be divided into 8 mutually disjoint subsets P, — P, defined as follows:

P: L,=0,L,=0,L,=0
P,: L,#0,L,=0,L,=0,
P.: L,=0,L,#0,L,=0,
P: L,=0,L,=0,L,#0,
P.: L, #0,L,7#0,L,=0,
P: L,#0,L,=0,L,#0,
P, L, =0,L,#0,L,#0,
P: L,#0,L,#0,L,#0.
Up to a simultaneous cyclic permutation of the indices of the z;; and of the

(A, B, C) there are only four different cases to be considered among these 8,
which are described below.
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Case P,. In this case one has
z4, =Bz, — BCz,, ,
z,,=Cz,, — ACz,,, (5.4)
Zy, = Azyy— ABz,,,
where A, B, C, z,;, z,3, Z,,, Z3,, 23, and z,, are arbitrary.
Case P,. In this case one has
z3,=Bz,,— BCz,,,
2, = Cz, — ACz4,, (5.5a)
7,3=2,3=0.
As L;#0, this implies that
Azy, #0. (5.5b)

Thus (5.5a, b) describe completely the solutions of (5.3) when B, C, z,,, z,,,
Zy,, Z3, are arbitrary and where A # 0 and z,, # 0 are also arbitrary.

Case P,. In this case one has

zy =Bz, — BCz,,,

(5.6a)
213 =237 253 = 23, =0.
As L,#0 and L, #0, this implies that
Az;;#0 and Cz,,#0. (5.6b)

Thus (5.6a, b) describe completely the solutions of (5.3) when B, z,, and z,,
are arbitrary and where A#0, C#0, z,,#0 and z,,#0 are also arbitrary.

Case P,. In this case one has

21T 23T 2y T 253 =25 =25 =0, (5.7a)
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As L, #0, L, 0 and L, > 0, this implies that
Az, #0, Cz,,#0 and Bz, #0. (5.7b)

Thus (5.7a, b) describe completely the solutions of (5.3) when A#0, B#0,
C+#0, z,,#0, z,,%0 and z,;# 0 are also arbitrary.

In this way the set of all solutions of the system (5.3) is completely
described. It is worth noting that by this procedure we never get the same
solution twice.

Now, in order to solve the full system of 18 non-trivial equations (5.2) we
consider separately each of the 8 cases P,—P,. In fact it is sufficient to consider
only the above 4 cases P, P,, P, and P,. Let us consider for example case P,.
Substituting expressions (5.4) into the remaining equations, one obtains a
system of non-linear algebraic equations with unknowns A, B, C and z,, z,;,
Z5ys 233, 23, Z33- The computer algebra program written in MACSYMA gives
the factorization of these equations into factors of lower degree. Indeed, we
use the standard factorization algorithm for polynomials in several variables
with integer coefficients (ref. [17], section 4.2.2). Some of these factors are
linear with respect to at least one unknown. This leads to equations similar to
(5.4), (5.5a), (5.6a) and (5.7a). The substitution procedure used in the solution
of system (5.3) can also be applied here. In this way the number of unknowns
decreases and we keep treating the remaining equations in exactly the same
way. Finally, by considering all possible cases that appear in this procedure we
obtain the complete solution of system (5.2) in case P,. The same work was
done also for the remaining cases P,, P, and P,.

The tedious analysis of taking into account the invariance of the problem
under the simultaneous cyclic permutations of the variables x,, x,, x5, the
parameters A, B, and C. and the coefficients z,’s was performed by hand.

In this painstaking way we obtain the solution of system (5.2). The fact that
we were able to describe, by this procedure, completely and efficiently the set
of all solutions of our system of 18 nonlinear equations with 12 unknown A, B,
C and {z,}, 1=<1i, j=3, is very astonishing. It would be quite interesting to
understand the reason for this phenomenon.

Up to cyclic permutations of x,, x,, x, and of A, B, C the complete answer is
given in table IV. In this table, the parameters z,’s are arbitrary real or
complex numbers. Unless a restriction is explicitly given, the parameters A, B,
C are also arbitrary. To organize this table in a coherent and simple way, we
completely drop inequalities like (5.5b), (5.6b) and (5.7b) (except for Z, and
Z, for consistency reasons). For this reason some different cases have a
non-empty intersection.
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Let us now pass to the full non-homogeneous 3D L-V system (1.1). As
before, we search for compatible linear vector fields.

In this case beside the identity (4.3) we have also to satisty the identities
(4.4) and (4.5). Thus in total we now have 46 homogeneous quadratic
equations on {z,}. Indeed beside the 21 equations corresponding to (4.3) we
have also 15 equations corresponding to (4.4) and 10 equations corresponding
to (4.5). We ask for which values of the parameters these 46 equations admit a
non-trivial solution. As the first 21 equations are the same as for homogeneous

Table IV

All cases of compatibility of a linear vector field Z with 3D L-V system with A= = » =0 (up to
simultaneous circular permutation of A, B, C and x, y, z, respectively). Let us note that the
matrices Z,, Zs, Z, depend on only one parameter, the matrices Z,, Z;, Z., Z, depend on two
parameters, Z, on three parameters and Z, on six parameters. Since for a three-dimensional
system we can have at most two functionally independent first integrals, the richness of parameters
for Z, and Z, is rather spurious, because in any of such family we will use no more than two
different matrices. We report the first integrals # and v of the vector field Z, as well as the first
integrals of the corresponding 3D L-V system written as functions of « and v. (No. 15 of Table I.)

A B C Linear compatible vector field Z First integrals
A, B. C arbitrary zyp 0 0
Zo=1 0 z, 0
00 zy
ABC +1=0 0 0
Z, =1 0 n 0
0 0 —ABz, + Bz,
ABC+1=0 7y Czpy— ACzy, 23
Z,= Zay 23 Azy3— ABz
Bzy - BCzy z3; 733
A=-1B=1.C=i —zy oz 0
(and thus ABC +1=0) Zy=| 0 0 0
0 Z12 oz
A# -1, A#0. Czyy — Azs; —BCzy, zy3
| Z,= 22 Az~ Bzj; —ACz,
B= AT ~ABz3, z3; Bz)y~ Cza)
[ 1
(thus €= = 5
A:—ﬁandABCrl)
A=1 z;p 000
Zs=| 0 z; 0
0 0 0
A=1,B=0 2+ Cz3s O 0
Zg= 233 ;2 0
0 0 z3
A=B=1 ) Czy) 0
Zy;=] 0 zy+zn O
0 kst 0
B . 1 Bz,
A=LBF-1.C=~5 L ~(B+Dzy oy O u=z{(B+ 1)° + By,
5| B+ Bz, 0 v={(B+Dxty.
0 0 21 F(u‘v):%*BU
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Table V

All cases of compatibility of a linear vector vector field Z with a 3D L-V system with some
non-vanishing A, p, v (up to simultaneous circular permutation of A, B, C,of A, w, vand of x, y, z
respectively). The matrix Z, is always a subcase of matrix Z, from table III. We report the first
integrals u and v of Z as well as the first integrals, written in terms of u and v, of the 3D L-V
system except in the case of compatibility with the vector field Z,, .

A.B. C AL v V4 First integrals
B. C arbitrary A=u=uw T o o) n=t
Zy, =0 10 :
0 0 1
ABC+1=10 r=uB-AAB 0 0 0 Wy, v g N
Z, =0 1 w0 .
lo o B F={ul™o|
ABC+1=0 v=uB-xARB 0 BCu v = Bx— BCy—z.
Zy =0 Bu 0 v=ly[lz] #
0 0 By F= Au+logle|
A=1,BC=-1 m A T u=Bx+ty vz
(thus ABC +1=0) Zy, = | =Bz u
- 0 F=u vt log( o
-
A=1.B-2.C= | A=p=—v 100 =2y -z
(thus ABC +1=0) =220 e
020

F=u  Alogl— v

A=l B=-2,C=} Asu=v 410 w=2v - vz,
(thus ABC + | = 0) Zy=| 020 Loty
L=8 0 0 v
=+ Aloglue + 1
A#FA -1, A#0, A= u=w r | U= AvH(A F Dy F A(A+ ),
-~ 77] 0 K 1 v M
A+ : — u+ VK
o A TLT 0 FoVE 4 A+ Dlogl )
C=—" ” i
A [ g 2,
where K —u™ - 3A(A+ 1)7v
(thus ARC - 1 =) L Al
A7 1A L0 Acp=vw r u— Ax+(A+ Dy — A(A = )z
#* !
1 A a0 [EEE
B ‘ —
A A FoVE - AAGA b Tylogl PT VR
a5 —_— / - AA(A il — =
A+l e i TR
) 0oy where K =’ +44%(A + Do
(thus ABC—1-1) ‘
| 1l 1] W= N v Tz
_ = Zo —lo 0 . . ‘
A=l A=p.op=0 Zs, -0 1 HC#0 F=iC— i L
000 Tul

I
HC=0 F= . B log|ul - log|u].

LI

A=1.B-0 A=por—A ¢ 00 u=x—Cy. v— N
Za, { ) u} Fe e .
(U V.
A=B=0C=1 v A =24 [ 1‘*«‘?\"5“ 2
(thus ABC —1 -0} Z;, - {u 2 11} o (v = 2y
0 1 1 S =u + Aloglul

A=B=1 A=D u=vr 0 C ()1 w=x -Cy.
b1 0 vz
0 01 F=ul —0)+ pCloglv
A=B=1 A=p. =0 1o llji u— VoL
Zy= 0 10 U XY
[V ] F=u(v~ )= Alogly|
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case, we know already that for the solutions (A, B, C, A, w, v) with A, w or v
non-vanishing, A, B and C necessarily satisfy one of the nine conditions from
table IV and that the corresponding matrix Z is a particular case of matrices
Z,~Z,. Exactly in the same way as in the homogeneous case, using a large
amount of computer algebra we were able to solve completely this system of
equations. The results are presented in table V, where, for one-parameter
families of matrices Z, the value of the parameter (denoted by z,, in table I'V)
is taken here equal to one.

Let us note that the affine compatibility analysis was performed along exactly
the same lines as the linear one. However, the amount of computations needed
was substantially larger than the one involved in the linear case.

It is worth repeating that the fact that by this procedure we arc able to
describe completely and efficiently the set of all solutions of such complicated
systems of nonlinear equations seems to be a real miracle.

Finally let us stress that the success of our method in solving the above
systems of non-lincar equations is intimately related to the good choice of
substitutions as given by (5.4), (5.5a), (5.6a) and (5.7a) at each stage. A bad
choice may lead to very long subsequent computations. In principle our
method can be completely automatized by the use of computer algebra.
Nevertheless the problem of finding the good choice of substitutions is decisive
for the practical implementation of this work.

6. The determination of first integrals

We will now indicate how, through the prescription from section 3, together
with the tables IV and V one can find the first integrals presented in table I,
using the compatibility with a non-trivial linear vector field. Except for case 8,
all other cases are of elementary character and do not present difficulties. Thus
we will describe in detail the search for integrals in case 8 and also, as an
example, in case 6. In all other cases the computations are of the same type as
in case 6, except cases 3 and 9 where one finds the integrals by differentiating
with respect to C those of cases 2 and 8 respectively. Some remarks concerning
case 1 are also given.

Case 6: A=1,B=2,C=-3, A=u=v»
In this case, the 3D L-V vector field is compatible with the linear field
corresponding to the matrix

1 0 0
Z,=|-2 20
‘ 02 0
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The corresponding system of linear ODEs

=
If
=
\
|
b
=
+
]
I~
i
o

has two first integrals
ux, v.z)y=2x+y-—-z

and

Using the 3D L-V equations, one finds immediately that

u'=Au %:/\U*llv+4. (6.1)

where [’ = df/dr denotes derivation according to the 3D L-V vector field.
Let us denote w =4 — nyv. Then it is casy to see from (6.1) that

w' = uw
i.c. that
u' = A(log|w|) .

This implies that ¢(u, v) = u — Alog |w| = u — Alogld — wv| is a first integral of
(6.1) and thus that (cf. section 3)

2xz + /
F(x, y,z)y=o¢(ux, v, z),v(x, y,z))=2x +y—z — Alog| ———=——

is a first integral of 3D L-V system in casc 6.

Case 1

Let us note that although case 1 can also be treated as above. we found its
first integral F for the first time by an another method. Indced we deduced the
integral F of case 1 from the knowledge of integrals F| and F, of case 4 when
A=pu = v =20. For this we need the following well known and casy to prove
fact, which will be used again in the next section.
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Let (x(7), y(7), z(7)) be a solution of the 3D L-V system with A = p = v =0.
Let x(r)=Ae" x(e"), y(r)=Are" y(e") and z(r)=Are" z(e") with A#0.
Then (x(£), y(t), z(r)) is a solution of the 3D L-V system with A= = ».

Now let us replace x, y and z in the expressions for the first integrals F, and
F, of case 4 with A= =v=0by xe /A, ye /A and z e “/A respectively.
One easily verifies that the obtained expressions are two time-dependent first
integrals for case 1, and with the same time dependence. Their quotient gives
the integral F.

LAt
A+l a4 0 MTH

Case 8: A#—1, A#0, B=

=V

In this case, the 3D L-V vector field is compatible with the following two
linear vector fields corresponding to the matrices (cf. table V)

1
( e
) " 1
Z,=o ! 0
A+l |
0 ~
0 A+1
and
LI
A
P ,
gy i
0 0

A

As first integrals of the linear vector field corresponding to Z,, one chooses
u(x, y,z) = Ax+(A+ Dy + A(A+ 1)z

and
v(x, y,z)=yz.

Instead of working directly with the first integrals u and v it is more convenient
to introduce the quantity

K=u"—4A(A+ 1) (6.2)

94
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and to work with ¥ and K. An easy computation gives

u' =Au+2AA+ o,
(6.3)
K'=2AK .

Let us note by the way that the last cquality implies that for A =0, K is a first
intcgral of the 3D L-V system. This integral was already found in ref. |7].

From (6.2) one obtains that v = (¢” — K)/4A(A + 1)” and thus the system
(6.3) becomes

u' = - K),

L 2
u+ 2A+D (u
(6.4)

Let us put L = VK. Then dL/dt = AL and thus the system (6.4) is transformed
into

u' = Au + ~L7).

1 >
AT W
(6.5)

L'=AL .

Now it is not difficult to find a first integral of system (6.5). By adding and
subtracting eqs. (6.5) one obtains

. (u+ LYy 1
= —_— = e — —
[log(u + L)] L A 2(A+1)(“ L)
and
., (u—=LYy 1
—I) =+ — = A —— +
Hog(u — L)) s A A (u+ L),
consequently

[1 (’quL”'__ L
OB\ T L/ T T AT MA+1)
and finally one obtains the first integral

E:VK+MA+Um4%§§%)
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Let us consider now the linear vector field corresponding to the matrix Z, .
As its first integrals one chooses i(x, y, z) = Ax+ (A + 1)y — A(A + 1)z and
v(x, v, z) = xz. Let us note that

K=ua’+4A(A+ 10 .

As above one obtains the equations

u'=Au—

1 ~2 2
m(ll *‘L),

L'=AL

and the first integral

ﬁ+\/?>
i-VK/~

The integral F, from table 1 is equal to (F, — 2)/A(A+1). As F, is a
homogeneous function of degree zero, i.e. F,(x, y, z) = F,(kx, ky, kz) for any
k#0, F, is also a first integral of the vector field Z,; . Now using the complex
(in general not uniform) integrals F, and F,, we will write two real, functionally
independent integrals @, and @, for case §.

First of all, let us note that since

N=VK-AA(A+1) log(

K=u'—4A(A+1)yyz =0’ +4A°(A+1)xz,

whenever xyz#0 we have u#*VK and i # =V K. Moreover (cf. (6.3))
dK/dt = 2AK. Thus the conical surface C, = {(x, y, z) ER"; K(x, y, z) =0} is
invariant for the 3D L~V system, and thus both the interior and the exterior
of C, are also invariant. Let us define Cy = {(x, y, z) ER’; K(x, y. z) >0}
and Cp = {(x, y,2)ER’; K(x, y, z)<0}. Thus, in C; and C,, [(u+ VK)/
(u —VK)| and |(&d + VK)/(ii — VK)| are always finite and non-zero, and
moreover C,, C, and Cj are always non-empty. Taking into account that for
w € C\{0}, log w = log|w| + i arg w, by considering the real parts of integrals F,
and F, respectively, one obtains immediately that inside Cy

u-?—\/l?'
u—-VK

&, =VK+AA+1)log

and
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At

i+VvVK
i—- VK

u+ VK '
u— VK

=

are the first integrais. Inside C., i.c. where K <{), these formulas do not define
first integrals.

Inside C, the situation is a little bit more complicated. Let us note by O,
O,....,0O. the eight invariant octants which arc the connected components
of {(x. v.2)ER": xyz #0}. It is casy to sce that C, is a conc the top of which
is in © € R, intersecting exactly two opposite octants of &, depending on the
sign of A. The interior of this cone coincides with C, . its exterior coincides
with C,.. In what follows we will suppose that the octants are enumerated in
such way that C, CO,UO, and C, D U" O, Let us note
u(x. vy, 2)+ivV-Kx. v, z)

u(x, v.z) —ivV—K(x, y. z)

S
-
Il

P (x, v, 2

and

d(x. v, z) V= K(x. y. 2)
)

Yol ¥ 1) = a(x. v.z) =iV —K(x.y, 2

g0 O,— C\{0}, where i = 1. 2 and 3= j =8, arc continuous mappings. As the
O,’s are simply connected and connected by arcs. the same is true for ¢,(0O,)
and consequently one can define uniformly the logarithm on #,(O;). Thus for
I=j=8.

— w1V - K
qzv~K+MA+1m@A;jRE?)
and
‘u+ivV-K» ‘0 +ivV—-K
(I)2 = ergl’<m7—:?) + A argz/(‘m)

arc the first integrals on O,, for a well choosen continuous branch of the
argument function on ,(O,) denoted here by arg, respectively, /=1, 2 and
3=sj=8.

As far as the remaining invariant sets C, NO, and C, N O, are concerned.
we note that any of these sets is built from three simply connected, connected
by arcs components. Indeed, the cone Cy is tangent to the coordinate plancs
x=0,y=0and z =0 along the straight lines y — Az =0, x + (A + 1)z =0 and
Ax + (A + 1)z =0 and therefore, by the same reasons as above, the integrals
@, and @, remain valid also on the sets C, N O, and C, NO,.
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7. Painlevé analysis of the 3D L-V system

In ref. [4] the Painlevé analysis of the 3D L-V system has been quickly
sketched and our presentation will draw from these results. For a more
detailed description of the Painlevé analysis see refs. [1, 2]. where this method
was introduced. as well as ref. [3] and references therein. In what follows we
will only consider the simplest framework, i.e. the case of a system of
first-order autonomous ODEs with entire (i.c. holomorphic on the whole
complex space C") right sides. Let us consider such a system

dx;
— =f(x,,....x,), l=isn, (7.1)
de

where (x,,....x,)€C" r€Cand {[},.,.,. arc entirc functions. As it is well

known. for any choice of initial conditions

x{ty)=x, . Isisn, (7.2)

system (7.1) admits a unique solution satistying (7.2) and this solution is
defined and analytic at least in some ncighbourhood of ¢,. In what follows,
when speaking about a solution of the initial value problem (7.1)~(7.2) we
understand the maximal analytical prolongation of such a solution (spread over
its Riemann surface).

Inasmuch as we consider only autonomous systems of ODEs the Painlevé
property for such systems (7.1) means nothing else that all its solutions, i.e. the
functions x,, . ... x,, arc meromorphic in the whole complex planc C.

The so-called ARS (Ablowitz—Ramani-Segur) conjecture in its simplest
form says that if a system (7.1) enjoys the Painlevé property then this is an
indication that the system may be integrable (perhaps with time-dependent
integrals). In fact no counterexamples to the conjecture are known to date.

Usually the system (7.1) depends on some paramcters and one asks for
which values of these parameters the system is integrable. Following the ARS
conjecture we arc thus interested to know the values of the parameters for
which the system cnjoys the Painlevé property. Since it is in general very
difficult to prove that a given system has the Painlevé property, one usually
uses instead the so-called ARS algorithm. Let us consider the solution of the
initial value problem (7.1)—(7.2). It may happen that such a solution has a
singularity. The ARS algorithm dectects the values of the parameters such that
around any singularity allowed by system (7.1), the latter admits a non-trivial
formal Laurent series solutions with only a finite number of negative powers. It
is a priori not clear whether the systems detected by the ARS algorithm
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coincide with those satisfying the Painlevé property. Nevertheless, if some
system is detected by the ARS algorithm then this is also an indication that 1t
may be integrable.

The ARS algorithm is divided into three steps:

(a) the determination of the possible degrees of virtual poles of solutions,
and of the leading coefficients;

(b) the determination of so called resonances, and finally,

(c) checking the compatibility conditions at the resonances.

We will now describe in detail the three steps of the ARS algorithm applicd
to the 3D L-V system and clarify the notions introduced above. As expected
all the cases detected are integrable and the corresponding integrals are
explicitly written in table I (case | for AB— B + | =0, four other subcases of
case 1 listed in table VI, and case 8) and in table II.

(a) We start with the 3D -V system

x=x(Cy+z+A),
v=y(x+ Az +pu), (1.1)
z=z(Bx+y+v)

with complex time 7. Let us suppose that a solution (x(¢), y(¢), z(¢)) of (1.1)
has a pole at t =1, i.e. that at least one of the functions x{¢), y(¢), z(¢) has a
pole at r=1,. Wec denote 7=¢—1, Let us write the (formal) Laurent
expansions of x, y and z in the form

x()=1" 2 x. 7, y)y=7" z y, 7, zZ(t)y=7" E z, 7", (7.3)

y0 ra{) =4

where x,#0, y,#0 and z,# 0 and where at least one of the numbers p . p,
and p. is negative. Substituting expansions (7.3) into cgs. (1.1), by straightfor-
ward analysis one finds that only two possibilities occur:

(i) p.=p,=p.=-—1(and x,#0, y,#0, z,70), i.e. 1, is a simple pole for
x,y and z.

(ii) Two functions among x, y and z have a simple pole at f, and the third
one is analytic around ¢,,.

We will now try to determine the conditions ensuring the (simultaneous)
existence of solutions of (1.1) by formal Laurent series expansions (7.3) for
both cases (i) and (ii) (when such expansions exist).

First let us try to determine the constants x,, y, and z, for case (i). By
substituting the Laurent expansions (7.3) into (1.1) and comparing the coeffici-
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ents of 7~ one obtains the linear system of equations

0 C 1\/X -1
(1 0 A)()’(»):(*l) (7.4)
B 1 0/\% -1

with determinant equal to ABC + 1.
When ABC + 1 =0 (case (i,)), the necessary and sufficient condition for the
existence of non-trivial solutions of (7.4) (with non-vanishing x,, y,, z,) is

AB-B+1=0, BC-C+1=0, CA—-—A+1=0. (7.5)

In fact as ABC +1 =40, any one of conditions (7.5) implies the two others.

When ABC+ 170 (case (i,)) (7.4) has a unique solution. Because we
require that x,#0, y,50 and z,7#0 then AB—-B+1#0, BC—C+1#0,
CA—-A+1#0.

Let us consider now case (ii). Let us suppose that for example x is (formally)
analytic around ¢, i.e. p_ =0 in expansion (7.3). Let us try now to determine
p.. Substituting the corresponding Laurent expanswns (7.3) into egs. (1.1) and
comparing the coefficients of the leading term (7"~ ' for the first equation, 7~
for the second and third one) leads to the following relations:

Cyy+zy=p,. Az;=-1 and y,=-1. (7.6)
Thus A # 0 and finally for this solution the non-negative integer p_ is equal to
p.=—C—1/A.

By the same token, considering the two remaining solutions where y (or z) are
respectively (formally) analytic around ¢, while x and z (or x and y) have

simple poles at 1, one deduces that for these solutions one has p. = —A ~ 1/8B
and p, = =B — 1/C respectively. Summarizing, all three numbers
a=—C—-1/A, B=—A-1/B, y=-B—-1/C (7.7)

must be non-negative integers.

Let us note that, when ABC + 1 =10, conditions (7.5) and (7.7) cannot be
satisfied simultaneously. Thus when (7.5) is satisfied (which implies ABC +
1 =0). only singularities of type (i) are allowed by the 3D L-V system, and
when ABC +1=0 and (7.7) is satisfied, only singularities of type (ii) are
allowed. The only possible values for A, B, C satisfying (7.7) with ABC+1=0
are listed in table VI.



710 B. Grammaticos et al. | Integrals of ordinary differential equations

Table VI
All values of A, B and € (up to cyclic permutations) satisfying
(7.7) with ABC + 1 =0.

A B ¢ « B ¥
—3/2 -2 143 1 2 5
-3 172 -2/3 1 5 2
-2 -1 -142 1 3 3
=1 -1 -1 2 2 2

Indeed, condition (7.7) with ABC + 1 =0 is cquivalent to

1 1 1
+ + =1,
a+l B+1 vy+1

which can be easily solved for non-negative integers. On the other hand, when
ABC + 1% 0, singularities of both types (1) and (11} are simultancously allowed
for some particular values of the paramcters A, B, C, A, u, v, and in what
follows, when ABC + 10, we will be interested exclusively in them.

(b) We now proceed to compute the cocfficients in expansion (7.3) by
substituting the latter into system (1.1) and by obtaining the recurrence
relation for these coefficients allowing their recursive computation.

A natural number r =1 is called a resonance it the coefficients (x,, v,. z,) of
expansion (7.3) are not uniquely determined. when knowing the cocfficients
X, vand z, for 0=k =r— 1. If (x,. v,. z,) are not uniquely determined, 015
also called a resonance.

We will now compute the resonances of the 3D L-V system. Let us consider
first casc (i), i.c. the case p, = p, = p. = — 1. Let us substitute expansions (7.3)
into the 3D LV system (1.1). Comparison of the coefficients of 7"~ for r =2
gives the identitics

(r = D= x,(Cy, + 2 )+ x (Cyy+z)+ M, .
(r=— Dy, =y(x, + Az )+ y(x,+ Az)+ N, . (7.8)
(r— Dz, =z(Bx, +y,)+z,(Bx,+y,)+ P .
where M, |, N, | and P, | depend only on x, y, and z, with Isk=r—1
and, of course, on A, B, C, A, u, v. Let us note that (7.8) remains also valid

for r =1 with M, = N, = P, = 0. Taking into account relations (7.4), identitics
(7.8) become
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rxr - Cx()yr - xljzr = M

r—17°
—YoX, T ry, = Ay,z, = N,_,, (7.9)

_BZ()xr —zyy, trz, = Pr—l :

The characteristic polynomial A(r) of system (7.9) with unknowns x,, y, and z,
is equal to

A(r) = rh— r(Ay,z, + Bx,z, + Cxo)’u) —(1+ ABC)xyyz,=0. (7.10)
Relations (7.4) now imply that
A(ry=(r+ D[r’ —r—(1+ ABC)x,v,z,] =0 . (7.11)

Thus » = —1 is always a root of eq. (7.11). This is a general feature related to
the arbitrariness of «,.
In case (i,), when ABC +1=0, eq. (7.11) reduces to

A(r) = rr—r=0

and the two resonances are r = 0 and » = 1. Let us note that the resonance r» =0
corresponds to the non-uniqueness of (x,, v,. z,)-

Let us now consider case (i,), when ABC + 1 # (0. We denote by r, and r,
the remaining two roots of (7.11), i.e. the roots of r*—r—(1+ ABC) x
Xy¥oz, =0, for which we have r,+r,=1, rir,=—(1+ ABC)x,y,z,. As we
ask for integer roots r, and r,, then r, =m and r, =1 - m, where m=2 is
somc natural number. Moreover

m(m—1)=(1+ ABC)x,y,z,= #(A, B. C),

because now, x,, v, and z, can be explicitly computed from eqgs. (7.4). A
straightforward computation shows that the equality m(m — 1) = ¢(A. B, C) is
equivalent to the equality (cf. (7.7))

1 1 | 1
= 4+ — _
mm-—1) a+1 B+1+y+l

1. (7.12)

and we already know (see (7.7)) that such «, B and y are non-negative
integers. It is not difficult to find all such solutions of (7.12) for m =2 and the
corresponding values of A, B and C. They are listed in table VII, where we
have again j = 5(— 1 +iV3).
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Table VII

All values of A, B and C (up to cyclic permutations and complex conjugations)
when a resonance m =2 exists. The numbers refer to tables I and 11.

No. A B C m o« B Y
8 #0, —1 —1/{A+1) —(A+ 1)/ 2 1 1 1
16 ~2—j S (—2-/)/3 3 | 2 2
17 (—3+10)/2 =1+ (=24 1)/5 4 1 2 3
18 -2 41 (=1 +1)/2 (=3-1)/5 4 1 3 2
19 (—4+/)/3 —1+j (=2+j)i7 6 1 2 4
20 -2+ (—1+/)/3 (—4+/)/7 6 1 4 2

In the remaining case (ii), taking into account rclation (7.6). onc obtains
that, as in casc (i,), the resonances are r =0 and » = 1. Let us note that here
the resonance r = () corresponds to the non-uniqueness of x, (respectively v, or
z,) if p, =0 (respectively p. =0 or p. =0).

(¢) The compatibility conditions at the resonances are the conditions de-
pending only on the parameters A. B, C. A, u, v ensuring the solvability of the
system of linear equations (7.9) for all values of (x,. y,. z,) in spite of the
nullity of its determinant.

We now go on to determine them. First let us consider case (i1). As already
stated, the resonance r =1 corresponds to the non-uniqueness of x, v, and z,.
knowing x,. ¥, and z,. Let us suppose that for example x is analytic. From
tablec VII one sces that in all cases p =1 and consequently x(¢)/(1 - ¢,) =
x(1)/7 does not have singularities at 1=1,, i.c. at 7=0. Let us substitute
expansion (7.3)

y
y(():'” +yl +(VaT+"'
T 2
and
)y="+z, +z,7+
T 2

with y,#0 and z,7 0 into the second and third equations (1.1). Comparing
the cocfficients of 7'

on both sides one obtains the equalities
YolAz )+ Ay, 2, =0,

z(y, T u)+y,z, =0.

Taking in account (7.6), one thus obtains



B. Grammaticos et al. | Integrals of ordinary differential equations 713
(Az + ) +y, =0,
(y,tv)+ Az, =0

and consequently p = v. The case when y is analytic implies A = v and finally
A= w = v, which is the compatibility condition in case (ii).

This compatibility condition is sufficient for all cases of table VI, since they
only allow type (ii) singularities.

In case (i,) the compatibility condition for the resonance r =0 was already
written in (7.5). A straightforward calculation for the resonance r =1 leads
again to the condition A= pu = r.

Let us consider now the remaining six cases (i,) the characteristic feature of
which is to have a unique strictly positive resonance m = 2. We will prove that
in these cases supplementary compatibility conditions do not arise. In other
words, as soon as A = u = v we can always find the expansions (7.3) satisfying
the 3D L-V system in these six cases.

First let us note that when A = g = v =0 this is indeed so. Since m is the
unique strictly positive resonance, then M_, N, and P (cf. (7.8)-(7.9)) vanish
identically for 1=<<r=m — 1. Consequently x,, y, and z, vanish identically for
l=<r=<m—1 and therefore M,,, N, and P, also vanish. Thus, there is no

problem to find a solution (x,,, y,.. z,,) # (0,0, 0), and we obtain the expan-

m

sions
X m—
X(l) = [_U[ + xm([ - [l)) +oe b
0
. y‘) + _ nrl+.'_ 71’;
y([)__ t—t ym(t t()) » ( - ‘)
0
Z(P m—1
Z(I): t—t +an(t_t()) +oe
0

satisfying the 3D L-V system with A = u = » =0. We can always suppose that
t,#0. Now, let A#0. As e™ =Y ,_, (At)"/k!, one can consider the expansions
xe x(e™), xe™ y(e*) and A e z(e"'), where x, y and z are defined by (7.13).

From the remark in case 1 of section 6 we know that they satisfy the 3D L-V
system with A = u = »v. As 1,70, they have simple poles at any v, such that
e’ =1, Thus, in case (i,), even if A= =vr#0, we do not need any
supplementary compatibility condition for the existence of solutions of type
(7.13). This concludes the last step of the ARS algorithm.

In summary, the ARS algorithm selects eleven cases, in all of which
A= u = v. The conditions on A, B and C are given by (7.5) for the first case,
while for the remaining cases they are listed in tables VI and V1L
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The first case is in fact a subcase of both cases 1 and 4 from table 1. obtained
already by compatibility analysis together with two indecpendent integrals. The
four cases of table VI arc also subcases of case 1 from table I, with onc integral
compatibie with a linear vector field. Onc¢ can wonder whether a second
independent integral exists in these cascs.

Among the remaining six cases only the first one, corresponding to m =2,
was obtained by compatibility analysis (case 8 from table 1). The five other
cases are really new.

To find the first integrals of the above five cases from table II corresponding
to the resonance m =3, we proceed as follows.

First. one remarks that for the 3D L-V system this resonance is also a
so-called Kovalevskaya exponent of this system (cf. ref. [18]). Theorem | from
ref. 18] suggests that perhaps one can find a first integral in the form of a
homogencous polynomial on x, v and z of degree m. The hand computations
arc not feasible here, but the use of elementary computer algebra fully justifies
this hope when A= =r =0,

As shown by the case 1 = 2 (casce 8 from table 1) obtaining time-independent
integrals in the case A= = v 70 is rcally a non-trivial problem. In the
remaining five cases when m =3 and A= u = v # 0, we were unable to find
time-independent first integrals, but we hope that in these cases such integrals
still exist. It will be interesting to clarify this question.

8. The Jacobi last multiplier method and its applications to the 3D L-V system

Roughly speaking, when considering a system of ODEs in R" with n —2
functionally first integrals known, the Jacobi last multiplier method allows us in
some very particular cases to find the (n — 1)th independent first integral.
Although this method has been treated in many places (sce for example refs.
[19,20]) we will give here a concise treatment of this classical topic, slightly
different from the usual ones.

Let us consider the system of differential equations

& ). 8.1
dr Fx) (8.1)
where
X,
x=|:|leucRr"
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and
fi()
Flx)=1{
f,(x)

is a smooth C' non-vanishing vector field defined on the open subset U of R”.

If
x,(t,2)
x(t, z) = : )

x, (1, 2)

is the solution of system (8.1) such that x(0, z) = z, where

<
z = E)EU,
ZH

then one defines the (local) flow {x'} induced by system (8.1) by x'(z) =
x(t, z).

Let M be a non-negative C' function defined in U and non-identically
vanishing on any open subsct of U. M 1is called the density of invariant
measurc, or the last Jacobi multiplier, for system (8.1) if and only if the
n-dimensional volume element

w(x) = M(x)dx,

where dx =dx'...dx", is invariant with respect to the (local) flow {x'}
induced by system (8.1), i.c. that the measure

m(A) = f M(x) dx

is invariant with respect to this flow.

Let us introduce in the open subset V C U another system of coordinates
y=_(y,..... y,), 1.e. x = G(y) with non-vanishing determinant of the Jaco-
bian dG/dy. Then the volume element w in the coordinates y is of the form
aG

dct( ay~ (y))‘ dy. (8.2)

w(y) = M(G(y))

In particular, M is a density of invariant measure for system (8.1) if and only
if for every z € U and every ¢ € R small enough
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M(z) = M(x (z))det( vz )) (8.3)

because it is always true that det|ax'(z)/9z]> 0.
It is well known, and not difficult to prove (cf. thecorem 1 from ref. [13], ch. 2,
section 2) that M is a density of invariant measure if and only if, on U,

SOA(MF)
— 1 =0. (8.4)
i dx,
We now pass to the heart of the matter. Let ¢,,. .., ¢, , be functionally

independent first integrals of system (8.1) defined on U. Thus, it one identifies
by usc of the standard scalar product ( ., ) on R” the derivative d¢,(z) €
(R")* with the column vector grad ¢, (z) € R”, the vectors grad ¢,(z) and F(z)
arc orthogonal for z€U and | =k =n - 1.

Let us begin with the following simple observation. The function

_F=z) )}

M) = 1F(z)

cl(\grud b (z), grad ¢,(z), .. .. grad ¢, | (2).

(8.5)
where || F(2)||” = 1., | fo(2)]". is the density of an invariant measure for system

(8.1).
Indeed, as ¢, is a first integral of (8.1) then ¢,(x'(z)) = ¢,(z) and thus

do, (x'(2)) 0x'(z) 10z = d(2) .

A(rygrad ¢, (x'(z)) = grad ¢ (2), I<sk=n-—1,
where A(t) is the matrix transposed to the matrix dx'(z)/dz. Morcover,

(J\”(

F( = F(x'(2)) . (8.6)

We will now prove that M defined by (8.3) sastisfies (8.3). Indeed from the
above remarks onc has

| .
M(z) = (det( A grad &,(¥'(2)).... AQ) grad 6, (x (Z))’WFT(ZZ#)\
= det ) et grad ¢, (4'(2)) .. grad @, (¥(2). (AG) _f(‘)')

To complete the proof of (8.3) it remains now only to prove that
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o F(2) F(x'(2)) n) ,

A LA . ' ad B

“ VEDF | F&' I + Zf{ o, (z) grad ¢, (x'(2)) (8.7)

for some coefficients a,(z), 1 <k=n—1. As the integrals ¢,,..., ¢, , are

functionally independent, then grad ¢ (z), ..., grad ¢, | span the subspace
F-(z)={y€R"; (y, F(z))=0}. Thus (8.7) is equivalent to

o F(2) F(x'(z)) ;
= — 5, Fl =0,
(4 TEOF TR )

l.e. to

FG) (X)) oy FE@) s
<||F(ZZ)H3‘< Xaz > F(X(Z))>—(”—F(XLI(;Z)7‘3-F(X(Z))>

and this is evident by (8.6). Moreover, M >0 everywhere on U.

The Jacobi last multiplier method is a reciprocal of the remark just stated.
When given n —2 functionally independent first integrals ¢,,...,®,_, of
system (8.1) together with a density of invariant measure M, one can write
explicitly, at least locally, an integral formula for a (n — 1)th first integral ¢, ,
functionally independent of the n —2 ones already known, in the suitable
coordinate system y = (y,, ..., ¥,).

Let us describe now this in detail. As ¢, ..., ¢, _, are functionally indepen-
dent on U, changing if necessary the numbering of the coordinate variables
(x,,...,x,), one can suppose without any restriction of generality that in
some sufficiently small open ball VC U,

e, ....b,5)
e ) () .
et B, ax, ) (x)] =0, (8.8)
and that y, = ¢, (x) for l=sk=n-2, y, ,=x, , and y, =x, is a new
coordinate system y=(y,,...,y,) on V. Let us note

H('X) = (d)](x)- Tt d)n—z(x) > x”,,], xn) M

In this new system of coordinates system (8.1) becomes the following one:

dv
g for lsk=n-2,

ds (8.9)
d}’k_ .
W—f,\,(y) forn—1sk=sn,

with some functions f, | and f, .
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According to (8.2), in the coordinate system y =(y,,..,y,)= H(x), the
density M takes the form

M(x)

N = JaetaH) Tax] -

(8.10)

Let us now write, in the coordinate system (y,. .., v,), relation (8.3) with
(v oo ¥, ») as the n—2 first integrals and with the unknown (n — 1)th
column equal to

( @, () )
0, (), |

One obtains

| () 2

1 w,{v) A—'/‘J('v)

T | fCnl

N(y)=|det O , 7

U w (v) Ju 2Y)

Tl

o (1) Lo ()

0 R TESTE

‘ L)

ol
w, () L DRI

= I det o (8.11)

Cw, () LA

We look for a function ¢, | such that ¢, /iy, = w, for | <k =n. Now (8.4)
and (8.9) imply that

(”/\'” -1 (")y”

0.

Thus, at lecast locally
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d dJ
d and w,=—-Nf = 9
ayn‘l ayn

W, | = an =

fOr some funCtion d) = d)(yl’ By yan" yn»l’ yn) Wthh iS Uniquely deﬁned up
to the additive term of the form g(y,, ..., v, ). Any such function ¢ is a first
integral of our system restricted to the surface

d(X)=y,,. .., ¢, (X)=y, .

Let us now consider a point y'=(y!....,y") where y'=H(x"). In a
sufficiently small convex neighbourhood of y"in R", the formula

d)”,[(y) :fy (U”,,l(y) dy”71 + (U”(y) dyll + g(yl’ MR yn 2)

v

defines the general form of the first integral of our system such that ¢, ,/

dy,_,=w, , and d¢, /dy, = w,. In the above expression, g is an arbitrary
smooth function, and vy, is the straight line interval going from
(Yire s Vuoas Yoot Y 10 (P15 o5 Y 25 Yuots ¥,)- Moreover, as N(y) >0,
(8.11) implics that the integrals ¢,, ..., ¢, , are functionally independent.

The above definition of the integral ¢, _, leads, under condition (8.8), to the
following Jacobi formula for it. From the equations

d)k(xl """ anl’xnfl’xn):ar’ lSkSn—Z,
(x,,...,x, ,) can be expressed as functions of x,_, and x,, when
a,,...,a,_,are given. In what follows, we denote by f(x) = f(x,... .. x,) the
function f considered as a function of variables (a,,....qa, ,.x,_,,x,). Now
; M(x) ,
d)nfl('x): "( ) (fn d‘xn'l_f;l*ldxn)* (812)
A(x)

where A(x) = |det]d H(x)/dx]| is, at least locally, a new first integral of system
(8.1).

In order to illustrate the usefulness of this formula we first apply it to the
case of a linear first integral of the 3D L-V system, corresponding to case 4 of
table I (ABC +1=0) in the subcase where A = p = v =0. We start from

F,=ABx+y— Az. (8.13)
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Here A=dF,/0y =1 and

2

@fo’% [x(Cy + z)dz — z(Bx + y) dx] , (8.14)

where one must substitute for y the expression F,+ Az — ABx from eq.
(8.13). Thus @ rewrites

T a Rl
z x P+ Az- ABx

b dez dx dz ~ Bdx

which integrates to
. I
& = Clog|z| — log|x| + 1 log|F, + Az — ABx]|.

Multiplying by —AB and exponentiating, we recover integral F, from table .
On the other hand, had we started from F,, we would have recovered F, just as
easily.

This method can also be applied to the case of all the other first integrals
from table I from which one can explicitly solve for one of the variables x, v or
z. The results can be found in table TII. In most cases the second integral is
given in terms of the quadrature of a complicated argument.

9. Final remarks

The results presented here. together with those of ref. [7]. show that the
compatibility analysis is an efficient method for the search of the cases of
integrability of threc-dimensional autonomous systems of ODEs. However. in
order to realize the full extent of the possibilitics of this method. further
studies concerning other systems are necessary.

Usually, one associates non-integrability with the occurrence of very compli-
cated (chaotic) orbits. Although such orbits do appear, at least numerically, in
some systems of type (1.2) with linear nonhomogencous forms L —L; (cf. refs.
[21,22]), it is not known, to our knowledge, whether such orbits can arise in
the 3D L-V system (1.1) for some value of the parmeters A, B. C. A, p and v.
Some insight into this problem can be found in refs. [23,24].

It is also worth noting that the usual methods to prove non-integrability deal
with the non-existence of integrals analytic or meromorphic in domatns related
in an obvious way to the equations. Therefore cven for equations the non-
integrability of which is considered as proven, it is doubtful whether such
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proofs would exclude the existence of integrals of the form of many of those
given in tables I and III.

Finally, the question of integrability notwithstanding, we can formulate the
following conjecture concerning three-dimensional systems of ODEs:
whenever such systems are compatible with a linear (or affine) vector field,
their orbits do not exhibit chaotic behavior.
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