Advances in the CM method for elliptic curves

F. Morain

Laboratoire d'Informatique de l'École polytechnique

Fields Institute - Toronto, May 13, 2009

Contents

- I. Motivations.
- II. Defining the CM methods.
- III. Replacing *j*: class invariants.
- IV. Finding the correct twist.
- V. Benchmarks.

I. Motivations

Context: use elliptic curves of known cardinality when Schoof's algorithm is inedaquate.

Fundamental theorem: (Hasse, Deuring, ...) if $4p = U^2 - DV^2$, there exists an elliptic curve E/\mathbb{F}_p of cardinality m = p + 1 - U.

A short list of applications:

- Primality proving: ECPP (Atkin 1986, M.); EAKS (Couveignes/Ezome/Lercier);
- ▶ Building cyclic elliptic curves (M. 1991);
- ▶ E of given cardinality (but varying p − Bröker/Stevenhagen);
- Pairing friendly curves (see Freeman/Scott/Teske taxonomy paper).

Rem. For ease of presentation, stick to \mathbb{F}_p with p (large) prime; results generalize to any finite field.

ECPP in one slide

function ECPP(N)

- if *N* is small enough, prove its primality directly.
- repeat

```
find D \in \mathcal{D} s.t. 4N = U^2 - DV^2 (Cornacchia) until m = N + 1 - U = cN' with c > 1 small, N' probable prime;
```

- use the CM method to build E and find P of order m;
- return ECPP(N').

Variants differ in the choice of \mathscr{D} ; fastest leads to heuristic $\tilde{O}((\log N)^4)$; record still at 20,000 dd.

Two slightly different contexts

► ECPP:

- probable prime $N \approx 2^{30000}$;
- N to be proven prime, so more checks are necessary and some tricks cannot be used (Montgomery form only if Bernstein in some cases?);
- ▶ numerous D's available, happy with 3 | D;
- #E proven by the succesful termination of the algorithm on subsequent numbers:
- (very) few verifications of the certificate?

Cryptography:

- prime $p \approx 2^{200}$:
- any parametrization of E possible;
- few D's available, perhaps $D \equiv 5 \mod 8$, and perhaps no point of order 4 at all...;
- ▶ #E often prime or almost prime;
- many verifications of the certificate?

In both cases, potentially large *D*'s or *h*'s (see later for large in ECPP; pairing friendly curves have large requirements).

II. Defining the CM methods

Notations: $D = m^2 D_K$ where D_K is the discriminant of an imaginary quadratic field **K**; D is the discriminant of $\mathscr{O} = [1, m\omega]$ where $\mathbb{Z}_K = [1, \omega]$; $h(\mathscr{O}) = \#Cl(\mathscr{O})$.

Ex.
$$D = -1^2 \cdot 4$$
, $\mathbf{K} = \mathbb{Q}(i)$, $\mathbb{Z}_K = [1, i]$, $h = 1$, $Cl = \{(1, 0, 1)\}$.

Thm. $4p = U^2 - DV^2$ iff p splits in the ring class field \mathbf{K}_D (m = 1 corresponds to the Hilbert Class Field of \mathbf{K}).

Thm. $\mathbf{K}_D = \mathbf{K}(j(m\omega))$ where j is the modular invariant

$$j(z) = \frac{1}{q} + 744 + \sum_{n>0} c_n q^n$$

with $q = \exp(2i\pi z)$.

Algebraic theory

Write $\mathfrak{a} = [\alpha_1, \alpha_2]$ and $\alpha = \alpha_1/\alpha_2$; define $j(\mathfrak{a}) = j(\alpha)$.

Thm. K_D/K is Galois, with group $\sim Cl(\mathcal{O})$ and therefore $[K_D:K]=h(\mathcal{O})$. Moreover:

$$j(\mathfrak{a})^{\sigma(\mathfrak{i})} = j(\mathfrak{i}^{-1}\mathfrak{a}).$$

Thm. $H_D(X) = \prod_{i \in Cl(\mathscr{O})} (X - j(i)) \in \mathbb{Z}[X].$

Fundamental Thm. $4p = U^2 - DV^2$ iff (D/p) = +1 and $H_D(X)$ has $h(\mathcal{O})$ roots modulo p.

Ex. $4p = U^2 + 4V^2$ if and only if p = 2 or $p \equiv 1 \mod 4$.

References: LNM 21, Serre, Cox.

"Computing" K_D

Computation of $H_D(X)$: write each class of $Cl(\mathcal{O})$ as $\mathfrak{i} = [\alpha_1, \alpha_2]$ and evaluate $j(\alpha_1/\alpha_2)$ as a multiprecision number.

Ex.
$$H_{-3}(X) = X$$
, $H_{-4}(X) = X - 1728$; $H_{-23}(X) = X^3 + 3491750X^2 - 5151296875X + 12771880859375$; $H_{-3 \times 5^2}(X) = X^2 + 654403829760X + 5209253090426880$. $\Rightarrow p = x^2 + y^2$ iff $(-4/p) = +1$; $4p = x^2 + 3 \times 5^2 y^2$ iff $(-75/p) = +1$ and $H_{-3 \times 5^2}(X)$ factors modulo p .

More on this later!

The CM method

INPUT:

- $p (or q = p^n);$
- ▶ D < 0 (fundamental or not);</p>
- ▶ U and V in \mathbb{Z} s.t. $p = (U^2 DV^2)/4$.

OUTPUT:

- \triangleright E/\mathbb{F}_p s.t. $m = \#E(\mathbb{F}_p) = p+1-U$;
- a proof of correctness.

Rem.

- if U and V are not known, compute them using Cornacchia's algorithm;
- ▶ proof of correctness: might involve factoring m and exhibiting generators of E/\mathbb{F}_p ; soft proof could be P s.t. $[m]P = O_E$ but $[m']P = O_E$ (m' = p + 1 + U is the cardinality of a twist E' of E); in ECPP, proof is recursive.

The CM method

INPUT:

- $p (or q = p^n);$
- ▶ D < 0 (fundamental or not);</p>
- ▶ U and V in \mathbb{Z} s.t. $p = (U^2 DV^2)/4$.

OUTPUT:

- \triangleright E/\mathbb{F}_p s.t. $m = \#E(\mathbb{F}_p) = p+1-U$;
- a proof of correctness.

Rem.

- if U and V are not known, compute them using Cornacchia's algorithm;
- ▶ proof of correctness: might involve factoring m and exhibiting generators of E/\mathbb{F}_p ; soft proof could be P s.t. $[m]P = O_E$ but $[m']P = O_E$ (m' = p + 1 + U is the cardinality of a twist E' of E); in ECPP, proof is recursive.

The CM method (more precise)

INPUT:

- ightharpoonup p (or $q=p^n$);
- ightharpoonup D < 0 (fundamental or not);
- ▶ U and V in \mathbb{Z} s.t. $p = (U^2 DV^2)/4$.

OUTPUT:

- ▶ *E* having CM by the order of discriminant *D*; as a consequence E/\mathbb{F}_p s.t. $m = \#E(\mathbb{F}_p) = p + 1 U$;
- a proof of correctness.

Rem. The proof of correctness could involve volcanoes.

Let's open drawers

function CM(p, D, U, V)

- 1. Compute $H_D[j](X)$.
- 2. Find a root j_0 of $H_D[j](X) \mod p$.
- 3. Find E of invariant j_0 :

$$E_c: Y^2 = X^3 + \frac{3j_0}{1728 - j_0}c^2X + \frac{2j_0}{1728 - j_0}c^3$$

where c accounts for twists of E.

4. Prove that *E* has cardinality m = p + 1 - U.

Let's open drawers

function CM(p, D, U, V)

- 1. Compute $H_D[j](X)$.
- \Rightarrow three methods for this! all in $O(D^{1+\varepsilon})$: complex, p-adic, CRT.
- 2. Find a root j_0 of $H_D[j](X) \mod p$.
- \Rightarrow use Galois theory + classical tricks from computer algebra
- 3. Find E of invariant j_0 :

$$E_c: Y^2 = X^3 + \frac{3j_0}{1728 - j_0}c^2X + \frac{2j_0}{1728 - j_0}c^3$$

where c accounts for twists of E.

- \Rightarrow Try to try only one curve (see recent Rubin/Silverberg, cf. part IV.)
- 4. Prove that *E* has cardinality m = p + 1 U.
- \Rightarrow Use adequate parametrizations to check $[m]P = O_E$, sometimes Edwards/Montgomery curves see http://arxiv.org/abs/0904.2243.

III. Replacing *j*: class invariants

Q. How do we find smaller defining polynomials for K_D ?

Two cases:

- ► construct *K*_D;
- ▶ build a CM curve (need some relation between *f* and *j*).

From $j(\sqrt{-2}) = 8000$, one solves

(*)
$$j = \frac{(X+16)^3}{X}$$

to get $X = 2^6$.

Key remark: equation (*) is a modular equation for $X_0(2) \Rightarrow$ generalize to $X_0(N)$ or $X^0(N)$ for any N > 1.

 \iff replace $j(\alpha)$ by class invariants $f(\alpha)$ for some modular function f.

Rem. The classical Weber functions are \mathfrak{f} , \mathfrak{f}_1 , \mathfrak{f}_2 s.t. $-\mathfrak{f}(\alpha)^{24}$, $\mathfrak{f}_1(\alpha)^{24}$ and $\mathfrak{f}_2(\alpha)^{24}$ are roots of (*).

A) Modular functions for $\Gamma^0(N)$

$$\Gamma^0(N) = \left\{ \left(\begin{array}{cc} a & b \\ c & d \end{array} \right) \equiv \left(\begin{array}{cc} * & 0 \\ * & * \end{array} \right) \bmod N \right\}$$

$$\psi(N) = \left[\Gamma : \Gamma^0(N) \right] = N \prod_{p \mid N} (1 + 1/p)$$

Def. f on \mathbb{H}^* is a modular function for $\Gamma^0(N)$ if and only if

$$\forall M \in \Gamma^0(N), z \in \mathbb{H}^*, (f \circ M)(z) = f(Mz) = f(z)$$

(+ some technical conditions).

Thm. Let f be a function for $\Gamma^0(N)$, $\Gamma/\Gamma^0(N) = \{\gamma_{\nu}\}_{1 \leq \nu \leq \psi(N)}$. Put

$$\Phi[f](X) = \prod_{\nu=1}^{\psi(N)} (X - f \circ \gamma_{\nu}) = \sum_{\nu=0}^{\psi(N)} R_{\nu}(J) X^{\nu}$$

where $R_{\nu}(J) \in \mathbb{C}(J)$. Then $\Phi[f](X,J) = 0$ is called a modular equation for $\Gamma^0(N)$.

Why do class invariants exist?

Thm. If $f = \sum a_n q^n$ has integer coefficients, $\Phi[f](X,J) \in \mathbb{Z}[X,J]$.

Coro. If $j(\tau)$ is an algebraic integer, so is $f(\tau)$.

 \Rightarrow if $f(z) \in K_D$ and we know its conjugates, we are done!

Shimura's reciprocity law tells us when f(z) is in \mathbf{K}_D .

Use Schertz's simplified formulation that also gives conjugates of f(z).

What is a small invariant?

Def.
$$\mathcal{H}(P = \sum (a_i + b_i \omega) X^i) = \log(\max\{|a_i|, |b_i|\}).$$

Prop. (Hindry & Silverman)

$$\frac{\mathscr{H}(f(z))}{\mathscr{H}(j(z))} = \frac{\deg_J(\Phi[f])}{\deg_X(\Phi[f])}(1+o(1)) = c(f)(1+o(1)).$$

- \Rightarrow we have a measure for the size of f(z) w.r.t. j(z).
- \Rightarrow favor invariants with small $\deg_J \Phi[f]$, e.g., $\deg_J = 1$ (i.e., $g(X^0(N)) = 0$); $\deg_Y \Phi = \psi(N)$.

B) Finding functions on $\Gamma^0(N)$: Newman's lemma

Lemma. If N > 1 and (r_d) is a sequence of integers such that

$$\sum_{d|N} r_d = 0,$$

$$\sum_{d|N} dr_d \equiv 0 \mod 24, \quad \sum_{d|N} \frac{N}{d} \quad r_d \equiv 0 \mod 24,$$

$$\prod_{d|N} d^{r_d} = t^2$$

with $t \in \mathbb{Q}^*$, then the function

$$g(z) = \prod_{d|N} \eta(z/d)^{r_d}$$

is a modular function on $\Gamma^0(N)$.

$$\eta(z) = q^{1/24} \prod_{x \in \mathbb{Z}} (1 - q^m).$$

Some studied (sub)families

Enge/Schertz:

$$\mathfrak{w}_{p_1,p_2}(z)^{\sigma} = \left(rac{\eta\left(rac{z}{p_1}
ight)\eta\left(rac{z}{p_2}
ight)}{\eta\left(rac{z}{p_1p_2}
ight)\eta(z)}
ight)^{\sigma},$$

where $\sigma = \frac{24}{\gcd(24,(p_1-1)(p_2-1))}$.

Generalized Weber functions (Enge+M.):

$$\mathfrak{w}_N(z)^s = \left(\frac{\eta(z/N)}{\eta(z)}\right)^s$$

where $t = 24/\gcd(24, N-1)$, s = 2t if t is odd and not a square, s = t otherwise; N = 2 classical, $w_2 = f_1$, N = 3 by A. Gee.

The genus 0 case

$$\mathcal{N}_N = q^{1/N}(1 + ...)$$
 and $\deg_I = 1$, $c(\mathcal{N}_N) = 1/\psi(N)$.

Two cases:

▶ use generalized Weber for $N-1 \mid 24$:

$$\Phi[\mathfrak{w}_2^{24}](X,J) = (X+16)^3 - JX,$$

$$\Phi[\mathfrak{w}_3^{12}](X,J) = (X+27)(X+3)^2 - JX,$$

$$\Phi[\mathfrak{w}_4^{8}](X,J) = (X^2 + 16X + 16)^3 - JX(X+16),$$

▶ Klein, Fricke (with $\eta_K = \eta(z/K)$):

N	\mathscr{N}_N	$c(\mathcal{N}_N)$
6	$\eta_6^5 \eta_3^{-1} \eta_2 \eta_1^{-5}$	1/12
8	$\eta_8^4 \eta_4^{-2} \eta_2^2 \eta_1^{-4}$	1/12
10	$\mid \eta_{10}^{3} \eta_{5}^{-1} \eta_{2} \eta_{1}^{-3} \mid$	1/18
12	$\mid \eta_{12}^{3} \eta_{6}^{-2} \eta_{4}^{-1} \eta_{3} \eta_{2}^{2} \eta_{1}^{-3} \mid$	1/24
16	$\mid \eta_{16}^2 \eta_8^{-1} \eta_2 \eta_1^{-2} \mid$	1/24
18	$\eta_{18}^2 \eta_9^{-1} \eta_6^{-1} \eta_3 \eta_2 \eta_1^{-2}$	1/36

Generalized Weber functions (Enge + M.)

Thm. If f is a Newman function for $\Gamma^0(N)$ and $B^2 \equiv D \mod (4N)$, then $f((-B+\sqrt{D})/2)$ is a class invariant. Its conjugates are given by a N-system à la Schertz.

A glimpse at our winter work: find all cases where $\zeta_{24}^k \mathfrak{w}_N^e$ is a class invariant for $e \mid s$. Needs: classification of $N \mod 12$ + extension of Schertz's results.

Prop. (a) If $N \equiv 5 \mod 12$ and $3 \nmid D$, then \mathfrak{w}_N^2 is a class invariant.

- (b) If $N \equiv 7 \mod 12$ and $2 \nmid D$, then \mathfrak{w}_N^2 is a class invariant.
- (c) If $N \equiv 7 \mod 12$ and $D \equiv 88 \mod 112$, then $\zeta_4 \mathfrak{w}_N^2$ is a class invariant.

$$H_{-24}[\zeta_4 w_7^2] = X^2 + (\omega - 1)X - 2\omega - 5;$$

Generalized Weber functions (2/2)

N=3 (compare Gee): use \mathfrak{w}_3^e for

В	<i>D</i> mod 36	e
0:1	0,12	12
0:1	9,21	6
1:3	24	4
2:3	4, 16, 28	4
1:3	33	2
2:3	1,13,25	2

$$N = 4$$
: if $D \equiv 1 \mod 8$, use \mathfrak{w}_4 ($c = 1/48$).

$$N = 25$$
: for *D* a square mod 20, use w_{25} ($c = 1/30$).

Much more results in our preprint.

Comparing the invariants

f	<i>c</i> (<i>f</i>)	\deg_J
\mathfrak{w}^e_ℓ	$\frac{e(\ell-1)}{24(\ell+1)}$	$\frac{s(N-1)}{24}$
$\mathfrak{w}^e_{\ell^2}$	$\frac{e(\ell-1)}{24\ell}$	$\left \begin{array}{c} \frac{\ell^2-1}{24} \end{array} \right $ if $\ell > 3$
$\mathfrak{w}^e_{p_1p_2}$	$\frac{e(p_2-1)}{24(p_2+1)}$	$\frac{s(p_2-1)(p_1-1)}{24}$
\mathfrak{w}_N^e	$\frac{e(N-1+S(N))}{24\psi(N)}$	$\frac{s(N-1+S(N))}{24}$
$\mathfrak{w}^e_{\ell,\ell}$	$\frac{e(\ell-1)^2}{12\ell(\ell+1)}$	$\frac{\sigma(\ell-1)^2}{12}$
$\mathfrak{w}^e_{p_1,p_2}$	$\frac{e(p_1-1)(p_2-1)}{12(p_1+1)(p_2+1)}$	$\begin{array}{ c c }\hline \sigma(p_1-1)(p_2-1)\\\hline 12\end{array}$

Rem. $\mathfrak{w}_{\ell^2}^1$ for prime $\ell > 3$ is often better than \mathfrak{w}_ℓ^e .

What is the smallest invariant?

Extension of Enge+M. of ANTSV:

$$j = \gamma_2^3 = \gamma_3^2 + 1728.$$

t: Ramanujan (Konstantinou/Kontogeorgis 08, Enge 08) for $D \equiv 1 \mod 12$.

Looking for 1/96

Selberg+Abramovich+Bröker/Stevenhagen: for all f for $\Gamma^0(N)$, $c(f) \ge 1/96$.

Generalized Weber:

$$c(\mathfrak{w}_N^s) = \frac{s}{24} \frac{N - 1 + S(N)}{\psi(N)}.$$

Best value so far: 1/72 obtained with $c(\mathfrak{w}_N) = c(\mathfrak{w}_N^s)^{1/s}$ for N=2, s=24.

Enge/Schertz:

$$c(\mathfrak{w}_{p_1,p_2}^s) = \frac{s}{12} \frac{(p_1-1)(p_2-1)}{(p_1+1)(p_2+1)}.$$

Rem. $g(X_0(N)) \approx \psi(N)/12$ and $\deg_J \geq g(X_0(N)) + 1$, so that $c(f) \approx \frac{1}{12}$.

Looking for 1/96 (cont'd)

For prime $N = \ell$:

$$g(X_0(\ell)/w_\ell) = \frac{g(X_0(\ell)) + 1}{2} - \frac{a(\ell)}{4}, \quad a(\ell) = O(\sqrt{\ell})$$

$$\Rightarrow c(f) \approx 1/12$$
, since $\deg_J \geq 2(g(X_0^*(\ell) + 1))$.

Best values for Atkin's minimal functions for $X_0^*(\ell)$ (for $\ell \leq 2000$):

ℓ	71	131	191
c(f)	1/36	1/33	1/32
\deg_J	2	4	6
g	0	2	3

$$\mathscr{A}_{71} = (\Theta_{2,1,9} - \Theta_{4,3,5})/\eta \eta_{71}$$
 (also obtainable by Atkin's laundry method). Usable as soon as $(D/71) \neq -1$.

Going further: use composite values of N (work in progress).

Using class invariants

procedure BUILDCMCURVE(p, D)

- 0. Compute $H_D[u](X)$ and $\Phi[u](X,J)$ (precomputation).
- 1. Compute a root u_0 of $H_D[u](X) \equiv 0 \mod p$.
- 2. Compute the set \mathscr{J} of all roots of $\Phi[u](u_0,J)\equiv 0 \bmod p$ and find one elliptic curve having j-invariant in \mathscr{J} which has cardinality p+1-U.

Rem.

- ▶ Most favorable case when $X_0(N)$ is of genus 0.
- Some j can be discarded if we know that j − 1728 must be a square, or j a cube.
- No need to compute $\Phi[\mathfrak{w}_{25}]$, use $\Phi[\mathfrak{w}_5^6]$ together with resultants.

IV. Finding the correct twist

Pb. Given $p = (U^2 - DV^2)/4$, j, find an equation of

$$E_c: Y^2 = X^3 + \frac{3j}{1728 - j}c^2X + \frac{2j}{1728 - j}c^3$$

s.t.
$$\#E_c(\mathbb{F}_p) = p + 1 - U$$
.

The actual Frobenius of the curve is $\pi=(\tilde{U}+\tilde{V}\sqrt{D})/2$, and w.l.o.g. $|U|=|\tilde{U}|$, so we need fix the sign.

Why bother? find a point P, check $[m]P = O_E$ (or even $[\pi - 1]P$ using rational CM formulas to get some speedup) and if not try the twist.

- ▶ 1.5 curves tried on average; can be tricky to distinguish E from E' (cf. Mestre's algorithm).
- ▶ If solving the problem can be done at no cost, do it! And it involves nice mathematics (character sums, etc.).

A short history

- ▶ D = -4, D = -3: many variants, starting with Gauss (of course!).
- ▶ h = 1: Rajwade et alii, Joux+M., Leprévost + M., Padma+Venkataraman, Ishii, etc.
- ▶ **Stark** (1996): gcd(D,6) = 1, but needs γ_2 and γ_3 .
- ▶ **M.** (2007): use small torsion points; e.g., use w_3 to get a 3-torsion point P_3 and compute action of π on P_3 .
- ▶ **Rubin & Silverberg** (2009): all cases for D fundamental, but use costly invariants (j or $\gamma_3\sqrt{D}$); ok for small |D|'s (precomputations), probably not for large |D|'s and on the fly computations.

Rubin/Silverberg: the case $|D|/4 \equiv 1 \mod 4$

With d = |D|/4, write

$$H_D[j](X) = f_1(X) + \sqrt{d} f_2(X)$$

where $\deg(f_1) = \deg(f_2) = h/2$. This is possible since $4 \mid\mid D$ implies $D = (-4)q_1 \cdots q_r (-q_{r+1}) \cdots (-q_t)$ and $\sqrt{d} = \sqrt{-D}/\sqrt{-1/2} \in \mathbf{K}_H$.

Algorithm: fix $\delta = \sqrt{d} \mod p$ and proceed with easy formulas (cost \approx one modular exponentiation over \mathbb{F}_p).

To make this more efficient:

- replace j with any real invariant (using complex invariants does not seem straightforward);
- factor $H_D[u]$ over $\mathbf{K}_g^+ = \mathbb{Q}(\sqrt{|q_i|})_{1 \le i \le t};$
- use Galois theory over K_g⁺.

Rubin/Silverberg: other cases

Solve the problem completely using minimal polynomial of $\sqrt{\pm D}\gamma_3$ (remember that $\gamma_3(\alpha)^2 = j(\alpha) - 1728$).

A particular case: in some cases, $\sqrt{D}\mathfrak{w}_N^{s/2}$ is a real class invariant. Then use $w_3 = \mathfrak{w}_3(\alpha)^6$ or $w_7 = \mathfrak{w}_7(\alpha)^2$, since

$$\gamma_3(\alpha) = \frac{w_3^4 + 18w_3^2 - 27}{w_3} = \frac{w_7^8 + 14w_7^6 + 67w_7^4 + 70w_7^2 - 7}{w_7}$$

see Weber; these are the only equations with \mathfrak{w}_N and γ_3 only. Now rewrite

$$\sqrt{D}\gamma_3(lpha) = D rac{\cdots}{\sqrt{D} \mathfrak{w}_N^{s/2}}.$$

Rem. The case $\sqrt{|D|}\gamma_3$ seems more difficult.

V. Benchmarks

$$\begin{split} N_1 &= 2072644824759 \cdot 2^{33333} + 5 \ N_2 = 59056921173 \cdot 2^{34030} + 7, \\ N_3 &= \zeta(-4305)/\zeta(-1), \ N_4 = Cyclo_{23912}(10) \end{split}$$

N	N_1	N_2	N_3	N_4	
#dd	10047	10255	10342	10081	
#steps	921	960	937	917	
time (d)	86 + 32	44 + 16	49 + 15	49 + 13	
$m \mod 4$	(376+247)/286	(395+258)/288	(401+230)/288	(401+209)/284	
D,h	3997096072 12080	954271591 14272 2657033560 12512 2060139016 12448 1928523316 13840	3715931860 13280 679224920 14656	339174836 14400 1908601428 13920 3610127752 12896	
	91 w _{3,13}	75 $\mathfrak{w}_{3,13}$	78 w ₂₅	$80 \mathfrak{w}_{25}$	
	69 $f_1^2/\sqrt{2}$	$81 \mathfrak{w}_{25}$	66 $w_{3,13}$	58 $w_{3,13}$	
2011	63 $\mathfrak{w}_{3,37}$	$48 \mathfrak{w}_{49}$	59 N ₁₈	56 w ₄₉	
new inv.	39 $f(-4D)$	41 $\mathfrak{f}(-4D)$	45 w_{49}	50 N ₁₈	
IIIV.	38 $w_{5,7}$	$37 N_{18}$	$40 \ \mathfrak{f}(-4D)$	43 $f(-4D)$	
	$25 \mathfrak{w}_{3,61}$	$34 f_1^2/\sqrt{2}$	$38 \mathfrak{w}_{3,37}$	$36 \mathfrak{w}_{3,37}$	
	19 $f^2/\sqrt{2}$	29 $\mathfrak{w}_{3,37}$	$36 f_1^2/\sqrt{2}$	25 w ₉	

D = 679224920: \mathcal{N}_{18} + Galois needed 8869 s; 2+2+2+2+2+229 roots mod p_{33480b} took 51097 s; [m]P 300 s.

More statistics

 N_1 : Luhn; N_2 : Jordan; N_3 : Broadhurst; N_4 : Broadhurst2.

what	N_1	N_2	N_3	N_4
# steps	921	960	937	917
\sqrt{D}	25.5	15.5	15.9	14.8
find (D,h)	5.0	4.3	6.0	5.2
Cornacchia	3.2	1.3	2.5	1.8
FKW	9.1	4.4	5.2	5.9
PRP	43.1	25.5	26.6	22.9
H_D	8.0	0.6	0.7	0.7
root H_D	27.9	14.0	13.0	11.5
Step 1	85.9	50.2	56.4	48.8
Step 2	31.8	16.1	15.2	13.4
Check	0.8	0.5	0.6	0.6

Timings are in cumulated days on some AMD Athlon(tm) 64 Processor 3400+ (2.4 GHz).

Conclusions

- ECPP vs. crypto-CM: the present talk was biased towards ECPP; different optimizations are claimed for by crypto-CM.
- New invariants are being used in practice. Some more to come (1/96??). Wait for CRT method to be operational for all of these.
- ▶ Some unsolved problems in ECPP: compute h(D) for a batch of $D \in \mathcal{D}$; even more faster root finding?
- ▶ **My programs:** in the process of cleaning, new 13.8.7 arriving soon (SAGE?) ← yet another attempt at having them survive without me (?).

Rem. More references on my web page.