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The variational principle
by
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Abstract. This papor propose a proof (in a whole generality) of the variational
principle for the pressure of a continuous function on a compact space under the
action of an amenable group of homeomorphisms of this compact space. There are
essentially two novelties in our proof: on the one hand, the method for approximating
a borelian partition by some open cover, and on the other hand the use of the exten-
wion of capacitios which allows in the second part of the proof to keep the ideas of
M. Misiurewioz without using technics of pavability which were absolutely necossary
for him.

In their paper of 1965, R. L. Adler, A. G. Konheim and M. H. Me-
Andrew [1] introduced the notion of topological entropy for a continuous
map defined from a compact space to itself. This definition was proposed
to be an equivalent in. the topological frame of the entropy of measure
preserving transformations on measured space which was introduced by
soviet probabilists [17] and [19]. The first conjecture proposed by these
three makers called upon a comparison of the two kinds of entropy:
the topological entropy bounds the metric entropy.

The first definition of topological entropy used -open covers of the
~compact space; by introducing finite separated sets, R. Bowen [2] gave
an cquivalent definitior. .

L. W. Goodwyn [10] in 1969 showed that the topological entropy
bounds the metric entropy. '

1. 1. Dinaburg [6] and T. N. T. Goodman [9] proved in 1971 that
the topological entropy is exactly the upper bound of the metric entropies
for all invaviant probabilities. This kind of result is called a variational
principle. : I

Goodwyn [11] gave a proof of the variational prineiple for » locally
non-recurrent transformation. We must note the contributions of M. Denker
in the study of these topics [4], [B].

.. Some problems of statistical mechanics lead D. Ruelle [18] %o, gon-
eralize in 1973 this result in. two ways: he introduced the concept of pressure
for o continuous function and that for the action of the gromp Z™ The
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topological entropy is the pressure of the null function. Hypotheses of
specification and expansiveness allow him to prove the variational principle
for the pressure.

P. Walters studied in [20] the properties of the pressure for the
action of one transformation and proved the variational principle by the
method of Goodwyn that consists in an approximation of the dynamical
system by symbolic systems. The proof of Walters was extended by
S. A. Elsanousi [8] to the action of Z*.

For the action of the semi-group Z*ﬂ, a new and very short proof
of the variational principle for the pressure was obtained by M. Misiu-
rewicz [13]. In fact, Misiurewicz’s method works for the action of a pavable
group [14].

The kind of action studied by Goodwyn (locally non-recurrent dyna-
mical systems) allows to get an approximation theorem by means of sym-
bolic systems. For such systems, one obtain not only the variational
principle but also a new definition of the pressure, similar to the definition
of the entropy; we do that in [15] by substituting to subshifts of finite
type some models of statistical mechanics on a lattice.

This paper proposes a proof (in & whole generality) of the variational
principle for the pressure of a continuous function on a compact space
under the action of an amenable group of homeomorphisms of this compact
space. There are essentially two novelties in our proof: on the one hand,
the method for approximating a borelian partition by some open cover,
and on the other hand the use of the extension of capacities which allows
in the second part of the proof to keep the ideas of Misiurewicz without
using technics of pavability which were absolutely necessary for him.

The references are restricted to papers dealing with the varixtional
prineiple; works about equilibrium measures, for instance, are not quoted.
For such expositions, we refer the reader to the excellent bibliography
of M. Denker, O. Grillenberger, and K. Sigmund, Ergodic theory
on compact spaces, Lecture Notes 527, Springer-Verlag, 1976.

The pressure of a continuous function. Let X be a compact gpace
and @ a group of homeomorphisms of X. W denotes the set of all sym-
metric neighbourhoods of the diagonal 4 of X x.X (it is a busis 01"13]10
uniform filter). If 4 is a finite part of G and & an clement of W, we denote
by 6, the element of W

Sa =) (g7 xg7)(3).
oed
A subset B of X is said to be d-separated if any two distinct elements
of ¥ are not neighbours of order 8. A d-separated set iy necessarily finite
beeanse X is compact.
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Let f be a real valued continuous function on X, For a finite part
A of G, we denote by f, the continuous funection ) fog.

If B is a finite subset of X, we set sed
Z(f, B) = D) exp f(a).
xelE

For an element 6 of W and a continuous function f, we denote by
P.(f, 6) the upper bound of the numbers Z(f, B) on the set of all §-
separated sets H. We then define

Pa(f, 8) = limsup |47 LogPy(fy, .)
where 4 denotes the ameaning filter on the set of all finite parts of G

and || the cardinal number of a finite part. We must remark that if &
and ¢ are two clements of W such that é = ¢, then

DSy 8) = pa(f, 0)
because for every finite part 4 of &,
Py (fuar 04) = Palfa 04)-
Thus we can put the definition
Pu(f) = Lim py(f, 8) = supp.(f, 8).
8rd seW

For a finite open cover o of X and a continuous function f, let us define

N
Z(f, ) = D sup expf(a).
Oca 20
For an element § of W, we denote b'y P,(f, 8) the lower bound of the
numbers Z(f, @) where a runs over the set of all finite open covers of
order 8. Recall that a cover a is of order 8.if every element O of a satisfies
0 x0 < 8. We then define :

pa(f, 8) = 1im}up |A|7 LogPy(f, 8.4)-

Herve again, if 0 < 6, po(f, 8') > p:(f, 8), that allows to define p,(f)
Pa(f) = limp,(f, 8) = supp,(f; 9).
dopd ey

THEOREM. Pa(f) = ps(f).

Proof. (1) p.(f) < pa(f). Let & be an element of W. We have p,(f, )
< po(f, 8). It is sufficient to show that, for every d-separated set E and
every open cover of order 8, Z(f, B) < Z(f, a). To each element = of ¥
we agsociate an open set of « that contains it and this map is one-to-one.
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We deduce that for every finite part 4 of @ and every & of W, Py(f,, 8,)
< Pyf4, 0,) and the inequality p;(f) <p»(f).

(2) 22(f) < p1(f). The proof of this inequality results osgentially from
the following lemma. .

Luvma. Let ¢ be a continuous function, ¢ « positive real number and y
an element of W such that

V(z,y) ey, lp@—e@l<{
and o an open element of W such that wow < y. Then
Py, v) < Pu(p, 0)-expl.

Proof of the lemma. To caleulate Py(p, w), it iy sufficient to
take the upper bound of the Z (¢, F) on the set of maximal w-separated
sets T, which arve necessarily o-gencrating sets. This means that the
neighbourhoods of order o of the clements of B are an open cover a of
order 8. For such a set E, we have Z(p; a) < Z(p, B)-exp{ and the con-
clugion of the lemma follows. N

Proof of the inequality. Let » be o positive real number, ¢ an
element of W such that

Viz,y)ed, |fl@)—FfH)l<n

and e an element of W such that eoe < 8. For every finite paxt 4 of
Q y=204, 0 =24, {=|A|n, ¢ =f, satisfy the hypothesis of the
lemma. Therefore, after taking the limsup,

Po(fs &) < palf 0) +7.

The inequality p,(f) < p.(f) tollows.

The numbers p,(f) and p,(f), which are equal when the function f
ig continuous, can be defined for every bounded funetion on X. But the
continuity of f was of an essential use to prove their equality. We denote
by p(f) their common value and we call this number the pressure of the
continuous function f.

The equivalence of the two preceding definitions of the pressure
of a continuous function makes no wse of the amenning property of the
filter .#. On the other band, this property is decisive when watching m
the pressure as a function on ¢(X).

THBOREM. Let f and @ be two continuous fumetions on X. We d(motﬂ
by s the sub-additive, positively homogeneous functional on (/(X) defined by

8((]3 “= lim mp [Al’“]sup Z pog(@y.
zeX Ged
Then .
8{(p).

mm) —p(f) <
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-8 the upper bound of the numbers h(u)--

The variational principle
Proof. It is sufficient to look at the finite rank inequality
Py((F+9)as 04) < Py(f4, 8,) ‘supexp Y pog(v
eX

geA
Cororraries. The following properties of the pressure are immediately
deduced from the properties of the fumctional s:

P i NoN- decreasmg PAKp(f+o) if ¢ is o positive continuous
Sfumotion.

p s Lipsohite: |p(fy)—p(f)] < |fi—fal;

_ p(f+pog—q)
every conltinuous ¢ and every g in G

=2(f) for

The variational principle. For any Borel probability measure pon X,
invariant under the action of G, one can consider the dynamical gystem
(X, o,y py &), h(p) denotes the metric entropy of this dynamical system,
i.e. h(p) = saph(u, a) where the upper bound is taken over the set of

all finite Borel partitions of X. h(u, ) is the limit along the ameaning
filber and the lower bound of the numbers [4|™*H (u, ay) (see [16]).
The main result of this paper iy the following theorem.
VARTATIONAL PRINCIPLE. Let f be a conlinuous fumction on X. p(f)
u(f) when u runs over the set of
all G-invariant Radon probabilities on X. .
Proof of the variational prineiple, First part. The inequality
h(p)--u(f) < p(f) for o G-invariant Radon probability 4 on X im-
mediately results from the_fol]owing; approximation theorem.
TunornM. Let u be o G-invariant Radon probability on X and a a finite
Bovel partition. of X. For every positive real number &, there ewists a finite
open cover 6 of X such that

@)+ u(FL pal, 8)+

The proof of this theorem is essentially hased on the introduction
of & real number E(x, ) which measures the covering ratio of a finite
open cover § relatively to a G-invariant probability 4 and on the sub-
additivity of the function B for 4.

DupiNverons. A tinite partition o of X is said to bo d-adapted if thmo
exigts & one-to-one map § from ato 8 such that K < j(K) for every K in a.

We eall covering ratio of & for the pmlmb»lzt y w the number RB(u, 8)
defined by ‘

him,

B(u, 0) = bllpll (n; af)

where « and f# run-over the set of all b-a.daptad partitions.
ProvosIeioN, The function B is sub-additive: if & and 4y are two
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finite open covers of X, then
R(u, 0,V 8,) < B(py 61)+E(u, 61).

Proof. A 0,v é-adapted partition « has the form a;va, where a, -

and a, are §;-adapted and d,-adapted partitions, respectively. The con-
ditional entropy H(u, «/f) is sub-additive in a:

H(p, ayVag /By ) < H(p, a1/Byv Bo)+H (py az BV Ba)

and a non-increaging function of the conditional partition f, thus

H(p, ayvag/fyv o) < Hp, oy /) +H (p2, as(fs)

and the result of the proposition follows.

Proof of the theorem. Let a be a finite Borel partition of X.
‘We construct an open cover 8 such that o is d-adapted by choosing an
open neighbourhood of each atom of a.

Let A be o finite subset of ¢ The partition a, is J,-adapted.

Let &' be an open cover finer than &, and p a ¢’-adapted partition.
Ag ¢ is finer than 6, we may construct a map 6 from ¢’ to ¢, such that,
for every O in &', O = 0(0). Let j be the one-to-one map from y to &',

The partition f, obtained by gluing together the atoms of y with the

game range by 6oj is 8,-adapted and y is finer than . Therefore
H{p, 04) < H(p, f)+H(p, a4/h)
and

Hp, og)+p(fa) < H(py B)+B (g 0.0)+ p1(fa)
S B(p,y 00)+H{u, y)+u(fa).

But, by Jensen’s inequality

Hpy y)+p(f< LogZ(fy, »)
and

Z(fa, V)< Z(f4q, 6

By taking the lower bound over &', it comes

H(py ag)+p(fa) < Blp, 64)+LogPy(fa, 04).
The sub-additivity of R(u, é,) gives
JAI7H (s 80)+p(f) < By )+ A7 LogPy(f4, 0,)-
Then, taking the limsup along the ameaning filter,

hu, &) +p(f) < Ry, 8)+p.(f, 6).
To achieve the proof of the theorem it remains to show that 4 can be

e ©
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chosen. such that R(w, d) is arbitrarily small. As 4 is a Radon meagure,
for every positive ¢ and every atom K of a, there exists an open neigh-
bourhood O of K such that u(0—K)<e That R(u, d) tends to zero
with & is casy to verify.

Proof of the wvariational principle. Second part. The in-
equality ;&% )h(,u)\+,u( )= p(f) arises from the following theorem.

TanorEM. For cvery open & in W there ewislts a G-invariant prob-

ability p suoh that
h(w)+u(f) = palf, 8) _

Proof, Let 4 be a finite subset of & and F a 8 ,-separated set such

that
Z(fay B) 2 Pi(fay 04) 0xp(—0)
where ¢ is an arbitrary fixed positive real number. Let us consider the
probability ¢, with support B, defined by
oa({y}) = Z(fq, B)'expfy(y) for y in B.

44 i8 the probability 2 glog).

Let A be a Illter fmer than the ameanmg filber 4 such that

limsup |4 |~ Log Py (fu, 64) = lim |A| " LogPy(f4, 64)
-~ 2

and lim,uA = u. @ i8 a G-invariant probability. Let us show that u is

convemem; for the announced inequality. Let a be a finite Borel partition
of order d; moreover, we may suppose that the boundaries of atoms of o
have y-measure zero.

Since o is of order 3, every atom of a contains at most one element
of #. Thus

H(oy, aq)-+0y(fq) = LogZ(fy, B) > LogPi(fs, 04)—a.

Let B be a finite subset of @ containing the unit element e. For every
clement b of B, wo may write

1, =B D lg-tu+4y

aedy
where A, = {a, a € 4 and Bb~*a c 4} and 4, is a function between 0
and 1 whose support verifies

‘ lsupp 4y'| < mpp-1(4).
The function my, for a finite D, is defined by
mp(d) =|{ged, 3deD, dg ¢ A}.
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These functions m,, are strongly sub-additive and have zero mean if @
ig an amenable group (see the second part of [16]). The map which as-
sociates to a finite subset 0 of G the number ¢ (o4, C) = H (04, ay) is strongly
sub-additive; therefore it has an extension to functions on G with finite
support (see again the second part of [16]. 8o we may write, for every
element b of B,

(1) Hoy,a4) < ZIBr]H(%u aps-1q) F9(04, Ay)
aedy

®(oy, 4;) is bounded above by ]suppA,’,’|~Log1a| where |a| denotes the
number of atoms in a.
Averaging the inequalities (1) for all the elements b of B leads to

Hog, a0) <|B™ D Y |BI™H (04, ag-1,) +Mpg-1(4) - Log|al.

beB aedy

As H(oy, ag,—1,) = H(ba(0,), ap), adding some positive terms, we get

H(og 0 <IBIT' Y 3 |BH(ba(0,), ag)+mzp-1(4)-Logla|.

beB p—lgey
Then
A7 H (0, a4) < |A1_IZ,BFIH(‘1("A); a}?)‘|‘ |A|’1mBB~1(A)'L0g]a|.
acd

As entropy is a concave function of the measure

U™ D' Hla(o,), ag) < H(uyg, ag).

acd N
On the other hand, o,(f,) = |4|' uy(f). Therefore
|A|""Log Py (f4, 64)
< BT H (4, o)+ pa (f)+ |4 mpp-1(4) - Logla| + 14|V a.
Taking the limgup in 4 along the filter .4, we obtain
p1(f, 8) < |BI7H (1, ap) + ().

As igfﬂ(l‘v ag) = h(y, a),

Pu(fy 8) <h(py @)+ u(f). m

i
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