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Abstract
We propose a novel point signature based on the properties of the heatdiffusion process on a shape. Our signature,
called the Heat Kernel Signature (or HKS), is obtained by restricting the well-known heat kernel to the temporal
domain. Remarkably we show that under certain mild assumptions, HKS captures all of the information contained
in the heat kernel, and characterizes the shape up to isometry. This means that the restriction to the temporal
domain, on the one hand, makes HKS much more concise and easily commensurable, while on the other hand, it
preserves all of the information about the intrinsic geometry of the shape.In addition, HKS inherits many useful
properties from the heat kernel, which means, in particular, that it is stableunder perturbations of the shape.
Our signature also provides a natural and efficiently computable multi-scale way to capture information about
neighborhoods of a given point, which can be extremely useful in many applications. To demonstrate the practical
relevance of our signature, we present several methods for non-rigid multi-scale matching based on the HKS and
use it to detect repeated structure within the same shape and across a collection of shapes.

1. Introduction

A geometric shape is often given by its bounding surface,
whose discrete representation in the computer is a mesh,
or sometimes a point set. Although such representations are
convenient in applications such as rendering and visualiza-
tion, they are not suitable, at least in a direct way, for many
others including full or partial shape comparison, structure
(e.g. symmetry) detection, partial matching, shape classifi-
cation and retrieval, to name just a few. In these applications,
shapes or parts of a shape are considered to be similar if there
exist rigid or isometric transformations between them. Thus,
it is desirable to derive shape signatures that are invariant
under such transformations to facilitate comparison and dif-
ferentiation between shapes or parts of a shape. The proper-
ties of the signatures are of great importance to the success
of efficient and effective comparison and by extension the
various applications that depend on them.

A large amount of research has been done in developing
signatures to facilitate various tasks in computer vision, ge-
ometry processing and data analysis. However, most of the
signatures are presented without a rigorous explanation of
their properties and their effectiveness is often illustrated
only in specific applications through examples. In this pa-
per, we propose a novel point signature, and argue from both
theoreticalandpractical points of view that it has the fol-
lowing desirable properties:
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Figure 1: top left: dragon model; top right: scaled HKS at
points1, 2, 3 and 4. all four signatures are close at small
t’s while big t’s separate the points on the front claws from
those on back; bottom left: the points (blue), whose signature
is close to the signature of point1 based on the smaller half
of the t’s; bottom right: based on the entire range of t’s.

• It organizes information about the intrinsic geometry of a
shape in an efficient, multi-scale way.

• It is stable under perturbations of the shape.
• It is concise and commensurable, but remains informative.
• It can be estimated faithfully and efficiently.
Besides, our signature is invariant under isometric deforma-
tions and can therefore be used in applications that involve
deformable shapes.

c© 2009 The Author(s)
Journal compilationc© 2009 The Eurographics Association and Blackwell PublishingLtd.
Published by Blackwell Publishing, 9600 Garsington Road, Oxford OX4 2DQ, UK and
350 Main Street, Malden, MA 02148, USA.



J. Sun et al. / A Concise and Provably Informative Multi-Scale Signature Based on Heat Diffusion

Our signature captures information about the neighbor-
hood of a point on a shape by recording the dissipation of
heat from the point onto the rest of the shape over time. Be-
cause heat diffuses to progressively larger neighborhoods,
the time parameter provides a natural notion of scale to de-
scribe the shape around a point. This means, in particular,
that the detailed, highly local shape features are observed
through the behavior of heat diffusion over short time, while
the summaries of the shape in large neighborhoods are ob-
served through the behavior of heat diffusion over longer
time. This property of heat diffusion enables us to perform
multi-scale matching between points by comparing their sig-
natures at different time intervals, as shown in Figure1.

It is well-known that heat diffusion on the surface of a
shape is fully described by the heat kernel, associated with
the Laplace-Beltrami operator. Rather than using the heat
kernel itself as a point signature, we define our Heat Kernel
Signature (or HKS) by considering its restriction to the tem-
poral domain. HKS inherits many nice properties from the
heat kernel, such as being intrinsic and stable against pertur-
bations of the shape. More remarkably, we prove that under
certain mild assumptions, the set of Heat Kernel Signatures
at all points on the shape, fully characterizes the shape up to
isometry. This means that our Heat Kernel Signatures are
concise and easily commensurable since they are defined
over the common temporal domain, but at the same time,
preserve almost all of the information contained in the heat
kernel. We also show that HKS can be computed faithfully
and efficiently from the discrete representation of the shape.

The Heat Kernel Signature has the potential to benefit
many applications, including robust discovery of correspon-
dences, shape registration, and partial matching, especially
in the context of deformable shapes. In this paper, we present
several applications ranging from multi-scale point compar-
ison to intrinsic symmetries and detection of repeated struc-
ture across a collection of shapes.

1.1. Related work

A large amount of work has been done on designing various
local point signatures in the context of shape analysis. One
common strategy to derive point signatures is to summarize
the shape distribution in a neighborhood of a point under in-
vestigation [Joh97,CJ97,BMP00]. Spin images [Joh97] and
shape context [BMP00] are two widely used point signatures
that fall into this category. Both spin images and shape con-
text are invariant under rigid transformations. Hilaga et al.
[HSKK01] and Gal et al. [GSCO07] extend the shape con-
text to the non-rigid setting, by using geodesic distances.
However signatures based on geodesic distances are very
sensitive to topological noise, since addition or removal of a
small connection creating a handle can change geodesic dis-
tances dramatically over a large portion of the shape. More-
over, signatures for different neighborhoods are computed
and stored independently, which can be both time and mem-
ory consuming.

Li and Guskov [LG05] define multi-scale local sur-
face signatures by first obtaining a series of increasingly
smoothed versions of a given shape and then constructing
point signatures for features found at each smoothed ver-
sion of the shape. Another approach to obtain a multi-scale
signature is by convolving a function of a certain geometric
property, such as the indicator of the interior of the domain,
with a series of kernel functions like a Gaussian of increas-
ing width. Integral invariant signatures proposed by Manay
et al. [MYHS04] for domains in 2D, that have been used for
global shape matching in [GMGP05] and analyzed exten-
sively by Pottmann et al. [PWHY09], fall into this category.
Our Heat Kernel Signature can also be considered within this
class of signatures, but is significantly different in that no ex-
plicit integration is needed, which reduces the computation
and storage costs.

Another related point signature is the Global Point Sig-
nature (GPS) proposed by Rustamov [Rus07]. For a fixed
point x, GPS(x) is a vector whose components are scaled
eigenfunctions of the Laplace-Beltrami operator evaluated
at x. GPS is invariant under isometric deformations of the
shape, yet does not use geodesic distances explicitly. Ovs-
janikov et al. [OSG08] develop an algorithm to detect global
intrinsic symmetries based on GPS by observing that the in-
trinsic symmetries of a shape become extrinsic or Euclidean
in the signature space. Unfortunately, GPS is a global sig-
nature and cannot be used to detect partial symmetries or to
perform partial matching. Unlike the GPS, our signature al-
lows to perform multi-scale comparison between neighbor-
hoods of points on the same shape, or even across different
shapes. In Section3 we detail the differences between our
signature and the GPS, and in Section4 we show that our
signature is more stable against noise in practice.

Our Heat Kernel Signature is also closely related to
diffusion maps and diffusion distances proposed by La-
fon [Laf04] for data representation and dimensionality re-
duction, and later used by de Goes et al. [dGGV08] for shape
segmentation and by Bronstein et al. [BBK∗09] for shape
matching. In Section3, we reveal the relation of our signa-
ture to the eccentricity based on diffusion distance.

Finally, point signatures are often amalgamated into con-
cise global signatures that can be used for shape indexing
and shape retrieval. For example, the well-known shape dis-
tribution [OFCD02] can be viewed as the sum of the shape
contexts over all sample points. In [GSCO07], Gal et al. em-
ploy a similar strategy where the histogram of intrinsic ec-
centricity and local diameter over all points are used to per-
form pose-oblivious shape indexing. Thus, the properties of
point signatures are inherited by the global shape signatures.

2. Heat Operator and Heat Kernel

In this section we introduce the basic facts about heat diffu-
sion on Riemannian manifolds that are necessary to define
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our Heat Kernel Signature. LetM be a compact Riemannian
manifold possibly with boundary. The heat diffusion process
overM is governed by the heat equation

∆Mu(x, t) = −∂u(x, t)
∂t

, (1)

where∆M is the Laplace-Beltrami operator ofM. If M has
boundaries, we additionally requireu to satisfy the Dirichlet
boundary conditionu(x, t) = 0 for all x∈ ∂M and allt. Given
an initial heat distributionf : M → R, let Ht( f ) denote the
heat distribution at timet, namelyHt( f ) satisfies the heat
equation for allt, and limt→0 Ht( f ) = f . Ht is called theheat
operator. Both ∆M andHt are operators that map one real-
valued function defined onM to another such function. It is
easy to verify that they satisfy the following relationHt =
e−t∆M . Thus both operators share the same eigenfunctions
and if λ is an eigenvalue of∆M , thene−λt is an eigenvalue
of Ht corresponding to the same eigenfunction.

It is well-known (see e.g. [Hsu02]) that for anyM, there
exists a functionkt(x,y) : R

+ ×M×M → R such that

Ht f (x) =
Z

M
kt(x,y) f (y)dy, (2)

wheredy is the volume form aty∈ M. The minimum func-
tion kt(x,y) that satisfies Eq.2), is called theheat kernel,
and can be thought of as the amount of heat that is trans-
ferred fromx to y in time t given a unit heat source atx.
In other wordskt(x, ·) = Ht(δx) whereδx is the Dirac delta
function atx: δx(z) = 0 for anyz 6= x, and

R

M δx(z)dz= 1.
For compactM, the heat kernel has the following eigen-
decomposition:

kt(x,y) =
∞
∑
i=0

e−λi tφi(x)φi(y), (3)

whereλi andφi are theith eigenvalue and theith eigenfunc-
tion of the Laplace-Beltrami operator, respectively.

The heat kernelkt(x,y) has many nice properties. For
instance, it is symmetric:kt(x,y) = kt(y,x) and satisfies
the semigroup identity:kt+s(x,y) =

R

M kt(x,z)ks(y,z)dz. The
other properties more relevant to this work are that heat ker-
nel is anisometric invariant, it is informative, multi-scale,
andstable. Below we describe each of these properties.

The heat kernel can also be interpreted as the transi-
tion density function of Brownian motion on the manifold.
This means that for any Borel subsetC ⊆ M,

R

C kt(x,y)dy=
P(Xx

t ∈ C), the probability that the Brownian motion start-
ing at a pointx will be in C at time t. Brownian motion
Xx

t : R
+ →M is the most basic continuous time Markov pro-

cess onM and many of the following properties have nice
interpretations in the probabilistic setting. However, due to
lack of space, we do not pursue this direction, and refer the
interested reader to an excellent book by E. Hsu [Hsu02].

Intrinsic. By intrinsic, we mean the heat kernel is an iso-
metric invariant, as stated in the following proposition.

Proposition 1 (Intrinsic Property) If T : M → N is an
isometry between two Riemannian manifolds M and N, then
kM
t (x,y) = kN

t (T(x),T(y)) for any x,y∈ M and any t> 0.

The invariance of the heat kernel under isometric defor-
mations is a direct consequence of the invariance of the
Laplace-Beltrami operator, which implies that the heat equa-
tion only involves intrinsic properties of the manifold. One
practical implication of this property is that the heat kernel
can be used to analyze shapes undergoing isometric defor-
mations, which is useful, for example, in matching articu-
lated shapes, such as humans or animals in different poses.

Informative. In addition to its isometric invariance, the
heat kernel contains all of the information about the intrinsic
geometry of the shape and hence fully characterizes shapes
up to isometry, as stated in the following proposition.

Proposition 2 (Informative Property) Let T : M → N be
a surjective map between two Riemannian manifolds. If
kN
t (T(x),T(y)) = kM

t (x,y) for any x,y ∈ M and any t> 0,
then T is an isometry.

This proposition is a simple consequence of the following
equation (see e.g. [Gri06]). For anyx,y on a manifold,

lim
t→0

t logkt(x,y) = −1
4

d2(x,y)

whered(x,y) is the geodesic distance betweenx andy onM.
As we will see in Section3, however, a lot of the information
in the heat kernel is redundant, and we can obtain a concise
and informative signature by only considering its restriction
to the temporal domain.

Multi-Scale. The multi-scale property of the heat kernel,
in the context of point signatures, means that for small val-
ues oft, the functionkt(x, ·) is mainly determined by small
neighborhoods ofx, and these neighborhoods grow bigger as
t increases. This implies, in particular, that for smallt, kt(x, ·)
only reflects local properties of the shape aroundx, while for
large values oft, kt(x, ·) captures the global structure ofM
from the point of view ofx.

To formalize the above intuition, let us consider the heat
diffusion process on a subset ofM. Let D be a smooth, rel-
atively compact domain onM andHD

t be the heat operator
associated withD with the Dirichlet boundary conditions as
described above. Obviously, the heat kernelkD

t (x,y) is a lo-
cal quantity that only depends on the domainD. The follow-
ing proposition shows thatkD

t (x,y) is a good approximation
of kt(x,y) either in the case thatD is arbitrary small as long
ast is small enough or in the case thatt is arbitrary large as
long asD is big enough.

Proposition 3 (Multi-Scale Property [Gri06]) (i) For
any smooth and relatively compact domain D⊆ M,
limt→0 kD

t (x,y) = kt(x,y). (ii) For any t ∈ R
+, and any

x,y ∈ D1, the Dirichlet heat kernel kD1
t (x,y) ≤ kD2

t (x,y)
if D1 ⊆ D2. Moreover, if {Dn} is an expanding and ex-
hausting sequence, i.e.,∪∞

n=1Dn = M and Dn−1 ⊂ Dn, then
lim

n→∞
kDn
t (x,y) = kt(x,y) for any t.
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(a) kD
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Figure 2: (a) Heat kernel kDt (x, ·) colored from grey to
bright red determined by a neighborhood D, whose bound-
ary is shown in dark grey. (b) The L2 difference‖kt(x, ·)−
kD
t (x, ·)‖2 between the heat kernel computed using D, and

the one computed on the entire shape for various t.

To illustrate this multi-scale property, in Figure2(b)we plot
the L2 difference‖kt(x, ·)− kD

t (x, ·)‖2, wherex is a point
on the horse model andD is the region whose boundary is
shown in dark grey in Figure2(a). Figure2(a) also shows
the heat kernelkD

t (x, ·) for t = 0.3, around which theL2 error
begins to grow. Note that for this value oft, kD

t (x,y) at points
y close to the boundary ofD is no longer negligible. The heat
kernels shown in Figure2 are estimated from the mesh based
on the method described in Section4.

Stable. One of the particularly useful properties of the heat
kernel, inherited by the signature that we define in Section3,
is that it is stable under perturbations of the underlying mani-
fold. Many deformable models in practice are not isometric,
and a successful point signature should not be sensitive to
small perturbations. An intuitive reason for the stability of
the heat kernel comes from its interpretation as the transi-
tion probability of the Brownian motion on the manifold. In-
tuitively, this means thatkt(x,y) is a weighted average over
all paths betweenx andy possible in timet, which should
not be greatly affected by local perturbations of the surface.
More concretely, ifXx

t is the Brownian motion on a domain
M, and we perturb a subsetP ⊂ M (for example by intro-
ducing a tunnel between a small set of points inM), then
only the paths passing throughP will be affected. This intu-
ition can be formalized by conditioning on the event thatXx

t
passes throughP.

Pointwise convergence of the heat kernelR
d under per-

turbations of the diffusion process was shown by Chen et
al. [CZHZ98], who prove the stability of the heat kernel un-
der changes of the Laplace operator. They show that ifL
and L̃ are two uniformly elliptic operators inRd given as
L = ∇· (A(x)∇) andL̃ = ∇· (Ã(x)∇), with the correspond-
ing heat kernelskt(x,y) andk̃t(x,y), then

∣

∣kt(x,y)− k̃t(x,y)
∣

∣

can be bounded by a function of the difference betweenA
and Ã. In the case of the Laplace operator,A is the iden-
tity matrix Id×d andÃ(x) ∈ R

d×d models the perturbations
of the diffusion process. The heat equation corresponding to

L̃ becomes:∂u
∂t = ∑d

i, j=1
∂

∂xi

(

Ãi j (x)
∂p
∂x j

)

. In particular, their

result shows that the heat kernels converge pointwise when-
ever the corresponding diffusion matricesA andÃ converge.
These results can also be extended to general Riemannian

manifolds†. In Section4, we also show the stability of the
heat kernel in the discrete setting.

3. Heat Kernel Signature (HKS)

In Section2, we showed that the heat kernel is intrinsic and
stable against noise. Moreover, the heat kernel provides a
natural multi-scale characterization of the neighborhoods of
a given point. These properties make the heat kernel a very
lucrative candidate for a point signature. Specifically, one
can take the family of functions{kt(x, ·)}t>0 parametrized
by t as a signature for each pointx ∈ M. Unfortunately, the
complexity of this signature would be extremely high, since
for a single point signature{kt(x, ·)}t>0 is a function defined
on R

+ ×M, the product of temporal and spatial domains.
Even worse, it would be difficult to compare the signatures
of two different points. To make sense of the comparison,
one would have to align two signature functions, saykt(x, ·)
andkt(x′, ·), which would require a map from the neighbor-
hood ofx to that ofx′.

As noted above, the heat kernel contains a large amount
of redundant information. This is because the heat diffu-
sion process is governed by the heat equation∆Mu(x, t) =

− ∂u(x,t)
∂t , which implies that the change of the signature func-

tion in the spatial domain is manifested by its change over
time. Thus our strategy to overcome the above difficulties is
to consider the restriction of the heat kernel to a subset of
R

+ ×M, while keeping as much information as possible.

Given a pointx on the manifoldM, we define itsHeat
Kernel Signature, HKS(x) to be a function over the temporal
domain:

HKS(x) : R
+ → R,HKS(x, t) = kt(x,x). (4)

One of the main results of this paper is the followingIn-
formative Theorem, which says that, despite restricting the
signature toR+ ×{x} and dropping the entire spatial do-
main, under mild assumptions,{kt(x,x)}t>0 keeps all of the
information of{kt(x, ·)}t>0.

Theorem 1 (Informative Theorem) If the eigenvalues of
the Laplace-Beltrami operators of two compact manifolds
M and N are not repeated, and T is a homeomorphism
from M to N, then T is isometric if and only if kM

t (x,x) =
kN
t (T(x),T(x)) for any x∈ M and any t> 0.

Intuitively, if the eigenvalues are not repeated, one can de-
duce both the eigenvalues and the squared values of the
eigenfunctions at a pointx, by analyzing the behavior of its
HKS, kt(x,x) = ∑∞

i=0 e−λi tφi(x)
2 as a function oft. Then us-

ing a nice property of the eigenfunctions, which says that
the negative and the positive nodal domains are interleaved,

† Personal communication with Dr. W. Zheng (a coauthor of
[CZHZ98])
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Figure 3: Heat kernel function kt(x,x) for a small fixed t on
the hand, Homer, and trim-star models. The function values
increase as the color goes from blue to green and to red, with
the mapping consistent across the shapes. Note that high and
low values of kt(x,x) correspond to areas with positive and
negative Gaussian curvatures respectively.

it is easy to show that the eigenfunctions are uniquely deter-
mined up to a sign, and so iskt(x,y) = ∑∞

i=0 e−λi tφi(x)φi(y),
which proves the theorem by Proposition2, see Appendix
for a formal proof of this Theorem.

Informative Theorem assures that the set of Heat Kernel
Signatures is almost as informative as the family of func-
tions {kt(x, ·)}t>0 which is much more complex. Most no-
tably, the Heat Kernel Signatures at different points are de-
fined over a common temporal domain, which makes them
easily commensurable. Moreover, HKS inherits many of the
properties of the heat kernel, illustrated in Section2, includ-
ing being intrinsic, multi-scale and robust. By mimicking the
heat diffusion process on a shape, the geometric informa-
tion about the neighborhoods of a pointx at different scales
is compactly encoded in the HKS{kt(x,x)}t>0. Thus, our
signature encodes geometric information about the shape as
a set of functions over the temporal domain, which are not
only isometrically invariant but also inexpensive to store and
easy to compare.

One hypothesis of the Informative Theorem is that the
Laplace-Beltrami operator does not have repeating eigenval-
ues. In general, the Theorem does not hold if this hypothe-
sis is violated. A simple counterexample is a sphere, where
kt(x,x) is the same for allx. However, it is clearly possible
to construct non-isometric maps between two spheres of the
same radius. Similarly, it is possible to show that there are
non-isometric maps between congruent tori, that preserve
the Heat Kernel Signatures at all points. These examples,
however, are degenerate, in that they possess infinitesimal
isometric self-mappings. It would be interesting to see if the
theorem holds for shapes with a discrete set of intrinsic sym-
metries, such as the Star model shown in Figure3, which we
leave for future work.

Relation to curvature. In addition to the Informative The-
orem above, which is rather global in nature, the following
expansion shows that for smallt, the Heat Kernel Signature
of a point x is directly related to the scalar curvatures(x)
(Gaussian curvature on a surface) atx (e.g. [MP49]):

kt(x,x) = (4πt)−d/2
∞
∑
i=0

ait
i ,

wherea0 = 1 anda1 = 1
6s(x). This expansion corresponds to

the well-known property of the heat diffusion process, which
states that heat tends to diffuse slower at points with positive
curvature, and faster at points with negative curvature. Fig-
ure3 plots the values ofkt(x,x) for a fixed smallt on three
shapes, where the colors are consistent across the shapes.
Note that the values of this function are large in highly
curved areas, and small in negatively curved areas. Note that
even for the trim-star, which has sharp edges,kt(x,x) pro-
vides a meaningful notion of curvature at all points. For this
reason, the functionkt(x,x) can be interpreted as the intrin-
sic curvature atx at scalet. We use this intuition to detect
salient features on the shape in Section5.1.

Relation to diffusion distance. The Heat Kernel Signa-
ture is also closely related to diffusion maps and diffusion
distances proposed by Lafon [Laf04] for data representa-
tion and dimensionality reduction. The diffusion distance be-
tweenx,y∈ M at time scalet is defined as

d2
t (x,y) = kt(x,x)+kt(y,y)−2kt(x,y)

= ∑
i

e−λi t(φi(x)−φi(y))
2.

The eccentricity ofx in terms of diffusion distance, de-
notedecct(x), is defined as the average squared diffusion dis-
tance over the entire manifold (called ADD in [dGGV08]):

ecct(x) =
1

AM

Z

M
d2

t (x,y)dy= kt(x,x)+HM(t)− 2
AM

,

whereAM is the surface area ofM, andHM(t) = ∑i e
−λi t is

the heat trace ofM. Since bothHM(t) and 2
AM

are indepen-
dent ofx, if we consider bothecct(x) andkt(x,x) as func-
tions overM, their level sets, in particular extrema points,
coincide. Thus, for smallt, we expect the extremal points of
ecct(x) to be located at the highly curved areas.

Relation to GPS As mentioned in the introduction, the HKS
is also related to the Global Point Signature (GPS) [Rus07],

defined as: GPS(x) =
(

φ1(x)√
λ1

,
φ2(x)√

λ2
, · · · , φi(x)√

λi
, · · ·

)

. Note that

GPS is not easily comparable for points across different
shapes because the eigenfunctions are only defined up to a
change in sign (or, more generally, orthonormal transforma-
tions in the eigenspace). Furthermore, when eigenvalues are
close to each other, perturbation theory shows that the cor-
responding eigenfunctions may switch [GVL96]. Our sig-
nature can be viewed as a weighted sum of the squares of
eigenfunctions and thus is not sensitive to the order of the
eigenfunctions or their sign as shown in Proposition4 below.
Most importantly, the HKS of points on different shapes are
commensurable, which allows to use our signature naturally
for multi-scale matching.

4. Discrete Setting

In most applications, the underlying manifold is not known.
Instead, we are often given an approximation of the the shape
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represented by a mesh. In this section, we describe how to
estimate HKS from a mesh and show its stability against
noise in the discrete setting with an explicit error bound.

In the d-dimensional Euclidean spaceRd, the heat ker-
nel has an explicit expression which is simply a Gaussian

kt(x,y) = (4πt)−d/2e−
‖x−y‖2

4t . For a general compact man-
ifold, the heat kernel does not have an explicit expression,
but one can compute the heat kernel via the corresponding
Laplace-Beltrami operator. Many schemes have been pro-
posed to estimate the Laplace-Beltrami operator from dis-
crete meshes [PP93, MDSB02, RWP06, BSW08]. Perhaps,
the most commonly used method in the computer graphics
community is the so-called cotangent scheme. However, it
has been shown that the cotangent scheme does not converge
in general [Xu04, War05]. Recently, Belkin et al. [BSW08]
proposed a convergent scheme called mesh Laplace opera-
tor. Unlike the FEM methods, which include the cotangent
scheme, the convergence of their operator does not require
the triangles in the mesh to be well-shaped. For this reason
we use the mesh Laplace operator to estimate the Laplace-
Beltrami operator.

Given a mesh withn vertices, the mesh Laplace opera-
tor L, is a sparse matrix of sizen×n, which can be written
asL = A−1W whereA is a positive diagonal matrix, whose
elementA(i, i) represents the area associated with vertexi,
andW is a symmetric semi-definite matrix. Under these con-
ditions the generalized eigenproblemWφ = λAφ has a full
set of real eigenvalues and eigenvectors, which means that
L = ΦΛΦTA, whereΛ is a diagonal matrix of eigenvalues,
and Φ is a matrix whose columns correspond to the right
eigenvectors ofL.

To interpret the heat operator and the heat kernel in the
discrete setting, we re-write the heat equation on a mesh
that approximates the underlying manifold. Ifut is a time-
dependent function defined on the vertices, such thatut(x) is
the amount of heat at vertexx at timet, then the equivalent
to Equation1 is: Lut = ∂ut

∂t . It is well known that solutions

to this equation have the form:ut = e−tLu0 whereu0 is an
arbitrary vector representing the initial distribution of heat,
ande−tL is a matrix exponential:

e−tL =
∞
∑
i=0

(−tL)i

i!
. (5)

When L = ΦΛΦTA, as above,e−tL = Φe−tΛΦTA = KtA
Similarly to the continuous case, we interpret the matrix
e−tL as the heat operator, and the elements(x,y) of the ma-
trix Kt as the values of the heat kernelkt(x,y). Then, for a
given initial vector f , the heat distribution at timet is given
asut = e−tL f , or ut(x) = ∑y kt(x,y) f (y)A(y), which is the
discrete version of Eq. (2). Note that because HKS is a re-
striction of the heat kernel instead of the heat operator, it is
insensitive to the meshing and thus commensurable for the
points with different area weights.

Figure 4: Absolute values of the4th eigenfunction of the
Laplace-Beltrami operator of the dragon model (left) and
of the8th eigenfunction of the armadillo model (right), both
corresponding to non-repeating eigenvalues. The absolute
values of these functions increase as the color changes from
blue to red. Note that these values are not preserved under
the bilateral symmetries.

For each pair of verticesx,y, the corresponding entry
Kt(x,y) = ∑n

i=1 e−λi tφi(x)φi(y), which coincides with the
eigen-decomposition of the heat kernel in the smooth case
(see Eq. (3)). This expression allows us to estimate the heat
kernel through the eigenvalues and the eigenvectors of the
Laplace operator of the mesh. In practice, we use the sparse
eigensolver implemented in Matlab to compute the eigenval-
ues and the eigenvectors ofL.

Stability In Section2 we have shown that heat kernel is
stable in the smooth case. In the following proposition, we
show the estimated heat kernel based on the matrix exponen-
tial is also stable against noise, see Appendix for its proof.

Proposition 4 Assume L= A−1W and L̃ = Ã−1W̃ with
Ã−1 = A+E andW̃ = W+F where‖E‖ < ε and‖F‖ < δ.
Then if Kt and K̃t are the induced heat kernels from L and
L̃ respectively, we have‖Kt − K̃t‖ = O(

√
ε + δ). Here‖ · ‖

is any matrix norm induced from vector norm or its equiva-
lence.

Note that unlike the stability of the eigenvector computa-
tions used in [Rus07] and [OSG08], which depends on the
spectral gap, the stability of the HKS only depends on the
perturbation itself, which is easier to control. Figure4 illus-
trates the absolute values of the eigenvectorsφ on two shapes
that have a bilateral symmetryT, but |φ(T(x))| 6= |φ(x)| , as
required by [OSG08], although both eigenfunctions corre-
spond to non-repeating eigenvalues. Our signature is more
stable and can be used to detect the symmetries in these
cases, as shown in Section5.1. Furthermore it provides a
multi-scale method to distinguish between purely local and
global effects of shape distortion.

5. Multi-Scale Matching

We have shown that HKS{kt(x,x)}t>0 of a pointx∈ M en-
codes the information about its neighborhoods in a multi-
scale way. This enables us to perform multi-scale matching
by comparing HKS’s corresponding to different time inter-
vals. Specifically, in order to see if two pointsx andx′ are
matched at the given scales specified by the time interval
[t1, t2], we can compute the difference between two HKS’s:
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(
R t2
t1 |kt(x,x)− kt(x′,x′)|2dt)1/2 and considerx andx′ to be

matched at a given range of scales if the difference is zero.
However, in practice, we are interested in matching approx-
imately and thus must be careful on how the difference ap-
proaches 0. Sincekt(x,x) = ∑i e

−λi tφ2
i (x) decays exponen-

tially as t increases, we need a more appropriate strategy of
computing the difference between two signatures.

We introduce two heuristics, which work very well in
our experiments. First, observe that the difference|kt(x,x)−
kt(x′,x′)| decreases exponentially ast increases, which
makes the difference at large scales negligible compared to
those at small scales. To address this issue, we scale each
kt(x,x) by

R

M kt(x,x)dx, which normalizes the integral of the
scaledkt(x,x) over M to be one for allt ’s. This normaliza-
tion ensures that the differences between two signatures at
different time scales contribute approximately equally. Note
that

R

M kt(x,x)dx is also called the heat trace at timet and

can be computed as∑i e
−λi t .

In addition, we observe that for a fixed pointx, the vari-
ation of the functionkt(x,x) is large for smallt ’s but de-
cays ast increases. Intuitively, this is becausekt(x,x) is de-
termined by the average behavior of heat dissipation in the
neighborhood determined by the scalet. The average behav-
ior in a small neighborhood is easily affected as the scale
changes, while average behavior in a large neighborhood
is much more stable. Thus in order to efficiently represent
HKS, we scale the temporal domain logarithmically, which
gives a more faithful approximation to HKS at small scales,
when the signature changes more rapidly.

Model #vertices MATRIX EIGEN HKS
Dancer 9.97k 52 117 0.38

Armadillo 15k 137 183 0.56
Octopus 66.2k 3236 987 2.38
Dragon 100k 3512 2015 3.65

Table 1: Timing for computing HKS (on a machine with
2.4GHz CPU and 16G RAM). The 3rd, 4th and 5th col-
umn show the timing (in seconds) for constructing Laplace
matrix (based on geodesic distances), solving eigenproblem
and computing HKS at all points.

With these observations in mind, we define the difference
between two Heat Kernel Signatures at the scale[t1, t2] as

d[t1,t2](x,x
′) = (

Z t2

t1

( |kt(x,x)−kt(x′,x′)|
R

M kt(x,x)dx

)2
d logt)1/2. (6)

In practice, we sample HKS uniformly over the logarithmic
scaled temporal domain and obtain a vector to represent the
HKS for each point. Then we estimate the integral in Eq. (6)
by computing theL2-norm of the difference between two
corresponding vectors.

Table 1 shows the timing to compute the Heat Kernel
Signature for some models shown in the paper. For each
model, we compute 300 eigenvalues and eigenvectors and
compute the HKS by uniformly sampling 100 points in the

t1 t2 t3

3

1

3
2

scaled HKS

1

2 4

log(t)

4

Figure 5: Top: a synthetic model; bottom: the scaled HKS
corresponding to the four marked points.

logarithmically scale over the time interval[tmin tmax] with
tmin = 4ln10/λ300, tmax= 4ln10/λ2. The HKS remains al-
most unchanged fort > tmaxas it is mainly determined by the
eigenvectorφ2. To estimate the HKS witht < tmin faithfully,
one needs to compute more eigenvalues and eigenfunctions.
However, there is a limit on how smallt can be for which the
HKS can be estimated faithfully, which is determined by the
resolution of the mesh.

5.1. Results

We first illustrate the multi-scale property of HKS on a syn-
thetic model shown in Figure5 by considering the signa-
tures of the four marked points. Since all four points have
isometric neighborhoods at small scales, their HKS’s are the
same for smallt ’s (< t1). Point 1 and point 3 have isometric
neighborhoods at middle scales and thus their HKS’s coin-
cide even for middlet ’s ([t1, t3]), as do the HKS’s of point
2 and point 4 ([t1, t2]). The signatures of points 3 and 4 are
similar for larget ’s since they are both located in the mid-
dle of the base bar and their neighborhoods at large scale are
close. Similar phenomena can be observed for the signatures
of the four marked points on different claws on the dragon
model in Figure1.

In Figure6, we color plot the distance functiond[t1,t2](x, ·)
between the HKS of the marked pointx and the signatures
of other points on the model. As we can see, at small scales,
all four feet are similar to each other. On the other hand, if
large values oft, and consequently large neighborhoods are
taken into account, the difference function can separate the
front feet from the back feet, since the head of the dragon is
quite different from its tail.

Figure 7 shows the application of HKS to multi-scale
self-matching for several other models. For a given point
x on each model, we report other points, whose signatures
are within a threshold of HKS ofx at different scales.
Again, points with similar small neighborhoods are reported
at small scales, while only those with similar global struc-
ture are reported at larger scales. To further illustrate the re-
silience of our method to noise, we introduce a small tunnel
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Figure 6: Color plot of the difference between the HKS de-
fined by the range of scales[t1, t2] of the point marked by
the purple sphere and the signatures of other points on the
shape. The difference increases as the color changes from
red to green to blue. left: both t1 and t2 are small; right: t1 is
small, while t2 is large.

to the armadillo model. Note that despite this modification,
relevant points are reported for both small and large scales.

One further advantage of our signature, is that unlike the
GPS signature that is only defined up to orthonormal trans-
formations within each eigenspace, the HKS signature is de-
fined canonically, and allows to compare points across sev-
eral shapes. Figure8 shows the points on 4 independent
poses of a horse model whose signatures at small and large
scales are close to the signature of a point picked on one of
the models.

As noted earlier, HKS can also be used to identify and
differentiate between salient features on the shape. To find
the feature points, we use the local maxima of the function
kt(x,x) for a larget. These local maxima seem to capture the
extremities of long protrusions on the surface, which allows
us to find, for example, the hands and feet on the human
model. We declare pointx as a feature ifkt(x,x) > kt(xi ,xi)
for all xi in the two ring neighborhood ofx. Figure 9(a)
shows the features picked on the 3 poses of the Armadillo
model. Note that although this model has eigenfunctions
that fail to be symmetric, as shown in Figure4, the features
picked by the method above are consistent across the two
sides. For each of the poses of the Armadillo, our method
identified 18 feature points. Figure9(b) shows the classical
MDS embedding of all 54 feature points inR2 based on the
distances between their signature vectors fort = [0.1, 4].
Note that at this scale, the feature points on the hands and
the feet of the Armadillo are hard to distinguish. Figure9(c)
shows the same embedding when HKS vectors are compared
for t = [0.1, 80]. By increasing the scale, and incorporating
more information we are able to distinguish the features on
the hands from those on the feet. Note also that the lack of
perfect symmetry is manifested by the fact that signatures
of individual points from the left and the right sides of each
model have non zero distance between them.

Because we only identify a few salient features on each
shape, the complexity of this method is quite low. To illus-
trate this, we apply it to find repeated structure in the dataset
of 175 models of the girl dancing swing provided by Vla-
sic et al. [VBMP08]. The top of Figure10shows the feature
points found on 4 models in the dataset, while the bottom
shows the classical MDS embedding of the feature points

Figure 7: The points in purple are matched with the marked
point. Top: matching based on small t’s; bottom: matching
based on all t’s.

found on all 175 models based on distances between their
signatures. In this example, we use a medium range oft ’s, al-
though the reported embedding seems to persist across many
scales. Note that not only are the features persistent across a
large set of models, but also the heat-kernel signature allows
to distinguish between different classes of features, such as
the hands, the feet, and the head.

6. Conclusion and Future Work

We have described a concise and provably informative in-
trinsic point signature based on the heat diffusion pro-
cess, and demonstrated its effectiveness in multi-scale shape
matching. Our main observation is that HKS, though being
the restriction of the heat kernel to the time domain, often
preserves all the shape information up to isometric transfor-
mations. We also show that HKS can be computed faithfully
and efficiently, and is stable against perturbations.

In the future, we would like to improve the efficiency
of computing the HKS. Because computing the eigen-
decomposition is rather costly an alternative approach of
estimating the heat kernelKt = e−tLA−1 is using a partial
sum of the infinite series in Eq. (5). This method would be
especially attractive for for small values oft, since only a
few terms would be needed to obtain an accurate estimation
of e−tL. However, computing matrix exponential is a well-
known difficult problem, and it would be interesting to see
if the structure ofL allows to perform this computation in a
stable and efficient way for all values oft.

We would also like to obtain a quantative relation be-
tween the time parametert and the size of the neighborhood
aroundx that is characterized by the HKS ofx at scalet,
which would be help to choose scales automatically for par-
tial matching. Finally, we would like to see if we can char-
acterize entire regions or shapes using the Heat Kernel Sig-
natures, and to explore other applications of the HKS.
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Figure 8: Four different poses of a horse. left: matching
based on half of t’s; right: matching based on all t’s
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Figure 10: Top: Feature points on 4 models in the dataset
by Vlasic et al. [VBMP08]. Bottom: the MDS embedding of
the feature points from all 175 models based on their Heat
Kernel Signatures at medium scales.

7. Appendix

Proof of Theorem 1 We prove the theorem in three steps.
Step 1: We claim thatM and N have the same spectrum and
|φM

i (x)| = |φN
i (T(x))| for any eigenfunctionφi and anyx ∈ M. We

prove the above claim by contradiction. In the following, wesort
the eigenvalues in the increasing order. The claim can fail first at
the kth eigenvalue for somek, namelyλM

k 6= λN
k but λM

i = λN
i and

|φM
i (x)| = |φN

i (T(x))| for any i < k and anyx ∈ M, or fail first at
thekth eigenfunction for somek, namely there exists a pointx such
that |φM

k (x)| 6= |φN
k (T(x))| but λM

i = λN
i = λi for any i ≤ k and

|φM
i (x)| = |φN

i (T(x))| for any i < k and anyx ∈ M. In the former
case, WLOG, assumeλM

k < λN
k . There must exist a pointx ∈ M

such thatφM
k (x)2 = ε > 0 for someε. From Eq. (3), we have

kM
t (x,x)−kN

t (T(x),T(x))

> e−λM
k tφM

k (x)2−
∞

∑
i=k

e−λN
i tφN

i (T(x))2

= e−λM
k t(ε−

∞

∑
i=k

e−(λN
i −λM

k )tφN
i (T(x))2). (7)

By the local Weyl law [Hör85], we have |φN
i (T(x))| =

O((λN
i )(d−1)/4) whered is the dimension ofN. In addition, the se-

quence{λN
i }∞i=0 is increasing and henceλN

i −λM
k > 0 for anyi ≥ k.

As the exponential decay can cancel the increasing of any polyno-
mial, we have

lim
t→∞

∞

∑
i=k

e−(λN
i −λM

k )tφN
i (T(x))2 = 0

By choosing a big enought, we havekM
t (x,x)−kN

t (T(x),T(x)) > 0
from Eq. (7), which contradicts the hypothesis. In the latter case,
WLOG, assumeε = φM

k (x)2−φN
k (T(x))2 > 0. We have

kM
t (x,x)−kN

t (T(x),T(x))

> e−λkt(φM
k (x)2−φN

k (T(x))2)−
∞

∑
i=k+1

e−λN
i tφN

i (T(x))2

= e−λkt(ε−
∞

∑
i=k+1

e−(λN
i −λk)tφN

i (T(x))2). (8)

Since the sequence{λN
i }∞i=0 is strictly increasing, similarly for a

big enought, we havekM
t (x,x)− kN

t (T(x),T(x)) > 0 from Eq. (8),
which contradicts the hypothesis.
Step 2: We show that eitherφM

i = φN
i ◦T or φM

i = −φN
i ◦T for any

i. The argument is based on the properties of the nodal domains of
the eigenfunctionφ. A nodal domain is a connected component of
M \φ−1(0). The sign ofφ is consistent within a nodal domain, that
is either all positive or all negative. For a fixed eigenfunction, the
number of the nodal domains is finite. Since|φM

i (x)| = |φN
i (T(x))|

and T is continuous, the image of a nodal domain underT can
not cross two nodal domains, that is a nodal domain can only
be mapped to another nodal domain. A special property of the
nodal domains [Che76] is that a positive nodal domain is only
neighbored by negative ones, and vice versa. Pick a fixed point
x0 in a nodal domain. IfφM

i (x0) = φN
i (T(x0)), we claim that

φM
i (x) = φN

i (T(x)) for any pointx on the manifold. Certainly the
claim holds for the points inside the nodal domainD containing
x0. Due to the continuity ofT, the neighboring nodal domains
of D must be mapped to those next to the one containingT(x0).
Because of the alternating property of the signs of neighboring
nodal domains, the claims also hold for those neighboring ones. We
can continue on expanding nodal domains like this until they are
exhausted, which proves the claim. ThusφM

i = φM
i ◦ T. Similarly,

φM
i (x0) = −φN

i (T(x0)) leads toφM
i = −φN

i ◦T.
Step 3: We have for anyx,y ∈ M and t > 0 kM

t (x,y) =

∑∞
i=0 e−λi tφM

i (x)φM
i (y) = ∑∞

i=0 e−λi tφN
i (T(x))φN

i (T(y)) =
kN

t (T(x),T(y)), which proves the theorem by Proposition2.

Proof of Proposition 4 The difficulty of the proof comes from

the fact thateX+Y 6= eXeY in general. LetE1 = Ã
1
2 − A

1
2 and

E2 = Ã− 1
2 − A− 1

2 . It is easy to verify that both‖E1‖ <
√

ε and

‖E2‖ <
√

ε. Now let L1 = A
1
2 LA− 1

2 , then L1 is symmetric and

e−tL = A
1
2 e−tL1A− 1

2 . Similarly L̃1 = Ã
1
2 L̃Ã− 1

2 is symmetric and

e−tL̃ = Ã
1
2 e−tL̃1Ã− 1

2 . We also have:

‖L1− L̃1‖ = ‖A− 1
2 WA−

1
2 − Ã− 1

2 W̃Ã− 1
2 ‖

= ‖A− 1
2 WA−

1
2 − (A− 1

2 +E2)(W +F)(A− 1
2 +E2)‖

≤ ‖E2(W +F)(A− 1
2 +E2)+A− 1

2 F(A− 1
2 +E2)‖ = O(

√
ε + δ)

As bothL̃1 andL̃ are symmetric, from [VL77], we have:

‖e−tL1 −e−tL̃1‖
‖e−tL1‖ ≤ t‖L1− L̃1‖e−t‖L1−L̃1‖ = O(

√
ε + δ).

It is easy to show thate−tL ande−tL1 have the same eigenvalues and
thus‖e−tL‖ = ‖e−tL1‖, which leads to

‖e−tL −e−tL̃‖
‖e−tL‖ =

‖A
1
2 e−tL1A− 1

2 − Ã
1
2 e−tL̃1Ã− 1

2 ‖
‖e−tL1‖

≤ ‖Ã
1
2 (e−tL1 −e−tL̃1)Ã− 1

2 ‖+‖A
1
2 e−tL1E2 +E1e−tL1Ã− 1

2 ‖
‖e−tL1‖

≤ t‖L1− L̃1‖e−t‖L1−L̃1‖ +‖E2‖‖A
1
2 ‖+‖A− 1

2 +E2‖‖E1‖
= O(

√
ε + δ)

Therefore we have:

‖Kt − K̃t‖ = ‖e−tLA−1−e−tL̃Ã−1‖

≤ ‖(e−tL −e−tL̃)A−1‖+‖e−tL̃E‖ = O(
√

ε + δ).
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