
A survey on algorithms for computing
isogenies on low genus curves

F. Morain

Laboratoire d’Informatique de l’École polytechnique

POLYTECHNIQUEECOLE CNRS

ANTS8, May 19th, 2008

1/1

Contents

I. Motivations.

II. Isogenies in theory.

III. Computing modular polynomials.

IV. Computing the isogeny.

V. Conclusions.

Acknowledgments: B. Smith.

I. Motivations

• Number Theory:
◮ computing algebraic integrals: AGM, etc.
◮ classification of curves into isogeny classes (e.g., over a finite

field, two curves have the same cardinality).
◮ etc.

• Computational Number Theory:
◮ g = 1:

◮ First life (1985–1997): crucial role in point counting in
Schoof-Elkie-Atkin (SEA), Couveignes, Lercier; still needed for p
large; AGM for p small (p-adic methods à la Mestre, Satoh, Kedlaya).

◮ Second life (1996–): Kohel, Fouquet/M. (cycles and volcanoes);
Couveignes/Henocq, Bröker and Stevenhagen (CM curves using
p-adic method).

◮ g ≥ 2: try to extend these previous successes (e.g., modular
polynomials).

3/1

Motivations (cont’d): cryptologic applications

• g = 1 (1999–):
◮ speedup for computing [k]P when an “easy” endomorphism is

known (Koblitz; Gallant/Lambert/Vanstone + several followers).
◮ Special purposes: Smart; Brier & Joye.
◮ isogeny graph: (E1, E2) ∈ E iff E1 and E2 are isogenous

◮ Galbraith: finding a path between two curves seems difficult;
◮ Jao/Miller/Venkatesan: the graph is an expander graph;
◮ Galbraith/Hess/Smart: send DL from a hard curve to a weak one;
◮ cryptosystems: Teske (hide an easy DLP among harder ones);

Rostovtsev/Stolbunov; etc.
◮ hash function: Charles/Goren/Lauter use graph of 2-isogenies of

supersingular elliptic curves.

• g ≥ 2:
◮ speedups in exponentiations: Kohel/Smith, Takashima,

Galbraith/Lin/Scott, etc.
◮ g = 3: sending DL on Jac(H) to a weaker one on Jac(Q) (Smith).



II. Isogenies in theory

Def. An isogeny is a surjective homomorphism of finite kernel
between two abelian varieties: ϕ : A → A′.

Right away, we will concentrate on jacobians of curves; for simplicity,
g ≤ 3.

Endomorphism: Jac′ = Jac.

5/1

The case g = 1

Thm. If F is a finite subgroup of E(K), then there exists I and Ẽ s.t.

I : E → Ẽ = E/F, ker(I) = F.

Thm. (dual isogeny) There is a unique Î : Ẽ → E, ℓ = degI s.t.

(∗) Î ◦ I = [ℓ]

E -I
Ẽ

E
?
Î

@
@

@@R
[ℓ]

⇒ I is a factor of [ℓ], hence I can provide factors of ψℓ

⇒ key to SEA.

Higher genus

g = 2: Jac(H)/F ∼ Jac(H′) or E1 × E2 (cannot be determined by
looking at F only?).

g = 3: Jac(H)/F ∼ Jac(H′) or Jac(C) or E1 × E2 × E3.

If F has suitable properties, then (*) stands also for some ℓ. Typical
example is ℓ prime and F ∼ (Z/ℓZ)g.

7/1

First examples and illustrations

1. Separable:

[k](x, y) =

(

φk

ψ2
k

,
ωk

ψ3
k

)

where ψk is some division polynomial (i.e., coding the k-torsion).
Generalized to division ideals in higher genus.

2. Complex multiplication: [i](x, y) = (−x, iy) on E : y2 = x3 − x. Every
integer k can be written as k = k0 + Ik1 where I2 ≡ −1 mod p and
|k0|, |k1| ≈

√
p

⇒ fast way of evaluating [k]P.

3. Inseparable: ϕ(x, y) = (xp, yp), K = Fp.

In the sequel: only separable isogenies.



The classical case: isogenies for curves over C

O
ω2

ω1

If E = C/L and E′ = C/L′ and there exists an α s.t. αL′ ⊂ L, then E
and E′ are isogenous.

Modular polynomial: there exists a bivariate polynomial
Φm(X,Y) ∈ Z[X,Y] such that if L/L′ is cyclic of index m then

Φm(j(L), j(L′)) = Φm(j(E), j(E′)) = 0.

9/1

Examples
Ex. E : Y2 = X3 + bX, F = 〈(0, 0)〉; Ẽ : Y2 = X3 − 4bX,

I : (x, y) 7→
(

x3 + bx
x2

, y
x2 − b

x2

)

.

Î(x) =
x2 − 4 b

x
,

Î ◦ I = 22[2] =
x4 − 2 x2b + b2

x (x2 + b)
.

Later on: how we can effectively compute such formulas.

A typical isogeny pair: Ẽ = C/(ω1/ℓ, ω2) is ℓ-isogenous to
E = C/(ω1, ω2). Take as finite subgroup:

F = {OE} ∪
{

(℘(rω1/ℓ),
1
2
℘′(rω1/ℓ)), 1 ≤ r ≤ ℓ− 1

}

.

[remember that Weierstrass ℘ parametrizes E.]

Complex multiplication

E = C/L(1, τ) with quadratic τ in some K = Q(
√
−D).

For α an integer in K, Weierstrass ℘ gives:

℘(αz) =
N(℘(z))
D(℘(z))

with deg(N) = deg(D) + 1 = Norm(α).

Take D = 7 and E : Y2 = X3 − 35X − 98, ω = (−1 +
√
−7)/2:

[ω](x) =

(

x2 + (4 + ω) x + 21ω + 7
)

(−1 + ω)

4 x + 16 + 4ω
.

CM generalizes to other genera: theory ok, computations doable in
genus 2.

11/1

Two strategies for building isogenies

Starting from a kernel:
• given Jac(C) and F, find the module(s) of Jac(C′) = Jac(C)/F,

and then C′ [this could be non-trivial];

• compute I.

Using modular polynomials: try to mimic the classical case of

• find the roots {j′} of Φℓ(X, j(E)) = 0;

• for each j′, find E′ of invariant j′;

• compute I.

En route: examine each of these, starting from the (easy) case of
g = 1.



III. Computing modular polynomials
A) when g = 1

Traditionnal modular polynomial: constructed via lattices and
curves over C (plus modular forms and functions). Remember that

j(q) =
1
q

+ 744 +
∑

n≥1

cnqn.

Then ΦT
ℓ (X,Y) is such that ΦT

ℓ (j(q), j(qℓ)) vanishes identically.
This polynomial has a lot of properties: symmetrical Z[X,Y], degree
in X and Y is ℓ+ 1 (hence (ℓ+ 1)2 coefficients), etc. and moreover

Thm. [P. Cohen] the height of ΦT
ℓ (X,Y) is O((ℓ+ 1) log ℓ).

⇒ total size is Õ(ℓ3).

Example:

Φ
T
2 (X, Y) = X3

+ X2
“

−Y2
+ 1488 Y − 162000

”

+ X
“

1488 Y2
+ 40773375 Y + 8748000000

”

+Y3
− 162000 Y2

+ 8748000000 Y − 157464000000000.

13/1

Choosing another modular equation

Why? Always good to have the smallest polynomial so as not to fill
the disks too rapidly...

Key point: any function on Γ0(ℓ) (or Γ0(ℓ)/〈wℓ〉) will do. In particular
if

f (q) = q−v + · · ·
then there will exist a polynomial Φℓ[f ](X,Y) s.t.

Φℓ[f ](j(q), f (q)) ≡ 0.

This polynomial will have (v + 1)(ℓ+ 1) coefficients, and height
O(v log ℓ), still in Õ(ℓ3).

Choosing f
Atkin:

• canonical choice f (q) using some power of η(q)/η(qℓ) where
η(q) = q1/24∏

n≥1(1 − qn). E.g.

Φc
2(J,F) = F3 + 48F2 + 768F − JF + 4096.

• a difficult method (the laundry method) for finding (conjecturally)
the f with smallest v (that can rewritten as θ-functions with
characters).

Müller: for (small) integer r, use

Tr(ηηℓ)

ηηℓ

where Tr is the Hecke operator

(Tr|f )(τ) = f (rτ) +
1
r

r−1
∑

k=0

f

(

τ + k
r

)

.

Alternatively: one may use some linear algebra on functions
obtained via Hecke operators.

15/1

Computing Φℓ[f ] given f

• Atkin (analysis by Elkies): use q-expansion of j and f with O(vℓ
terms, compute power sums of roots of Φℓ[f ], write them as
polynomials in J and go back to coefficients of Φℓ[f ](X, J) via
Newton’s formulas; use CRT on small primes. Õ(ℓ3M(p)); used
for ℓ ≤ 1000 fifteen years ago.

• Charles+Lauter (2005): compute ΦT
ℓ modulo p using

supersingular invariants mod p, Mestre méthode des graphes,
torsion points defined over FpO(ℓ) and interpolation. Õ(ℓ4M(p))

• Enge (2004); Dupont (2004): use complex floating point
evaluation and interpolation. Õ(ℓ3)



Write

ΦT
ℓ (X, J) = Xℓ+1 +

ℓ
∑

u=0

cu(J)Xu

where cu(J) ∈ Z[J], deg(cu(J)) ≤ ℓ+ 1. All computations are done
using precision H = O(ℓ log ℓ).

1. for ℓ+ 1 values of zi do :

1.1 Compute floating point approximations to the ℓ+ 1 roots fr(zi)
of Φℓ[f ](X, j(zi)) to precision H;

1.2 Build
∏ℓ+1

r=1(X − fr(zi)) = Xℓ+1 +
∑ℓ

u=0 cu(j(zi))Xu; O(M(ℓ) log ℓ)
ops.

2. Perform ℓ+ 1 interpolations for the cu’s: O((ℓ+ 1)M(ℓ) log ℓ) ops.

All 1.2 + 2 has cost O(ℓM(ℓ)(log ℓ)M(H)) = Õ(ℓ3).

17/1

Examples

Data for Tr(ηηℓ)/ηηℓ (courtesy Enge)

ℓ r H deg(J) eval(s) interp(s) tot (d) Mb gz
3011 5 7560 200 368
3079 97 9018 254 7790 640 23 547
3527 13 9894 268 799 1440 3 746
3517 97 10746 290 12400 1110 42 850
4003 13 11408 308 1130 2320 4 1127
5009 5 13349 334 880 3110 3 1819
6029 5 16418 402 1550 6370 7 3251
7001 5 19473 466 2440 11700 13 5182
8009 5 22515 534 3500 20000 22 7905
9029 5 25507 602 5030 33100 35 11460

10079 5 28825 672 7690 56300 61 16152

An algebraic alternative: Charlap/Coley/Robbins

Over some K, write

ψℓ(X) =
∏

1≤r,s≤ℓ−1

(X − ℘((rω1 + sω2)/ℓ)).

The factor we build is:

D(x) =
∏

1≤r≤ℓ−1

(X − ℘(rω1/ℓ))

and all its coefficients are in K[σ] where σ =
∑

r ℘(rω1/ℓ).

K[x]/(ψℓ(x))
| ℓ− 1

K[x]/(Mσ(x))
| ℓ+ 1

K[x]

If σ is rational over K, then D(x) will have rational coefficients.

19/1

CCR (cont’d)
Another modular equation: Mσ(x) = Φℓ(x, j(E)).
It has the same properties as the traditional one (e.g., factorization
patterns) and can be used as is in SEA.
To find Ã and B̃, we need two more polynomials + some tedious
matching of roots.

The first values are:

U3(X) = X4 + 2AX2 + 4BX − A2/3,

V3(X) = X4 + 84AX3 + 246A2X2 + (−63756A3 − 432000B2)X

+576081A4 + 3888000B2A,

W3(X) = X4 + 732BX3 + (171534B2 + 25088A3)X2

+(11009548B3 + 1630720BA3)X − 297493504/27A6

−437245479B4 − 139150592B2A3,

U5(X) = X6 + 20AX4 + 160BX3 − 80A2X2 − 128ABX − 80B2.



B) Modular polynomials when g = 2

• Gaudry + Schost: the algebraic alternative is generic (Ξℓ)
◮ total degree is d = (ℓ4 − 1)/(ℓ − 1);
◮ number of monomials is O(ℓ12);
◮ can do ℓ = 3: 50k but a lot of computing time (weblink still active);
◮ use its factorization patterns à la Atkin to speedup cardinality

computations.

• The classical modular approach:
◮ Poincaré → Siegel (dim 2g);
◮ replace j by (j1, j2, j3) ⇒ triplet of modular polynomials,

coefficients are rational fractions in ji’s;
◮ Dupont (experimental conjectures proven more recently by

Bröker+Lauter): stuck at ℓ = 2 with 26.8 Mbgz (just the beginning
of ℓ = 3); uses evaluation/interpolation again.

21/1

C) Modular polynomials when g = 3

Gaudry + Schost ⇒ d = (ℓ2g − 1)/(ℓ− 1).

And then: ?????

IV. Computing the isogeny

A) the case g = 1: Vélu’s formulas

Vélu suggests to use

xI(P) = xP +
∑

Q∈F∗

(xP+Q − xQ)

and derives equations for Ẽ and I in terms of symmetric functions in
the xQ, the abscissas of points in F. (Plus more properties, like the
isogeny is strict.)

23/1

How does an isogeny look like?

Extending Vélu, Dewaghe (for E : Y2 = X3 + AX + B):

D(x) =
∏

Q∈F∗

(x − xQ) = xℓ−1 − σxℓ−2 + · · · .

Fundamental proposition. The isogeny I can be written as

I(x, y) =

(

N(x)
D(x)

, y

(

N(x)
D(x)

)′
)

,

N(x)
D(x)

= ℓx − σ − (3x2 + A)
D′(x)
D(x)

− 2(x3 + Ax + B)

(

D′(x)
D(x)

)′

= ℓx − σ − 2
√

x3 + Ax + B

(

√

x3 + Ax + B
D′(x)
D(x)

)′

.



Elkies92/98

1. Compute the hi’s of

N(x)
D(x)

= x +
∑

i≥1

hi

xi

in O(ℓ2) operations using

(3x2 + A)

(

N(x)
D(x)

)′

+ 2(x3 + Ax + B)

(

N(x)
D(x)

)′′

= 3

(

N(x)
D(x)

)2

+ Ã.

2. deduce power sums pi of D(x) in O(ℓ) operations using also Ã and
B̃;

3. use fast Newton in O(M(ℓ)) to get D(x).

⇒ very fast for small ℓ’s.

25/1

Bostan/M./Salvy/Schost
Prop. O(M(ℓ)) method to get the hi’s given Ã, B̃, σ.

Some ideas: there exists a series S(x) s.t.

N(x)
D(x)

=
1

S
(

1√
x

)2 .

S(x) = x +
Ã − A

10
x5 +

B̃ − B
14

x7 + O(x9) ∈ x + x3K[[x2]]

is such that

(Bx6 + Ax4 + 1) S ′(x)2 = 1 + Ã S(x)4 + B̃ S(x)6.

Use fast algorithm for solving this differential equation.

Rem. See Math. Comp. paper that includes survey of known
methods for isogeny computations.

The case of finite fields of small characteristic

• Couveignes: formal groups; Artin-Schreier towers; time Õ(ℓ2)
but bad dependancy on p (see on-going work of L. De Feo).

• Lercier/Joux (2006): medium p using p-adic lifting.

• Lercier/Sirvent (2008): small p using p-adic lifting + BMSS ⇒
complexity of O(M(ℓ)) in all cases.

27/1

B) The case g = 2

Probably not complete list:

• Gaudry+Schost: Jac(C) → E1 × E2 for a (2, 2)-isogeny of kernel
Z/2Z × Z/2Z.

• ℓ = 2 (AGM): Richelot, Humbert.

• ℓ ≥ 3: Dolgachev/Lehavi; general result for F = (Z/ℓZ)2;
completely explicit for ℓ = 3; more work needed for ℓ > 3. Some
hope?



C) And for g = 3?

Again, lack of general formulas:

• ℓ = 2 (AGM): Donagi/Livné (+ negative results for g > 3); explicit
methods by Lehavi + Ritzenthaler.

• Smith (Eurocrypt 2008):
◮ ϕ : Jac(H) → Jac(C) where H is hyperelliptic and C smooth plane

quartic;

◮ intricate construction but relatively simple formulas in the end:
uses Recilla’s trigonal construction + theorem of Donagi and
Livné;

◮ works for 18.57% of smooth plane quartics;

◮ nice crypto application (DL in Jac(C) easier than in Jac(H)).

29/1

V. Conclusions

• g = 1: morally solved.

• g > 1:
◮ scattered results;
◮ curves are not so frequent and/or easy in higher genus;
◮ objects are exponentially big (moduli space of hec has dim

g(g + 1)/2): even with sophisticated computer algebra
techniques, this sounds difficult.


