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|. Motivations

e Number Theory:
» computing algebraic integrals: AGM, etc.
» classification of curves into isogeny classes (e.g., over a finite
field, two curves have the same cardinality).
> etc.

e Computational Number Theory:
» g=1
> First life (1985-1997): crucial role in point counting in
Schoof-Elkie-Atkin (SEA), Couveignes, Lercier; still needed for p

large; AGM for p small (p-adic methods a la Mestre, Satoh, Kedlaya).

> Second life (1996-): Kohel, Fouquet/M. (cycles and volcanoes);
Couveignes/Henocq, Broker and Stevenhagen (CM curves using
p-adic method).
» g > 2: try to extend these previous successes (e.g., modular
polynomials).
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Motivations (cont'd): cryptologic applications

e g=1(1999-):
speedup for computing [K]P when an “easy” endomorphism is
known (Koblitz; Gallant/Lambert/Vanstone + several followers).
Special purposes: Smart; Brier & Joye.
isogeny graph: (Ei, Ez) € £ iff E; and E; are isogenous
» Galbraith: finding a path between two curves seems difficult;
» Jao/Miller/Venkatesan: the graph is an expander graph;
» Galbraith/Hess/Smart: send DL from a hard curve to a weak one;
> cryptosystems: Teske (hide an easy DLP among harder ones);
Rostovtsev/Stolbunov; etc.
» hash function: Charles/Goren/Lauter use graph of 2-isogenies of
supersingular elliptic curves.
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2:

speedups in exponentiations: Kohel/Smith, Takashima,
Galbraith/Lin/Scott, etc.

g = 3: sending DL on Jac(H) to a weaker one on Jac(Q) (Smith).
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ll. Isogenies in theory

Def. An isogeny is a surjective homomorphism of finite kernel
between two abelian varieties: ¢ : A — A’.

Right away, we will concentrate on jacobians of curves; for simplicity,
g<3

Endomorphism: Jac’ = Jac.
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Thecaseg=1

Thm. If F is a finite subgroup of E(K), then there exists | and E s.t.

| :E—E=E/F, ker(l)=F.

Thm. (dual isogeny) There is a unique { : E — E, ¢ = degl s.t.

(%) fol =[]

= | is a factor of [¢], hence | can provide factors of v,
= key to SEA.

Higher genus

g=2: Jac(H)/F ~ Jac(H’) or E; x E; (cannot be determined by
looking at F only?).

g= 3: Jac(H)/F ~ Jac(H’) or Jac(C) or E; x E; x Eg.

If F has suitable properties, then (*) stands also for some /. Typical
example is ¢ prime and F ~ (Z/(Z)9.
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First examples and illustrations

1. Separable:
Px wk)
k Xay = (7
0x) U YR
where 1) is some division polynomial (i.e., coding the k-torsion).
Generalized to division ideals in higher genus.

2. Complex multiplication: [i](x,y) = (—x,iy) on E : y> = x3 — x. Evel
integer k can be written as k = kg + Ik; where 1 = —1 mod p and
[kol, [ka| ~ /P

= fast way of evaluating [K]P.

3. Inseparable: ¢(x,y) = (X°,y?), K = Fp.

In the sequel: only separable isogenies.



The classical case: isogenies for curves over C Examples

Ex. E: Y2 =X3+DbX, F =((0,0)); E: Y2 =X — 4bX,
77 X+bx x—b
y “’; J —F II(X,y)F—) X2 ) X2 .
R X2 —4Db
I(X)_ X )
- x* — 2x%b + b?
_ o2y X XD b
Lol =272] = X2+ D)

Later on: how we can effectively compute such formulas.
If E=C/L and E' = C/L’ and there exists an a' s.t. al’ C L, then E

and E’ are isogenous. A typical isogeny pair: E = C/(w1/¢,w,) is (-isogenous to
E = C/(w1,w2). Take as finite subgroup:

Modular polynomial: there exists a bivariate polynomial
dm(X,Y) € Z[X, Y] such that if L/L" is cyclic of index mthen

F = (02} {(o(rn/0), 30/ ren/0) 1< < 01
Onli(L)I(L) = Onli(E).I(E)) = 0.

[remember that Weierstrass p parametrizes E.]
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Complex multiplication Two strategies for building isogenies

E = C/L(1, 7) with quadratic 7 in some K = Q(+/—D).
Starting from a kernel:

For a an integer in K, Weierstrass g gives: e given Jac(C) and F, find the module(s) of Jac(C’) = Jac(C)/F,
and then C’ [this could be non-trivial];
p(az) = N(e(2) e compute I.
D(p(2))
with deg(N) = deg(D) + 1 = Norm(«). Using modular polynomials:  try to mimic the classical case of

o find the roots {j’} of ®,(X,j(E)) = 0;
e for eachj’, find E’ of invariant j’;
W) = (X2+(4—|—w)x—|— 21w-|—7) (—1+w) e compute |.

4x+16+ 4w

Take D=7andE: Y2 =X3-35X - 98, w = (—1+4+/-7)/2

En route: examine each of these, starting from the (easy) case of

CM generalizes to other genera: theory ok, computations doable in g=1
genus 2.
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I1l. Computing modular polynomials
A)wheng=1

Traditionnal modular polynomial: constructed via lattices and
curves over C (plus modular forms and functions). Remember that

. 1
(@) ==+74+> o
q n>1

Then ] (X,Y) is such that ®] (j(q),j(q‘)) vanishes identically.
This polynomial has a lot of properties: symmetrical Z[X, Y], degree
in X and Y is ¢ + 1 (hence (¢ + 1)? coefficients), etc. and moreover
Thm. [P. Cohen] the height of ®] (X, Y) is O((¢ + 1) log¥¢).
— total size is O(¢2).
Example:

®3(X, ¥) = X%+ X% (=¥ + 1488 — 162000) + X (1488 Y + 40773375 Y + 8748000000)

+Y3 — 162000 Y2 + 8748000000 Y — 157464000000000.
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Choosing another modular equation

Why? Always good to have the smallest polynomial so as not to fill
the disks too rapidly...

Key point: any function on I'g(¢) (or 'o(¢)/{we)) will do. In particula
if

f@) =o'+
then there will exist a polynomial ®,[f|(X,Y) s.t.

®,[f](i(a),f(a)) = 0.

This polynomial will have (v + 1)(¢ + 1) coefficients, and height
O(vlog ), still in O(¢3).

Choosing f

Atkin:
e canonical choice f(q) using some power of 1(q)/n(q‘) where

n(a) = g/*]5,(1-d"). Eg.
®S(J,F) = F* + 48F? + 768F — JF -+ 4096.

o adifficult method (the laundry method) for finding (conjecturally)
the f with smallest v (that can rewritten as #-functions with
characters).

Muller: for (small) integer r, use
T (mme)

e
where T, is the Hecke operator

13 T+ k
(T ) (r) = f(r7) + FZf < ) .

r
k=0

Alternatively: one may use some linear algebra on functions
obtained via Hecke operators.
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Computing ®,[f] given f

o Atkin (analysis by Elkies): use g-expansion of j and f with O(v
terms, compute power sums of roots of ®,[f], write them as
polynomials in J and go back to coefficients of ®,[f](X,J) via
Newton’s formulas; use CRT on small primes. O(/*M(p)); usec
for ¢ < 1000 fifteen years ago.

e Charles+Lauter (2005): compute ®] modulo p using
supersingular invariants mod p, Mestre méthode des graphes,
torsion points defined over Fo.) and interpolation. O(Z*M(p))

 Enge (2004); Dupont (2004): _use complex floating point
evaluation and interpolation. O(¢3)



Write ,
OF(X,J) = X4 ey ()X
u=0

where ¢, (J) € Z[J], deg(cy(J)) < ¢+ 1. All computations are done
using precision H = O(¢log¥).

1. for ¢ + 1 values of z do:

1.1 Compute floating point approximations to the ¢ + 1 roots f,(z)
of &,[f](X,j(z)) to precision H;

1.2 Build [TZ3(X — fi(2)) = XH + 0o cu(i(z))X%; O(M(¢) log £)
ops.

2. Perform ¢ + 1 interpolations for the c,’s: O((¢ + 1)M(¢)log¢) ops.

All 1.2 + 2 has cost O(/M(¢)(log /)M(H)) = O(¢3).

171

Examples

Data for T, (nn¢)/nme (courtesy Enge)

l r H deg(J) | eval(s) | interp(s) | tot (d) | Mb gz
3011 | 5| 7560 200 368
3079 | 97 | 9018 254 7790 640 23 547
3527 | 13| 98%4 268 799 1440 3 746
3517 | 97 | 10746 290 | 12400 1110 42 850
4003 | 13 | 11408 308 1130 2320 41 1127
5009 | 5| 13349 334 880 3110 3| 1819
6029 | 5| 16418 402 | 1550 6370 7| 3251
7001 | 5| 19473 466 2440 11700 13| 5182
8009 | 5| 22515 534 | 3500 20000 22| 7905
9029 | 5| 25507 602 5030 33100 35| 11460

10079 | 5| 28825 672 7690 56300 61 | 16152

An algebraic alternative: Charlap/Coley/Robbins
Over some K, write

)= [T X=p((ror+s02)/0)).

1<r,s</-1

The factor we build is:

and all its coefficients are in K[o] where o = ), p(rwy/?).

KX/ (4e(x))
| (-1
KX/ (Ms(x))
| l+1
KX

If o is rational over K, then D(x) will have rational coefficients.
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CCR (cont'd)

Another modular equation: M, (X) = ®4(X,j(E)).

It has the same properties as the traditional one (e.g., factorization
patterns) and can be used as is in SEA.

To find A and B, we need two more polynomials + some tedious
matching of roots.

The first values are:
Us(X) = X* 4+ 2AX? 4 4BX — A?/3,
V3(X) = X* + 84AX3 4 246A%X? - (—63756A% — 432000B%)X
+576081A% + 3888000B°A,
W3(X) = X* + 732BX° + (17153487 + 25088A°%)X?
+(11009548B° 4 1630720BA%)X — 297493504/27A°
—437245479B* — 139150592B2A%,

Us(X) = X8 + 20AX* + 160BX® — 80A2X? — 128ABX — 80B?.



B) Modular polynomials when g = 2 C) Modular polynomials when g =3

e Gaudry + Schost: the algebraic alternative is generic (=)
» total degree isd = (¢* — 1)/(¢ — 1);
» number of monomials is O(¢2);
» can do ¢ = 3: 50k but a lot of computing time (weblink still active);
» use its factorization patterns a la Atkin to speedup cardinality

__ (2
computations. Gaudry + Schost = d = (/9 —1)/(¢ — 1).

And then: ??2??7?
e The classical modular approach:
» Poincaré — Siegel (dim 2g);
» replace j by (j1,]2,j3) = triplet of modular polynomials,
coefficients are rational fractions in j;’s;
» Dupont (experimental conjectures proven more recently by
Broker+Lauter): stuck at £ = 2 with 26.8 Mbgz (just the beginning
of £ = 3); uses evaluation/interpolation again.
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I\V. Computing the isogeny How does an isogeny look like?

Extending Vélu, Dewaghe (for E : Y2 = X3 + AX 4 B):

A) the case g = 1. Vélu's formulas D(x) = J] (x—xQ) =x""—ox"2+

QeF*

Vélu suggests to use N _ )
Fundamental proposition.  The isogeny | can be written as

Xip) =X + Y (Xprq — Xo) N o (N
) = <D()y<D()> )
— —ix—0— (3C+A) )

QeF~
D’(x (x)
(%) D(x) ( X)

= /X — 0—2\/x3+Ax+B(\/x3

and derives equations for E and | in terms of symmetric functions in
the xg, the abscissas of points in F. (Plus more properties, like the N(x
isogeny is strict.)

=
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Elkies92/98

1. Compute the h;’s of

N(X) hi
b 2

in O(¢2) operations using

(3 + A) ('[\)'Eg)/u(xﬂAer B) (B'Eg)ﬁ :3(3‘&)’3)1/’&.

2. deduce power sums p; of D(x) in O(¢) operations using also A and
B;

3. use fast Newton in O(M(¢)) to get D(X).

= very fast for small ¢'s.
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Bostan/M./Salvy/Schost
Prop. O(M(¢)) method to get the h’s given A, B, o.

Some ideas: there exists a series (x) s.t.
N(X) 1

" s(E)

S(x) = x+ 1_0 X° + Bl4Bx7+O(x9) e x4+ K [[¥]]

is such that

(BX® 4+ AX* + 1) S'(x)? = 1+ AS(x)* + BS(x)°.

Use fast algorithm for solving this differential equation.

Rem. See Math. Comp. paper that includes survey of known
methods for isogeny computations.

The case of finite fields of small characteristic

e Couveignes: formal groups; Artin-Schreier towers; time O(¢?)
but bad dependancy on p (see on-going work of L. De Feo).

e Lercier/Joux (2006): medium p using p-adic lifting.

e Lercier/Sirvent (2008): small p using p-adic lifting + BMSS =-
complexity of O(M(¢)) in all cases.
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B) The case g =2

Probably not complete list:

e Gaudry+Schost: Jac(C) — E; x E; for a (2, 2)-isogeny of kerne
7./27 x 7./ 2.

e { =2 (AGM): Richelot, Humbert.

e (> 3: Dolgachev/Lehavi; general result for F = (Z/(Z)?;
completely explicit for £ = 3; more work needed for ¢/ > 3. Som
hope?



C) And for g = 3?

Again, lack of general formulas:

e ( =2 (AGM): Donagi/Livné (+ negative results for g > 3); explicit
methods by Lehavi + Ritzenthaler.

e Smith (Eurocrypt 2008):

» ¢ :Jac(H) — Jac(C) where H is hyperelliptic and C smooth plane
quartic;

» intricate construction but relatively simple formulas in the end:
uses Recilla’s trigonal construction + theorem of Donagi and
Livné;

» works for 18.57% of smooth plane quartics;

» nice crypto application (DL in Jac(C) easier than in Jac(H)).
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V. Conclusions

e g = 1. morally solved.

e g> 1

| 4

>

| 4

scattered results;

curves are not so frequent and/or easy in higher genus;
objects are exponentially big (moduli space of hec has dim
g(g + 1)/2): even with sophisticated computer algebra
techniques, this sounds difficult.




