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Abstract

We give a new proof of the validity of Cornacchia’s algorithm for finding the primitive solutions (u, v)
of the diophantine equation u2 + dv2 = m, where d and m are two coprime integers. This proof relies on
diophantine approximation and an algorithmic solution of Thue’s problem.

1 Introduction

The first step in the Elliptic Curve Primality Proving algorithm [1] consists of finding the representation
of a prime p as a norm in an imaginary quadratic field. In other words, we want to solve the diophantine
equation

4p = x2 + dy2. (1)

The most straightforward approach is to use reduction of quadratic forms [9] or lattice reduction [11]. In
1908, Cornacchia [3] gave a faster algorithm, using continued fractions. Since the original is neither easy
to find nor easy to understand, we decided to give a more modern proof of his results, using diophantine
approximation. (Another proof, quite unillimunating, can be found in [5].)

Cornacchia’s algorithm is easy to describe. Let m and d two coprime integers. The solution of the
problem

u2 + dv2 = m

in coprime integers u and v, if any, is given by the Euclidean algorithm applied to the pair (x0, m) where x0

is any root of x2 ≡ −d mod m. Define the two sequences (an) and (rn) as follows

x0 = a0 × m + r0

m = a1 × r0 + r1

· · ·
ri = ai+2ri+1 + ri+2

· · ·
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and stop when r2
k < m ≤ r2

k−1
. If the equation has a solution, it is

u = rk and v =

√

m − r2
k

d
.

The paper is organized as follows. Section 2 describes the successive reductions to a generalized version
of Thue’s problem and then to a problem related to diophantine approximation using continued fractions.
Therefore, Section 3 reviews the classical theory of continued fractions as well as diophantine approximation.
In Section 4, we give an algorithmic solution to Thue’s problem. We then prove the validity of Cornacchia’s
algorithm in Section 5.

2 Statement of the problem

Let d and m be two coprime integers. We want to solve the following

Problem P : find two coprime integers u and v such that

u2 + dv2 = m. (2)

Let (u, v) be a solution. First, we remark that (2) implies that v is prime to m. Therefore

(u/v)2 ≡ −d mod m

implies that −d is a quadratic residue modulo m. Let x0 be any squareroot of −d modulo m. We deduce
that

u + x0v ≡ 0 mod m, (3)

and

0 < |u| <
√

m, 0 < v <

√

m

d
. (4)

In turn, this is related to the following problem.

Problem T : given an integer m, find two coprime integers u and v such that

u + x0v ≡ 0 mod m, and 0 < |u| <
√

dm, 0 < v <
√

m/d. (5)

This problem is a generalized version of Thue’s problem which was stated in [10] for the case d = 1. Suppose
that (u, v) is a solution of (5). Then

u + x0v = km

for some integer k. (Note that k is prime to v.) Condition (5) implies

∣

∣

∣
v
x0

m
− k

∣

∣

∣
<

1
√

m/d
.

So we are led to solve the following problem.

Problem D: Let x be a real number. Compute the irreducible fractions p/q such that

|qx − p| <
1

Q
, (6)

where Q is any positive real number and where we impose q ≤ Q.
In Section 3, we will produce an efficient algorithm to solve Problem D. This is to be compared with [6]

which uses the same ideas but in a less understandable way. Before we do so, we must recall some properties
of continued fractions.
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3 Continued fractions

The material found below is taken form [7, Chapter 1] (see also [4, Chapter X]). Let x be a positive real
number. Let us develop x as a continued fraction. Define the sequences (an) and (xn) by

1. a0 = bxc;

2. x = a0 + x1, 0 ≤ x1 < 1;

3. 1

xi

= ai + xi+1 with ai = b 1

xi

c and 0 ≤ xi+1 < 1 for all i for which xi 6= 0.

When x = x0/m is a rational number, these notations are coherent with that of the Euclidean algorithm
applied to (x0, m). For any integer n, we write

[a0, a1, . . . , an] = a0 +
1

a1 + 1

···+
1

an

=
pn

qn

,

where (pn) and (qn) are two sequences defined recursively by

1. p−2 = 0, p−1 = 1, pn = anpn−1 + pn−2 for n ≥ 0;

2. q−2 = 1, q−1 = 0, qn = anqn−1 + qn−2 for n ≥ 0.

The rational pn/qn is said to be the n-th convergent of x. We define also the intermediate convergents

pn,r/qn,r for 1 ≤ r ≤ an+2 − 1
pn,r = rpn+1 + pn,
qn,r = rqn+1 + qn.

From this it follows easily that for all n

pn < pn,1 < · · · < pn,an+2−1 < pn+2,
qn < qn,1 < · · · < qn,an+2−1 < qn+2.

(7)

One can prove the following lemmas.

Lemma 3.1 (§1, pp. 4) For all n, qnpn−1 − pnqn−1 = (−1)n−1.

From this, we conclude that pn and qn are prime together, making the fraction pn/qn irreducible.
If x is a rational number, then an = 0 for n ≥ n0(x) and if x is not rational, then (an) is infinite. In each

case, we put
a′

n = [an, . . . , an0
]

if x is rational and
a′

n = [an, . . .]

otherwise. With this notation, one has

a′

n = an +
1

a′

n+1

. (8)

It is convenient to introduce the quantity

q′n = a′

nqn−1 + qn−2.

Using (8) and the recurrence relation for qn, we see that

q′n+1 = a′

n+1q
′

n, (9)

for all n.
Let us now estimate the approximation of x by pn,r/qn,r.
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Lemma 3.2 (§4, pp. 17) For all n and all r, 0 ≤ r ≤ an+2 − 1

qn,rx − pn,r =
(−1)n(a′

n+2 − r)

a′

n+2qn+1 + qn

. (10)

Moreover

Lemma 3.3 (§2, pp. 8) For all n, put δn = qnx − pn. Then

δn+1 =
(−1)n+1

a′

n+2qn+1 + qn

= − δn

a′

n+2

. (11)

We will need the following theorems.

Theorem 3.1 (Theorem 5) Let pn/qn be a convergent of x. Then

1

2qn+1

<
1

qn+1 + qn

< |qnx − pn| <
1

qn+1

<
1

qn

. (12)

For z any real, we note ||z|| the distance of z to the nearest integer. A best approximation to z is a fraction
p/q (q > 0) such that ||qx|| = |qx − p| and for q′, 1 ≤ q′ < q, ||q′x|| > ||qx||. Then

Theorem 3.2 (“Best approximation”, Theorem 6) For n ≥ 1, qn is the smallest integer q > qn−1

such that ||qx|| < ||qn−1x||.

Corollary 3.1 The best approximations to x are the principal convergents to x.

Theorem 3.3 (Theorem 10) Let p and q be two coprime integers such that

|qx − p| <
1

q
.

Then p/q is either a primary convergent of x or an intermediate convergent pn,r/qn,r with r = 0, 1 or
an+2 − 1.

4 Solving Problem D
If p/q satisfies (6), it is clear that

|qx − p| <
1

q

and so Theorem 3.3 applies. We deduce that p/q is an intermediate convergent pn,r/qn,r for some n and
r ∈ {0, 1, an+2 − 1}.

We can select the candidates as follows.

Proposition 4.1 Let n be such qn ≤ Q < qn+1. Then, for all q < qn−1, for all p, p/q cannot satisfy (6).

Proof: Using (12), one has

|qn−2x − pn−2| >
1

qn−2 + qn−1

≥ 1

qn

≥ 1

Q
,

so that pn−2/qn−2 is not a solution of (6) and it follows by Theorem (3.2) that any p/q with q < qn−2 cannot
be a solution either. 2

Corollary 4.1 The only possible solutions to (6) are

qn−2,1 = qn−1 + qn−2 < qn−2,an−1 = qn − qn−1 < qn

and
qn−1 < qn−1,1 = qn + qn−1 < qn−1,an+1−1 = qn+1 − qn.
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We must now distinguish two cases.

Case 1: qn + qn−1 ≤ Q. Let r be the integer defined by

rqn + qn−1 ≤ Q < (r + 1)qn + qn−1

i.e.

r =

⌊

Q − qn−1

qn

⌋

,

where bzc denotes the greatest integer less than or equal to z. We now prove

Proposition 4.2 1. The only possible q’s are qn, qn−1,1, and qn−1,an+1−1.
2. Moreover, if r ≥ 2, then qn−1,1 is not possible.

Proof: The first point is proven as follows. We use (12) to get

|qn−1x − pn−1| >
1

qn + qn−1

≥ 1

Q
,

and so qn−1 cannot be a solution. This implies that qn−2,1 and qn−2,an−1 cannot be solutions by the best
approximation theorem.

On the other hand, we have (using (10))

|qn−1,1x − pn−1,1| =
a′

n+1 − 1

a′

n+1qn + qn−1

=
a′

n+1 − 1

rqn + (a′

n+1 − r)qn

>
a′

n+1 − 1

Q(a′

n+1 − r + 1)
≥ 1

Q
,

since r ≥ 2. 2

Case 2: qn + qn−1 > Q. We immediately see that the only candidates are: qn−1, qn−2,1, qn−2,an−1. We
prove

Proposition 4.3 Suppose an ≥ 2. Then rqn−1 + qn−2 is not possible for r such that 1 ≤ r ≤ an − 1.

Proof: One has

|qn−2,rx − pn−2,r| =
a′

n − r

a′

nqn−1 + qn−2

=
a′

n − r

(a′

n − an)qn−1 + qn

>
a′

n − r

Q(1 + a′

n − an)
=

an − r + θ

Q(1 + θ)
,

with θ = a′

n − an. Since x → α+x
1+x

is decreasing for α ≥ 1, we have

an − r + θ

Q(1 + θ)
≥ an + 1 − r

2Q
≥ 1

Q
,

which establishes the proof. 2

Using the preceding results, we can build up algorithm THUE that solves problem D.

procedure THUE(x, Q)
(* returns a set {p/q} of irreducible solutions of |qx − p| < 1/q *)

1. extract the following quantities from the development of x: (pn−1, qn−1), (pn, qn), an+1; put S :=
{pn/qn};

2. compute r = b(Q − qn−1)/qnc;

3. if r = 0 then test whether pn−1/qn−1 is a solution;

4. if r ≥ 1 or r = an+1 − 1 then test pn−1,r/qn−1,r;

5. end.
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5 Solving Problem P
We have to find two integers u and v such that

0 < |u| <
√

m, 0 < v <

√

m

d
. (13)

We can now solve Problem D with Q =
√

m/d and then select the solutions to our initial problem u2+dv2 =
m.

5.1 An auxiliary algorithm

Theorem 5.1 If Problem P has a solution, then it is given by

u = pnm − x0qn, v = qn

where x2
0 ≡ −d mod m and qn ≤

√

m/d < qn+1.

Proof: The proof follows that of Thue’s problem. For each fraction pn,r/qn,r, we write un,r = pn,rm−x0qn,r,
vn,r = qn,r and Nn,r = N(un,r, vn,r).

Case 1: in that case, we know that the only possible solutions are pn/qn, (pn−1 + pn)/(qn−1 + qn) and
(pn+1 − pn)/(qn+1 − qn).

We put ∆1 = Nn−1,1 − Nn and we are going to show that ∆1 > 0. We have

∆1 = ((pn−1 + pn)m − x0(qn−1 + qn))2 + d(qn−1 + qn)2 − (pnm − x0qn)2 − dq2
n.

We may rewrite this using δk = qkx0/m − pk and (11) as

∆1 = m2δ2
n−1(1 − 2/a′

n+1) + dqn−1(qn−1 + 2qn).

We see that this quantity is positive, since

qn + qn−1 ≤
√

m/d < qn+1 = an+1qn + qn−1

implies a′

n+1 ≥ 2.

Similarly, we put ∆2 = Nn−1,an+1−1 − Nn. We have

∆2 = m2δ2
n+1(1 + 2a′

n+2) + dqn+1(qn+1 − 2qn),

which is positive since qn+1 = an+1qn + qn−1 and an+1 ≥ 2.

Case 2: This case is more intricate. We know that the only possible values of v are qn or qn−1. We delay
the case d = 1 to the end, since it appears as a particular case. We first concentrate on d > 1 and we will
show that Nn−1 is always greater than m.

Case 2.1: d > 1. We have
Nn−1 = m2δ2

n−1 + dq2
n−1.

Using (11), one has

|δn−1| =
1

a′

nqn−1 + qn−2

.

We know that
a′

nqn−1 + qn−2 ≤ (an + 1)qn−1 + qn−2 = qn + qn−1.
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Together with qn <
√

m/d, one gets

Nn−1 >
m2

(
√

m/d + qn−1)
2

+ dq2
n−1.

The idea is now to study the function

f : x 7→ m2

(x +
√

m/d)2
+ dx2

for x ∈ I = [0,
√

m/d] and to show that f is always greater than m. We write x = λ
√

m/d and study
instead

g(λ) =
1

m
f

(

λ
√

m/d
)

= λ2 +
d

(1 + λ)2

on the interval J = [0, 1].
We remark that it is enough to consider the case d = 2. We have

g′(λ) = 2λ − 4

(1 + λ)3

and g′′ is clearly positive. Hence g′ is increasing on J . In particular

g′(0) = −4, g′(1) = 3/2.

Therefore, g′ has a unique root λ0 in J , satisfying

λ0(λ0 + 1)3 = 2.

Moreover, λ0 is in ]1/2, 1] since

g′(1/2) = 1 − 32

27
< 0.

Now g is minimum for λ0 for which
g(λ0) = λ0(2λ0 + 1) > 1,

since λ0 is greater than 1/2.
As a conclusion, f is always greater than m on I and we have proven the theorem.

Case 2.2: d = 1. Let us come back to the Euclidean algorithm as applied to (x0, m). We keep the notations
of the introduction. The following result is easily shown by induction.

Lemma 5.1 For all i, ui = pim − x0qi = (−1)i+1ri.

We follow [2]. From [8], we extract the following results. Since m is an integer greater than x0 that divides
x2

0 + 1, the continued fraction of m/x0 is symmetric

m

x0

= [b0, b1, . . . , bk, bk, . . . , b0].

Denote the i-th convergent of m/x0 by p′i/q′i and note that with our notations

p′i
q′i

=
qi−1

pi−1

. (14)

This implies that
p′2k+1 = m, q′2k+1 = x0 = p′2k (15)
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and
m = p′2k + p′2k−1 = q2

k−1 + q2
k−2 (16)

which is the crucial point. Using the recurrence relations for p′

i, we have

p′2k+1 = b0p
′

2k + p′2k−1 = m = a1r0 + r1 (17)

p′2k = b1p
′

2k−1 + p′2k−2 = x0 = a2r1 + r2. (18)

By uniqueness of the remainders of the Euclidean algorithm, we see that for all i

p′2k−i = ri. (19)

From all this, we get
m = p′2k + p′2k−1 = r2

k + r2
k−1 = q2

k−1 + q2
k−2.

As in Case 2.1, we know that the only possible solutions of the problem m = u2 + dv2 are (u, v) =
((−1)n−1rn, qn) or (u, v) = ((−1)n−2rn−1, qn−1) where qn ≤ √

m < qn+1. This implies that k = n + 1
and the Theorem is proved. 2

5.2 Cornacchia’s algorithm

We now prove the following theorem.

Theorem 5.2 Denote by k the first integer for which rk ≤ √
m < rk−1. If Problem P has a solution, it is

given by
u = rk and v = qk.

Proof: This is already proved for d = 1, by the last case of the preceding subsection. When d > 1, by
Theorem (5.1), we know also that the only possible solution is (rn, qn) with qn ≤

√

m/d < qn+1. Let us
show that (rk+1, qk+1) cannot be a solution.

First of all, using the notations of Section 3, we have

ri = m|qix − pi| =
m

q′i+1

,

for all i. Then, we cannot have rk+1 = 0, since this would imply rk = 1 and thus qk+1 = m; in turn:
Nk+1 > m. Suppose now that rk+1 6= 0. Then we can write

a′

k+2 =
rk

rk+1

using (9). We compute

q′k+1 = a′

k+1qk + qk−1 = (ak+1 +
1

a′

k+2

)qk + qk−1

which gives

q′k+1 = qk+1 +
1

a′

k+2

qk ≥
(

1 +
1

a′

k+2

)

qk

and finally

qk+1 ≥ a′

k+2

a′

k+2
+ 1

qk+1.

From this, we deduce

Nk+1 ≥
(

m

q′k+2

)2

+ d

(

a′

k+2

1 + a′

k+2

)2

q′2k+1.
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We must show that the above quantity is always greater than m, for all q′k+1
>

√
m and a′

k+2
≥ 1. Putting

t = q′k+1
= T

√
m and a = a′

k+2
, and noting that q′k+2

= aT , we must show that

F (a, T ) =
1

(aT )2
+ d

(

aT

a + 1

)2

is greater than 1 for T greater than 1. Since T > 1, we see that

F (a, T ) > g

(

1

aT

)

where g is the function studied in the preceding Section. We already know that it is always greater than 1.
Hence the Theorem is proved. 2

References

[1] A. O. L. Atkin and F. Morain. Elliptic curves and primality proving. Research Report 1256, INRIA,
June 1990. Submitted to Math. Comp.

[2] J. Brillhart. Note on representing a prime as a sum of two squares. Math. Comp., 26(120):1011–1013,
1972.

[3] G. Cornacchia. Su di un metodo per la risoluzione in numeri interi dell’ equazione
∑n

h=0
Chxn−hyh = P .

Giornale di Matematiche di Battaglini, 46:33–90, 1908.

[4] G. H. Hardy and E. M. Wright. An introduction to the theory of numbers. Clarendon Press, 5th edition,
1985.

[5] K. Hardy, J. B. Muskat, and K. S. Williams. A deterministic algorithm for solving n = fu2 + gv2 in
coprime integers u and v. Math. Comp., 55(191):327–343, July 1990.

[6] E. Kaltofen and H. Rolletschek. Computing greatest common divisors and factorizations in quadratic
number fields. Math. Comp., 53(188):697–720, October 1989.

[7] S. Lang. Introduction to diophantine approximations. Addison-Wesley Series in Mathematics. Addison-
Wesley Publishing Company, 1966.
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