Advances in the CM method for elliptic curves

F. Morain

Laboratoire d'Informatique de l'École polytechnique

Fields Institute - Toronto, May 13, 2009

Contents

I. Motivations.
II. Defining the CM methods.
III. Replacing j : class invariants.
IV. Finding the correct twist.
V. Benchmarks.
I. Motivations

Context: use elliptic curves of known cardinality when Schoof's algorithm is inedaquate.

Fundamental theorem: (Hasse, Deuring, ...) if
$4 p=U^{2}-D V^{2}$, there exists an elliptic curve E / \mathbb{F}_{p} of cardinality $m=p+1-U$.

A short list of applications:

- Primality proving: ECPP (Atkin 1986, M.); EAKS (Couveignes/Ezome/Lercier);
- Building cyclic elliptic curves (M. 1991);
- E of given cardinality (but varying p Bröker/Stevenhagen);
- Pairing friendly curves (see Freeman/Scott/Teske taxonomy paper).

ECPP in one slide

function $\operatorname{ECPP}(N)$

- if N is small enough, prove its primality directly.
- repeat
find $D \in \mathscr{D}$ s.t. $4 N=U^{2}-D V^{2}$ (Cornacchia) until $m=N+1-U=c N^{\prime}$ with $c>1$ small, N^{\prime} probable prime;
- use the CM method to build E and find P of order m;
- return ECPP $\left(N^{\prime}\right)$.

Variants differ in the choice of \mathscr{D}; fastest leads to heuristic $\tilde{O}\left((\log N)^{4}\right)$; record still at $20,000 \mathrm{dd}$.

Two slightly different contexts

- ECPP:
- probable prime $N \approx 2^{30000}$;
- N to be proven prime, so more checks are necessary and some tricks cannot be used (Montgomery form only if Bernstein in some cases?);
- numerous D 's available, happy with $3 \mid D$;
- \#E proven by the succesful termination of the algorithm on subsequent numbers;
- (very) few verifications of the certificate?
- Cryptography:
- prime $p \approx 2^{200}$;
- any parametrization of E possible;
- few D 's available, perhaps $D \equiv 5 \bmod 8$, and perhaps no point of order 4 at all...;
- \#E often prime or almost prime;
- many verifications of the certificate?

In both cases, potentially large D's or h 's (see later for large in ECPP; pairing friendly curves have large requirements).

II. Defining the CM methods

Notations: $D=m^{2} D_{K}$ where D_{K} is the discriminant of an imaginary quadratic field $\mathbf{K} ; D$ is the discriminant of $\mathscr{O}=[1, m \omega]$ where $\mathbb{Z}_{K}=[1, \omega] ; h(\mathscr{O})=\# C l(\mathscr{O})$.
Ex. $D=-1^{2} \cdot 4, \mathbf{K}=\mathbb{Q}(i), \mathbb{Z}_{K}=[1, i], h=1, C l=\{(1,0,1)\}$.
Thm. $4 p=U^{2}-D V^{2}$ iff p splits in the ring class field $\mathbf{K}_{D}(m=1$ corresponds to the Hilbert Class Field of \mathbf{K}).

Thm. $\mathbf{K}_{D}=\mathbf{K}(j(m \omega))$ where j is the modular invariant

$$
j(z)=\frac{1}{q}+744+\sum_{n>0} c_{n} q^{n}
$$

with $q=\exp (2 i \pi z)$.

Algebraic theory

Write $\mathfrak{a}=\left[\alpha_{1}, \alpha_{2}\right]$ and $\alpha=\alpha_{1} / \alpha_{2} ;$ define $j(\mathfrak{a})=j(\alpha)$.
Thm. K_{D} / K is Galois, with group $\sim C l(\mathscr{O})$ and therefore $\left[K_{D}: K\right]=h(\mathscr{O})$. Moreover:

$$
j(\mathfrak{a})^{\sigma(\mathfrak{i})}=j\left(\mathfrak{i}^{-1} \mathfrak{a}\right) .
$$

Thm. $H_{D}(X)=\prod_{\mathfrak{i} \in C l(O)}(X-j(\mathfrak{i})) \in \mathbb{Z}[X]$.
Fundamental Thm. $4 p=U^{2}-D V^{2}$ iff $(D / p)=+1$ and $H_{D}(X)$ has $h(\mathscr{O})$ roots modulo p.
Ex. $4 p=U^{2}+4 V^{2}$ if and only if $p=2$ or $p \equiv 1 \bmod 4$.
References: LNM 21, Serre, Cox.

"Computing" K_{D}

Computation of $H_{D}(X)$: write each class of $\operatorname{Cl}(\mathscr{O})$ as $\mathfrak{i}=\left[\alpha_{1}, \alpha_{2}\right]$ and evaluate $j\left(\alpha_{1} / \alpha_{2}\right)$ as a multiprecision number.

Ex. $H_{-3}(X)=X, H_{-4}(X)=X-1728$;

$$
\begin{aligned}
& H_{-23}(X)=X^{3}+3491750 X^{2}-5151296875 X+12771880859375 ; \\
& \qquad H_{-3 \times 5^{2}}(X)=X^{2}+654403829760 X+5209253090426880 \\
& \Rightarrow p=x^{2}+y^{2} \text { iff }(-4 / p)=+1 ; \\
& 4 p=x^{2}+3 \times 5^{2} y^{2} \text { iff }(-75 / p)=+1 \text { and } H_{-3 \times 5^{2}}(X) \text { factors } \\
& \text { modulo } p .
\end{aligned}
$$

More on this later!

The CM method

InPut:

- $p\left(\right.$ or $\left.q=p^{n}\right)$;
- $D<0$ (fundamental or not);
- U and V in \mathbb{Z} s.t. $p=\left(U^{2}-D V^{2}\right) / 4$.

Output:

- E / \mathbb{F}_{p} s.t. $m=\# E\left(\mathbb{F}_{p}\right)=p+1-U ;$
- a proof of correctness.

Rem.

- if U and V are not known, compute them using Cornacchia's algorithm;

> proof of correctness: might involve factoring m and exhibiting generators of E / \mathbb{F}_{p}; soft proof could be P s.t. $[m] P=O_{E}$ but $\left[m^{\prime}\right] P=O_{E}\left(m^{\prime}=p+1+U\right.$ is the cardinality of a twist E^{\prime} of E); in ECPP, proof is recursive.

The CM method

InPUT:

- $p\left(\right.$ or $\left.q=p^{n}\right)$;
- $D<0$ (fundamental or not);
- U and V in \mathbb{Z} s.t. $p=\left(U^{2}-D V^{2}\right) / 4$.

Output:

- E / \mathbb{F}_{p} s.t. $m=\# E\left(\mathbb{F}_{p}\right)=p+1-U$;
- a proof of correctness.

Rem.

- if U and V are not known, compute them using Cornacchia's algorithm;
- proof of correctness: might involve factoring m and exhibiting generators of E / \mathbb{F}_{p}; soft proof could be P s.t. $[m] P=O_{E}$ but $\left[m^{\prime}\right] P=O_{E}$ ($m^{\prime}=p+1+U$ is the cardinality of a twist E^{\prime} of E); in ECPP, proof is recursive.

The CM method (more precise)

INPUT:

- $p\left(\right.$ or $\left.q=p^{n}\right)$;
- $D<0$ (fundamental or not);
- U and V in \mathbb{Z} s.t. $p=\left(U^{2}-D V^{2}\right) / 4$.

Output:

- E having CM by the order of discriminant D; as a consequence E / \mathbb{F}_{p} s.t. $m=\# E\left(\mathbb{F}_{p}\right)=p+1-U$;
- a proof of correctness.

Rem. The proof of correctness could involve volcanoes.

Let's open drawers

function $\mathrm{CM}(p, D, U, V)$

1. Compute $H_{D}[j](X)$.
2. Find a root j_{0} of $H_{D}[j](X) \bmod p$.
3. Find E of invariant j_{0} :

$$
E_{c}: Y^{2}=X^{3}+\frac{3 j_{0}}{1728-j_{0}} c^{2} X+\frac{2 j_{0}}{1728-j_{0}} c^{3}
$$

where c accounts for twists of E.
4. Prove that E has cardinality $m=p+1-U$.

Let's open drawers

function $\mathrm{CM}(p, D, U, V)$

1. Compute $H_{D}[j](X)$.
\Rightarrow three methods for this! all in $O\left(D^{1+\varepsilon}\right)$: complex, p-adic, CRT.
2. Find a root j_{0} of $H_{D}[j](X) \bmod p$.
\Rightarrow use Galois theory + classical tricks from computer algebra
3. Find E of invariant j_{0} :

$$
E_{c}: Y^{2}=X^{3}+\frac{3 j_{0}}{1728-j_{0}} c^{2} X+\frac{2 j_{0}}{1728-j_{0}} c^{3}
$$

where c accounts for twists of E.
\Rightarrow Try to try only one curve (see recent Rubin/Silverberg, cf. part IV.)
4. Prove that E has cardinality $m=p+1-U$.
\Rightarrow Use adequate parametrizations to check $[m] P=O_{E}$, sometimes Edwards/Montgomery curves - see
http://arxiv.org/abs/0904.2243.

III. Replacing j: class invariants

Q. How do we find smaller defining polynomials for K_{D} ?

Two cases:

- construct K_{D};
- build a CM curve (need some relation between f and j).

From $j(\sqrt{-2})=8000$, one solves

$$
(*) j=\frac{(X+16)^{3}}{X}
$$

to get $X=2^{6}$.
Key remark: equation $(*)$ is a modular equation for $X_{0}(2) \Rightarrow$ generalize to $X_{0}(N)$ or $X^{0}(N)$ for any $N>1$.
\Longleftrightarrow replace $j(\alpha)$ by class invariants $f(\alpha)$ for some modular function f.
Rem. The classical Weber functions are $\mathfrak{f}, \mathfrak{f}_{1}, \mathfrak{f}_{2}$ s.t. $-\mathfrak{f}(\alpha)^{24}$, $\mathfrak{f}_{1}(\alpha)^{24}$ and $\mathfrak{f}_{2}(\alpha)^{24}$ are roots of $(*)$.
A) Modular functions for $\Gamma^{0}(N)$

$$
\begin{gathered}
\Gamma^{0}(N)=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \equiv\left(\begin{array}{cc}
* & 0 \\
* & *
\end{array}\right) \bmod N\right\} \\
\psi(N)=\left[\Gamma: \Gamma^{0}(N)\right]=N \prod_{p \mid N}(1+1 / p)
\end{gathered}
$$

Def. f on \mathbb{H}^{*} is a modular function for $\Gamma^{0}(N)$ if and only if

$$
\forall M \in \Gamma^{0}(N), z \in \mathbb{H}^{*},(f \circ M)(z)=f(M z)=f(z)
$$

(+ some technical conditions).
Thm. Let f be a function for $\Gamma^{0}(N), \Gamma / \Gamma^{0}(N)=\left\{\gamma_{v}\right\}_{1 \leq v \leq \psi(N)}$. Put

$$
\Phi[f](X)=\prod_{v=1}^{\psi(N)}\left(X-f \circ \gamma_{v}\right)=\sum_{v=0}^{\psi(N)} R_{v}(J) X^{v}
$$

where $R_{v}(J) \in \mathbb{C}(J)$. Then $\Phi[f](X, J)=0$ is called a modular equation for $\Gamma^{0}(N)$.

Why do class invariants exist?

Thm. If $f=\sum a_{n} q^{n}$ has integer coefficients, $\Phi[f](X, J) \in \mathbb{Z}[X, J]$.
Coro. If $j(\tau)$ is an algebraic integer, so is $f(\tau)$.
\Rightarrow if $f(z) \in K_{D}$ and we know its conjugates, we are done!
Shimura's reciprocity law tells us when $f(z)$ is in \mathbf{K}_{D}.
Use Schertz's simplified formulation that also gives conjugates of $f(z)$.

What is a small invariant?

Def. $\mathscr{H}\left(P=\sum\left(a_{i}+b_{i} \omega\right) X^{i}\right)=\log \left(\max \left\{\left|a_{i}\right|,\left|b_{i}\right|\right\}\right)$.
Prop. (Hindry \& Silverman)

$$
\frac{\mathscr{H}(f(z))}{\mathscr{H}(j(z))}=\frac{\operatorname{deg}_{J}(\Phi[f])}{\operatorname{deg}_{X}(\Phi[f])}(1+o(1))=c(f)(1+o(1)) .
$$

\Rightarrow we have a measure for the size of $f(z)$ w.r.t. $j(z)$.
\Rightarrow favor invariants with small $\operatorname{deg}_{J} \Phi[f]$, e.g., $\operatorname{deg}_{J}=1$ (i.e., $\left.g\left(X^{0}(N)\right)=0\right) ; \operatorname{deg}_{X} \Phi=\psi(N)$.
B) Finding functions on $\Gamma^{0}(N)$: Newman's lemma

Lemma. If $N>1$ and $\left(r_{d}\right)$ is a sequence of integers such that

$$
\sum_{d \mid N} r_{d}=0
$$

$$
\begin{gathered}
\sum_{d \mid N} d r_{d} \equiv 0 \bmod 24, \quad \sum_{d \mid N} \frac{N}{d} \quad r_{d} \equiv 0 \bmod 24 \\
\prod_{d \mid N} d^{r_{d}}=t^{2}
\end{gathered}
$$

with $t \in \mathbb{Q}^{*}$, then the function

$$
g(z)=\prod_{d \mid N} \eta(z / d)^{r_{d}}
$$

is a modular function on $\Gamma^{0}(N)$.

$$
\eta(z)=q^{1 / 24} \prod_{m \geq 1}\left(1-q^{m}\right)
$$

Some studied (sub)families

Enge/Schertz:

$$
\mathfrak{w}_{p_{1}, p_{2}}(z)^{\sigma}=\left(\frac{\eta\left(\frac{z}{p_{1}}\right) \eta\left(\frac{z}{p_{2}}\right)}{\eta\left(\frac{z}{p_{1} p_{2}}\right) \eta(z)}\right)^{\sigma}
$$

where $\sigma=\frac{24}{\operatorname{gcd}\left(24,\left(p_{1}-1\right)\left(p_{2}-1\right)\right)}$.
Generalized Weber functions (Enge+M.):

$$
\mathfrak{w}_{N}(z)^{s}=\left(\frac{\eta(z / N)}{\eta(z)}\right)^{s}
$$

where $t=24 / \operatorname{gcd}(24, N-1), s=2 t$ if t is odd and not a square, $s=t$ otherwise; $N=2$ classical, $\mathfrak{w}_{2}=\mathfrak{f}_{1}, N=3$ by A. Gee.

The genus 0 case

$$
\mathscr{N}_{N}=q^{1 / N}(1+\ldots) \text { and } \operatorname{deg}_{J}=1, c\left(\mathscr{N}_{N}\right)=1 / \psi(N) .
$$

Two cases:

- use generalized Weber for $N-1 \mid 24$:

$$
\begin{gathered}
\Phi\left[\mathfrak{w}_{2}^{24}\right](X, J)=(X+16)^{3}-J X, \\
\Phi\left[\mathfrak{w}_{3}^{12}\right](X, J)=(X+27)(X+3)^{2}-J X, \\
\Phi\left[\mathfrak{w}_{4}^{8}\right](X, J)=\left(X^{2}+16 X+16\right)^{3}-J X(X+16),
\end{gathered}
$$

- Klein, Fricke (with $\eta_{K}=\eta(z / K)$):

N	\mathscr{N}_{N}	$c\left(\mathscr{N}_{N}\right)$
6	$\eta_{6}^{5} \eta_{3}^{-1} \eta_{2} \eta_{1}^{-5}$	$1 / 12$
8	$\eta_{8}^{4} \eta_{4}^{-2} \eta_{2}^{2} \eta_{1}^{-4}$	$1 / 12$
10	$\eta_{10}^{3} \eta_{5}^{-1} \eta_{2} \eta_{1}^{-3}$	$1 / 18$
12	$\eta_{12}^{3} \eta_{6}^{-2} \eta_{4}^{-1} \eta_{3} \eta_{2}^{2} \eta_{1}^{-3}$	$1 / 24$
16	$\eta_{1}^{2} \eta_{8}^{-1} \eta_{2} \eta_{1}^{-2}$	$1 / 24$
18	$\eta_{18}^{2} \eta_{9}^{-1} \eta_{6}^{-1} \eta_{3} \eta_{2} \eta_{1}^{-2}$	$1 / 36$

Generalized Weber functions (Enge + M.)

Thm. If f is a Newman function for $\Gamma^{0}(N)$ and $B^{2} \equiv D \bmod (4 N)$, then $f((-B+\sqrt{D}) / 2)$ is a class invariant. Its conjugates are given by a N-system à la Schertz.

A glimpse at our winter work: find all cases where $\zeta_{24}^{k} \mathfrak{w}_{N}^{e}$ is a class invariant for $e \mid s$. Needs: classification of $N \bmod 12+$ extension of Schertz's results.

Prop. (a) If $N \equiv 5 \bmod 12$ and $3 \nmid D$, then \mathfrak{w}_{N}^{2} is a class invariant.
(b) If $N \equiv 7 \bmod 12$ and $2 \nmid D$, then \mathfrak{w}_{N}^{2} is a class invariant.
(c) If $N \equiv 7 \bmod 12$ and $D \equiv 88 \bmod 112$, then $\zeta_{4} \mathfrak{w}_{N}^{2}$ is a class invariant.

$$
H_{-24}\left[\zeta_{4} \mathfrak{w}_{7}^{2}\right]=X^{2}+(\omega-1) X-2 \omega-5
$$

Generalized Weber functions (2/2)

$N=3$ (compare Gee): use \mathfrak{w}_{3}^{e} for

B	$D \bmod 36$	e
$0: 1$	0,12	12
$0: 1$	9,21	6
$1: 3$	24	4
$2: 3$	$4,16,28$	4
$1: 3$	33	2
$2: 3$	$1,13,25$	2

$N=4$: if $D \equiv 1 \bmod 8$, use $\mathfrak{w}_{4}(c=1 / 48)$.
$N=25:$ for D a square $\bmod 20$, use $\mathfrak{w}_{25}(c=1 / 30)$.
Much more results in our preprint.

Comparing the invariants

f	$c(f)$	deg_{J}
\mathfrak{w}_{ℓ}^{e}	$\frac{e(\ell-1)}{24(\ell+1)}$	$\frac{s(N-1)}{24}$
$\mathfrak{w}_{\ell^{2}}^{e}$	$\frac{e(\ell-1)}{24 \ell}$	$\frac{\ell^{2}-1}{24}$ if $\ell>3$
$\mathfrak{w}_{p_{1} p_{2}}^{e}$	$\frac{e\left(p_{2}-1\right)}{24\left(p_{2}+1\right)}$	$\frac{s\left(p_{2}-1\right)\left(p_{1}-1\right)}{24}$
\mathfrak{w}_{N}^{e}	$\frac{e(N-1+S(N))}{24 \psi(N)}$	$\frac{s(N-1+S(N))}{24}$
$\mathfrak{w}_{\ell, \ell}^{e}$	$\frac{e(\ell-1)^{2}}{12 \ell(\ell+1)}$	$\frac{\sigma(\ell-1)^{2}}{12}$
$\mathfrak{w}_{p_{1}, p_{2}}^{e}$	$\frac{e\left(p_{1}-1\right)\left(p_{2}-1\right)}{12\left(p_{1}+1\right)\left(p_{2}+1\right)}$	$\frac{\sigma\left(p_{1}-1\right)\left(p_{2}-1\right)}{12}$

Rem. $\mathfrak{w}_{\ell^{2}}^{1}$ for prime $\ell>3$ is often better than \mathfrak{w}_{ℓ}^{e}.

What is the smallest invariant?
Extension of Enge + M. of ANTSV:

$$
\begin{aligned}
& \stackrel{?}{96, ?}>{ }_{72,1}^{\mathfrak{w}_{2}}>{ }_{48,1}^{\mathfrak{w}_{4}}>\underset{37,6}{\mathfrak{w}_{2,73}}>{ }_{147 / 4,8}^{\mathfrak{w}_{2,97}}>{ }_{36,1}^{\mathfrak{w}_{9}}>{ }_{36,1}^{t} \\
& ={ }_{36,1}^{\mathscr{A}_{71}}={ }_{36,1}^{\mathfrak{w}_{2}^{2}}=\stackrel{\mathcal{N}_{18}}{36,1}>{ }_{32,6}^{\mathfrak{w}_{16}}>{ }_{32,6}^{\mathfrak{w}_{25}}>{ }_{30,1}>{ }_{28,2}^{\mathfrak{w}_{3,13}}=\begin{array}{c}
\mathfrak{w}_{49} \\
28,2
\end{array} \\
& >\underset{27,12}{\mathfrak{w}_{81}}>\underset{132 / 5,5}{\mathfrak{w}_{112}}>\underset{\substack{\mathfrak{w}_{132} 2}}{26,7}>\underset{51 / 2,12}{\mathfrak{w}_{172}}>{ }_{76 / 3,6}^{\mathfrak{w}_{3,37}}=\underset{76 / 3,15}{\mathfrak{w}_{192}}>\underset{124 / 5,10}{\mathfrak{w}_{3,61}} \\
& >\begin{array}{l}
\mathfrak{w}_{5,7} \\
24,2
\end{array}=\begin{array}{c}
\mathfrak{w}_{2}^{3} \\
24,1
\end{array}=\begin{array}{c}
\mathfrak{w}_{6}^{2} \\
24,6
\end{array}=\begin{array}{c}
\mathfrak{w}_{4}^{2} \\
24,1
\end{array}=\begin{array}{c}
\mathfrak{w}_{3}^{2} \\
24,1
\end{array} \cdots \\
& \cdots>{ }_{3,1}^{\gamma_{2}}>{ }_{2,1}^{\gamma_{3}}>{ }_{1,1}^{j} \\
& j=\gamma_{2}^{3}=\gamma_{3}^{2}+1728 .
\end{aligned}
$$

t : Ramanujan (Konstantinou/Kontogeorgis 08, Enge 08) for $D \equiv 1 \bmod 12$.

Looking for $1 / 96$

Selberg+Abramovich+Bröker/Stevenhagen: for all f for $\Gamma^{0}(N), c(f) \geq 1 / 96$.

Generalized Weber:

$$
c\left(\mathfrak{w}_{N}^{s}\right)=\frac{s}{24} \frac{N-1+S(N)}{\psi(N)} .
$$

Best value so far: $1 / 72$ obtained with $c\left(\mathfrak{w}_{N}\right)=c\left(\mathfrak{w}_{N}^{s}\right)^{1 / s}$ for $N=2, s=24$.

Enge/Schertz:

$$
c\left(\mathfrak{w}_{p_{1}, p_{2}}^{s}\right)=\frac{s}{12} \frac{\left(p_{1}-1\right)\left(p_{2}-1\right)}{\left(p_{1}+1\right)\left(p_{2}+1\right)} .
$$

Rem. $g\left(X_{0}(N)\right) \approx \psi(N) / 12$ and $^{\operatorname{deg}}{ }_{J} \geq g\left(X_{0}(N)\right)+1$, so that $c(f) \approx \frac{1}{12}$.

Looking for 1/96 (cont'd)

For prime $N=\ell$:

$$
\begin{aligned}
& g\left(X_{0}(\ell) / w_{\ell}\right)=\frac{g\left(X_{0}(\ell)\right)+1}{2}-\frac{a(\ell)}{4}, \quad a(\ell)=O(\sqrt{\ell}) \\
& \Rightarrow c(f) \approx 1 / 12, \text { since } \operatorname{deg}_{J} \geq 2\left(g\left(X_{0}^{*}(\ell)+1\right) .\right.
\end{aligned}
$$

Best values for Atkin's minimal functions for $X_{0}^{*}(\ell)$ (for $\ell \leq 2000$):

ℓ	71	131	191
$c(f)$	$1 / 36$	$1 / 33$	$1 / 32$
deg_{J}	2	4	6
g	0	2	3

$\mathscr{A}_{71}=\left(\Theta_{2,1,9}-\Theta_{4,3,5}\right) / \eta \eta_{71}$ (also obtainable by Atkin's laundry method). Usable as soon as $(D / 71) \neq-1$.

Going further: use composite values of N (work in progress).

Using class invariants

procedure BuildCMCuRve (p, D)
0. Compute $H_{D}[u](X)$ and $\Phi[u](X, J)$ (precomputation).

1. Compute a root u_{0} of $H_{D}[u](X) \equiv 0 \bmod p$.
2. Compute the set \mathscr{J} of all roots of $\Phi[u]\left(u_{0}, J\right) \equiv 0 \bmod p$ and find one elliptic curve having j-invariant in \mathscr{J} which has cardinality $p+1-U$.

Rem.

- Most favorable case when $X_{0}(N)$ is of genus 0 .
- Some j can be discarded if we know that $j-1728$ must be a square, or j a cube.
- No need to compute $\Phi\left[\mathfrak{w}_{25}\right]$, use $\Phi\left[\mathfrak{w}_{5}^{6}\right]$ together with resultants.

IV. Finding the correct twist

Pb. Given $p=\left(U^{2}-D V^{2}\right) / 4, j$, find an equation of

$$
E_{c}: Y^{2}=X^{3}+\frac{3 j}{1728-j} c^{2} X+\frac{2 j}{1728-j} c^{3}
$$

s.t. $\# E_{c}\left(\mathbb{F}_{p}\right)=p+1-U$.

The actual Frobenius of the curve is $\pi=(\tilde{U}+\tilde{V} \sqrt{D}) / 2$, and w.l.o.g. $|U|=|\tilde{U}|$, so we need fix the sign.

Why bother? find a point P, check $[m] P=O_{E}$ (or even $[\pi-1] P$ using rational CM formulas to get some speedup) and if not try the twist.

- 1.5 curves tried on average; can be tricky to distinguish E from E^{\prime} (cf. Mestre's algorithm).
- If solving the problem can be done at no cost, do it! And it involves nice mathematics (character sums, etc.).

A short history

- $D=-4, D=-3$: many variants, starting with Gauss (of course!).
- $h=1$: Rajwade et alii, Joux+M., Leprévost + M., Padma+Venkataraman, Ishii, etc.
- Stark (1996): $\operatorname{gcd}(D, 6)=1$, but needs γ_{2} and γ_{3}.
- M. (2007): use small torsion points; e.g., use \mathfrak{w}_{3} to get a 3-torsion point P_{3} and compute action of π on P_{3}.
- Rubin \& Silverberg (2009): all cases for D fundamental, but use costly invariants (j or $\gamma_{3} \sqrt{D}$); ok for small $|D|$'s (precomputations), probably not for large $|D|$'s and on the fly computations.

Rubin/Silverberg: the case $|D| / 4 \equiv 1 \bmod 4$

With $d=|D| / 4$, write

$$
H_{D}[j](X)=f_{1}(X)+\sqrt{d} f_{2}(X)
$$

where $\operatorname{deg}\left(f_{1}\right)=\operatorname{deg}\left(f_{2}\right)=h / 2$. This is possible since $4 \| D$ implies $D=(-4) q_{1} \cdots q_{r}\left(-q_{r+1}\right) \cdots\left(-q_{t}\right)$ and
$\sqrt{d}=\sqrt{-D} / \sqrt{-1} / 2 \in \mathbf{K}_{H}$.
Algorithm: fix $\delta=\sqrt{d} \bmod p$ and proceed with easy formulas (cost \approx one modular exponentiation over \mathbb{F}_{p}).

To make this more efficient:

- replace j with any real invariant (using complex invariants does not seem straightforward);
- factor $H_{D}[u]$ over $\mathbf{K}_{g}^{+}=\mathbb{Q}\left(\sqrt{\left|q_{i}\right|}\right)_{1 \leq i \leq t}$;
- use Galois theory over \mathbf{K}_{g}^{+}.

Rubin/Silverberg: other cases

Solve the problem completely using minimal polynomial of $\sqrt{ \pm D} \gamma_{3}$ (remember that $\gamma_{3}(\alpha)^{2}=j(\alpha)-1728$).

A particular case: in some cases, $\sqrt{D} \mathfrak{w}_{N}^{s / 2}$ is a real class invariant. Then use $w_{3}=\mathfrak{w}_{3}(\alpha)^{6}$ or $w_{7}=\mathfrak{w}_{7}(\alpha)^{2}$, since

$$
\gamma_{3}(\alpha)=\frac{w_{3}^{4}+18 w_{3}^{2}-27}{w_{3}}=\frac{w_{7}^{8}+14 w_{7}^{6}+67 w_{7}^{4}+70 w_{7}^{2}-7}{w_{7}}
$$

see Weber; these are the only equations with \mathfrak{w}_{N} and γ_{3} only. Now rewrite

$$
\sqrt{D} \gamma_{3}(\alpha)=D \frac{\cdots}{\sqrt{D} \mathfrak{w}_{N}^{s / 2}}
$$

Rem. The case $\sqrt{|D|} \gamma_{3}$ seems more difficult.

V. Benchmarks

$$
\begin{aligned}
& N_{1}=2072644824759 \cdot 2^{33333}+5 N_{2}=59056921173 \cdot 2^{34030}+7, \\
& N_{3}=\zeta(-4305) / \zeta(-1), N_{4}=\text { Cyclo }_{23912}(10)
\end{aligned}
$$

N	N_{1}	N_{2}	N_{3}	N_{4}
\#dd	10047	10255	10342	10081
\#steps	921	960	937	917
time (d)	$86+32$	$44+16$	$49+15$	$49+13$
$m \bmod 4$	(376+247)/286	(395+258)/288	(401+230)/288	(401+209)/284
D, h	3997096072\|12080		$\begin{array}{r} 3715931860 \mid 13280 \\ 679224920 \\ 14656 \end{array}$	$\begin{array}{r\|r\|} 339174836 & 14400 \\ 1908601428 & 13920 \\ 3610127752 & 12896 \end{array}$
$\begin{aligned} & \text { new } \\ & \text { inv. } \end{aligned}$	$91 \mathfrak{w}_{3,13}$ $69 \mathfrak{f}_{1}^{2} / \sqrt{2}$ $63 \mathfrak{w}_{3,37}$ $39 \mathfrak{f}(-4 D)$ $38 \mathfrak{w}_{5,7}$ $25 \mathfrak{w}_{3,61}$ $19 \mathfrak{f}^{2} / \sqrt{2}$	$\begin{aligned} & 75 \mathfrak{w}_{3,13} \\ & 81 \mathfrak{w}_{25} \\ & 48 \mathfrak{w}_{49} \\ & 41 \mathfrak{f}^{(-4 D)} \\ & 37 N_{18} \\ & 34 \mathfrak{f}_{1}^{2} / \sqrt{2} \\ & 29 \mathfrak{w}_{3,37} \\ & \hline \end{aligned}$	$\begin{aligned} & 78 \mathfrak{w}_{25} \\ & 66 \mathfrak{w}_{3,13} \\ & 59 N_{18} \\ & 45 \mathfrak{w}_{49} \\ & 40 \mathfrak{f}^{(-4 D)} \\ & 38 \mathfrak{w}_{3,37} \\ & 36 \mathfrak{f}_{1}^{2} / \sqrt{2} \\ & \hline \end{aligned}$	$80 \mathfrak{w}_{25}$ $58 \mathfrak{w}_{3,13}$ $56 \mathfrak{w}_{49}$ $50 N_{18}$ $43 \mathfrak{f}(-4 D)$ $36 \mathfrak{w}_{3,37}$ $25 \mathfrak{w}_{9}$

$D=679224920: \mathscr{N}_{18}+$ Galois needed 8869 s;
$2+2+2+2+2+2+229$ roots $\bmod p_{33480 b}$ took $51097 \mathrm{~s} ;[m] P 300 \mathrm{~s}$.

More statistics

N_{1} : Luhn; N_{2} : Jordan; N_{3} : Broadhurst; N_{4} : Broadhurst2.

what	N_{1}	N_{2}	N_{3}	N_{4}
\# steps	921	960	937	917
\sqrt{D}	25.5	15.5	15.9	14.8
find (D, h)	5.0	4.3	6.0	5.2
Cornacchia	3.2	1.3	2.5	1.8
FKW	9.1	4.4	5.2	5.9
PRP	43.1	25.5	26.6	22.9
H_{D}	0.8	0.6	0.7	0.7
root H_{D}	27.9	14.0	13.0	11.5
Step 1	85.9	50.2	56.4	48.8
Step 2	31.8	16.1	15.2	13.4
Check	0.8	0.5	0.6	0.6

Timings are in cumulated days on some AMD Athlon(tm) 64 Processor $3400+(2.4 \mathrm{GHz})$.

Conclusions

- ECPP vs. crypto-CM: the present talk was biased towards ECPP; different optimizations are claimed for by crypto-CM.
- New invariants are being used in practice. Some more to come (1/96??). Wait for CRT method to be operational for all of these.
- Some unsolved problems in ECPP: compute $h(D)$ for a batch of $D \in \mathscr{D}$; even more faster root finding?
- My programs: in the process of cleaning, new 13.8.7 arriving soon (SAGE?) \longleftrightarrow yet another attempt at having them survive without me (?).

Rem. More references on my web page.

