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A method already introduced by the last two authors for finding the integrable cases of 

three-dimensional aulonomous ordinary differential equations based on the Frobenius integ- 

rability theorem is described in detail. Using this method and computer algebra, the so-called 

three-dimensional Lotka-Volterra system is studied. Many cases of integrability are thus 

found. The study of this system is completed by the application of Painlevt analysis and the 

Jacobi last multiplier method. The methods used are of general interest and can be applied to 

many other systems. 

1. Introduction 

Given a system of ordinary differential equations (ODES) depending on 

parameters, the question arises, how to recognize the values of the parameters 

for which the equations have first integrals? Except for some simple cases, this 

problem is very hard and no satisfying methods to solve it are known. To date, 

the most successful approach is offered by the so-called Painlevk analysis (see 

refs. [l-4]), the roots of which can be found in the seminal work of S. 

Kovalevskaya on the rigid body problem [5, 61. Unfortunately this method, of 

high practical value, is not based on a firmly established mathematial ground. 

Moreover, the Painlevk analysis method puts emphasis on complex analytic 

integrals and is not well adapted to the search of integrals in the real domain. 

In ref. [7] a method for finding first integrals for ODES in R’ based on the 

Frobenius integrability theorem was presented together with some simple 

examples. Anticipating a little, we can say that the main point of the method 

introduced in ref. [7] is to detect the values of the parameters for which the 

system can have first integrals which at the same time are integrals of some 
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non-trivial, linear system of three differential equations with constant coeffici- 

ents. i.e. first integrals of linear vector fields in WT. Surprisingly, at least for 

three-dimensional systems, such integrals occur much more frequently that one 

would a priori expect. In what follows, this method will be called linear 

compatibility analysis method. 

This method can be considered as a kind of generalization of the well known 

Lie symmetry method for finding first integrals of differential equations when 

applied to three-dimensional systems (cf. refs. [X-l 11). 

The full power of this method, when applied to specific examples. is in 

general unattainable without use of computer algebra. Indeed the amount of 

simple and elementary computations is so big that it is impossible to perform it 

by hand computations. 

The main purpose of this paper is to give a thorough examination through 

the linear compatibility analysis method of one of the most interesting cxan- 

plcs among those studied in ref. [7]. namely the so-called three-dimensional 

Lotka-Volterra system (3D L-V system) which is traditionally written in the 

form 

dx 
5 = x( cy + z + A) 

9 = y(~ + AZ + p) . 
dt ’ 

dz 
- = z(Rx + y + v) , 
dt 

(1.1) 

where A, R, C. A, p and v arc real or, sometimes, complex parameters. Using 

computer algebra we manage to find all cases where the linear compatibility 

analysis method of ref. [7] can be applied to the 3D L-V system and in all 

cases except one. we find explicitly at least one first integral. 

The first paper, to our knowledge, where the integrals of the 3D L-V system 

were systematically studied was ref. [4]. where the Painlev@ analysis approach 

was used to detect some integrable cases. But in fact, already as soon as 

December 18X4, S. Kovalevskaya in a letter to G. Mittag-Leffler (letter 57 

from ref. [12]) announced that she was working on the problem of the 

integrability for systems of three quadratic homogeneous ODES in R’, in 

particular for systems of the form 

dx 
- = xL,(x, L’, Z) ? 
dt 

d v 
dr = yL,(x, y, 2) . 

dz 
- = Z.&(X, )‘, 2) 1 
dt 

(1.2) 
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where L,, L,, L, are homogeneous linear forms in x, y, z. Unfortunately, she 

never published any paper about this problem. 

The second goal of this paper is to complete the study of 3D L-V system 

begun in ref. [4] by writing down all the integrable cases which can be obtained 

by Painleve analysis. For this purpose, we first present the so-called ARS 

algorithm [ 1,2], and then apply it to the 3D L-V system. Our presentation can 

thus be used as an introduction to the Painleve analysis method. 

These two approaches, together with the Jacobi last multiplier method, 

enable us to complete our list of first integrals of 3D L-V system obtained 

before. Therefore, we supply the most complete list ever published of integra- 

ble cases together with the corresponding first integrals for 3D L-V system. 

Finally, the third purpose of this paper is to serve as a model example for the 

investigation of integrability of three-dimensional systems. Thus the paper is 

written in a completely self-contained style and the knowledge of refs. [4, 71 is 

not assumed. 

The paper is organized as follows. In section 2 the complete list of all known 

integrable cases for 3D L-V systems is provided in tables I-III together with 

their first integrals. In section 3 the method of linear compatibility analysis is 

presented while in section 4 we discuss the case of quadratic systems of ODES 

in Iw3. The application of the above method to the study of 3D L-V system via 

computer algebra is described in section 5, where the obtained results are 

reported in tables IV and V. In section 6 examples of explicit computation of 

first integrals are given. In section 7 the Painleve analysis approach is recalled 

and its application to 3D L-V system is presented. In section 8 we recall the 

method of the Jacobi last multiplier which has been used to complete the list of 

first integrals (table III). Some open problems and comments suggested by our 

study arc formulated in section Y. 

The main results of this paper are collected in tables I to V. To avoid errors, 

the contents of these tables were verified using the symbolic manipulation 

language REDUCE. 

2. First integrals of the 3D L-V system 

Let us consider a smooth C’ vector field X defined on R8’, or on some open 

subset of it. For simplicity we will consider exclusively the case of [w3. As X is 

defined on a non-compact space, the escape to infinity in finite time along the 

orbits of X is not excluded. A subset V C [w’ is called X-invariant (or invariant, 

for short) if it contains only complete trajectories of X. 

By a first integral of X we understand any smooth function F defined on 

some open, dense, X-invariant subset V C iw’, non-constant on any open subset 

of V and constant along any orbit of X, i.e. XF=O. The introduction of the 
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subset V is necessary. because, as will be seen in the examples. the first 

integrals considered in this paper have typically singularities which are located 

in an X-invariant subset R3\V. Let us note that grad F # 0 on an open dense 

subset of I@. 

We will now write down in tables I-III all values of parameters A, B, c’, A, p 

and v for which WC know at least one first integral of the 3D L-V system. As 

WC consider a three-dimensional system, the number of functionally indepen- 

dent first integrals is at most equal to two. Let us stress that in this paper we 

consider only time-independent first integrals, although in some cases (cf. ref. 

141) time-dependent first integrals also exist. Before presenting tables I-111, let 

us note that the 3D L-V system (1 .l) is invariant with respect to the 

simultaneous cyclic permutation of A, B, C, of A, p. v and of X, 4’. z. More 

precisely after a such a permutation the three equations ( 1.1) undergo a similar 

one. Thus if for some values of A, B, C’ and of A, p. v we know some tirst 

integral Fof (1. I ), by cyclic permutation as above inside it, F transforms into a 

first integral F of the transformed system. Consequently, to avoid useless 

repetitions in our listing of first integrals. we will write down the values of A. 

B. C and of A. I_L. u up to simultaneous cyclic permutation only. 

Let us note also the following important feature of the 3D L-V system. The 

coordinate planes _Y = 0. _Y = 0 and z = 0 arc invariant, i.e. if some orbit has one 

point on one of these planes, then the whole orbit is contained in it. Con- 

sequcntly. the eight octants. i.e. the connected components of {(x. J, z) E R’; 

xvz # 0; are also invariant. Moreover. for some particular values of the 

parameters, there exist additional invariant surfaces (mostly planes) which, 

together with the coordinate planes. divide R8; into invariant regions. In 

particular, whenever the absolute value or the logarithm of some expression 

appears in any of the following tables. it will always bc true that its value is 

finite and non-vanishing outside such invariant surfaces. 

In table I we list all the known integrable cases for the 3D L-V system. for 

which there exists at lcast one first integral which is also a first integral of some 

linear held Z given at the right of the table and written down in tables IV and 

V. We also list the corresponding first integrals. All these first integrals wei-c 

obtained by compatibitity analysis (cf. section 3) except for case 1 and the 

integral F, of case 4, which were first obtained by different methods. Still, they 

could easily have been deduced from compatibiity analysis. 

This table is an exhaustive one except for the case A = p = v = 0 and 

(2.1) 

i.e. the case where F is a first integral of the vector field Z,,,(X, Y, Z) = (x, .Y, 2). 
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No. A, B, C‘ A. p. v First integrals 2 

FE lx/ “111,/1(/z/ ‘lx- Q + ACzl”“-“” ZC,, I 

2 

3 

4 

5 

6 

7 

8 

Y 

IO 

II 

I2 

13 

14 

1s 

ABC’+ I =O 

A=B=l, 

C‘ f 0 

A=p=LJ 

A=/L=u 

A=B=I. 

C‘ = 0 

ARC+I=O 

h=p=v 

v=pB-AAB 

A=l, R(‘--1 A=/_t 

A= I. B=2. 

(‘=-A 

A=/L=v 

A= I. H=-2. 

c= i 

A=/_L=v Z,, 

A i ~ 1. A ;fO. A=j.L=lJ Let u = Ax -t (A + I)y + A(A + l)z and 

K= u’-4A(A + l)‘yz. then 

F,=fl+A(A+l)l<rg(~). 

If moreover 17 = As 4 (A + 1)~ - A(A + 1)~. 

then K = U‘ + 4A’(A + 1)s~ and 

I’, = log(d) + A log s). 
I,PV%~ i 

7 _/,, 

A=l, C‘fO A = ,u. v = 0 

A= 1. (‘~0 A = CL. v = 0 

A = 1. B=O AT/IL. v=O 

A-B=<‘=, A=“.2A=fi 

A=B=l A =(I. p = ” 

A=B=I A=/.L, Y=O 

A=], Bit-l h=/~=v=O 
1 

F= 1x1 ‘/).I “( Icy ~ .rC/“( ‘121( Z,, 

F= ; + B Iogit’l ~ log(zj Z;, 

Fz Ic:\- 4lzl( 

1x1 
Z,, 

F= (.v -.1.)(?. - z) 

? 
+ A log(w) 

\ 
Z,, 

F= (.\- ~ Cx)(y - 2) _ 
? 

C/k log ; ) Z,. 

F= C-r - C,v)(J -~ 2) 

I 
+ A log 6 1 Z:, 

F= z[(B + 1)‘~ + By] 

(R+ 1)x+? 
~ B[(B + 1)x + J] Z, 

Table I 

Up to simultaneous cyclic permutation of A. B. C, of A, p, v and of x. ,v. z. this is a full list of all 

cases of integrahility of the 3D L-V system obtained by linear compatibility analysis. Z is the 

compatible vector field (cf. tables IV. V). 

c’= -B% 



Probably. here. some cases arc missing, where the integral could be found in 

closed form, 

In two cases. 4 and 8, the compatibility analysis leads to two independent 

integrals. In the cases 2. 3. 9. 10, 11. 13, 14, 15, the Jacobi last multiplier 

method allows us to obtain the second integral (see table III). This is also true 

in some subcases of case 5 (which include cases 6 and 7). Except for case 8. all 

integrals of table 1 are real when A. R. C’, A, p and v arc real. In fact. as B,‘c 

will discuss below, in case 8 also one can write down two real first integrals. 

The first integral is never defined in a unique way. For our tables WC have 

chosen the form which seemed to us the most convenient O~IC. 

The tirst integrals of table I arc written in an unambiguous way except in 

cast 8. The ambiguity in the latter cast is due to the fact that neither the 

quadratic polynomial K nor the expressions (II + \‘??) /(u ~ v’??) and 

(I; +v%)i(llp fl) arc non-negative cvcrywhcrc. The dctailcd discussion o! 

these integrals will he given in section 6. 

Among the above fifteen cases. only cast 1 when AH - R + I = 0 (which is 

also a subcasc of cast 4). the following four subcases of case 1 (up to cyclic 

permutations of A. H and C’) (A. R. (‘} = (-3/Z, -~2. -l/Y}. (m 3, 112. 
_ 2/3). i-2. -1. - 1 ‘2) or ( -- I. -- 1. ~- I ) and USC X can be detected b) 

Painlevk analysis (see section 7). In table II WC wjrite do\vn the five remaining 

casts which can be found by Painlcvd analysis and for A = p = 1’ = 0 MY give 

the corresponding first integrals. which arc homogcncous polynomials. This 

topic goes back to ref. [4]. but the details arc published here for the first time. 

The interesting fcaturc of the above five cases is that for them A. R and C‘ arc 

truly complex numhcrs. 

At this point we must stress that. as follows from above. if one considers 

only real A. R and C‘. the PainI& analysis approach does not furnish any new 

cases in comparison with linear compatibility analysis. 

Let us note that if A. 13. C’. A. p. 1’ are complex numbers and F ih ;I 

corresponding integral of the 3D L-V system, then F is a first integral for the 

case A. R. c. h. r_L. fi. where F denotes as usually the complex conjugation. 

As usually. WC denote j = i (- 1 + ifi). 

Let us observe that the measure m defined by dm = dx dy dzllpz is invariant 

under the (local) How induced by the 3D L-V system. Indeed div( f‘X) = 0. 

where f‘(x, I’, z) = 1 ixyz and X denotes the 3D L-V vector field given by the 

right-hand side of eqs. (1.1) (cf. ref. [ 131 for details about invariant measures). 

When the density of the invariant measure is known and when one also 

knows a first integral for three-dimensional systems, in some cases, the Jacobi 

last multiplier method (see section 8) allows to find a second functionally 

independent first integral. In table III are collected all the integrals obtained in 

this way, using the first integrals from table I, except the cases when two 

independent integrals were already known. 
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Table II 

Up to simultaneous circular permutation of A, B, C and x, y, z and up to simultaneous complex 

conjugation of A, B and C, when A = /.L = V, these five cases were obtained by Painleve analysis. 

Here, we present the polynomial first integrals when A = jx = v = 0. 

NO. A, B, C First integrals for A = /* = v = 0 

16 

17 

18 

19 

20 

A=-2-j, 
B=-l-j, 
C=(-2- j)/3 

A = (-3 + i)/2, 

B=-l+i, 

C = (-2 + i)/5 

A=-2+i 

B = (- 1 + i)/2, 

C = (-3 + i)/5 

A=(-4+j)/3, 
B=-l+j, 
C=(-2+ j)/7 

A=-2+j, 
B=(-l+j)/3, 
C=(-4+j)/7 

x3 + (2 + j)x’y - 3jx’z + (1 + j)xy’ + (- 1 + j)xyz - 3( 1 + j)xz’ 

+ (1 + 2j) /9y3 + y’zj + (- 1 + j)yz’ - z3 

4(-7 + 24i)x” + 16(2 + 1li)x’y + 8(-31 + 17i)x’z + 24(3 + 4i)x’y’ 

+ 8(- 13 - 9i)x’yz + 12(-24 - 7i)x’z’ + 16(2 + i)xy’ 

+ 40(3 - i)xy2z + 8(7 - 24i)xyz* + 4(- 17 - 31i)xz’ + 4~’ 

+ 8(3 - i)yiz + 12(4 - 3i)yZz* + 4(9 - 13i)yz’ + (7 - 24i)z4 

(7 + 24i)x” + 4(9 + 13i)x’y + 4(- 17 + 3li)x’z + 12(4 + 3i)x’y’ 

+ 8(11 + 2i)x’yz + 12(-24 + 7i)x’z’ + 8(3 + i)xy’ 

+ 8(13 - 9i)xy’z + 40(- 1 - 7i)xyz’ + 8(-31 - 17i)xz’ + 4~’ 

+ 16(2 - i)y3z + 24(3 - 4i)y’z’ + 16(2 - 1li)yz’ + 4(-7 - 24i)z” 

27(37 + 360j)xh + 162(62 + 149j)x’y + 54(-286 + 397j)x’z 

+ 405(39 + 55j)x’y’ + 324(-87 + 62j)x’yz + 135(-323 + 37j)x4zZ 

+ 540( 19 + 18j)x’y’ + 54(94 + 71 j)x’y’z + 378 (- 149 - 87j)x’yz’ 

+ 60(- 683 - 286j)x’z’ + 405(8 + 5j)x’y” + 54( 179 - 29j)x’y’z 

+ 27(- 104 - 947j)x’y’z’ + 18(- 1427 - 2074j)x’yz’ 

+ 45(-360 - 323j)x’z’ + 162(3 + j)xy’ + 162( 18 - j)xy”z 

+ 108(52 - 41j)xy3zZ + 36(73 - 328j)xy’z’ + 126(-23 - 94j)xyz4 

+ 6(-397 - 683j)xz’ + 27yh + 54(4 - j)y’z + 135(5 - 3j)y4z’ 

+ 60( 17 - 2Oj)y’z’ + 45( 16 - 39j)y’zJ + 6(25 - 21lj)yz’ 

+ (-37 - 360j)z’ 

(323 + 360j)xh + 6(236 + 2llj)x’y + 6(286 + 683j)x’z 

+ 45(55 + 39j)xJy* + 36(236 + 211j)nJyz + 45(-37 + 323j)x”z’ 

+ 60(37 + 2Oj)x’y’ + 126(94 + 23j)x’y’z + 18(-211 + 25j)x’yz’ 

+ 60(-397 + 286j)x”z’ + 135(8 + 3j)x’y’ + 54(135 - 29j)n’y’z 

+ 27(104 - 843j)x’y’z’ + 54(-795 - 782j)x’yz’ 

+ 135(-360 - 37j)x’z’ + 54(5 + j)xy’ + 1134(2 - j)xy’z 

+ 108(26 - 125j)xy’z’ + 108(- 167 - 424j)xy’z 

+ 162(-323 - 36Oj)xyz’ + 54(-683 - 397j)xz’ + 27yh + 162(2 - 

+ 405(3 - 5j)y’z’ + 540(1 - 18j)y’z’ + 405(-16 - 55j)y’z” 

+ 162(-87 - 149j)yz’ + 27(-323 - 36Oj)z’ 

j)y’z 

The integrals in table III were obtained assuming that the trajectory lies in an 

invariant region of lR3 such that the quantities appearing through an absolute 

value (or a logarithm) in table I are all positive. For a different choice of the 

invariant region, the final form of the integral @ may be different. Moreover, 

in each region, it is possible to find the initial integration point depending 

smoothly on F only, such that the integrand be finite throughout the integra- 

tion domain. For example, in case 2 one can choose as initial point 



Table III 

Integrals obtained through the Jacobi last multiplier method. Note that in the last three casts. the 

integrals presented are the cxponentials of those directly obtained. In the cases 2. 3. 5. ‘9. 10 and 

1 I. F denotes the corresponding integral from table I. When performing the integration. F is 

considered as u constant under the integral. and only after the integration is I; replaced by it\ 

exprewon in terms of .Y. y and z. Note that the integrals of cases 0. IO and I I can bc cxprcsscd in 

terms of the incomplete beta and gamma functions. 

NO. A. R. C‘ A. p. v First integrals from Jacobi last multiplier method 

y(\.-_) 

! 
.! ’ 

(,,_A_--* 
d I 

? (I,‘ log r)( I 1.) 

These two casts arc subcavza of both caw I and 

case 5. In these two casc’r, the quantitic\ F(5) ~ b’(h) 

and F(5) t F(7) rcspectivclq. where F(H) means the 

integral of case ,I from table I, arc Iunctions ot the 

new integral 4) of the second %ubcasc of USC 5. 

giben above. of the form A log(tu!d~ I p), 

(u. j3) being ( I, 4) and (1. I ) rcspcctivcly. 

(l+ F I” )-‘. The obtained integral is thus smooth in each invariant region of 

R’. 

Finally, comparing tables I and III, one sees that among the 16 integrable 

cases of table I we were able to find a second first integral for all cases but 1, 12 



B. Grammaticos et ul. I Integrals of ordinary dijTerentia1 equations 691 

and the full case 5. It seems reasonable to think that the tables I-III do not 

contain all cases of integrability (in closed form) of the 3D L-V system and the 

problem of finding all such cases is largely open. The case when A = I_L = v = 0 

is already very interesting. 

3. First integrals via Frobenius integrability theorem 

If a smooth vector tield in R3 admits a first integral F then R’ is foliated into 

two-dimensional level surfaces of F and a typical leaf of this foliation is an 

invariant manifold of this vector field. Let X and Y be two smooth vector fields 

on R3 such that the set U of points x E R’ where the vectors X(X) and Y(X) arc 

linearly independent is open and dense in R’. Let us suppose that F is a 

common first integral of both X and Y. Without any restriction of generality, 

one can suppose that F(x) fO for every x E U. Then, by the Frobenius 

integrability theorem, the vectors X(p), Y(y) and [X, Y](p) are linearly 

dependent at every point p = (.w, y, z) E U, that is 

[X. Y]=ax+pY (3.1) 

and consequently. by continuity of the vector fields X, Y and [X, Y], for every 

p E BP 

det{A’(p), Y(P)> [X> Y](P)) = 0. (3.2) 

Here, [X, Y] denotes the commutator of X and Y while N and p are some 

functions of p. This last condition is, at least locally in a sufficiently small 

neighborhood of any point x E U, equivalent to (3.1), with some smooth 

functions LY and p. We shall say that two vector fields X and Y are compatible if 

and only if condition (3.2) holds. 

Conversely, if the compatibility condition (3.2) is satisfied for two vector 

fields X and Y, then every point p E R8” such that X(p) and Y(p) are linearly 

independent has a neighbourhood in which there exists a two-dimensional 

foliation tangent to X and Y. Each leaf of such a local foliation can be 

extended to a maximal connected one. However, the two-dimensional foliation 

thus obtained is not, in general, globally defined by level surfaces of some 

function. In what follows we shall consider only the case when such a function 

can be explicitly constructed and restrict ourselves to the algebraic aspect of 

the method. 

Let u(p) and u(p) be two functionally independent first integrals of Y, i.e. 

Yu = Yu = 0. In fact on some two-dimensional submanifold, grad u and grad u 
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are allowed to be parallel (in particular one or both of them can be equal to 

zero). In some neighbourhood of a point p E R” where grad u and grad u are 

not parallel, any other first integral of Y is of the form f(u, u) for some function 

f of two variables. 

Now, let us return to the vector field X compatible with Y. If X( p) and Y(p) 

are linearly independent, then the two-dimensional foliation tangent to X and 

Y and defined in some neighbourhood of the point p is of the form F = const. 

for some smooth function F. As this foliation is tangent to both vector fields X 

and Y, F is a first integral of X and Y. Thus by the above remark, X admits 

(locally) a first integral of the form F = F(u, u). 
How does one find F = F(u, u)? We know that F satisfies 

~=xF=~xLl+~xu=(Xu) gE+g i 1 
= (xu,(g G(Ll. u) + gj . (3.3) 

The coefficient G(u. u) = XuiXu is a priori a function of p = (x, ~1, z) but in 

fact, at least locally, it is a function of ci, u only. Indeed, condition (3.1) 

implies 

Y(Xu/Xu) = (xu))2{(Yxu)(xu) - (Xu)(YXu)} 

= (xu))~{(cyxu)(xu) - (Xu)(cyXu)} = 0 

and, therefore, XuiXv is also a first integral of Y. But for three-dimensional 

autonomous systems, any three first integrals are funtionally dependent and 

this implies our assertion. 

Solving eq. (3.3) is thus equivalent to finding a first integral F = F(u, u) of 

the two-dimensional system 

du 
- = G(u. U)) 

dv 

dt 
dt = 1. 

More precisely if F(u, u) is a first integral of (3.4) then 

F(X, y, z) = F(u(x. Y, z), u(x, Y, 2)) 

(3.4) 

is a first integral of the vector field X. 

The function G can admit singularities arising from the zeroes of the vector 

held Y. Outside these singularities, the system (3.4) admits at least locally a 

first integral. Indeed, this is a direct consequence of the standard linearisation 

theorem of vector fields around non singular points (cf. ref. [14], section 7). 
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However, from the local existence of a first integral one cannot deduce its 

global existence (cf. ref. [15] for a particularly interesting example of this kind, 

see also ref. [16]). 

In all examples considered here 

P(u, u) 
G(u, u> = Q<u, u) 2 

where P and Q are some polynomials. Thus instead of system (3.4) it is more 

convenient to consider the system 

du 
- = P(u, u) ) 
dt (3.5) 

the first integrals of which are exactly the same as for system (3.4). There is no 

rule for finding the first integrals of system (3.4) or (3.5) and the success in 

their search is a matter of skill. 

A class of vector fields in lR3 the first integrals of which are completely 

understood is the class of affine vector fields. In fact, for the 3D L-V system, 

we performed not only the linear, but also the affine compatibility analysis i.e. 

the compatibility analysis with an affine vector field Y(p) = Zp + q, where 

2 E [I(R3, R”) and q E lR3 is a fixed vector. Although some cases of compati- 

bilty with genuinely affine vector fields were found, this did not provide any 

new functionally independent first integral compared to those listed in table I 

and obtained by studying the compatibility with a linear vector field 2, i.e. for 

q = 0. For this reason, in what follows, we will not consider the affine case, but 

we will limit ourselves to the linear case. 

Finally, let us remark that if in (3.1) p = 0, i.e. if [X, Y] = CUX, we recover 

the Lie symmetry condition for the vector field X with “symmetry” Y (cf. refs. 

[8-l 11). 

4. Quadratic systems of ODES in R3 

First, let us consider a vector field X in R’, all components of which are 

homogeneous polynomials of order m. Such a vector field X is always 

compatible with the linear vector field Z,,(x, y, z) = (x, y, z), as a consequence 

of the Euler theorem on homogeneous functions, namely 

LX, -?,,I = (1 - m>X 

and therefore the compatibility condition (3.1) is satisfied. For the vector field 
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Z,,] the simplest choice of first integrals is 

u = xlz and v = ylz. 

Thus according to section 3 we look for an integral of the form 

F(u, v) = F(xlz, y/z). 

We write down the corresponding system of eqs. (3.5) and look for first 

integrals of it. But even in the simplest case m = 2, when one considers 

homogeneous quadratic vector fields, for instance the homogeneous Lotka- 

Volterra vector field. 

X(x, y, 2) = {x(Cy + z), y(x + AZ), z(Bx + y)) , (4.1) 

only in very exceptional cases are we able to find the first integral F of system 

(3.5) in closed form. 

Let us consider now the general inhomogeneous quadratic vector field X 

without constant term, i.e. X = K + L. where K is a homogeneous quadratic 

vector field and L is a linear homogeneous one. Let us write down the 

compatibility condition (3.2) where instead of a general vector field Y we 

consider a linear vector field 2. 

Eq. (3.2) now writes 

det(K + L, 2, [K + L, Z]) = 0. (4.2) 

This determinant is a non-homogeneous fifth-degree polynomial in x, y and z. 

Thus all its homogeneous polynomial terms are equal to zero. The equations 

for the fifth-, fourth- and third-order terms respectively write 

det( K, Z, [K, Z]) = 0 , (4.3) 

det(K, Z, [L, Z]) + det(L, Z, [K, Zl) = 0, (4.4) 

det(L,Z,[L,Z])=O. (4.5) 

Now, (4.3) and (4.5) imply that the linear vector field Z is compatible 

separately with each of the homogeneous terms K and L. Moreover eq. (4.3), 

which is independent of L, suggests that the first step to obtain Z is to find a 

linear vector field compatible with the homogeneous quadratic vector field K. 
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Our main problem is now the following: Under what condition on parame- 

ters A, B, C, A, p and v of the Lotka-Volterra system (1.1) can one find a 

non-trivial compatible linear vector field 2. Whenever this happens, compute 

the first integral of the corresponding 3D L-V system (if possible). As already 

stated, the Lotka-Volterra system is invariant with respect to the simultaneous 

cyclic permutation of x, y, z, of A, B, C and of A, p, v. Thus if one knows a 

first integral for some values of A, B, C and of A, p, Y, then one can also find it 

for C, A, B, u, A, p and for B, C, A, p, u, A. 

5. Compatible linear vector fields 

In this section, we will exceptionally denote x = x,, y = x2, z = xg. We will 

study the linear vector fields compatible with the vector field corresponding to 

the 3D L-V system. Let us note indistinctly by 2 a linear mapping in R” or the 

matrix Z = { Zji> I pi, j~3 corresponding to this mapping in the canonical basis of 

R”. 

First let us consider the homogeneous 3D L-V system, and the correspond- 

ing homogeneous quadratic vector field K. Condition (3.2) gives 

x,(Cx, +x3> Zl,Xl + z12x2 + 213x3 

det X2(x, + Ax,) zz1X1 + z22X2 + t23X3 

x3(Bx, + ~2) 231x, + ~32x2 + 233x3 

for all x, , x2, x3 E 52, where P, Q and R are 

‘cx,, x2, x3) 

Q<x, > ~2, x.4 = o (5.1) 

R(x,, x2, ‘3) 

homogeneous quadratic polyno- 

mials defined by [K, Z](x) = {P(x), Q(x), R(x)}. We do not write down here 

the explicit expressions for P, Q and R as they are too cumbersome. Moreover 

it is practically impossible to compute determinant (5.1) by hand without error. 

Thus, from now on all reported results concerning eq. (5.1) and other 

equations of this type will be obtained using computer algebra. 

We already know one non-trivial solution of (5.1) namely Z = crZol, (Y E R, 

i.e. z,i = f&S,,, 1 d i, j a3 (aij is the Kronecker delta). To find all solutions of 

(5.1) we will proceed as follows. Eq. (5.1), when written in the form 

for every x1, x2, x3 E R, where the coefficients MiliZlj are quadratic homoge- 

neous polynomials on the {zjj}, is equivalent to the following system of 21 

equations: 

~,~~,~,(z, A, B, C) = 0 , 0 6 i,, i,, i, s 5, il + i2 + i3 = 5 . (5.2) 
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In fact we have here only 18 non-trivial equations, because AZ,,,,, M,,,,, and 

M,,, vanish identically. 

We ask for which values of the parameters A. B and C this system has a 

non-trivial solution { zil}. We look for 12-uples (A, B, C, {z,,}), in which the 

z;, are not all equal to zero, that verify the 18 nonlinear equations (5.2). 

Six among these 18 equations, corresponding to A!,,,,, M,,),, M,,,, A!(,,,. 

M 103, M,,,, are particularly simple. Indeed, 

M 410 = ~~~(z~, + BCz,, - Bz, ,) = z3,L, = 0, 

M 401 = z21(z3, + BCZ,, -Bz,,)=zz,L,=O, 

(5.3) 
M 041 = z,z(ACz,, - C-q, + ~12) =2,&z =O, 

M 104 = zz(Az,, - 223 - ABz,,) = +sL, =O, 

M 014 =zdAz,, - z2.i - ABz,,) = z,&, =O > 

where L, = L,(A, B, C, {zi,}), 1~ k s 3. The set of all solutions of system 

(5.3) can be divided into 8 mutually disjoint subsets P, - P, defined as follows: 

P,: L,=O,L,=O,L,=O, 

Pz: L,f0,L2=0,L3=0, 

P,: L,=o,L*#o,L~=o, 

P,: L,=O,LZ=O,LjfO, 

P,: L,Z0,L2Z0,L3=0, 

P,: L,fO,L,=O,L,#O, 

P,: L,=O,L,#O,L,#O, 

P,: L,#0,L,#0,L3#0. 

Up to a simultaneous cyclic permutation of the indices of the z,, and of the 

(A, B, C) there are only four different cases to be considered among these 8, 

which are described below. 
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Case P,. In this case one has 

231 = Bz,, - BCz,, > 

212 = Cz22 - AC232 > 

223 = AZ,, - ABz,, > 

where A, B, C, zl,, z13, q,, q2, 232 and z33 are arbitrary. 

Case Pd. In this case one has 

Z31 = Bz,, - BCz,, , 

Z:2 = cz22 - ACz32, 

(5.4) 

(5Sa) 

'23 = '13 = 0. 

As L, # 0, this implies that 

Az,,#O. (5.5b) 

Thus (5.5a, b) describe completely the solutions of (5.3) when B, C, zll, z2,, 

2221 232 are arbitrary and where A f 0 and z33 # 0 are also arbitrary. 

Case P,. In this case one has 

z31 = Bz,, - BCz,, > 
(5.6a) 

'12 = '13 = '23 = '32 =o. 

As L, # 0 and L, # 0, this implies that 

AZ,, #O and Cz,, #O. (5.6b) 

Thus (5.6a, b) describe completely the solutions of (5.3) when B, z,, and z2i 

are arbitrary and where A f 0, C # 0, z22 # 0 and z33 f 0 are also arbitrary. 

Case Px. In this case one has 

z,2 = 213 = z2, = z23 = Z31 = z32 = 0. (5.7a) 
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As L, f 0, L2 # 0 and L, f 0, this implies that 

Az3, f 0 > Cz,,#O and Bz,, #O. (5.7b) 

Thus (5.7a, b) describe completely the solutions of (5.3) when A # 0, B # 0, 
C # 0, z,, # 0, zll # 0 and z13 # 0 are also arbitrary. 

In this way the set of all solutions of the system (5.3) is completely 

described. It is worth noting that by this procedure we never get the same 

solution twice. 

Now, in order to solve the full system of 18 non-trivial equations (5.2) we 

consider separately each of the 8 cases P,-P,. In fact it is sufficient to consider 

only the above 4 cases P, , P,, P, and P,. Let us consider for example case P, . 
Substituting expressions (5.4) into the remaining equations, one obtains a 

system of non-linear algebraic equations with unknowns A, B, C and z,, , zli, 

z21) z223 Z3l, 2;;. The computer algebra program written in MACSYMA gives 

the factorization of these equations into factors of lower degree. Indeed, we 

use the standard factorization algorithm for polynomials in several variables 

with integer coefficients (ref. [17], section 4.2.2). Some of these factors are 

linear with respect to at least one unknown. This leads to equations similar to 

(5.4), (5.5a), (5.6a) and (5.7a). The substitution procedure used in the solution 

of system (5.3) can also be applied here. In this way the number of unknowns 

decreases and we keep treating the remaining equations in exactly the same 

way. Finally, by considering all possible cases that appear in this procedure we 

obtain the complete solution of system (5.2) in case P, The same work was 

done also for the remaining cases P,, P, and P,. 

The tedious analysis of taking into account the invariance of the problem 

under the simultaneous cyclic permutations of the variables X, , x2, x3, the 

parameters A, B, and C. and the coefficients z,,‘s was performed by hand. 

In this painstaking way we obtain the solution of system (5.2). The fact that 

we were able to describe, by this procedure, completely and efficiently the set 

of all solutions of our system of 18 nonlinear equations with 12 unknown A, B, 
C and {z,,}, 1~ i, j c 3, is very astonishing. It would be quite interesting to 

understand the reason for this phenomenon. 

Up to cyclic permutations of x, , x,, x3 and of A, B, C the complete answer is 

given in table IV. In this table, the parameters zi,‘s are arbitrary real or 

complex numbers. Unless a restriction is explicitly given, the parameters A, B, 
C are also arbitrary. To organize this table in a coherent and simple way, we 

completely drop inequalities like (5.5b), (5.6b) and (5.7b) (except for 2, and 

Z, for consistency reasons). For this reason some different cases have a 

non-empty intersection. 
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Let us now pass to the full non-homogeneous 3D L-V system (1.1). As 

before, we search for compatible linear vector fields. 

In this case beside the identity (4.3) we have also to satisfy the identities 

(4.4) and (4.5). Thus in total we now have 46 homogeneous quadratic 

equations on {z;,}. Indeed beside the 21 equations corresponding to (4.3) we 

have also 15 equations corresponding to (4.4) and 10 equations corresponding 

to (4.5). We ask for which values of the parameters these 46 equations admit a 

non-trivial solution. As the first 21 equations are the same as for homogeneous 

Table IV 

All cases of compatibility of a linear vector field Z with 3D L-V system with A = F = v = 0 (up to 

simultaneous circular permutation of A, 8, C and x, y, z, respectively). Let us note that the 

matrices Z,,, Z,, Z, depend on only one parameter, the matrices Z,, Z,, Z,, Z, depend on two 

parameters, Z, on three parameters and Z, on six parameters. Since for a three-dimensional 

system we can have at most two functionally independent first integrals, the richness of parameters 

for Z, and Z, is rather spurious, because in any of such family we will use no more than two 

different matrices. We report the first integrals u and u of the vector held Z, as well as the first 
integrals of the corresponding 3D L-V system written as functions of u and u. (NO. 15 of Table I.) 

A=-l,B=l.C=, 

(and thus ABC + 1 = 0) 

A=l 

A=I.B+,.C=-& -(A + 1)2,, _E!L 0 
Bfl 

2, = 

(B + I)%,, Bz,, 0 
0 0 211 I 

I( = z((B + 1)‘~ + By], 

u=(B+l)x+p, 

F(u. u) = ; Bu 
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Table V 
All casts of compatibility of a linear vector vector field Z with a 3D L-V system with some 

non-vanishing A, p. v (up to simultaneous circular permutation of A. R. C. of A. p, v and of X. y. z 

rcspectivcly). The matrix Z,,,> is always a subcase of matrix ZO from table III. We report the first 
integrals u and u of Z as well as the first integrals. written in terms of u and u, of the 3D L-V 

system except in the case of compatibility with the vector field Z,,,. 
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case, we know already that for the solutions (A, B, C, A, p, v) with A, p or v 

non-vanishing, A, B and C necessarily satisfy one of the nine conditions from 

table IV and that the corresponding matrix 2 is a particular case of matrices 

Z,,-Z,. Exactly in the same way as in the homogeneous case, using a large 

amount of computer algebra we were able to solve completely this system of 

equations. The results are presented in table V, where, for one-parameter 

families of matrices Z, the value of the parameter (denoted by z,, in table IV) 

is taken here equal to one. 

Let us note that the aftine compatibility analysis was performed along exactly 

the same lines as the linear one. However, the amount of computations needed 

was substantially larger than the one involved in the linear case. 

It is worth repeating that the fact that by this procedure we arc able to 

describe completely and efficiently the set of all solutions of such complicated 

systems of nonlinear equations seems to be a real miracle. 

Finally let us stress that the success of our method in solving the above 

systems of non-linear equations is intimately related to the good choice of 

substitutions as given by (5.4), (5.5a), (5.6a) and (S.7a) at each stage. A bad 

choice may lead to very long subsequent computations. In principle our 

method can be completely automatized by the use of computer algebra. 

Nevertheless the problem of finding the good choice of substitutions is decisive 

for the practical implementation of this work. 

6. The determination of first integrals 

We will now indicate how, through the prescription from section 3, together 

with the tables IV and V one can find the first integrals presented in table I, 

using the compatibility with a non-trivial linear vector field. Except for case 8, 

all other cases are of elementary character and do not present difficulties. Thus 

we will describe in detail the search for integrals in case 8 and also, as an 

example, in case 6. In all other cases the computations are of the same type as 

in case 6, except cases 3 and 9 where one finds the integrals by differentiating 

with respect to C those of cases 2 and 8 respectively. Some remarks concerning 

case 1 are also given. 

Case 6: A=l, B=2, C=-4, A=F= v 

In this case, the 3D L-V vector field is compatible with the linear field 

corresponding to the matrix 1 0 0 zz3= [ -2 2 0 1 . 

0 2 0 



The corresponding system of linear ODES 

has two first integrals 

11(x. y. z) = 2s + ?’ - z 

Using the 3D L-V equations. one finds immediately that 

u’ = All . 
u ’ 
~ = Au ~ 1iu + 1. 
u 

(6.1) 

where j” = dJ‘/dt denotes derivation according to the 31) L-V vector field 

Let us denote M’ = 3 - IW. Then it is easy to SW from (6.1 ) that 

i.c. that 

This implies that Q+(II, u) = II - A log /WI = II ~ A log/4 - IIU 1 is a first integral of 

(6.1) and thus that (cf. section 3) 

F(x. 1’. 2) = $(ll(X, ?‘, z), u(x, ?‘, 2)) = 2x + j’ - 2 ~ A log 
L-z + \.: - \‘z 

X2 

is a first integral of 3D L-V system in cast 6. 

Let us note that although case I can also bc trcatcd as above. we found its 

first integral F for the first time by an another method. Indeed we deduced the 

integral F of case 1 from the knowledge of integrals F, and E’, of case 4 when 

A = I_L = o = 0. For this we need the following well known and easy to prove 

fact, which will be used again in the next section. 
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Let (X(T), Y(T), Z(T)> b e a solution of the 3D L-V system with A = p = v = 0. 

Let j?(t) = A e”‘x(e*‘), y”(f) = A eA’ y(e^‘) and z”(f) = A e*’ z(e*‘) with A # 0. 

Then (x”(r), y”(f), z”(f)) is a solution of the 3D L-V system with A = p = v. 

Now let us replace X, y and z in the expressions for the first integrals F, and 

F2 of case 4 with A = p = Y = 0 by x em”‘IA, y em”IA and z e -*‘/A respectively. 

One easily verifies that the obtained expressions are two time-dependent first 

integrals for cast 1. and with the same time dependence. Their quotient gives 

the integral F. 

Case;Y:A#-l,A#O, B=- ,lii-C_!L+p~_ 

In this cast, the 3D L-V vector field is compatible with the following two 

linear vector fields corresponding to the matrices (cf. table V) 

and 

- f 0 0 

z,,= 1 
A+1 ” ’ 

0 

As first integrals of the linear vector field corresponding to Z,! one chooses 

u(x, y. z) = Ax + (A + 1)~ + A(A + 1)z 

and 

u(x. y, z) = yz 

Instead of working directly with the first integrals u and u it is more convenient 

to introduce the quantity 

K=u’-4A(A+l)‘u (6.2) 



and to work with u and K. An easy computation gives 

14’ = Au + 2A(A + 1)~ . 

(6.3) 

K’ = 2AK. 

Let us note by the way that the last equality implies that for A = 0, K is a first 

integral of the 3D L-V system. This integral was already found in ref. 171. 

From (6.2) one obtains that u = (u’ ~ K)/4A(A + 1)’ and thus the system 

(6.3) bcconies 

1 > 
II’ = Au + 2(A + ,) (u- - K) . 

(6.3) 

K’ = 2hK. 

Let us put L = VT. Then dL/df = AL and thus the system (6.4) is transformed 

into 

I 
II’ = Au + 2(A + ,) (u7 - LZ) . 

(6.5) 

L’=AL. 

Now it is not difficult to find a first integral of system (6.5). By adding and 

subtracting eqs. (6.5) one obtains 

[log(u + L)]’ = (l;,;;) =A+ 2(Ali 1) (14 ~ L, 

an d 

[log(u - L)]’ = (‘;-I;.)’ = A + 2(A1+ 1) (II + L) > 

consequently 

and finally one obtains the first integral 

F, = V% + A(A + 1) log [Gj- 
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Let us consider now the linear vector field corresponding to the matrix Z,?. 

As its first integrals one chooses L?(x, y, z) = Ax + (A + 1)~ - A(A + 1)~ and 

u”(x, y, 2) = xz. Let us note that 

K = u”’ + 4A2(A + 1)v”. 

As above one obtains the equations 

1 
IA’ = Au”- 2(A + 1) (27’ - L2), 

L’=AL 

and the first integral 

The integral F2 from table I is equal to (F, - fl)/A(A + 1). As Fz is a 

homogeneous function of degree zero, i.e. F,(x, y, z) = F,(kx, ky, kz) for any 

k f 0, F2 is also a first integral of the vector field Z,,,. Now using the complex 

(in general not uniform) integrals F, and F2, we will write two real, functionally 

independent integrals @, and Q1 for case 8. 

First of ail, let us note that since 

K = uZ - 4A(A + l)‘yz = u”’ + 4A’(A + l)xz , 

whenever xyz # 0 we have u # 2 V% and G f -tfl. Moreover (cf. (6.3)) 

dK/dr = 2hK. Thus the conical surface C, = ((x, y, z) E [w3; K(x, y, z) = 0) is 

invariant for the 3D L-V system. and thus both the interior and the exterior 

of C, are also invariant. Let us define C; = {(x, y, z) E R’; K(x. y. z) > 0) 

and Cl = {(x. y, z) E R3; K(x, y, z) CO}. Thus, in Ci and C,, l(14 + V??) / 

(u - v%)I and I(u” + fi)/(u”- v’??)/ are always finite and non-zero, and 

moreover C,, CL and CL are always non-empty. Taking into account that for 

w E C\(O), log w = log/ w( + i arg w, by considering the real parts of integrals F, 

and F2 respectively, one obtains immediately that inside Ci 

@, = V% + h(A + 1) log 

and 



are the first intcgrais. Inside C,, i.c. where K < 0. these formulas do not dcfinc 

first integrals. 

Inside C, the situation is a little bit more complicated. Let us note by 0,. 

02. . 0,. the eight invariant octants which arc the connected components 

of {(x, J’. z) E [w’, . xyz # 0). It is easy to see that C, is a cone the top of which 

is in 0 E R’. intersecting exactly two opposite octants of R’. dcpcnding on the 

sign of A. The interior of this cone coincides with CL,, its exterior coincides 

with C, In what follows WC will suppose that the octants are enumerated in 

such way that C, c 0, u 0, and C, 3 u; < 0,. Let us note 

Q!/,,: 0, * @\{OJ . where i = 1. 2 and 3 s j k 8. are continuous mappings. As the 

0,‘s are simply conncctcd and connected by arcs. the same is true for 4,(C),) 

and consequently one can define uniformly the logarithm on J/,(0, ). Thus fog 

.isjSR. 

and 

are the lirst integrals on 0,, for a well choosen continuous branch of the 

argument function on Q,(O,) denoted here by arg,, rcspectivcly. i = 1, 2 and 

3G;S8. 

As far as the remaining invariant sets C, n 0, and C, n O2 are concerned. 

we note that any of these sets is built from three simply connected. connected 

by arcs components. Indeed. the cone C, is tangent to the coordinate plancs 

.Y = 0, y = 0 and z = 0 along the straight lines y - AZ = 0, x + (A + l)z = 0 and 

Ax + (A + 1)~ = 0 and therefore, by the same reasons as above, the integrals 

cf,, and Q2 remain valid also on the sets Cj, n 0, and C, n 0:. 
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7. Painlevi analysis of the 3D L-V system 

In ref. [4] the PainI& analysis of the 3D L-V system has been quickly 

sketched and our presentation will draw from these results. For a more 

detailed description of the PainleG analysis see refs. [l, 21. where this method 

was introduced. as well as ref. [3] and references therein. In what follows WC 

will only consider the simplest framework, i.e. the case of a system of 

first-order autonomous ODES with entire (i.e. holomorphic on the whole 

complex space C”) right sides. Let us consider such a system 

2 ‘f;(x,, . ,x,,), lSiCrZ, (7.1) 

where (x, , , x,,) E 02”. t E C and {J} ,.__, _ ,I, arc entire functions. As it is well 

known. for any choice of initial conditions 

x,(r,,) = x Ill - lcisn. (7.2) 

system (7.1) admits a unique solution satisfying (7.2) and this solution is 

defined and analytic at least in some ncighbourhood of t,,. In what follows, 

when speaking about a solution of the initial value problem (7.1)-(7.2) we 

understand the maximal analytical prolongation of such a solution (spread over 

its Riemann surface). 

Inasmuch as we consider only autonomous systems of ODES the PainleG 

property for such systems (7.1) means nothing else that all its solutions. i.e. the 

functions x,. . , x,,, arc meromorphic in the whole complex plane @. 

The so-called ARS (Ablowitz-Ramani-Segur) conjecture in its simplest 

form says that if a system (7. I ) enjoys the Painlevi property then this is an 

indication that the system may be integrable (perhaps with time-dependent 

integrals). In fact no countcrexamples to the conjecture are known to date. 

Usually the system (7.1) depends on some parameters and one asks for 

which values of these parameters the system is integrable. Following the ARS 

conjecture we are thus interested to know the values of the parameters for 

which the system enjoys the PainleG property. Since it is in general very 

difficult to prove that a given system has the PainlevP property, one usually 

uses instead the so-called ARS algorithm. Let us consider the solution of the 

initial value problem (7.1)-(7.2). It may happen that such a solution has a 

singularity. The ARS algorithm detects the values of the parameters such that 

around any singularity allowed by system (7.1), the latter admits a non-trivial 

formal Laurent series solutions with only a finite number of negative powers. It 

is a priori not clear whether the systems detected by the ARS algorithm 



coincide with those satisfying the Painleve property. Nevertheless, if some 

system is detected by the ARS algorithm then this is also an indication that it 

may bc integrable. 

The ARS algorithm is divided into three steps: 

(a) the determination of the possible degrees of virtual poles of solutions. 

and of the leading coefficients; 

(b) the determination of so called resonances, and finally. 

(c) checking the compatibility conditions at the resonances. 

We will now describe in detail the three steps of the ARS algorithm applied 

to the 3D L-V system and clarify the notions introduced above. As expected 

all the cases detected arc integrable and the corresponding integrals arc 

explicitly written in table I (case 1 for AB ~- B + I = 0, four other subcascs of 

case I listed in table VI. and case 8) and in table II. 

(a) We start with the 3D L,-V system 

s = x(Cy + z -t A) , 

V = \fx + AZ + p) , . , (1.1) 

f = z( Rx + y + u) 

with complex time t. Let us suppose that a solution (x(t), y(t). z(r)) of (1. I ) 

has a pole at t = f,,, i.e. that at least one of the functions x(t), y(t), z(r) has a 

pole at t = f,,. WC denote r = t ~ t,,. Let us write the (formal) Laurent 

expansions of X. y and z in the form 

x(t) = T/l’ c x,7’ , y(t) = T”, c yrTr , z(t) = T1’, c Z,T’ , (7.3) 
I .,I I .,I , _-,I 

where x,, # 0, y,, # 0 and z,, # 0 and where at least one of the numbers p,, p,, 

and pz is negative. Substituting expansions (7.3) into eqs. (1. l), by straightfor- 

ward analysis one finds that only two possibilities occur: 

(i) p, = p, = p_ = - 1 (and x,, # 0, y,, # 0, z,, # 0). i.e. t,, is a simple pole for 

x, y and z. 

(ii) Two functions among X, y and z have a simple pole at f,, and the third 

one is analytic around t,,. 

We will now try to determine the conditions ensuring the (simultaneous) 

existence of solutions of (1.1) by formal Laurent series expansions (7.3) for 

both cases (i) and (ii) (when such expansions exist). 

First let us try to determine the constants n,,, y,, and z0 for case (i). By 

substituting the Laurent expansions (7.3) into (1.1) and comparing the coeffici- 
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ents of Y2 one obtains the linear system of equations 

(7.4) 

with determinant equal to ABC + 1. 

When ABC + 1 = 0 (case (i,)), the necessary and sufficient condition for the 

existence of non-trivial solutions of (7.4) (with non-vanishing x,,, y,,, z,,) is 

AB-B+l=O, BC-C+ 

In fact as ABC + 1 = 0, any one 

When ABC + 1 #O (case (i?)) 

I = 0 ) CA-A+l=O. (75) 

of conditions (7.5) implies the two others. 

(7.4) has a unique solution. Because we 

require that xc, # 0, y,, # 0 and z,, # 0 then AB - B + 1 # 0, BC - C + 1 # 0, 

CA-A+l#O. 

Let us consider now case (ii). Let us suppose that for example x is (formally) 

analytic around I,,, i.e. p, 30 in expansion (7.3). Let us try now to determine 

p,. Substituting the corresponding Laurent expansions (7.3) into eqs. (1.1) and 

comparing the coefficients of the leading term (T”~ ’ for the first equation, T -’ 

for the second and third one) leads to the following relations: 

CY,, + Z,l = P, 3 AZ,, = - 1 and y,, = - 1 (7.6) 

Thus A # 0 and finally for this solution the non-negative integer p, is equal to 

p,=-C-l/A. 

By the same token, considering the two remaining solutions where y (or z) are 

respectively (formally) analytic around I,, while x and z (or x and y) have 

simple poles at f,,, one deduces that for these solutions one has pj = -A - 1 /B 

and p. = -B - 1 lC respectively. Summarizing, all three numbers 

a==-C-llA, ,B=-A-l/B, y=-B-IIC (7.7) 

must be non-negative integers. 

Let us note that, when ABC + 1 = 0, conditions (7.5) and (7.7) cannot be 

satisfied simultaneously. Thus when (7.5) IS satisfied (which implies ABC + 

1 = 0). only singularities of type (i) are allowed by the 3D L-V system, and 

when ABC + 1 = 0 and (7.7) is satisfied, only singularities of type (ii) are 

allowed. The only possible values for A, B, C satisfying (7.7) with ABC + 1 = 0 

are listed in table VI. 



Table VI 

Indeed, condition (7.7) with ABC + 1 = 0 is equivalent to 

I 1 1 

tu+1+p+1+ 
-----1, 
y -t 1 

which can bc easily solved for non-negative integers. On the other hand. when 

ABC + 1 # 0. singularities of both types (i) and (ii) are simultaneously allowed 

for some particular values of the parameters A. B, C. h, p, v, and in what 

follows. when ABC + 1 # 0. WC will be interested exclusively in them. 

(13) WC now proceed to compute the coefficients in expansion (7.3) by 

substituting the latter into system ( I. 1) and hy obtaining the recurrence 

relation for these coefficients allowing their recursive computation. 

A natural number f 3 1 is called a rcsonancc if the coefficients (n, , J’, . z, ) of 

expansion (7.3) are not uniquely determined. when knowing the coefficients 

_Yi. ?‘,\ and ZA for 0 5 I\ G r - I. If (x,,, XII. z,, ) arc not uniquely de~ermincd, 0 is 

also called a resonance. 

WC will now compute the resonances of the 3D L-V system. Let us considcl 

first cast (i), i.c. the case 11, = I’, = 17: = ~ 1. Let us substitute expansions (7.3) 

into the 3D L-V system (1.1). Comparison of the coefficients of T' 2 for I’ 2 :! 

gives the identities 

(Y ~ I)&= s,,(c:\, + 2,) + X,(C_Y,, + 2,,) + M, , . 

(1. l)y, = _y,,(x, + AZ,) + y,(x,, + AZ,,) + N, , . 

(1. ~ I)z, = z,,(Bx,. + y,-) + Z,(BX,, + y,,) + P, , . 

(7.X) 

where M, , , N, , and P,. , depend only on si,. !‘A and zi with 1 6 k s r - I 

and. of course, on A. H, C, A, p. v. Let us note that (7.8) remains also valid 

for I’ = 1 with M,, = N,, = P,, = 0. Taking into account relations (7.4). identities 

(7.X) become 
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rx,. - Cx,,yl - x,,z, = MI_, , 

-YoX, + ryr - Ay,,z, = N,_, , (7.9) 

- Bz,,xr - zc,yr + rz, = P, ~, 

The characteristic polynomial 3(r) of system (7.9) with unknowns x,, y, and Z~ 

is equal to 

d(r) = r’ - r(Ay,,z,, + Bx,,z,, -t Cx,,y,,) - (1 + ABC)x,,y,,z,, = 0 (7.10) 

Relations (7.4) now imply that 

d(r) = (r + l)(r’ - r - (I + ABC)x,,y,,z,,] = 0. (7.11) 

Thus r = - 1 is always a root of eq. (7.11). This is a general feature related to 

the arbitrariness of t,,. 

In case (i,), when ABC+1 =O. eq. (7.11) reduces to 

d(r) = rj - r = 0 

and the two resonances are r = 0 and r = 1. Let us note that the resonance r = 0 

corresponds to the non-uniqueness of (x,,, y(,, z,)). 

Let us now consider case (i?). when ABC + 1 # 0. We denote by r, and r2 

the remaining two roots of (7.11), i.e. the roots of r’ - r - (1 + ABC) x 

x,,y,,z,, = 0, for which we have r, + r2 = 1. r,r2 = -( 1 + A BC)x,,y,,z,,. As we 

ask for integer roots r, and r2, then r, = m and r7 = 1 - m. where m ~2. is 

some natural number. Moreover 

m(m - 1) = (1 + ABC)x,,y,,z,, = &(A, B. C) . 

because now, x,,, y,, and z,, can be explicitly computed from eqs. (7.4). A 

straightforward computation shows that the equality m(m - 1) = 4(A, B, C) is 

equivalent to the equality (cf. (7.7)) 

1 1 1 1 __ - 
rYz(m - 1) =ru+l+p+1 +y+1 l, 

(7.12) 

and WC already know (see (7.7)) that such LY, p and y are non-negative 

integers. It is not difficult to find all such solutions of (7.12) for m b 2 and the 

corresponding values of A, B and C. They are listed in table VII, where we 

have again j = $(- 1 + ifi). 



Table VII 
All vnlucs of A. R and C (up to cyclic permutations and complex conjugations) 

when a resonance m a’.? exists. The numhcrs refer to tables I and II. 

In the remaining case (ii). taking into account relation (7.6). one obtains 

that. as in cast (i,). the resonances are I’ = 0 and Y = I. Let us note that here 

the resonance Y = 0 corresponds to the non-uniqueness of x,, (respectively x,, or 

z,,) if I?, 20 (respcctivcly 11, 20 or p_ 20). 

(c) The compatibility conditions at the resonances are the conditions de- 

pending only on the parameters A. B, C’, A, p. v ensuring the solvability of the 

system of linear equations (7.9) for all value5 of (_I-(,. y,,. z,,) in spite of the 

nullity of its determinant. 

We now go on to determine them. First let us consider cast (ii). As already 

stated. the rcsonancc r = I corresponds to the non-uniqueness of x,. y, and z, , 

knowing x,,. J,, and z,,. Let us suppose that for example .Y is analytic. From 

table VII one sees that in all cases p, b I and consequently x-(c)/(t -- t,,) = 

x(1)/7 does not have singularities at f = t,,, i.e. at T = 0. Let us suhstitutc 

expansion (7.3) 

and 

with J,, # 0 and z,, # 0 into the second and third equations (1 .I). Comparing 

the coefficients of T ’ on both sides one obtains the equalities 

_v,,(Az, + p) + Ay,z,, = 0, 

z,,( I’, + u) + J,,Z ] = 0 

Taking in account (7.6). one thus obtains 
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(AZ, + P) + Y, = 0 > 

(y, + u)+ AZ, =0 

and consequently p = Y. The case when y is analytic implies A = v and finally 

A = p = v, which is the compatibility condition in case (ii). 

This compatibility condition is sufficient for all cases of table VI, since they 

only allow type (ii) singularities. 

In case (i,) the compatibility condition for the resonance r = 0 was already 

written in (7.5). A straightforward calculation for the resonance r = 1 leads 

again to the condition A = p = v. 

Let us consider now the remaining six cases (i,) the characteristic feature of 

which is to have a unique strictly positive resonance m 2 2. We will prove that 

in these cases supplementary compatibility conditions do not arise. In other 

words, as soon as A = Al. = 1, we can always find the expansions (7.3) satisfying 

the 3D L-V system in these six cases. 

First let us note that when A = p = v = 0 this is indeed so. Since m is the 

unique strictly positive resonance, then M,, N, and f, (cf. (7.8)-(7.9)) vanish 

identically for 1 G Y s m - 1. Consequently x,. J, and z,. vanish identically for 

1 G Y G m - 1 and therefore M,,,, N,,, and P,,, also vanish. Thus, there is no 

problem to find a solution (X ,,,, y,,,, z,,,) # (0, 0, 0). and we obtain the expan- 

sions 

X(l) = 25L 
t- 4, 

+ X,,I(t - r,,y-’ + . . . . 

y(r) = 6 + y,,,(r - I,,)“‘- ’ + . . (7.13) 

z(t) = & + z,,, (f - l(,)“’ ’ + ’ . . 

0 

satisfying the 3D L-V system with A = p = v = 0. WC can always suppose that 

f,, f 0. Now, let A # 0. As en’ = C, _,, ( hr)h/k!, one can consider the expansions 

A e”‘x(e”‘), A ear y(e^‘) and A e*’ z(e*‘). where X, y and z are defined by (7.13). 

From the remark in case 1 of section 6 we know that they satisfy the 3D L-V 

system with A = p = v. As r(, # 0, they have simple poles at any u,, such that 

e A”11 = [ 
0. Thus, in case (iz), even if A = p = v f0, we do not need any 

supplementary compatibility condition for the existence of solutions of type 

(7.13). This concludes the last step of the ARS algorithm. 

In summary, the ARS algorithm selects eleven cases, in all of which 

A = /_L = v. The conditions on A, B and C are given by (7.5) for the first case, 

while for the remaining cases they are listed in tables VI and VII. 



The first case is in fact a subcase of both cases 1 and 4 from table I, obtained 

already by compatibility analysis together with two independent integrals. The 

four cases of table VI are also subcascs of case 1 from table I, with one integral 

compatible with a linear vector field. One can wonder whether a second 

independent integral exists in these casts. 

Among the remaining six cases only the first enc. corresponding to wz = 2. 

was obtained by compatibility analysis (case 8 from table I). The five other 

cases are really new. 

To find the first integrals of the above five cases from table II corresponding 

to the rcsonancc 171 2 3, we proceed as follows. 

First. one remarks that for the 3D L-V system this resonance is also a 

so-called Kovalcvskava exponent of this system (cf. ref. [ 181). Theorem I from 

ref. [1X] suggests that perhaps one can find a first integral in the form of ;I 

homogeneous polynomial on X, y and z of degree HI. The hand computations 

arc not feasible here, but the use of elementary computer algebra fully justifies 

this hope when A = w = 11 = 0. 

As shown by the case 111 = 2 (cast 8 from table I) obtaining time-indepcndcnt 

integrals in the cast A = p = v # 0 is really ;I non-trivial problem. In the 

remaining five cases when ~17 2 3 and A = p = v # 0. we were unable to find 

time-independent first integrals, but WC: hope that in these cxcs such integrals 

still exist. It will be interesting to clarify this question. 

8. The Jacobi last multiplier method and its applications to the 3D L-V system 

Roughly speaking, when considering a system of ODES in 1w” with )I - 2 

functionally first integrals known, the Jacobi last multiplier method allows us in 

some very particular casts to find the (n - l)th independent first integral. 

Although this method has been treated in many places (set for example ref4. 

119, 20)) we will give here a concise treatment of this classical topic. slightly 

different from the usual ones. 

Let us consider the system of differential equations 

dx 
- = F(x) . 
dr 

(8.1) 

where 
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and 

is a smooth C’ non-vanishing vector field defined on the open subset U of R”. 

If 

is the solution of system (8.1) such that x(0, z) = z, where 

21 

z= bi : EU, 
Z/l 

then one defines the (local) flow {x’} induced by system (X.1) by x’(z) = 

x(t. z). 

Let M be a non-negative C’ function defined in U and non-identically 

vanishing on any open subset of U. M is called the density of invariant 

measure. or the last Jacobi multiplier, for system (8.1) if and only if the 

n-dimensional volume element 

w(x) = M(x) dx , 

where dx = dx’ . . dx”, is invariant with respect to the (local) flow {x’} 

induced by system (8.1), i.e. that the measure 

m(A) = M(x) dx 
I 

is invariant with respect to this How. 

Let us introduce in the open subset V C U another system of coordinates 

y=(y,..... y,,), i.e. x = G(y) with non-vanishing determinant of the Jaco- 

bian aG/ay. Then the volume element w in the coordinates y is of the form 

wcy) = M(G(~)) /dct(t$ (Y))( dy. (8.2) 

In particular, M is a density of invariant measure for system (8.1) if and only 

if for every z E U and every t E [w small enough 



&u’(z) 
M(z) = M@(z)) det i) , 

t J z 
(8.3) 

because it is always true that det[“x’(z)/az] > 0. 

It is well known, and not difficult to prove (cf. theorem I from ref. [13), ch. 2, 

section 2) that M is a density of invariant measure if and only if. on U. 

We now pass to the heart of the matter. Let @,, , &,, , be functionally 

independent first integrals of system (8. I) defined on U. Thus, if one identifies 

by USC’ of the standard scalar product ( , ) on R” the derivative d&,(z) E 

(IX”)‘: with the column vector grad ha(z) E R”. the vectors grad bA(z) and F(Z) 

arc orthogonal for z E U and I s k s II - I. 

Let us begin with the following simple observation. The function 

M(z) = id‘ ( 4-l 1 
Lt grad 4,(z). grad C&(Z). . grad 9,, ,(z). ___ 1 llF(z)ll~ ’ . 

(X.5) 

where IIF‘(z) = Yi , /fk(z)l’. ‘. h d IS t e ensity of an invariant measure for system 

(8. I). 

Indeed. as +A is a first integral of (8.1) then &k(s’(z)) = 4,(z) and thus 

dc#Q(.u’(z)) d.x’(z)ldz = d$bA(Z) 

i.c. 

A(r) grad dh(-~‘(z)) = grad &(z) , 1 s k s H ~ 1 , 

where A(t) is the matrix transposed to the matrix ~s’(z)/i~z. Moreover, 

dx’( z) 
~ F(z) = F(x’( 2)) 

d z 
(X.6) 

We will now prove that M defined by (8.5) satisfies (8.3). Indeed from the 

above remarks one has 

F(z) 
M(z) = !dctj A(i) grad &(x’(z)),.... A(t) grad 4,,_ ,(x’(z)), ____ 

lIF(z)# 

x,,,(!$i dct grad +,(x’(z)) ,... . grad $,, , (x’(z)), (A(r)) ’ ____ , c 

To complete the proof of (8.3) it remains now only to prove that 
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F(z) F(x’W 
,I 1 

A(r)-’ llF(2)112 = ~p(x’(z))~l” + c q(z) grad 4,(x’(z)) 
k=, 

(8.7) 

for some coefficients CQ(Z), 1 s k s n - 1. As the integrals 4,) . . , 4,,-, are 

functionally independent, then grad $,(z), . . . , grad 4,_, span the subspace 

F-(z) = {y E R”; (y, F(z)) = O}. Thus (8.7) is equivalent to 

i.e. to 

i 

and this is evident by (8.6). Moreover, M >O everywhere on U. 

The Jacobi last multiplier method is a reciprocal of the remark just stated. 

When given M - 2 functionally independent first integrals 4,, . , &,,_z of 

system (8.1) together with a density of invariant measure M, one can write 

explicitly. at least locally, an integral formula for a (n - l)th first integral d,, , 

functionally independent of the 12 - 2 ones already known. in the suitable 

coordinate system y = ( y , , . , y,,). 

Let us describe now this in detail. As @,, . , 4,) _7 are functionally indepen- 

dent on U, changing if necessary the numbering of the coordinate variables 

(x, , . , x,~>, one can suppose without any restriction of generality that in 

some sufficiently small open ball V C U, 

and that yx=4&(x) for lsksn-2, y,,_,=x,,_, and y,,=x,, is a new 

coordinate system y = ( y , , . , y,,) on V. Let us note 

In this new system of coordinates system (8.1) becomes the following one: 

dL’/, =(, 

dt 
for lckcn-2, 

dy,_ dt -fx(y) forn-lskkn, 

(8.9) 

with some functions f,, ~, and f,, 



According to (8.2), in the coordinate system !: = (y,, , y,,) = H(x), the 

density M takes the form 

(8.10) 

Let us now write. in the coordinate system (y,. , y,,), relation (X.5) with 

(y,, . , J,, :) as the n ~ 2 first integrals and with the unknown (H - 1)th 

column cqual to 

i 

w,, I(!‘) .I;, ,w~ll.f’(.w 
= det 

W,,(J) I 1;,wIIf(L’)I12 I 
(8. I I ) 

WC look for a function &,, , such that ;J&,, ,iijy, = wI for I s k 5 II. Now (8.4) 

and (8.0) imply that 

Thus. at lcast locally 
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84 
w II-I = Nf,, = ~ 

dY,, - 1 

and w,, = -NJ,_, = * 
JY,, 

for some function 4 = 4( y,, , Y,,_~, y,,_, , y,,) which is uniquely defined up 

to the additive term of the form g( y, , , Y,~_~~). Any such function 4 is a first 

integral of our system restricted to the surface 

4,(x) = y,, . 1 d?-3(x) = Y,,-2 . 

Let us now consider a point y” = ( y':. . . , yj:) where y” = H(x”). In a 

sufficiently small convex neighbourhood of Y” in R”, the formula 

b,,- I ( Y> = jY\ o,,-- I (Y)~Y,,-, + w,,(y)dy,, + dy,?. . 3 Y,, 2) 

defines the general form of the first integral of our system such that a+,, ,I 

iJY,,- I = w,, I and ~?4,, ,/ijY,, = w,~. In the above expression, ,g is an arbitrary 

smooth function, and yr is the straight line interval going from 

(y,, , y,,_,. y:;_,, yj:) to (y1,. . , y,, ?, y,,- ,, y,,). Moreover. as N(y) > 0. 

(8.11) implies that the integrals +,, . , qb,, , are functionally independent. 

The above definition of the integral c$,,_, leads, under condition (8.8), to the 

following Jacobi formula for it. From the equations 

(x,, . . , x,, ?) can be expressed as functions of x,,_, and x,,, when 

a,, , a,,-z are given. In what follows, we denote by J‘(x) = f(~, . . , x,,) the 

function f considered as a function of variables (a,, . . , u,~_~, I,,_, . x,,). Now 

4, I (xl = I 3 (t, dx,,-, -i,-, dx,,) . 
’ x 

(8.12) 

where A(x) = /det[aH(x) /ax]j . IS, at least locally. a new first integral of system 

(8.1). 

In order to illustrate the usefulness of this formula we first apply it to the 

case of a linear first integral of the 3D L-V system, corresponding to case 4 of 

table I (ABC + 1 = 0) in the subcase where A = F = Y = 0. We start from 

F2=ABx+~~-Az. (8.13) 



&,= [x(cy + z) dz - z(Rx + J’) dx] 1 (8.14) 

where one must substitute for y the expression E; + AZ - AHs from eq. 

(8.13). Thus cf, rewrites 

dX+ dz - B dx 

.Y F2 + AZ - ARx ’ 

which integrates to 

Multiplying by - /lB and cxponentiating, we recover integral F, from table I. 

On the other hand, had we started from F,, we would have recovered F’? just as 

easily. 

This method can also be applied to the case of all the other first integrals 

from table I from which one can explicitly solve for one of the variables X, _V or 

z. The results can be found in table III. In most cases the second integral is 

given in terms of the quadrature of a complicated argument. 

9. Final remarks 

The results presented here. together with those of ref. [7]. show that the 

compatibility analysis is an efficient method for the search of the cases of 

integrability of three-dimensional autonomous systems of ODES. However, in 

order to realize the full extent of the possibilities of this method. further 

studies concerning other systems arc necessary. 

Usually. one associates non-intcgrability with the occurrence of very compli- 

cated (chaotic) orbits. Although such orbits do appear. at least numerically. in 

some systems of type (1.2) with linear nonhomogeneous forms L,-L, (cf. refs. 

[21. 22]), it is not known. to our knowledge, whether such orbits can arise in 

the 3D L-V system (1.1) for some value of the parmeters A, H. C. A. p and v. 

Some insight into this problem can be found in refs. [23,24]. 

It is also worth noting that the usual methods to prove non-integrability deal 

with the non-existence of integrals analytic or meromorphic in domains related 

in an obvious way to the equations. Therefore even for equations the non- 

integrability of which is considered as proven. it is doubtful whether such 
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proofs would exclude the existence of integrals of the form of many of those 

given in tables I and III. 

Finally, the question of integrability notwithstanding, we can formulate the 

following conjecture concerning three-dimensional systems of ODES: 

whenever such systems are compatible with a linear (or aftine) vector field, 

their orbits do not exhibit chaotic behavior. 
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