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Dynamical systems of total orders 

Jean Moulin Ollaqnier 

Didier Pinchon 

In this short paper, we present some examples of 

dynamical systems of total orders in connexion with amena- 

bility problems. 

First of all, we introduce the compact metrizable 

space T of all total orders on a countable group. The group 

G acts in a natural way on T by homeomorphisms. An ergodic 

minimax theorem in this dynamical system leads to the 

existence of an ameaninq filter for a group with the fixed 

point property (F~iner boxes in the orqodic folkore). 

Among all G-invariant probability measures on T, one 

can select a special one ~ which is inw]riant under a 

wider group of homeomorphisms. This allows to obtain local 

results from mean results in the theory of information 

gain, hence giving a characterization of equilibrium mea- 

sures in statistical mechanics. 

We then consider the G-invariant subspace T o of T 

consisting of all total orders isomorphic to Z. The exis- 

tence of an invariant Borel probability on this standard 

(non compact) space implies the amenability of the qroup. 
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One can indeed in this case, not only prove the fixed 

point property, but directly show" the existence of an amea 

ning filter. 

Total orders were first introduced in ergodic theory 

by Kieffer to show the b ] convergence of the mean informa- 

tion. 

i- The dynamical system (T,G). 

a- The compact space T. 

Let T be the set of all total orders on the set G. 

For a finite part F of G and a given total order t on F, 

we denote by O(F,t) the subsot of T consisting of all 

total orders, the restriction of which to F is t. The set 

T, endowed with the topology generated by the O(F,t) is 

a compact, totally disconnected Hausdorff space. 

Moreover, when G is countable, T is metrizable. 

b- The probability ~. 

Let B denote the group of all permutations of the set 

G and Bf the invariant subgroup of finite permutations 

(only moving a finite number of points in G). 

Let us denote by b the homeomorphism of the compact set T 

induced by a given element b of B in the following way 

x ~ y <--=> b(x) b(~) b(y) 

i.e. x b(~) y ~=~ b-l(x) r b-l(y) 
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total orders, the restriction of which to F is t. The set

'1', endowed with the topology generated by the O(F,t) is

a compact, totally disconnected Hausdorff space.

Moreover, when G is countable, T is metrizable.

b- The probabil i ty fl .

Let B denote the qroup of all permutations of the set

G and Bf the invariant subqroup of finite permutations

(only moving a finite number of points in G).

Let us denote by b the homeomorphism of the compact set '1'
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X L Y
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-1 -1
b (x) r b (y)
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One can easily verify that there exists one and only one 

Radon probability measure on T, invariant under all the 

homeomorphisms b induced by permutations of G. This proba 

bility gives the measure i/ IFI ! to O(F,t). 

Biqht and left tranlations on G arc permutations, hence 

proving the existence of an invariant probability for 

the dynamical system (X,T) without any assumption of 

amenability on the group G. 

c- The cone ~(G). 

Let us consider functions f from the set F(G) of all 

finite parts of G to R verifying the four followinq 

conditions 

invariance under right 

i) f(~) = o 

2) f(~a) = f(A) 

translations 

3) f(i UB) + f(k riB) ( f(h) + f(B) 

stronq subadditivity 

4) ~ K >o , Va ~G , V~ ~F(C), 

f(A U a) - f(A) ~ -K 

The set of all such functions is a convex cone ~(G), 

on which we define a function q by 

q(f) = inf IAI -I f(A) 
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The existence of the ameaning filter for G is nothing 

else than the result q(m D) = 0 for every finite part 

D of G containing e where the element m D of E(G) is 

defined by 

For details, see [2]. 

d- A minimax theorem in (T,G). 

Let f belong to ~(G) and a belong to G. The function 

fa defined by fa(A) = f(A ua) - f(A) is decreasing 

because of the strong subadditivity of f and therefore 

can be extended by monotonicity in an u.s.c, function on 

~(G) also denoted by f . Moreover, because of condition a 

(4), f is bounded below. a 

We denote once more by f th(? u.s.c, function on T : a 

fa(r) = fa(ar) where a T stands for { xaG, xra, x ~ a} 

When f = m D , we denote the increment (mD) e by i D . 

When the group G has the fixed point property, the 

following minimax theorem holds 

Theorem Let f belong to ~(G) and a belong to G. 

q(f) = sup ~(f ) a 

where the supremum is taken over all probabilities on T, 

invariant under the homeomorphisms of T induced by right 

tranlations of G. 

For the proof, see [2]. 
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fOllowinq minimax theorem holds
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q(f) sup A(f )
a

where the supremum is taken over all prObabilities on T,

invariant under the homeomorphisms of l' induced hy right.

tranlations of G.

For the proof, see .
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e- Invariant measures of the i D. 

Let us recall that we denote by i D the u.s.c, function 

(mD) e. In fact i D is more regular. This function is 

continuous on T since it only depends on the restriction 

of the total order r to a finite part in the following 

explicit manner 

iD(~) = 1 - l(e = sup D) - 
d~D-e 

l(e = sup Dd -I ) 

where (e = sup E) denotes the subset of T :~d e E, d r e} 

For every probability A on T, invariant under homeo- 

morphisms induced by riqht translations, we get 

~(i D) = 1 - h(e = sup r)) - 2. ~(d = sup D) 
d ~D-e 

l(i D) = 0 since { (d = sup D), d&D} is a partition 

of T. 

Therefore, in the case where G has the fixed point 

property, q(m D) = sup ](i D) = 0 hence showing 

the existence of an ameaninq filter for G. 

Let us remark that the fixed point property is 

neither used for showinq the existence of an invariant 

probability on T nor for proving that ~(i D) = 0 for 

every invariant 

The crucial use of the fixed point property is the 

minimax ergodic theorem, which is a kind of invariant 

Hahn-Banach theorem. 
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2- A lemma about amenability. 

To characterize equilibrium measures in statistical 

mechanics as invariant Gibbs measures, it is necessary 

to obtain local results from mean results. See [~ . 

The following lemma, using the probability ~ on T, 

allows such an operation. 

Lemma Let f be a positive, increasing, right invariant 

function on the set F(G) of all finite parts of G so that 

lira IAI -I f(A) = 0 

where Tf~ is the ameaninq filter on F(G). 

Then, for an arbitrary given x in G, 

inf lim ( f(A U x) - f(i) ) = 0 
A--~G-x 

Proof. There is no restriction to suppose f(@) = O, 

so that we make this assumption. 

For every A in F(G) and every total order t on A : 

f(A) = 7 , f(x0q) - f(x ) 
x 6 A 

whence f(A) = I/IA[ ! Z ~-~ f(x uxt) - f(x~) 

t x a A 

The function fx defined on F(G) by 

fx(A) = inf f(A' Ux) - f(A') 
A'DA 

is an increasing function of A. 

It is then possible to extend f to an increasing positive 
x 
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=f(A)
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f (A) inf f(/\' Ux) - f(A' )x A'

is an increasinq function of A.

It is then possible to extend f to an increasinq positivex
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Borel function on $~(O) and then to a positive Borel 

function on T by fx(Z') = fx(X~). 

One can easily verify that 

f(A,) > 7. dTr(r) fx(T) = IAI /dn-(r) re(r) 
x e A  

b e c a u s e  o f  t h e  i n v a r i a n c e  o [  w .  

T h e n ,  t h a n k s  t o  t h e  a s s u m p t i o n  l i r a  IA] - 1  f ( A )  = 0 , 

there comes 

]d~(~ )  fx(r)  = o 

If we call ~ the probability measure on ~(G-x), image 

of ~ by the application r __~ x$ , we get 

/d~(A) fx(A) = 0 

f is then a positive, increasinq function of A in ~(G-x), x 

so we have necessarily 

inf { f(A' ox) - f(A') , A' ~ F(G-x) , A' mA] = 0 

since ~ give to the cylinder A'D A of ~(G-x) the 

measure I/( IAl + i) 

Whence the result 

inf lim [ f(A ux) - f(A)] = 0 
A --~ G-X 

Borel function on

function on T by
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and then to a positive Borel

f ('l'") = fx x

One can easily verify that

f(A) d 7T( r) f (r)
x

because of the invariance of 1r.

Then, thanks to the assumption

there comes

Jd rr( 1:") f x ( 7:) = 0

lim IAI- l f(A) = 0,
171,

If we call v the probability measure on peG-x), imaqe

of 7T by the application r __ X r ' we get

jdll(A) fx(A) =0

f is then a positive, increasinq function of A in pee-x),x

so we have necessarily

inf {f(A' ux) - f(A') A' F(G-x) , A'.=>A} = 0

since v qive to the cylinder A'.=> A of peG-x) the

measure 1/( IAI + 1) .

Whence the resu 1 t

inf lim [f(A U x) - f(1\) J
11 G-x

= o
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3- The dynamical system (To,G). 

Let us consider the subset T o of T consisting of 

all total orders isomorphic to the order of Z when G 

is countable. 

It is rather simple to verify m(T o) = 0 since, for total 

orders in T o , given two elements of G, a and b, there 

are only a finite number of elements between a and b. 

T O C U { ~ , ~ X  ~ D , X "~ inf(a,b) or 
D • F(G) 

sup(a,b) ~ x}. 

Let X be the set of all bijections from Z to G sendinq 

0 on the unit element e of G. ].'or a given x in X, 

denotes the inverse map. X can be considered as a subset 

of G Z and also as a subset of Z G 

Setting on G Z and Z G the product topologies of discrete 

topologies, we make these sets become Polish spaces. 

X is then the closed subspace of GZx Z G defined by 

× [ (x,y) • (;Z× Z G = , Xoy = Id G , yox = Id Z , x(O) = e } 

and so X is a Polish space. 

It is possible to define an action of G on X by 

homeomorphisms , x .--~ h(x) , where h(x) is the element 

of X defined by 

V m ~ Z , h(x)(m) = x(m + x(h)).h -I 

Let us consider the map ~ from B to T 

a ~(x) b <=~ x(a) ~ x(b) for the usual order on Z. 
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This map is a continuous injection the image of which is 

T O . Moreover, we have 

r(h(x)) = h(r(x)) 

if we denote by h the homeomorphism of T induced by the 

riqht translation by h -I. 

The map ~ is not an homeomorph~sm since T O is not a Polish 

space. One can indeed verify that T o does not possess the 

Baire property. Nevertheless, the Borel m-algebras are 

the same since X is Polish. 

So we can consider the standard dynamical systems (X,G) 

or (To,C). 

Theorem If there exists a Borel probability measure P 

on X, invariant by the action of G, then G is amenable. 

Proof. It is sufficient to prove the existence of an 

ameaning filter, to show that q on ~(G) verifies 

(~) q(f) = d~(T) fo 

Using P we obtain a linear map f --~ 9(f from E(G) to 

{ 

~(A) = Jdp(x) f(x(h) 

We have ff 
q(~) ~ q(f) ~ ~(f) = / , d~(r f (T) 

G e 

Since Z is amenable 

f 
q ( ~ )  = ~r(~) = / d~r(~) fO(~') 

JT  (Z) 
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the same since X is Polish.

So we can consider the standard dynamical systems (X,G)

Theorem If there exists a Borel probability measure P

on X, invariant by the action of G, then G is amenable.

Proof. It is sUfficient to prove the existence of an

ameaninq filter, to show that q

q ( f) = j d rr( "t' )

on

f ('C')
C

verifies

Using P we obtain a linear map f f(f) from L(G) to

We have

ep(A) = jdP(X) f(x(A) )

q( f) q( f) 7r( f) = l(G) d1r(t:) f (T)
e

since z is amenable
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To achieve the proof, it remains to show 

~o(O~1 = /dP(x) fe(X(O~)) 
Whence, by using Fubini's theorem 

"(') = /m d~(~) ~ dP(x) fe(x(m~)) 
(Z) 

< dP(x)~ d~(r) £o(x(O~)) 
(z) 

~(f) = ~(T). 

The image of ~ on T(Z) by an x is m on T(G) and 

m(f) = dP(x) d~(r) _:e(er) = m(f). 
(G) 

Remark. It is easy to see that the existence of an 

hyperfinite action of G on a probability space implies 

the existence of P on X. 
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To achieve the proof, it rema ins to show 7)'( f)

= j dP(X) ': (x(O;))e

Ivhencc, by using Fubini' s th(:orem

( d7r(t") i dP(x)
) cr(2)

j dP(x)
X

The image of 1t on 1'(2) by an x is 1t' on T(C) and

1t (f) = j dP(x) j d 11'( 0) rr( f) .
X T(G)

Remark. It is easy to see that the existence of an

hyperfinitc action of G on a probability space implies

the existence of P on X.

References

[D KIEFFER J.C. A qcneralized Shannon-McMillan theorem

for the action of an qroup on a probability

space. Annals of Proba. Vol.3 Nb 6 (1975) 1031-1037.

(2) "!OULIN OLLAGNH:R ,J. et PJNCHON D. Une nouvelle demons-

tra tion du theoremc de I':. F¢lncr. C. R. A. S. 287 (1978)

Riemann integration and the variational

principle for amenable qroups. Preprint 1978.

,J . M. 0. Departement de Math(>matiqucs, Universi te Paris-Nord,

Avenue LT.B .Cloment F 93430

D.P. Laboratoire de Probabilito, Univcrsite P.et M. Curie,

4, place Jussieu F 75230 PARIS CEDEX 05


