
E�cient Reconstruction of Non-rigid Shape and

Motion from Real-Time 3D Scanner Data

MICHAEL WAND
Saarland University and Max Planck Institut Informatik Saarbrücken

BART ADAMS
Stanford University and Katholieke Universiteit Leuven

MAKSIM OVSJANIKOV
Stanford University

ALEXANDER BERNER, MARTIN BOKELOH, PHILIPP JENKE
University of Tübingen, WSI/GRIS

LEONIDAS GUIBAS
Stanford University

HANS-PETER SEIDEL
Max Planck Institut Informatik Saarbrücken

ANDREAS SCHILLING
University of Tübingen, WSI/GRIS

November 30, 2008

Abstract

We present a new technique for reconstructing a single shape and its
non-rigid motion from 3D scanning data. Our algorithm takes a set of
time-varying unstructured sample points that show partial views of a de-
forming object as input and reconstructs a single shape and a deformation
�eld that �t the data. This representation yields dense correspondences
for the whole sequence, as well as a completed 3D shape in every frame. In
addition, the algorithm automatically removes spatial and temporal noise
artifacts and outliers from the raw input data. Unlike previous methods,
the algorithm does not require any shape template but computes a �tting
shape automatically from the input data. Our reconstruction technique is

1

maks
Text Box
Copyright notice: (c) ACM, (2009).
This is the author's version of the work.
It is posted here by permission of ACM
for your personal use. Not for redistribution.
The definitive version is to be published in
ACM Transaction on Graphics, to appear.

based upon a novel topology aware adaptive sub-space deformation tech-
nique that allows handling long sequences with high resolution geometry
e�ciently. The algorithm accesses data in multiple sequential passes, so
that long sequences can be streamed from hard disk, not being limited by
main memory. We apply the technique to several benchmark data sets,
increasing the complexity of the data that can be handled signi�cantly
in comparison to previous work, while at the same time improving the
reconstruction quality.

Categories and Subject Descriptors: I.3.7 [Computer Graphics]
Three-Dimensional Graphics and Realism - Animation; I.4.8 [Image Pro-
cessing and Computer Vision] Scene Analysis - Surface Fitting

Keywords: Deformation Modeling, Digital Geometry Processing, Sur-
face Reconstruction, Animation Reconstruction

1 Introduction

Recently, a variety of techniques have been developed to capture geometry from
real-world scenes in real-time. This allows for recording moving 3d geome-
try, which has a large number of very interesting applications in areas such as
creating special e�ects for feature �lms or modeling animated characters for
interactive applications. A number of di�erent techniques have been proposed
to perform the acquisition task: High resolution geometry can be acquired at
high frame rates using active illumination techniques such as motion compen-
sated structured light (Weise et al., 2007; König & Gumhold, 2007) or active
space-time stereo (Davis et al., 2005; Zhang et al., 2003). Other approaches
include passive multi-view stereo (Carranza et al., 2003; Würmlin et al., 2002;
Zitnick et al., 2004) and hardware based time-of-�ight methods (such as (PMD,
n.d.; MESA, n.d.)), which o�er more �exibility at the expense of signi�cant
acquisition noise.

Despite the amazing advances on the acquisition side, all of the available tech-
niques su�er from a number of problems. First, the acquisition is limited by
occlusions so that only a partial view of the geometry can be acquired at each
time instance. This problem is particularly pronounced when structured active
lighting is used, which is the technique that currently produces the highest res-
olution results. A second, related problem is that the scanning devices only
record unrelated sample points of the moving surface with no correspondence
information across frames. Therefore, reassembling a complete model is not
straightforward and further editing and processing operations on the moving
geometry are limited. In addition, the data is typically distorted by noise and
outliers of varying degree, which imposes an additional robustness challenge on
the reconstruction algorithm.

In this paper, we present a new reconstruction system that retrieves this missing
information: The algorithm takes a sequence of point clouds sampled at di�erent
time instances as input and automatically assembles them to a common shape

2

that best �ts all of the input data frames. At the same time, a deformation
�eld is computed that deforms this shape to match all the data frames at the
di�erent time intervals. This factorization into shape and deformation gives a
plausible shape completion for all input frames and provides dense correspon-
dences between all frames. The algorithm is robust to noise and outliers and
works on long sequences of real-world data.

Our algorithm does not require an a priori known template model, but builds
such a model (and its deformation) on the �y during optimization, similar to
(Wand et al., 2007). However, we improve upon this work with following main
contributions:

• We parameterize and optimize shape and motion separately resulting in
considerable gains in reconstruction quality and performance.

• We propose a novel topology-aware adaptive subspace deformation tech-
nique that encodes the motion of the object compactly and allows e�cient
optimization.

• We propose a memory e�cient streaming algorithm that accumulates
data-driven constraints in local error quadrics, leading to a main mem-
ory working set that is constant with respect to sequence length.

• Our deformation model is adapted automatically to the observed data,
which allows us to handle a range from elastic to semi-articulated exam-
ples.

We apply the technique to reconstruct several data sets from real-time scanning
devices. In comparison to the previous state of the art, we obtain a signi�cantly
improved reconstruction quality both in terms of the resulting shape and its
deformation and our algorithm is able to handle signi�cantly longer sequences
without running into resource limits of standard PC hardware.

2 Related Work

In this section, we give a brief overview of related work in reconstructing corre-
spondences of time variant geometry. In addition, we brie�y review related work
in the area of deformation modeling and compare it to the technique employed
in our system.

2.1 Animation Reconstruction

Most existing approaches for reconstructing moving geometry are based on tem-
plate surfaces, which means that the user has to provide a rough a priori model
of the acquired geometry. Our approach is more general than these techniques

3

Figure 1: Example reconstruction results obtained with our algorithm from a
sequence of input scans of a deforming hand; left: original data points (3 exam-
ple frames out of 32), middle: Reconstructed geometry, right: reconstructed
correspondences indicated by a chessboard texture, with texture coordinates
computed from correspondences.

4

in the sense that it builds the template model automatically as part of the re-
construction process. For example, (Carranza et al., 2003) use template based
tracking in the context of a multi-camera passive stereo system. (Anuar &
Guskov, 2004) propagate templates through multiple frames using hierarchical
optical �ow. The �spacetime� faces system of (Zhang et al., 2004) �ts a face
template mesh to a space-time stereo sequence to enable further editing and
inverse-kinematics operations. A sophisticated method for tracking a scanned
template mesh according to multi-view stereo and silhouette data has recently
been presented in (de Aguiar et al., 2008). The global optimization problem
of �nding correspondences between shapes is considered in (Anguelov et al.,
2005a). The algorithm can match a template to a partial scan without initial-
ization. Some recent papers attack the problem by coupling the reconstruction
technique tightly to the acquisition system: (Sand et al., 2003) propose a sys-
tem that combines multi-view silhouettes and motion capturing. Geometry is
accumulated as o�set information to a template skeleton. (Park & Hodgins,
2006) generalize motion capturing to a large number of markers. These tech-
niques show impressive results, but depend on the speci�c acquisition setup
and, again, on available a priori model information. Similarly, approaches like
SCAPE (Anguelov et al., 2005b), and the automatic registration techniques by
(Allen et al., 2002; Allen et al., 2003) use a user supplied template to parame-
terize the shape matching.

Only very few techniques have been proposed that do not rely on an a priori
model but reconstruct it from data: (Pekelny & Gotsman, 2008) propose an
algorithm that iteratively registers depth video frames using the ICP algorithm
(Besl & McKay, 1992). Their method is fast and simple to implement, how-
ever, it relies on a presegmentation by the user and is restricted to objects that
undergo articulated rigid motion only. (Mitra et al., 2007) propose a local tech-
nique that uses a small window of multiple frames in each step to register long
sequences of rigidly moving objects into a common reference shape without need
for an additional global error distribution step. The resulting technique is very
fast, but restricted to articulated motion. General deformations can only be
handled approximately and only in the case of very slowly deforming objects.
Non-rigid motion causes artifacts and reconstruction fails in case of partially
missing geometry. There has also been work in computer vision, trying to �t
a deformable model directly to image data: (Carceroni & Kutulakos, 2002) use
a surfel based representation with a general re�ectance model and (Starck &
Hilton, 2005) use a spherical parameterization of the shape to establish corre-
spondences. However, these approaches do not use a full geometric deformation
model. Tracking of meshes based on feature matching and Laplacian di�usion
has been considered in (Ahmed et al., 2008; Varanasi et al., 2008). Most closely
related to our approach is the method proposed in (Wand et al., 2007), which
�ts a graph of surfel trajectories to moving geometry. As discussed in the intro-
duction, the method proposed in this paper uses a similar processing pipeline
but overcomes the main drawbacks of their method: the simple uniform defor-
mation model in which deformation information is computed for every surfel in

5

every frame of the geometric shape being reconstructed. This leads to very high
computational costs so that neither long sequences (beyond 20-30 frames) nor
high resolution geometry (more than a few thousand surfels) can be handled1.
As shown in the Results Section, our new technique is capable of handling se-
quences of up to 200 frames and a geometric resolution up to 20,000 surfels
per frame, which constitutes a substantial improvement. Our new formulation
leads to better conditioned optimization problems, which allows us to improve
the reconstruction quality despite of using a more compact representation.

Recently, some extensions have been proposed to the method of (Wand et al.,
2007): (Süssmuth et al., 2008) combine a similar approach with �tting an im-
plicit 4D-spacetime surface to the data �rst, which improves the �tting accuracy
to the data by integrating information over multiple time steps (Mitra et al.,
2007). This improvement is orthogonal to the contributions of this paper. (Sharf
et al., 2008) replace the elastic regularizer by the weaker assumption of volume
preservation, which still allows for �lling in holes in sequences but not for a
reconstruction of global correspondences.

2.2 Deformation Modeling

An important component of our approach is a deformation module that infers
plausible deformations of a given shape over multiple frames. Using a set of ex-
ternally speci�ed correspondence constraints spanning multiple frames, the goal
of this module is to infer the best deformation �eld satisfying these constraints
(see Section 5 for details). Although little work has been done to tackle this par-
ticular problem (an example of one such method, which only works for meshes,
is (Xu et al., 2007)), there exists a rich body of literature aimed at e�ciently
deforming a given shape with constraints on one, �nal frame and thus some of
the existing methods potentially could be extended to our setting. In the follow-
ing, we summarize the most closely related work; for an extensive survey in this
�eld, see for example (Nealen et al., 2005; Botsch & Sorkine, 2008). Deforma-
tion techniques can be roughly classi�ed into volumetric and thin shell models
(Terzopoulos et al., 1987). In our approach, we use a volumetric model forming
a thick layer around our surfaces similar to (Botsch et al., 2006). The rationale
for this design choice is that a thin shell model cannot be set up reliably in our
setting where data points are initially noisy and without reliable normal infor-
mation. As we seek a deformation �eld from a common reference domain onto
each data frame, and hence have large deformations, we need to employ a non-
linear deformation model (She�er & Kraevoy, 2004; Sumner et al., 2005; Botsch
et al., 2006; Huang et al., 2006; Au et al., 2006; Sumner et al., 2007; Shi et al.,

1The product of per frame surfels and the number of frames cannot be substantially larger
than about 50,000 - 100,000. At that point, the methods starts needing more than 2GB of main
memory for solving the optimization problems, which is problematic at least within a 32bit
environment. Handling high resolution geometry with several hundred frames is de�nitely
out of scope of this method as it would require enormous amounts of main memory and
computation time.

6

2007; Botsch et al., 2007; Zhou et al., 2005; Shi et al., 2006). Of these perhaps
most immediately pertinent are (Botsch et al., 2006) in which a prism based
shell energy is formulated and solved e�ciently, and (Botsch et al., 2007) where
a similar elastic energy is extended to rigid volumetric cells. Unfortunately
the former is based on thin surface shells; an estimation of these is generally
di�cult in our setting. The latter provides a simpli�ed deformation �eld but
is both topology unaware and employs an interpolation scheme that results in
solving a large sparse linear system making it prohibitively slow in our setting.
The method we present is also similar in spirit to (Sumner et al., 2007) where
the deformation �eld is discretized, solved for and interopolated using a sparse
topology graph. Although we use a similar paradigm, we avoid estimating the
rotation and translation components of the deformation �eld separately, and
employ an interpolation scheme which guarantees �rst-order consistency, which
is not true for (Sumner et al., 2007). Thus we reduce the number of graph
nodes needed to approximate the deformation �eld accurately. Further, for the
same number of nodes we reduce the number of unknowns in the optimization
procedure making it faster. Finally we present a more e�cient topology-aware
sampling technique that alleviates the sampling problems of (Sumner et al.,
2007) such as under-sampling in regions of high geometry complexity.

Our deformation representation is based on classical meshless �nite elements (see
(Fries & Matthies, 2003) for a good overview), that were recently introduced
in computer graphics for physically based animations (e.g., (Müller et al., 2004;
Pauly et al., 2005)). We use a similar formulation, but solve the inverse problem
of computing the deformation �eld from given position constraints. Moreover,
we propose a novel adaptive sampling algorithm that takes the connectivity
of the original geometry into account to ensure an adequate nodal coupling
for topologically complex sequences in which di�erent parts of geometry come
in close contact. Despite this added topology check, our deformation method
maintains the �exibility of traditional meshless algorithms such as fast adaptive
sampling and a smooth and consistent deformation �eld representation.

Recently, we have employed a similar technique in a companion publication
(Adams et al., 2008) for controlling animation sequences by user input. There
are a few key di�erences to this work: In our setting, we control a deforma-
tion �eld by clouds of data points with noise and outliers that constrain the
deformation �eld partially rather than user de�ned key frames at given time
intervals. Accordingly, we use a di�erent adaptation scheme: In (Adams et al.,
2008), temporal basis functions are used to reduce the overhead for representing
smooth trajectories of solids made of homogeneous, elastic materials in between
keyframes. In contrast, we use a spatial adaptation scheme that allows for cap-
turing data with varying motion pattern in di�erent parts of the object, such
as near-articulated objects. In addition, in this work we address the problem of
assembling the domain of the deformation model automatically from data; the
undeformed geometry of the object is in our case not given in advance as part
of the input. Afterwards, we have to reconstruct the detailed geometry from
multi-frame input, which is also not known in advance.

7

Figure 2: The goal in this paper is to construct one urshape S that represents
the geometry of the object and a sparse, but adequate, deformation �eld f
that properly aligns the urshape to the input data. The urshape S and the
deformation �eld f are the output of our algorithm and completely de�ne the
shape and motion of the acquired object.

3 Overview

Our algorithm expects a sequence of data point clouds as input, denoted by
di,t ∈ R3, where i ∈ {1 . . . nt} is the index of the data point and t ∈ {1 . . . T} the
time at which the measurement was taken. For simplicity, and as this matches
all available input data sets, we assume uniform temporal spacing. Our goal is
to compute a single two-manifold S ⊂ R3, and a time dependent deformation
�eld f : S ×{1 . . . T} → R3, where f(x, t) is the deformed position of point x at
time t (see also Figure 2). Following (Wand et al., 2007), we call this common
shape an urshape. In contrast to that approach however, we solve for a single
set of variables representing this shape, not for a separate one in each frame.

3.1 Variational Model

Our goal is now to compute an urshape-deformation pair (S, f) that approxi-
mates the data points closely. In the following, we will refer to pairs (S, f) as
sequences. To constrain the space of possible solutions, we formulate our goal
in a variational framework, where each potential solution (S, f) is scored by an
energy function E, which consists of a data �tting and a regularization term

8

Figure 3: Animation reconstruction pipeline. From the initial input frames,
our algorithm �rst computes urshapes. Next, smooth deformation �elds are
computed for each sequence. These deformation �elds are used to merge adja-
cent sequences, resulting in updated urshapes that are fed back into the shape
reconstruction pipeline until one global urshape and its deformation is found.

that penalizes unreasonable reconstructions (Wand et al., 2007):

E(S, f) = Edata(S, f ,d) + Ereg(S, f). (1)

The data term measures the squared distance to the data points:

Edata =
T∑

t=1

nt∑
i=1

dist(f(S, t),di,t)2 (2)

We will re�ne this term later to exclude outlier points that violate a simple
Gaussian error model. The regularization energy consists of a weighted sum of
�ve terms:

Ereg = ωrErigid + ωvEvolume︸ ︷︷ ︸
deformation model

+ωaEaccel + ωvEvelocity︸ ︷︷ ︸
general regularization

+ωsEsmooth︸ ︷︷ ︸
surface rec.

. (3)

The �rst four terms evaluate the time-dependent deformation �eld where the
�rst two impose physical constraints of rigidity and volume preservation of the
urshape throughout the deformation sequence. The third term penalizes accel-
eration, to create physically plausible temporal behavior and remove temporal
jittering and noise. The fourth term imposes a very small penalty on veloc-
ity in order to avoid �uttering artifacts in regions that are not well constraint
by data points, such as the shape boundaries. The �fth is concerned with the
urshape only; it prefers smooth surfaces to �lter out sensor noise and to ex-
clude pathological manifolds S from our reconstruction. As we incrementally
add more frames to our reconstruction, this term automatically becomes less
dominant and the shape is mostly determined by data points. The weights are
user speci�ed constants (see Section 9 for a discussion of parameter setting).

3.2 Optimization Pipeline

In our optimization algorithm, we solve for the two components S and f sep-
arately and alternatingly. When we optimize for f , we assume the urshape S

9

given, and minimize the data, rigidity, volume, acceleration and velocity energies
as discussed above. When we optimize for S on the other hand, we assume that
f is given, and minimize the data and smoothness constraints. The optimization
pipeline is depicted in Figure 3. The algorithm �rst preprocesses all input data,
including a preliminary outlier classi�cation. Next, temporally adjacent frames
are merged into sequences of the form (S, f) by �rst computing a common ur-
shape. Given this urshape, we optimize for the deformation �eld between the
two frames. This process is carried on hierarchically, until only one urshape and
a global deformation �eld remains. At every level, both the geometry and the
deformation �eld are optimized globally, to avoid error accumulation.

We now �rst describe the employed shape and motion discretization (Section 4).
Then, we discuss the deformation �eld optimization (Section 5), the surface
optimization (Section 6) and the global matching pipeline in more detail (Sec-
tion 7).

4 Representation

This section discusses the employed urshape and deformation discretization.
These will be used in the following sections for e�cient optimization during the
reconstruction process.

4.1 Urshape

We represent the urshape S by a set of surface elements si ∈ R3, each equipped
with a normal estimate ni. As S is stored only once per sequence, we can a�ord
to employ a simple uniform sampling of S with spacing εsampl, which simpli�es
the formulation of our algorithm. The spacing εsampl is a user parameter and
de�nes the geometric level of detail at which we reconstruct. The sample points
on S are connected by a graph that connects each surfel to its geodesically k-
nearest neighbors on S (we typically use k = 12 in our examples). We will use
T (si) to denote the graph neighbors of surfel si and |T (si)| as the number of
those neighbors. To be more robust to outliers, nearest neighbors further away
than 3εsample of the surfel set are not connected. One can think of this surfel
graph as being a relaxed polygon mesh, in which consistent tessellation is not
enforced. This relaxation makes it much easier to update the shape when new
data points are examined. We postpone the creation of a consistent mesh to
the �nal stage of the algorithm.

4.2 Deformation Field

The deformation function f is represented by a graph of non-uniformly sampled
points centered at xi ∈ R3. To distinguish these points from the geometry

10

points, we will call them nodes in the following. We associate with each such
node a deformation vector ui,t for each of the frames in the animation sequence.
These deformation vectors will completely de�ne the deformation �eld and are
the unknowns we will be solving for when optimizing f . Nodes will be created
in the vicinity of the given urshape S and their connectivity will be determined
by the connectivity graph associated with S. We will discuss the nodal creation,
representation and deformation �eld optimization in more detail in the following
section (Section 5).

The sampling of f and S is strictly independent of each other. Typically S is
sampled with more than 10,000 points, while f is sampled with a few hundred
nodes. This discrepancy makes the optimization routine drastically faster and
more stable than using the same resolution for both entities. This decoupled
representation is one of the main contributions in this work.

5 Deformation Modeling

We represent the deformation on a coarse scale and employ a meshless �nite
element method to construct appropriate basis functions that are used to in-
terpolate the deformation �eld, as discussed in Section 5.1. In order to achieve
good results even at very sparse deformation sampling, it is crucial to take the
connectivity of the original geometry into account when de�ning the discretiza-
tion of the deformation �eld. This topic is addressed in Section 5.2. Finally,
in Section 5.3, we describe how this deformation �eld is optimized using our
variational model.

5.1 Deformation Field Representation

We represent the deformation �eld f in a discrete manner by assigning per-frame
displacement vectors ui,t to the nodes i. Each node i is de�ned at a position
xi with support radius ri. The displacement vectors ui,t are the unknowns we
will be solving for. The continuous deformation �eld is then de�ned using a
meshless approximation method (Fries & Matthies, 2003) as:

f(x, t) = x +
∑

j Φj(x)uj,t, (4)

where the scalar shape functions Φj(x) are constructed using moving least
squares with a complete linear basis p(x) = [1 x]T to guarantee �rst order
consistency (Fries & Matthies, 2003):

Φj(x) = p(x)T (M(x))−1w(x− xj , rj)p(xj), (5)

where w(x−xi, ri) = max(0, (1−‖x−xi‖2/r2i)3) is a radially symmetric window
function with compact support ri and M(x) =

∑
j w(x− xj , rj)p(xj)p(xj)T is

the 4× 4 moment matrix. The moment matrix is non-singular if the evaluation

11

Figure 4: Adaptive grid sampling. The geometry points are processed sequen-
tially (from left to right) and a deformation node is created if necessary in the 8
surrounding grid cells. The black dot indicates the current geometry point. The
blue dots are nodes, the arrows point towards the anchor points of the nodes.
Anchors are updated for each node to the nearest geometry point. Adaptive
sampling creates nodes in smaller grid cells where necessary.

point x is covered by at least 4 non-planar nodes. In the next section we present
a nodal sampling strategy that guarantees this requirement.

In our application, the chosen meshless representation of deformation has a num-
ber of advantages. It provides a concise and sound way to de�ne a deformation
subspace. Adaptive sampling is easier to implement than with classic �nite el-
ements, because no consistent mesh is required. The linear precision allows us
to represent rigid body motions exactly with only few basis functions. These
occur frequently for real-world dynamics (think for example of a moving hand).
The main drawback of meshless methods is the need to invert a small matrix
for each evaluation of a shape function. However, because the shape functions
are independent of the actual deformation �eld, they can be precomputed and
cached during the optimization.

From the de�nition of the shape functions, it can be easily seen that nodes
in�uence a spherical region centered at their position. This prohibits correctly
resolving topologically complex regions where two geometry patches, albeit close
in a Euclidean sense, should be topologically separated. In case of the �ngers of
a closed hand, for example, we would need an extremely high spatial sampling
of the deformation �eld if we de�ne its in�uence by distance only, as this is done
in previous subspace methods (Müller et al., 2004; Huang et al., 2006; Sumner
et al., 2007). In the following section, we propose a novel nodal sampling algo-
rithm that takes the connectivity of the urshape, the domain the deformation
function is de�ned on, into account and correctly prunes nodal in�uence regions.

5.2 Topology Aware Sampling

Given an urshape and its nearest neighbor surfel graph as de�ned above, we wish
to create a coarse nodal sampling that will represent the deformation �eld. This
sampling has to meet a number of requirements. First, as discussed above, it
should be volumetric and within the de�ned support volume, each surfel should
be well constrained, i.e., covered by at least 4 non-planar deformation nodes.

12

Figure 5: Neighborhood de�nitions. Left: A node is neighbor to all geometry
points that are within its spherical in�uence region and that can be reached by
walking over the topology graph, starting from the node's anchor point without
leaving the node's sphere. This correctly discards topologically far geometry
patches. Right: A node is neighbor to another node if the former is within
the in�uence region of the latter and if they are both neighbor to a common
geometry point. Hence, the top node is not a neighbor of the lower right one,
while the lower left one is.

Second, it should be topology aware, creating separate node sets for discon-
nected regions. Third, the nodal coupling should guarantee continuous shape
functions thereby guaranteeing a continuous deformation �eld. And �nally, the
sampling algorithm should be e�cient as it will be invoked multiple times during
animation reconstruction.

Sampling Algorithm: Our sampling strategy works by overlaying the urshape
with a set of nodes centered at adaptive grid cells where the cell size depends on
the local sampling requirement (we will discuss the adaptation of the sampling
density in more detail in Section 7.3). In each grid cell neighboring an urshape
surfel, one or more nodes are created depending on how many topologically sep-
arate urshape components exist in that region. The actual sampling algorithm
works as follows (see also Figure 4): We iterate over all urshape surfels, dis-
cretize each point to its nearest grid cell center and create a deformation node
if the grid cell is empty. If not, we check whether the node occupying the grid
cell is already a neighbor of the current urshape surfel. If this is the case, we
can safely move on to the next surfel without creating a node. If the existing
node is not a neighbor of the urshape surfel, it must have been sampled from a
di�erent geometry patch and thus we have to create a new node. As such, mul-
tiple disconnected nodes can be created at the same spatial position. Note that
we not only create a node at the quantized geometry position, but also at the 7
other neighboring grid cells surrounding the geometry point surfel. The nodal
radius is set to 1.8 times the grid cell size, therefore ensuring that the geometry
point is covered by all 8 neighboring nodes. Using this sampling strategy we
obtain a volumetric narrow band of N nodes around the geometry.

Neighborhood De�nitions: We call the geometry point that creates a node,
its anchor point. If multiple points would create the same node, we update the
anchor point to the nearest geometry point (Figure 4). The anchor is used to

13

prune the in�uence region of each node. Typically, in meshless methods, each
node would in�uence all points within a surrounding sphere centered at the node
with radius ri. However, when di�erent geometry patches are close, such as the
�ngers of a hand, nodes created from each patch should not in�uence each other.
Hence, we have to take topology into account to de�ne the nodal support regions.
Due to the e�ciency requirements it is too costly to approximate a smooth
geodesic distance on the surfel graph. Moreover, the graph itself provides only
C0-continuous geodesic distance approximations. Therefore, we will use only
Euclidean distances to evaluate our window functions. We use the following
strategy that guarantees smooth topology-aware shape functions: When a node
is created, we only assign it as a nodal neighbor to the geometry points within
a Euclidean distance ri that can be reached from the anchor by walking on
the geometry topology graph without leaving a Euclidean sphere of radius ri
(see Figure 5, left). So, all geometry points that are close in Euclidean and
topological sense are in�uenced.

The nodal coupling is also topology aware. A node j is considered a neighbor
of node i, if j is within a Euclidean distance rj to i and if i and j in�uence
a common geometry point (see Figure 5, right). The latter criterion prevents
spatially neighboring nodes that are created from topologically distant geome-
try to incorrectly become neighbors. Also here, we use the Euclidean distance
in the weight and shape function computations, guaranteeing their continuity.
Note that the only potential situation in which a shape function becomes dis-
continuous is if a geometry point i is a neighbor of some deformation node n,
while another geometry point j in its vicinity is not. But then the edge between
i and j must cross the boundary of the Euclidean ball B(xn, rn), thus meaning
that n's in�uence on i is small since w(xi − xn, rn) ≈ 0, implying continuity.

5.3 Deformation Field Optimization

Having obtained a valid nodal sampling, we have to de�ne and discretize the
data �tting term and the regularization energies for the deformation function
as discussed in Section 3.1. Note again that our goal is to �nd optimal nodal
deformations uj,t for all frames t.

Data Matching: Following our reconstruction model (Equation 1), we have to
minimize the distance between the deformed urshape and the data points. This
can be achieved by specifying position constraints that restrict certain points x
on the urshape to deform to a goal position y in a speci�ed frame t. Hence, the
position constraints try to satisfy f(x) = y. We will discuss in Section 7.2 how
these position constraints are de�ned. In general, this leads to the following
data matching energy (for a single constraint):

Epos = (f(x, t)− y)T Q(f(x, t)− y), (6)

where Q is a symmetric positive de�nite matrix that forms an error quadric,
allowing varying constraints penalties in di�erent directions. In particular, this

14

includes rank-degenerate constraints acting in one or two directions only. Using
Equation 4, this expands to:

Epos = (x +
∑

j Φj(x)uj,t − y)T Q(x +
∑

j Φj(x)uj,t − y), (7)

where the summation is over all nodes j in�uencing the correspondence's base
point x. It is easy to see that all correspondence constraints can be added up
and the resulting energy can be written as a quadratic form:

Edata = c+
∑

t

∑
i bi,tui,t +

∑
t

∑
i

∑
j uT

i,tai,j,tuj,t, (8)

where there is a linear coe�cient bi,t for every node that in�uences a corre-
spondence base point and a quadratic coe�cient ai,j,t for every pair of coupled
nodes i and j. Accumulating these coe�cients for all the correspondences al-
lows e�cient evaluation and di�erentiation of the correspondence energy dur-
ing optimization: An arbitrary number of constraints can be represented using
O(k2NT) space, where N is the number of deformation nodes and k the out-
degree of their interaction graph (which has bounded degree by construction).
This is independent of urshape and data resolution, allowing for an e�cient
streaming computation.

Rigidity: To regularize the deformation �eld, i.e., to restrict it to plausible
deformations, we add an additional energy term that penalizes non-rigid defor-
mations. The deformation �eld is rigid if and only if at all points and all frames
∇fT∇f = I. Here, we use a point collocation scheme and penalize non-rigid
deformations at the nodal positions:

Erigid =
∑

t

∑
i ‖∇f(xi, t)T∇f(xi, t)− I‖2F , (9)

where ∇f(x, t) = I +
∑

j ∇Φj(x)uj,t. Expanding the rigid energy yields a
polynomial of degree 4 in the nodal displacements.

Volume Preservation: Most real-world deformations locally preserve volume.
A deformation �eld is, by de�nition, locally volume preserving if at every point
in space det(∇f) = 1. Again, using a point collocation scheme, this translates
to the volume preservation energy:

Evolume =
∑

t

∑
i (det(∇f(xi, t))− 1)2, (10)

which expands to a polynomial of degree 6 in the unknowns. In our application,
the volume preservation acts mostly as an additional regularization energy that
makes the rigidity criterion stably de�ned, as Erigid alone is invariant under
�ips of orientation of the deformation gradient (cf. (Müller et al., 2004)).

Temporal Smoothness: All previous constraints are de�ned for each frame
separately. They restrict the way an urshape is allowed to deform into a certain
frame at time t. In a typical real-time scanning setup, neighboring frames
are acquired from temporally coherent motion. Hence, we want to restrict the
reconstructed deformation �eld to be temporally smooth as well. This can be

15

Figure 6: Example obtained using our meshless deformation algorithm. The red
points are constrained, while the user deforms the geometry by pulling on one
corner of the bumpy plane. As can be seen, the rigidity and volume preservation
constraints are faithfully minimized using the non-linear solver and details are
preserved during the deformation.

obtained by penalizing acceleration of the deformation nodes. Using simple
�nite di�erences this yields the energy function:

Eaccel =
∑

t

∑
i (u(xi, t+ 1)− 2u(xi, t) + u(xi, t− 1))2, (11)

for every node i and (non-boundary) frame t. Here we assume that consecutive
frames are acquired at constant time intervals. Similarly, as discussed above,
we constrain the velocity of a node over neighboring frames by minimizing the
energy:

Evelocity =
∑

t

∑
i (u(xi, t+ 1)− u(xi, t))2. (12)

Numerical Optimization: For the optimization, we employ a standard quasi-
Newton BFGS solver (Avriel, 2003). We can reduce the memory requirements
by employing a non-linear conjugate gradients solver (Shewchuk, 1994), which
needs gradient information only, but this turns out to be less e�cient in practice
for our application. For sti� settings (high rigidity), the run-time disadvantage
can be quite substantial (comparing to non-linear CG with diagonal precon-
ditioning). Independent of the solver employed, we can reduce the memory
requirements by employing a sliding window strategy in the temporal domain:
As easy to see, only acceleration and velocity energies couple multiple frames
of our animation. Typically, their in�uence will be rather local as our problem
is mostly constrained by data points. Using this observation, we can solving
for only a small window of variables at a time, corresponding to 3 − 5 frames
at once, and then o�set by one frame and iterate. One can think of the local
optimization as a local smoothing �lter. This strategy requires only a single,
sequential scan through all variables so that it is still e�cient if the variables do
not �t into main memory. We have implemented an explicit paging scheme to
support this: It turns out that the quadratic interactions of the variables describ-
ing the quadratic data constraints consume a considerable amount of memory,
while the state variables themselves usually �t into main memory. Therefore,
we employ a LRU-swapping scheme to only fetch the quadrics representing the

16

constraints (Equation 8) from disk for the frames in consideration. In our whole
optimization pipeline, creation of constraints and optimization will be strictly
time sequential, so that this scheme comes at a very small additional overhead
while extending the size of sequences that can be handled signi�cantly. Using a
sliding window does not only improve memory consumption but also the compu-
tation time, as the runtime requirements of the solver grow superlinearly with
the number of variables in consideration. The sliding-window approach does
not compute an optimal solution, but in practice, we did not observe signi�cant
artifacts.

Example: Figure 6 illustrates that our deformation framework is capable of
faithfully deforming geometry while preserving surface details. As we are using
a full non-linear deformation model, rotations within the deformation are han-
dled correctly. The subspace approach makes sure that we still obtain a high
performance, despite using an expensive non-linear �nite element model.

6 Shape Optimization

In addition to optimizing the deformation �eld, we also optimize the geometry
of the urshape, in a separate step. We follow a simpli�ed version of the strategy
of (Huang et al., 2007), but we use an approximate, purely quadratic objective
function that can be optimized by just solving a linear system. Basically, we
allow urshape surfels to move in normal direction and allow the normal tip to
translate in tangent direction. For, this we �rst need to �x a reference frame for
each surfel si with orthonormal coordinate axis (ui,vi,ni) centered at si, where
ni points roughly into the direction of the �nal surface normal. We compute
this initial estimate by a principal component analysis of a larger topological
neighborhood of radius 4εsampl.

Given these local frames we try to �nd the updated surfel position s′i = s′i +tni ni

and the updated (unnormalized) normal direction n′i = ni + tui ui + tvi vi, where
the scalars tni , t

u
i and tvi are the unknowns we will be solving for.

6.1 Data Attraction

Similarly to the deformation �eld optimization, we require the updated urshape
to be close to the data. To model data attraction, we allow again for general
position constraints that attract a surfel si to a point y. In essence, we try
to minimize the point-to-plane distance from the point y to the plane through
s′i with normal n′i. However, to ensure a quadratic penalty function in the
unknowns, we take the distance along the undeformed normal ni, giving:

Epos =
(s′i − y)T n′i

nT
i n′i

nT
i P

(s′i − y)T n′i
nT

i n′i
ni, (13)

17

which can be simpli�ed (note that nT
i n′i = 1) to:

Epos = (nT
i Pni)((s′i − y)T n′i)

2, (14)

which is quadratic in the unknowns (because nT
i ui = 0 and nT

i vi = 0 by
construction).

We specify position constraints by transforming the data points di,t into the
urshape domain using the inverse deformation �eld f−1 and associate one such
point-to-plane constraint between each data point and its nearest (updated)
urshape surfel point, say sj . The total data �tting energy becomes:

Epos(i, t) = (nT
j JT

i,tPi,tJi,tnj)((s′j − f−1(di,t, t))T n′j)2, (15)

where Ji,t = ∇f−1(di,t, t) is the Jacobian of the inverse deformation function.
We associate with the data points an error quadric Pi,t, which can be computed
from the covariance of the data. We assume stationary isotropic noise and set it
hence to Pi,t = P = I/ε2data, where εdata is the (global) average sample spacing
input. The total data energy then becomes Edata =

∑
t

∑
iEpos(i, t). In order

to make surface reconstruction robust to outliers, we truncate the quadratic
potentials: Whenever a data point, after being transformed to the urshape
domain, ends up farer away than 3εsampl from an urshape point, we ignore the
corresponding position constraint, which corresponds to truncating the data
potentials to a constant value at a distance of 3εsampl.

6.2 Smoothness

The smoothness term tries to make surfels lie in the tangent plane of their
neighbors and keep neighboring normals similar: Esmooth = Eplane +Enormals,
where

Eplane =
n∑

i=1

|T (si)|∑
j∈T (si)

((s′i − s′j)T ni)2, (16)

Enormals =
n∑

i=1

|T (si)|∑
j∈T (si)

(n′i − n′j)2, (17)

Here we make an approximation and assume that the reference frames are con-
stant during optimization, leading to quadratic objective functions.

The main advantage of our formulation of surface �tting is e�ciency. Again,
we can stream through all data points once, project them back, accumulate
quadratic potentials on the unknown coe�cients, and solve a rather small linear
system de�ned only on three coe�cients per urshape point, independent of the
number of frames.

18

7 Reconstruction Algorithm

Using the building blocks described before, we can now formulate our animation
reconstruction pipeline. First, we preprocess our data and store the result in
swap �les on hard disc, from which we can retrieve the data of each frame in one
chunk. Then, we run our surface reconstruction module on each input frame
separately and create initial shape estimates (see also Figure 7). To make the
formulation of the algorithm simpler, we equip it with an identity deformation
�eld and consider it a single frame sequence. Next, we run a recursive sequence
merging algorithm that takes two sequences that are adjacent in time as input
and uni�es them to a single sequence with one urshape and a global deformation
function. We execute this merging in a binary tree, merging �rst single frame,
then two frame, four frame sequences and so on. In order to limit the memory
demands, we build and traverse this tree depth �rst, left to right, starting at
the �rst frame. In this way, we have to handle at most log2 T + 1 urshapes at
the same time. In the following, we will describe the steps in more detail.

7.1 Preprocessing

In the preprocessing step, we apply tensor voting (Medioni et al., 2000) to
remove outliers. We closely follow the implementation described in (Wand et al.,
2007) for the same purpose. The algorithm detects points that do not lie on
any subset of data that forms a smooth 2-manifold. This step helps greatly
in initially cleaning up the data, but some outliers will remain undetected,
in particular structured artifacts caused by 3D scanners due to technological
limitations. This will be handled later during sequence merging using robust
data potentials (see next subsection). After tensor voting, we create a resampled
copy of each data frame with a small fraction of the complexity of the original
data by quantizing the points on a regular grid and keeping only one per grid
cell. In our examples, we typically use an e�ective maximum sample spacing of
1/80th of the maximum bounding box side length of the scene. The resolution
has been chosen to still depict well the topology of the original data and the
rough geometry, which is su�cient for a coarse alignment. We will use the full
resolution data later in a �nal optimization step. This two-resolution approach
signi�cantly speeds up the running time of our reconstruction pipeline.

7.2 Sequence Merging

Merging sequences proceeds in four steps: alignment, urshape merging, defor-
mation re�tting and global optimization. The basic strategy is similar to the
pipeline in (Wand et al., 2007), however, reformulated to separate deformation
from shape. For ease of notation, we will denote the �rst sequence as A and the
second as B in the following. We denote the �rst and last frame, i.e., the urshape
deformed by the corresponding deformation �eld f at that time, of a sequence X

19

Figure 7: Hierarchical merging of sequences until a �nal urshape S0123 and a
deformation �eld f is obtained.

by first(X) and last(X), respectively. See also Figure 7 for a schematic overview
of the merging pipeline.

Alignment: In the �rst step, we compute an optimal alignment of last(A)
at time t and first(B) at time t + 1. For this, the second frame creates ICP-
like position constraints as input to the deformation optimization as follows.
First, we compute the nearest deformed urshape surfel f(si, t) for each data
point in first(B). Then, we setup a position constraint with the data point
as target and the urshape point si as origin. We make this a point-to-plane
constraint by setting up a rank-1 error matrix in surface normal direction M =
1/ε2dataninT

i . To be more robust to outliers, we delete points that are too
far from the surface. We discard correspondences that point to data points
in first(B) further away from the deformed urshape than the 80% percentile
of such distances. If the direction of the connection di�ers by more than 45
degrees from the estimated surface normal, the match is also discarded. To

20

avoid oscillations, points closer than 3εsampl are never culled. From these ICP
constraints we compute an optimal deformation f as discussed in Section 5,
deform the urshape using this deformation and iterate the above procedure until
convergence or until a maximum number of 25 iterations has been reached. In
order to make the alignment more robust, we adopt the strategy of (Allen et al.,
2003): We �rst perform a rigid merge (setting a weight for the rigidity potential
that is 100 − 1000× larger than the �nal one), and then decrease the rigidity
(typically in 2-3 steps in powers of 10). For simple alignment problems, this
strategy is not necessary (actually causing a small runtime overhead), but for
complex motions with larger temporal spacing, it improves the reliability of the
alignment.

Urshape Merging: The surfels of the aligned frames are now concatenated
and a k-NN graph restricted to an edge length of 3εsampl is recomputed as
introduced earlier. This is a candidate for a new urshape. The new topology
will contain a superset of all desired topology edges, because the deformation
model guarantees to keep geodesically close points at almost the same distance.
However, because we form all connections that are close in a Euclidian sense,
naive urshape merging may connect surfels that belong to di�erent connected
components (think of a mouth opening and closing in a face scan). We �lter false
positives by tracing all point pairs from A that have been connected through
time. We compute their distance in the whole sequence A and in the new
urshape. If the length of an edge changes substantially (over a factor of 1.5) it
is removed. The same is done for pairs of points originating from the sequence
B.

Deformation Re�tting: Up to now, we have computed a new urshape for the
compound sequence, but we are still lacking its deformation. To recompute it,
we observe that our new urshape consists of points that originate from either
sequence A or B. Thus, we create position constraints that move points from A
to their original location for all frames involved. Accordingly, we create similar
constraints for points from B for the later frames. Then, we use the deformation
optimization module to recompute a deformation sequence. This step �lls in an
interpolated or extrapolated motion for points of the common urshape that
have not been modeled previously in the newly introduced part. Interpolation
happens in regions where the urshapes from A and B overlap. In disjoint areas,
we obtain an extrapolation with minimal deformation.

Global Optimization: We now have stitched together the two sequences, but
small errors may have occurred during this process. If we repeatedly perform
merges, these errors might accumulate to larger mismatches. Therefore, we
reoptimize shape and deformation again: First, we perform a resampling step
that deletes points on the new urshape closer to other urshape points than
εsampl and still covered by neighboring points to keep the sampling density
constant over the optimization. Then, we run the shape optimization module
to update our shape estimate, using data points from all frames involved. Next,
we recompute the deformation �eld f using only ICP-like constraints based on

21

our previous initialization. To make the process robust to structured outliers,
we also delete urshape points that are only observed (close to data points) in
a few frames (typically, less than 3 or below 10%) if our merged sequence is
already long enough (typically at least 16 frames) to make this decision. This
whole process is reiterated at every recursion level of the merging; each iteration
requires a sequential scan through our input data.

Urshape Propagation: A serious problem of the divide-and-conquer sequence
merging algorithm is that it starts from scratch at every merging operation. In
particular at the lowest level of the tree, where single frames are merged, it
might easily happen that the frames involved contain only a few data points
with many disconnected components. Pairwise matching with deformable ICP
is then severely ill posed. To counteract this, we propagate our current urshape
estimate through the merge tree: When we traverse the tree from left to right,
we always �nish all possible subtrees to the left before picking the next unseen
frame to the right. Whenever we pick a new frame that has been previously not
observed we align the rightmost frame from the highest available hierarchy level
on the left with the new frame on the right. Only after this, we start the initial
merge of this frame with its immediately following frame to the right, as dictated
by the binary merge tree. The additional points are carried through the whole
optimization pipeline as shape guess that is not (yet) supported by data points.
After a few frames of urshape propagation, we have usually accumulated a well
behaved shape with large connected components. This strategy does not help if
we start merging at a time step at which the geometry is very sparsely acquired
and fragmented into many parts. We do not require a complete starting shape,
but such fragmented situations still need to be avoided at the starting frames
to prevent convergence problems in the alignment. An automatic strategy for
picking good starting frames and merging in di�erent time directions is currently
still subject to future work.

7.3 Final Global Optimization

After completing the merging pipeline, we perform an additional step of global
optimization. In this step, we employ the full original data resolution (i.e., all
original data points not classi�ed as outliers). In order to be able to represent
the higher resolution data adequately, we upsample the urshape obtained from
hierarchical sequence merging. For upsampling, we performing repeated splits
of the topology edges until each point has a neighboring point within the new
sample spacing εsampl; in practice, we typically choose half the original sample
spacing (quadrupling the resolution). Then, we run the global optimization step
(for shape and deformation) again. At this point, we set higher penalties on
deformation and acceleration to obtain stable results. However, larger deforma-
tion penalties lead to artifacts in strongly deforming areas, such as clothing or
joints.

Adaptive sampling: To counteract this problem, we can use the information

22

gathered so far in the urshape. For this, we determine the area where the mo-
tion cannot be well represented by the uniformly sampled deformation model:
We scan through all (non-outlier) data points again and compute the resid-
ual vectors between data points and closest urshape surfels. We accumulate
signed point-to-plane errors for all surfels. We use signed distances in order to
distinguish between noise (which is evenly likely to deviate in both directions)
and structured areas of undersampled deformation (where deviations are cor-
related over time and space and thus typically point into the same direction).
Subsequently, we extract the information for the adaptive sampling from this
representation: First, we apply a median �lter to remove noise and outliers from
the residuals. We use a very large �lter radius: The radius is a �xed fraction of
the initial deformation node support radius (typically 0.2×), as we are aiming
at extracting information at that level of resolution. Next, we use the �ltered
residuals to re�ne our deformation model. This is done by quantizing the �ltered
residual values. We use a simple heuristic to control the quantization process
automatically (Figure 8 shows examples the outcome of the quantization): We
determine the 75% percentile of the residuals and map these to a re�nement
level of zero, corresponding to the original resolution. For the remaining values,
we compute a linear map that maps the 95% percentile to a level of two and
interpolate in between, clamping at level two, which corresponds to 1/4 nodal
spacing, or 16 times the original resolution (with respect to a surface sheet).
The rationell for this choice is the assumption that most of the data is already
adequately sampled (75%) and that there might be a few outliers (top 5%). In
between, the resolution levels are interpolated. In the nodal sampling algorithm
(Section 5.2), we use this information to locally reduce the grid cell size. Doing
so will have two e�ects. First, the surface becomes more bendable, as the o�set
distance is reduced. Second, the sampling rate is increased so that the higher
frequency details that now become visible can be represented as well. The pro-
posed parameters have been determined by experimentation and usually work
well for typical data sets. They can be �ne tuned by the user, if necessary.

8 Implementation & Results

We have implemented the system described in this paper in C++ and ran a
number of experiments with real-time 3D scanner data sets. The experiments
were conducted on a pool of several standard PCs, using a single system and
a single core only per computation. The systems were all roughly comparable
(Intel Core2 Duo/Quad systems with 2.4-2.5Ghz, at least 2GB RAM). We per-
form all our benchmarks in a 32bit environment (Windows XP 32bit) in order
to examine the memory e�ciency. The employed runtime allows a process to
allocated up to 2GB of main memory2. The primary input data (taking several

2The results can be directly compared to (Wand et al., 2007), who are subject to the same
restrictions; we will demonstrate that our algorithm allows for signi�cantly more complex
reconstructions using the same maximum memory footprint.

23

Figure 8: Weights computed by our adaptive sampling strategy for data sets
hand-1 and hand-2, and the corresponding sampling. The color corresponds
to the factor with respect to the base sample spacing. White means 1.0 (no
increase in sampling), light gray 0.5 (two-fold oversampling) and dark gray 0.25
(four-fold oversampling).

gigabyte in some data sets) was stored out of core on the system hard drive; time
for data access was negligible in comparison to the optimization costs. Statistics
about the results are summarized in Table 1, and screen shots of reconstruction
results are shown in Figure 9. All renderings have been produced directly from
the point based model, using a GPU implementation of EWA surface splatting
(Zwicker et al., 2001), which yields slightly better results than meshing using
marching cubes, in particular in boundary regions. For animated results, please
refer to the video accompanying this paper.

8.1 Results on Example Data Sets

In the following, we describe the results obtained with our implementation and
compare them to previous work. We have applied our algorithm to 6 di�erent
data sets, three of which have also been used in (Wand et al., 2007).

�Face�: The �rst is a scan of a facial expression, obtained with the motion
compensated real-time structured light scanner of (König & Gumhold, 2007).
Our input sequence consists of 79 frames with an overall amount of 23.9 million
data points. We have resampled the data set to about 2.4 million overall points
(quantized to 0.25% bounding box size) and compute the hierarchical alignment
in 304 minutes. Afterwards, we ran an additional optimization step, using the
original data in its full resolution (116 min). In the �nal optimization, we the
acceleration weights (for initial merging, acceleration is always set to zero). For
the subsequent examples, we use a similar processing pipeline.

�hand-1�: Our second example is a hand data set acquired with the system of
(Weise et al., 2007). As this is an articulated motion, we use adaptive sampling
in the �nal optimization step. The re�nement regions are determined auto-
matically from our hierarchical alignment results are shown in Figure 8: The
algorithm automatically concentrates a higher node density in the regions of
the �ngers that are moving. The same example has also been used in [Mitra

24

et al. 2007]; in comparison to their approach, our global-optimization-based
technique is signi�cantly more expensive. However, we can correctly capture
the deforming geometry and �ll all acquisition holes reliably.

�hand-2�: The second sequence of a hand shows a gesture acquired with a
commercial real-time structured light scanner system (ABW-3D). In this exam-
ple, we use the described topology change detection routine to automatically
separate the �nger movement. In the video of this sequence, a minor artifact
in form of a slightly slurry movement of the �ngers is still visible. On closer
examination, it turns out that this artifact is not caused by the topology change
(as one might expect) but by the limited ability of deformable point-to-plane
ICP to align the �ngers with high precision. This is due to the fact that the
actual geometry is rather �at (only the very front facing part of the �ngers is
acquired).

�hand-3�: The third moving hand sequence is particularly challenging, as only
rather small parts of the geometry are visible while the model is strongly de-
forming. With our locally convergent reconstruction technique, we are able to
track the �rst 120 frames of the sequence reliably (as shown in the video). This
is about the limit of what can be dealt with using local deformable ICP as
motion tracking algorithm.

�hand-4�: The forth sequence shows a hand moving with less deformation
but signi�cant rotation. Assembling this sequence is still challenging, as the
�ngers are only acquired partially and appear rather �at in the input data. Our
algorithm recovers the shape correctly up to some artifacts at the thumb, which
are due to a few incorrect matches that cause the geometry to appear �atter
than expected. This sequence is our longest example, covering over 200 frames.
In terms of computation times and memory, this sequence is handled without
problems (using roughly 5h of computation time and 0.5GB of main memory;
see below for details).

�popcorn tin�: The �nal example shows results for a data set of a person
waving a popcorn tin, acquired with a color coded structured light scanner [Fong
and Buron 2005]. The particular challenge of this data set is that the original
data contains structured noise that forms waves on the surface as well and large
outlier surfaces that pop up occasionally. Our algorithm is still able to track
the sequence reliably and reconstruct a smooth surface. We can remove the
large, structured outliers by the coverage test described in Section 7 (removing
urshape parts backed by data with sporadic appearance over time).

E�ect of adaptive sampling: For the �popcorn tin� sequence, we have pre-
pared three di�erent versions: using uniform deformation sampling (grid spacing
= 1/12 of the bounding box length), adaptive sampling (grid spacing = 1/6 of
the bounding box size, re�nement up to = 1/24), and an adaptively sampled
version with user guidance. The uniformly sampled sequence yields reasonable
results but misses out some minute details. For the adaptively sampled version,
we only alter the �nal optimization step (merging is still computed at grid res-

25

olution 1/12) and reduce the base resolution by a factor of two, but allowing
to re�ne by two subdivision levels. Hence, more rigid regions are represented
with less �exibility, reducing noise artifacts, while strongly deforming regions
are sampled with higher resolution. Within the limits of 2GB of main memory,
it was not possible to handle the full data set at the highest level of resolution,
because of the memory requirements of the BFGS solver applied to the deforma-
tion nodes within the window size (Table 3 shows the memory consumption).
The adaptive computation is more e�cient by using a higher resolution only
where necessary. A drawback of the fully automatic adaptive solution is that
it also allocates a high resolution representation to areas with structured noise:
The adaptively sampled version is able to capture the waving pattern on the
popcorn tin. From the point of view of the algorithm, it is impossible to see that
this is not actual motion going on but artifacts of the acquisition system, so it
correctly adapts in such regions. In practice, this is not desirable but easy to �x
by user input: In our system, we can �paint� the re�nement levels directly on the
urshape surface. By specifying no re�nement for the rigid tin, that shows the
acquisition artifacts, we can locally remove these noise patterns while retaining
the automatically computed re�ned resolution in other parts of the object (see
the video for a side-by-side comparison of the three versions; please note the
di�erences on the popcorn tin and the person's shirt. Screenshots are shown in
Figure 11).

Comparison to related work: In comparison to (Pekelny & Gotsman, 2008)
and (Mitra et al., 2007), our approach is much slower, but applicable to more
general scenes, not being restricted to piecewise rigid or very slow motion.
Our deformable reconstruction approach builds on the conceptual framework
of (Wand et al., 2007), which can solve the same problem with comparable gen-
erality. The improvement over the previous algorithm is in the complexity of
scenes that can be handled (see Table 1 and Table 2): Our results work on se-
quences up to 200 frames and with up to about 20,000 surfels, improving upon
(Wand et al., 2007) by roughly an order of magnitude each. The hard limit for
their technique is that the product of time and surfels could not exceed a limit
of about 50-100,000K discretization points3 without exceeding the 2GB limita-
tion imposed by the runtime system. Our largest example (hand-4) encodes the
positions of 2.47million surfels. In principle, our system can handle higher res-
olution urshapes and longer sequences. However, at this point the computation
time of the algorithm becomes a limiting factor. The improvement in geometric
�delity in comparison to the previous results is examined in Figure 10: The re-
constructed geometry is of signi�cantly better quality than the previous results.
Please note that some topological problems (such as in the eye regions in the
face data set) are avoided with the new technique as this is resolved more clearly
by the higher resolution geometry. The third improvement with our new tech-
nique is a better quality in motion reconstruction, which can be seen best in the
accompanying video: Although we represent the motion in a sparse subspace,

3The exact limit depends various factors such as the neighborhood sizes in the topology
graph.

26

we obtain results with less jittering and a higher e�ective spatial resolution of
motion details.

Performance: Our method is in most cases faster than the previous technique;
on a per-frame basis, our overall running times are 4− 10× faster (see Table 2).
The only exception is the hand-2 data set, where we used both a particularly
high resolution geometry and deformation to resolve the splitting �ngers. This
is a shortcomming of the rather simplistic topology detection scheme4. We have
also measured the memory requirements of our new technique. Because we
stream the high volume original data using a cached out-of-core approach, it
is not reasonalbe to directly measure the overall process memory consumption;
instead, we measure the working set assigned to the process by the operating
system in order to estimate the active memory used during the computation.
Table 3 shows the results. The working set estimates are rather noisy, but clearly
show that the memory requirements depend on the resolution of the deformation
model, but do not strongly depend on the sequence length, as desired. The
amount of memory needed to solve for the deformation variables within one
time window is currently the main limiting factor. This could be improved by
employing a more memory e�cient numerical algorithm than BFGS (which we
prefer for its speed), such as non-linear conjugate gradients with an improved
preconditioner.

8.2 Discussion & Limitations

Our method is able to reconstruct a template model from data sequences with
acquisition holes and yields stable global correspondences over time. Our de-
formation model is able to depict the deformation more accurately than the
previous model, although signi�cantly fewer nodes are used to model the defor-
mation. The technique has still a number of limitations: First, it relies on a
locally convergent deformable ICP approach to determine frame-to-frame corre-
spondences. For sequences with large temporal spacing, this does not converge.
This problem also occurs if objects disappear in an acquisition hole and come
out in a very di�erent pose. Our result of the hand-3 sequence shows only part
of the original data; in further frames, the hand closes fully, several �ngers dis-
appear from acquisition, and reappear in a di�erent pose several frames later.
In that case, our algorithm creates results with wrong alignments (hand with
6 �ngers). Without the improved pipeline (using the urshape propagation),
merging of the hand-3 data set was not possible to the shown extend. Another
limitation is the computation time: Although the technique is not limited by
memory demands, and it is signi�cantly more e�cient than the existing meth-
ods of comparable generality, the computational costs are still high. The main
bottleneck is still in nearest neighbor queries necessary to setup ICP constraints
and to construct topologically correctly connected deformation nodes. The costs

4In addition, some of the code used in this example did not use the same level of optimiza-
tion as the other examples, which accounts for a additional runtime penalty.

27

for the latter are the main reason for not using too highly detailed urshapes.
These problems could be addressed by more extensive precomputations, such as
setting up volumetric signed distance �elds for the data (Süssmuth et al., 2008)
and automatically employing a reduced resolution in setting up the deforma-
tion node topology. The last issue is choosing parameters: Our di�erent energy
terms have to be weighted by appropriate coe�cients to balance their e�ect.
The parameters need to be chosen carefully. We have been able to use one and
the same base set of parameters for the merging step of the algorithm. For the
hand-2 data set, the initial grid size was doubled (1/25 instead of 1/12 of the
bounding box side length) in order to resolve the topological separation more
accurately. For the popcorn tin data set, the culling threshold for surface points
visible in only few data frames has been increased to reduce artifacts caused by
structured outliers. Finally, reducing the settings for culling distant data points
(usually 80% percentile, now 3%) in the hand-4 data set improves the alignment
quality. For the �nal optimization step, we start from the same settings as in
the sequence merging and manually determine acceleration penalty weights and
typically also increase the rigidty slightly in order to get a more stable �nal
result. Overall, our experience is that parameter setting is non-trivial, but we
can �nd a set of standard parameters that give reasonable �one click� recon-
struction results for most data sets. Fine tuning is required to obtain the best
reconstruction quality.

9 Conclusions & Future Work

We have presented a novel system for reconstructing a single shape and its de-
formation from a temporal sequence of point clouds from real-time 3D scanner
data. We handle geometry and deformation separately, using a novel adaptive
subspace deformation technique, which leads to a more e�cient algorithm and
produces signi�cantly better results than the previous approach of [Wand et al.
2007]: We obtain high resolution geometry and obtain visually better results
for the deformation. The algorithm uses only a constant working set in memory
for each optimization step that is solved, streaming through the data in small
windows of a few frames size, so that arbitrary long sequences could be handled
in principle. In future work, we would like to improve the optimization code
using a parallel implementation on multi-core processors or possibly graphics
hardware to further reduce the running time requirements, which currently dis-
courage reconstructions of very large input sequences. While our system handles
the local alignment problem robustly and in good quality, it is limited to situa-
tions where the inter-frame alignment can reliably and unambiguously recovered
by a local deformable-ICP-like approach. We think that �nding a strategy for
globally assembling a full deformation sequence of partial scans robustly is a
major open challenge in this line of work. For pairwise alignment, a number of
robust global techniques have been proposed recently (Chang & Zwicker, 2008;
Huang et al., 2008; Li et al., 2008), but for sequences, this problem is not yet

28

data set
data points

frames
nodes urshape surfels rec. time

(in all frames) (merge/�nal opt.) (merge/�nal opt.) (merge/�nal opt.)

face(1) 23,880,623 79 315/315 20,977/20,920 304 min / 116 min

hand-1(2) 3,767,068 100 226/225 5,996/17,332 76 min / 44 min

hand-1 adapt.(2) 3,767,068 100 226/552 5,996/17,332 76 min / 80 min

hand-2(3) 4,106,467 34 932/414 23,357/23,357 326 min / 31 min

hand-3(1) 30,658,761 120 335/1,939 2,725/16,840 128 min / 445 min

hand-4(1) 45,325,272 201 403/424 4216/12,274 154 min / 147 min

popcorn tin(4) 5,179,918 98 429/423 6,428/6,428 175 min / 43 min

pop.t. adapt.(4) 5,179,918 98 429/1,151 6,428/6,428 175 min / 435 min

pop. t. user(4) 5,179,918 98 429/ 686 6,428/6,428 175 min / 224 min

Table 1: Example data sets: (1) from (König & Gumhold, 2007), (2) from (Weise
et al., 2007), (3) from aim@shape courtesy of O. Schall, (4) from (Fong & Buron,
2005).

face hand-2 popcorn tin

#frames 20 26 15
#surfels/frame 1637 819 3799

merging 328 min 67 min 327 min
�nal opt 122 min 23 min 22 min

Table 2: In comparison: running times of [Wand et al. 2007] (on a Pentium 4
3.4Ghz).

solved. An approach of automatically tracking geometric features over time
with the ability to take topological changes into account could be a �rst step in
addressing this problem.

Acknowledgments

The authors whish to thank Stefan Gumhold, Sören König, Phil Phong, Oliver
Schall, and Thibaut Weise for providing the real-time 3D scanning data sets
to us. This work was supported by the Max-Planck Center for Visual Com-
puting and Communication (MPC-VCC), the Cluster of Excellence for Multi-
Modal Computing and Interaction at Saarland University, NSF grants ITR
0205671 and FRG 0354543, NIH grant GM-072970, DARPA grant HR0011-05-
1- 0007, DFG grant �Perceptual Graphics�, Bart Adams has been funded as a
post-doctoral researcher by the Fund for Scienti�c Research, Flanders (F.W.O.-
Vlaanderen).

References

Adams, Bart, Ovsjanikov, Maks, Wand, Michael, Seidel, Hans-Peter, & Guibas,
Leonidas J. 2008. Meshless Modeling of Deformable Shapes and their Mo-

29

data set step peak working set

face merge 762 MB
face global opt (uniform) 508 MB

hand-1 merge 452 MB
hand-1 �nal opt. (uniform) 602 MB
hand-4 merge 414 MB
hand-4 �nal opt. (uniform) 563 MB
popcorn merge 1,3 GB
popcorn �nal opt. (uniform) 700 MB
popcorn �nal opt. (adaptiv) 1,6 GB

Table 3: Memory requirements during the optimization (working sets). The
memory footprint depends mostly on the resolution of the deformation model,
not on the length of the sequence.

Figure 9: The left 3 images correspond to the input data. The right 6 images to
the reconstruction (sample of deformed urshapes). The texture in the leftmost
images has been created by orthogonal projection onto the urshape and was
then propagated to all other frames. The images are sorted from top to bottom
according to Table 1 (face, hand-1, hand-2, hand3. hand-4, popcorn tin).

30

Figure 10: Comparison to [Wand et al. 2007] (left their reconstruction result /
right ours): By decoupling shape and deformation, we obtain a signi�cantly im-
proved reconstruction quality. As shown in the side-by-side comparison above,
the geometry is reproduced in more detail and with less topological noise arti-
facts in the solution, due to the higher resolution geometry. As shown in the
accompanying video, the quality of the deformation �elds is also improved.

Figure 11: Comparing three di�erent reconstructions of the popcorn tin data set.
Left: uniformly sampled deformations (grid size 1/12 bounding box side length).
Middle: adaptive sampling (grid size 1/6−1/24, computed fully automatically).
Rightmost: same adaptive sampling, but with user augmented rigidity function.

tion. In: ACM SIGGRAPH/Eurographics Symposium on Computer Ani-
mation.

Ahmed, Naveed, Theobalt, Christian, Roessl, Christian, Thrun, Sebas-
tian, & Seidel, Hans-Peter. 2008. Dense Correspondence Finding for
Parametrization-free Animation Reconstruction from Video. In: Proc.
Conf. Computer Vision and Pattern Recognition (CVPR).

Allen, Brett, Curless, Brian, & Popovi¢, Zoran. 2002. Articulated body defor-
mation from range scan data. 21(3), 612�619.

Allen, Brett, Curless, Brian, & Popovi¢, Zoran. 2003. The space of human body
shapes: reconstruction and parameterization from range scans. Pages 587�
594 of: SIGGRAPH '03: ACM SIGGRAPH 2003 Papers. New York, NY,
USA: ACM.

Anguelov, D., Koller, D., Srinivasan, P., Thrun, S., Pang, H.-C., & Davis, J.
2005a. The correlated correspondence algorithm for unsupervised registra-
tion of nonrigid surfaces. In: Advances in Neural Information Processing
Systems (NIPS 2004).

Anguelov, D., Srinivasan, P., Koller, D., Thrun, S., Rodgers, J., & Davis, J.
2005b (August). SCAPE: Shape Completion and Animation of People. In:
Proceedings of the 32nd International Conference on Computer Graphics
and Interactive Techniques (SIGGRAPH).

31

Anuar, Nizam, & Guskov, Igor. 2004. Extracting Animated Meshes with Adap-
tive Motion Estimation. Pages 63�71 of: VMV.

Au, Oscar Kin-Chung, Tai, Chiew-Lan, Liu, Ligang, & Fu, Hongbo. 2006. Dual
Laplacian Editing for Meshes. IEEE Transactions on Visualization and
Computer Graphics, 12(3), 386�395.

Avriel, Mordecai. 2003. Nonlinear Programming: Analysis and Methods. Dover
Publishing.

Besl, Paul J., & McKay, Neil D. 1992. A Method for Registration of 3-D Shapes.
IEEE Trans. Pattern Anal. Mach. Intell., 14(2), 239�256.

Botsch, Mario, & Sorkine, Olga. 2008. On Linear Variational Surface Deforma-
tion Methods. IEEE Transactions on Visualization and Computer Graph-
ics, 14(1), 213�230.

Botsch, Mario, Pauly, Mark, Gross, Markus, & Kobbelt, Leif. 2006. PriMo:
coupled prisms for intuitive surface modeling. Pages 11�20 of: SGP '06:
Proceedings of the fourth Eurographics symposium on Geometry processing.
Aire-la-Ville, Switzerland, Switzerland: Eurographics Association.

Botsch, Mario, Pauly, Mark, Wicke, Martin, & Gross, Markus. 2007. Adaptive
Space Deformations Based on Rigid Cells. Computer Graphics Forum,
26(3), 339�347.

Carceroni, Rodrigo L., & Kutulakos, Kiriakos N. 2002. Multi-View Scene Cap-
ture by Surfel Sampling: From Video Streams to Non-Rigid 3D Motion,
Shape and Re�ectance. Int. J. Comput. Vision, 49(2-3), 175�214.

Carranza, Joel, Theobalt, Christian, Magnor, Marcus A., & Seidel, Hans-Peter.
2003. Free-viewpoint video of human actors. Pages 569�577 of: SIG-
GRAPH '03: ACM SIGGRAPH 2003 Papers. New York, NY, USA: ACM.

Chang, Will, & Zwicker, Matthias. 2008. Automatic Registration for Articulated
Shapes. Computer Graphics Forum (Proceedings of SGP 2008), 27(5).

Davis, James, Nehab, Diego, Ramamoorthi, Ravi, & Rusinkiewicz, Szymon.
2005. Spacetime Stereo: A Unifying Framework for Depth from Triangu-
lation. IEEE Transactions on Pattern Analysis and Machine Intelligence
(PAMI), 27(2), 296�302.

de Aguiar, Edilson, Stoll, Carsten, Theobalt, Christian, Ahmed, Naveed, Seidel,
Hans-Peter, & Thrun, Sebastian. 2008. Performance capture from sparse
multi-view video. ACM Trans. Graph., 27(3), 1�10.

Fong, P., & Buron, F. 2005. High-resolution three-dimensional sensing of fast
deforming objects. Intelligent Robots and Systems, 2005. (IROS 2005).
2005 IEEE/RSJ International Conference on, 1606�1611.

Fries, Thomas-Peter, & Matthies, Hermann G. 2003. Classi�cation and

32

Overview of Meshfree Methods. Tech. rept. TU Brunswick, Germany Nr.
2003-03.

Huang, Jin, Shi, Xiaohan, Liu, Xinguo, Zhou, Kun, Wei, Li-Yi, Teng, Shang-
Hua, Bao, Hujun, Guo, Baining, & Shum, Heung-Yeung. 2006. Subspace
gradient domain mesh deformation. ACM Trans. Graph., 25(3), 1126�1134.

Huang, Qi-Xing, Adams, Bart, & Wand, Michael. 2007. Bayesian surface re-
construction via iterative scan alignment to an optimized prototype. Pages
213�223 of: SGP '07: Proceedings of the �fth Eurographics symposium on
Geometry processing. Aire-la-Ville, Switzerland, Switzerland: Eurographics
Association.

Huang, Qi-Xing, Adams, Bart, Wicke, Martin, & Guibas, Leonidas J. 2008.
Non-Rigid Registration Under Isometric Deformations. Computer Graphics
Forum (Proc. SGP 2008), 27(5).

König, Sören, & Gumhold, Stefan. 2007. Image-based Motion Compensation
for Structured Light Scanning of Dynamic Scenes. In: EG Workshop on
Dynamic 3D Imaging (Dyn3D '07).

Li, Hao, Sumner, Robert W., & Pauly, Mark. 2008. Global Correspondence Op-
timization for Non-Rigid Registration of Depth Scans. Computer Graphics
Forum (Proc. SGP 2008), 27(5).

Medioni, G., Lee, M.S., & Tang, C.K. 2000. A Computational Framework for
Segmentation and Grouping. Elsevier.

MESA. http://www.mesa-imaging.ch.

Mitra, Niloy J., Flöry, Simon, Ovsjanikov, Maks, Gelfand, Natasha, Guibas,
Leonidas, & Pottmann, Helmut. 2007. Dynamic geometry registration.
Pages 173�182 of: SGP '07: Proceedings of the �fth Eurographics sym-
posium on Geometry processing. Aire-la-Ville, Switzerland, Switzerland:
Eurographics Association.

Müller, M., Keiser, R., Nealen, A., Pauly, M., Gross, M., & Alexa, M. 2004.
Point based animation of elastic, plastic and melting objects. Pages 141�
151 of: SCA '04: Proceedings of the 2004 ACM SIGGRAPH/Eurographics
symposium on Computer animation. Aire-la-Ville, Switzerland, Switzer-
land: Eurographics Association.

Nealen, Andrew, MÃ 1
4 ller, Matthias, Keiser, Richard, Boxerman, Eddy, & Carl-

son, Mark. 2005. Physically Based Deformable Models in Computer Graph-
ics.

Park, Sang Il, & Hodgins, Jessica K. 2006. Capturing and animating skin
deformation in human motion. ACM Trans. Graph., 25(3), 881�889.

Pauly, Mark, Keiser, Richard, Adams, Bart, Dutré, Philip, Gross, Markus, &
Guibas, Leonidas J. 2005. Meshless animation of fracturing solids. ACM
Trans. Graph., 24(3), 957�964.

33

Pekelny, Y., & Gotsman, C. 2008 (4). Articulated Object Reconstruction and
Markerless Motion Capture from Depth Video. vol. 27.

PMD. http://www.pmdtec.com.

Sand, Peter, McMillan, Leonard, & Popovi¢, Jovan. 2003. Continuous capture
of skin deformation. ACM Trans. Graph., 22(3), 578�586.

Sharf, Andrei, Alcantara, Dan A., Lewiner, Thomas, Greif, Chen, She�er, Alla,
Amenta, Nina, & Cohen-Or, Daniel. 2008. Space-time Surface Reconstruc-
tion using Incompressible Flow. ACM Trans. Graph. (Proc. Siggraph Asia).

She�er, Alla, & Kraevoy, Vladislav. 2004. Pyramid Coordinates for Morphing
and Deformation. Pages 68�75 of: 3DPVT '04: Proceedings of the 3D Data
Processing, Visualization, and Transmission, 2nd International Symposium
on (3DPVT'04). Washington, DC, USA: IEEE Computer Society.

Shewchuk, Jonathan Richard. 1994. An Introduction to the Conjugate Gradient
Method Without the Agonizing Pain. Tech. rept. Carnegie Mellon Univer-
sity, School of Computer Science.

Shi, Lin, Yu, Yizhou, Bell, Nathan, & Feng, Wei-Wen. 2006. A fast multigrid
algorithm for mesh deformation. ACM Trans. Graph., 25(3), 1108�1117.

Shi, Xiaohan, Zhou, Kun, Tong, Yiying, Desbrun, Mathieu, Bao, Hujun, & Guo,
Baining. 2007. Mesh puppetry: cascading optimization of mesh deformation
with inverse kinematics. Page 81 of: SIGGRAPH '07: ACM SIGGRAPH
2007 papers. New York, NY, USA: ACM.

Starck, Jonathan, & Hilton, Adrian. 2005. Spherical Matching for Temporal
Correspondence of Non-Rigid Surfaces. Pages 1387�1394 of: ICCV '05:
Proceedings of the Tenth IEEE International Conference on Computer Vi-
sion. Washington, DC, USA: IEEE Computer Society.

Sumner, Robert W., Zwicker, Matthias, Gotsman, Craig, & Popovi¢, Jovan.
2005. Mesh-based inverse kinematics. ACM Trans. Graph., 24(3), 488�
495.

Sumner, Robert W., Schmid, Johannes, & Pauly, Mark. 2007. Embedded de-
formation for shape manipulation. Page 80 of: SIGGRAPH '07: ACM
SIGGRAPH 2007 papers. New York, NY, USA: ACM.

Süssmuth, Jochen, Winter, Marco, & Greiner, Günther. 2008. Reconstructing
Animated Meshes from Time-Varying Point Clouds. Computer Graphics
Forum (Proceedings of SGP 2008), 27(5), 1469�1476.

Terzopoulos, Demetri, Platt, John, Barr, Alan, & Fleischer, Kurt. 1987. Elasti-
cally deformable models. Pages 205�214 of: SIGGRAPH '87: Proceedings
of the 14th annual conference on Computer graphics and interactive tech-
niques. New York, NY, USA: ACM.

34

Varanasi, Kiran, Zaharescu, Andrei, Boyer, Edmond, & Horaud, Radu P. 2008.
Temporal Surface Tracking Using Mesh Evolution. Pages 30�43 of: Pro-
ceedings of the Tenth European Conference on Computer Vision. LNCS,
vol. Part II. Marseille, France: Springer-Verlag.

Wand, Michael, Jenke, Philipp, Huang, Qixing, Bokeloh, Martin, Guibas,
Leonidas, & Schilling, Andreas. 2007. Reconstruction of deforming geome-
try from time-varying point clouds. Pages 49�58 of: SGP '07: Proceedings
of the �fth Eurographics symposium on Geometry processing. Aire-la-Ville,
Switzerland, Switzerland: Eurographics Association.

Weise, T., Leibe, B., & Gool, L. Van. 2007 (June). Fast 3D Scanning with Au-
tomatic Motion Compensation. In: IEEE Conference on Computer Vision
and Pattern Recognition (CVPR'07).

Würmlin, Stephan, Lamboray, Edouard, Staadt, Oliver G., & Gross, Markus H.
2002. 3D Video Recorder. Page 325 of: PG '02: Proceedings of the 10th
Paci�c Conference on Computer Graphics and Applications. Washington,
DC, USA: IEEE Computer Society.

Xu, Weiwei, Zhou, Kun, Yu, Yizhou, Tan, Qifeng, Peng, Qunsheng, & Guo,
Baining. 2007. Gradient domain editing of deforming mesh sequences. Page
84 of: SIGGRAPH '07: ACM SIGGRAPH 2007 papers. New York, NY,
USA: ACM.

Zhang, Li, Curless, Brian, & Seitz, Steven M. 2003 (June). Spacetime Stereo:
Shape Recovery for Dynamic Scenes. Pages 367�374 of: IEEE Computer
Society Conference on Computer Vision and Pattern Recognition.

Zhang, Li, Snavely, Noah, Curless, Brian, & Seitz, Steven M. 2004 (August).
Spacetime Faces: High-Resolution Capture for Modeling and Animation.
Pages 548�558 of: ACM Annual Conference on Computer Graphics.

Zhou, Kun, Huang, Jin, Snyder, John, Liu, Xinguo, Bao, Hujun, Guo, Baining,
& Shum, Heung-Yeung. 2005. Large mesh deformation using the volumetric
graph Laplacian. ACM Trans. Graph., 24(3), 496�503.

Zitnick, C. Lawrence, Kang, Sing Bing, Uyttendaele, Matthew, Winder, Simon,
& Szeliski, Richard. 2004. High-quality video view interpolation using a
layered representation. Pages 600�608 of: SIGGRAPH '04: ACM SIG-
GRAPH 2004 Papers. New York, NY, USA: ACM.

Zwicker, Matthias, P�ster, Hanspeter, van Baar, Jeroen, & Gross, Markus. 2001.
Surface splatting. Pages 371�378 of: SIGGRAPH '01: Proceedings of the
28th annual conference on Computer graphics and interactive techniques.
New York, NY, USA: ACM.

35

