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Abstract. We consider the problem of designing efficient iterative meth-
ods for solving linear systems. In its full generality, this is one of the oldest
problems in numerical analysis with a tremendous number of practical
applications. We focus on a particular type of linear systems, associ-
ated with Laplacian matrices of undirected graphs, and study a class of
iterative methods for which it is possible to speed up the convergence
through combinatorial preconditioning. We consider a class of precondi-
tioners, known as tree preconditioners, introduced by Vaidya, that have
been shown to lead to asymptotic speed-up in certain cases. Rather than
trying to improve the structure of the trees used in preconditioning, we
propose a very simple modification to the basic tree preconditioner, which
can significantly improve the performance of the iterative linear solvers
in practice. We show that our modification leads to better conditioning
for some special graphs, and provide extensive experimental evidence for
the decrease in the complexity of the preconditioned conjugate gradient
method for several graphs, including 3D meshes and complex networks.

1 Introduction

Solving general linear systems of equations is one of the oldest and best studied
areas of numerical analysis, with an abundance of both exact and approximate
solutions of varying efficiency (see e.g., [12]). In this paper, we focus on iter-
ative methods for solving a particular type of linear systems, associated with
Laplacian matrices of undirected graphs. These linear systems arise in a variety
of applications, which are related to solving the Poisson equation on discretized
domains, including physical (e.g. fluid) simulation, complex system analysis, ge-
ometry processing and computer graphics [16,17], among many others. One class
of techniques, which is especially useful in solving large systems of equations with
Laplacians matrices of certain (sparse) graphs is the conjugate gradient method.
This method can be classified as an iterative approach, since it provides pro-
gressively better estimates of the final solution, and only requires the ability to
compute matrix-vector products. It is also known to terminate in a finite number
of steps depending on the quality of the initial guess and the condition number
of the matrix in question [24]. The convergence speed of the conjugate gradient
method can further be improved significantly using preconditioning, which aims
to approximate the given matrix A by another matrix B (a preconditioner),



whose inverse can be readily computed. The quality of the improvement pro-
vided by the preconditioner is directly related to the difference between B−1A
and identity. Recently a class of preconditioners has been proposed for solving
the Poisson equation on undirected graphs, by using the so-called combinatorial
(or geometric) preconditioning [5,23]. The main idea, proposed by Vaidya, is to
approximate a given graph by its subgraph, on which the system of equations
can be solved easily. The canonical example of this type of preconditioner is
a spanning tree of the graph. Since the Poisson equation can be solved in lin-
ear time if the graph is a tree, the main idea in Vaidya’s approach is to use the
Laplacian of the spanning tree as a preconditioner to improve the convergence of
iterative methods, such as the conjugate gradient. This basic framework has been
extended significantly to both obtain near-optimal trees that can approximate
arbitrary graphs, and to use a recursive approach in which a graph can be ap-
proximated by a progressively more accurate subgraphs, which can lead to very
significant asymptotic speed-up in solving linear systems on general graphs [22].
While the theoretical framework for combinatorial preconditioners has been de-
veloped and in some ways settled, with a few notable exceptions, the practical
implementations of these ideas are still largely lacking. This can be attributed,
in part, to the highly complex nature of the algorithms for obtaining the optimal
preconditioners, with potentially very large constants in the asymptotic analysis
on the one hand [22,21], and the relatively little improvement provided by the
tree preconditioner on the other hand [9]. As a result, despite the theoretical ap-
peal and the near-optimality in the asymptotic sense of the resulting algorithms
[10], the practitioners have not yet fully benefited from the potential practical
improvements provided by the combinatorial preconditioners.

Contribution. In this paper, we concentrate on the basic setting of Vaidya’s
preconditioners where the Laplacian matrix of a single spanning tree is used as
a preconditioner for the conjugate gradient method. Indeed, by extending the
experiments of Chen et al. [9] to a variety of graphs and large networks, we
show empirically that in most cases the improvement given by a single precon-
ditioner is either minor or even non-existent compared to the baseline conjugate
gradient approach. In this context, our main contribution is to propose a very
simple modification to Vaidya’s tree preconditioner, which provides significant
practical improvements, with minimal implementation effort. Our modification
can be seen as a combination of a basic Jacobi (diagonal) preconditioner with
a combinatorial (tree) one. Despite its extreme simplicity, we show that on a
set of important special cases, our approach can lead to a decrease in the con-
dition number of the resulting system, compared to the baseline combinatorial
preconditioner. Perhaps more importantly, however, we also show via extensive
experimentation, that our modification can also lead to practical speedup in the
convergence of the conjugate gradient method compared to both the Jacobi and
tree preconditioners for a large number of classes of graphs and different target
functions. Our approach is not meant to provide a preconditioner structurally
very different from the existing ones, or to improve their asymptotic complexity.
Rather, by showing that a simple modification can potentially lead to signif-



icant practical improvements, we hope to demonstrate the usefulness of such
preconditioners and to help eventually bridge theory and practice in this field.

Related works. A tremendous amount of progress has been done in solving lin-
ear systems associated to symmetric diagonally dominant matrices in the recent
past. Classical iterations, as described in [12], were very sensitive to systems
of poor condition number, and until quite recently efficient preconditioning was
mostly a matter of heuristics. A major step was done by Spielman and Teng [22],
presenting the first nearly linear algorithm (see [20,19,21]). The feat was made
possible by the introduction and refinement of ideas such as spectral sparsi-
fication, ultra-sparsifiers and algorithms for constructing low-stretch spanning
trees, which they cleverly combined to build a recursively preconditioned iter-
ative solver. The idea of recursive preconditioning is the basis of today’s best
solvers [10], and its individual parts have been separately improved over the
years. For instance, methods for obtaining low-stretch spanning trees, first in-
troduced with no link to preconditioning [2], have been seen a lot of progress over
the years. Their use as preconditioners was suggested in [23], in the continuity
of the ideas of support theory and combinatorial preconditioning (see [5,7,6] for
early work and formalizations of this theory). Interested readers can read the
progression of the stretch in [1], where the currently best algorithm for com-
puting trees of total stretch O(m log n log log n) in time O(m log n log log n) is
give. If no better bound has been found since then, recent works introduced a
generalization of stretch [11], creating new possibilities of optimization. Spectral
sparsification has seen similar improvements, however its progression is less lin-
ear than that of spanning trees. Better sparsifiers are described in [3] and fast
construction algorithms are given in recent works [14] (see [4] for more details).

2 Preliminaries and background

Throughout the paper, we consider simple, undirected, unweighted graphs G =
(V,E) with #V = n and #E = m, and d(i) = #{j, (i, j) ∈ E} the degrees of
the vertices. The unweighted (and un-normalized) Laplacian matrix LG is given
via its relation to the diagonal degree matrix DG and the adjacency matrix AG:

DG =

{
d(i) if i = j
0 o/w

, AG =

{
1 if (i, j) ∈ E
0 o/w

, LG = DG −AG

The Laplacian matrix LG is symmetric, diagonally dominant, and only has
non-negative eigenvalues. Indeed, it is easy to see that the number of connected
components of G equals the dimension of the null space of LG. Throughout our
paper we assume to be working with a connected and unweighted graph G (most
of the material can be adapted to the case of positively-weighted edges). The
eigenvalues of LG are given as 0 = λ1 < λ2 ≤ . . . ≤ λn.

Solving Linear Systems. The canonical problem that we consider is to solve a
linear system of equations of the form Ax = b, where, in our case A = LG for
some known vector b. Depending on the domain, a problem of this form may



also be known as solving the discrete Poisson equation. In general, although the
number n of vertices in the graph can be very large, the matrix LG is typically
sparse, which can make direct solvers inefficient or even not applicable, since a
full n2 set of variables can easily exceed the available memory. Instead, iterative
solvers have been used to solve this problem, and most notably the Conjugate
Gradient (CG) method, which is especially useful in cases with limited mem-
ory, since it requires only matrix-vector product computations. This method is
applicable to symmetric positive (semi)-definite systems, and computes succes-
sive approximations of x by taking a step in a direction conjugate to previously
taken steps, where conjugacy between two vectors x1, x2 is defined as xT1 Ax2 = 0
(please see Chap. 11 in [12] for a full discussion of this method, and Figure 1
below for the pseudo-code). It is well-known that in the absence of rounding
errors, the conjugate gradient method will converge in at most n iterations in
the worst case. A more relevant bound, however, can be given by using the con-
dition number κ(A) of the matrix A, given by the ratio of its largest and smallest
non-zero eigenvalues. After t iterations, the error of the algorithm is bounded
by:

||x(t) − x||A ≤ 2

(
1− 2√

λn/λ2 + 1

)t

||x||A (1)

Note that while the Conjugate Gradient method is best suited for positive def-
inite matrices, it can also be easily adapted to positive semi-definite systems,
such as the ones including the graph Laplacian. One simply has to make sure
that the right hand side of the equation lies in the span of the matrix. For us,
this means that the vector b has to sum to zero. Let us also stress that λ1 in
the definition of the condition number is the first non-zero eigenvalue. This will
become particularly important when we define and analyze the properties of the
preconditioned conjugate gradient.

Preconditioning. Since the condition number gives a simple bound on the effi-
ciency of iterative solvers, and of the conjugate gradient method in particular,
it is natural to try to introduce linear systems equivalent to the original one,
but with a lower condition number, and therefore better convergence properties.
This process, called preconditioning, requires a non-singular matrix M , such that
M−1 ≈ A−1. Then, instead of solving Ax = b directly, we solve :

C−1AC−1x̃ = C−1b (2)

where C2 = M , and x is found by solving Cx = x̃. Ideally, the preconditioner
M should be a positive (semi)-definite matrix, such that the condition number
of M−1A is significantly smaller than that of A itself. The design of optimal
preconditioners typically involves a trade-off: on the one hand, M−1A should
be as close to identity as possible. On the other hand, it should be possible
to solve a linear system of the form Mx = b very quickly, since it has to be
done at every CG iteration. An example of potentially useful preconditioning
is the Jacobi Preconditioner for diagonally dominant systems. This consists in



Initialization

{
r(0) = b−Ax(0)

p(0) = r(0)

Iteration





α(k) = ||r(k)||2
||p(k)||2

A

x(k+1) = x(k) + α(k)p(k)

r(k+1) = r(k) − α(k)Ap(k)

β(k) = ||r(k+1)||2
||r(k)||2

p(k+1) = r(k+1) + β(k)p(k)

Initialization




r(0) = b−Ax(0)

z(0) =M−1r(0)

p(0) = z(0)

Iteration





α(k) = 〈r(k),z(k)〉
||p(k)||2

A

x(k+1) = x(k) + α(k)p(k)

r(k+1) = r(k) − α(k)Ap(k)

z(k+1) =M−1r(k+1)

β(k) = 〈z(k+1),r(k+1)〉
〈z(k),r(k)〉

p(k+1) = z(k+1) + β(k)p(k)

Fig. 1. Conjugate Gradient and Preconditioned Conjugate Gradient : this pseudocode
shows the general idea of orthogonalization in both algorithms as well as how the
preconditioning takes place in PCG.

taking the matrix D = (δijA(i,j))(i,j), i.e the diagonal of the original matrix, as
preconditioner. This is both very easy to compute, and solving Dx = b takes an
optimal O(n) operations. When both A and M are symmetric positive definite,
then solving Eq. 2 can be done without explicitly computing the matrix C,
by modifying the steps taken during the iterations of the Conjugate Gradient
method. This results in the Preconditioned Conjugate Gradient for which we
provide the pseudo-code in Figure 1. Note that for positive semi-definite systems,
one has to use the pseudo-inverse in Eq. 2 above, and make sure that the kernel
of M is contained in the kernel of A, for otherwise the system Mx = b, may not
have a solution. In most cases, when the preconditioning is applied to positive
semi-definite systems the kernels of M and A coincide, although the framework
can also be applied in a more general case.

Spanning Trees as Preconditioners for Graphs. While both the basic and the pre-
conditioned Conjugate Gradient method can be applied for any positive (semi)-
definite linear system, the design of preconditioners can benefit from the knowl-
edge of the structure of the matrix in question. As mentioned above, in this
paper, we concentrate on the linear systems arising from the Laplacian matrices
of undirected graphs. In this case, a particularly promising idea, first proposed
by Vaidya and then extended significantly in the recent years, is to use the
Laplacian matrix of a subgraph as a preconditioner to the original system. Note
that, if the subgraph is connected over the same set of nodes as the original
graph, then the kernels of the Laplacian matrices both have dimension 1, and
they contain the constant vector 1n and all the vectors parallel to it, making
the use of preconditioning directly applicable. An appealing candidate for a sub-
graph to be used as a preconditioner is a spanning tree T of the graph G. This
is because if LT is the Laplacian matrix of the tree T , then the problem of type
LTx = b can be solved very efficiently, in time O(n), with two tree traversals.
This makes spanning trees good candidates for preconditioning, because their
use keeps the cost per PCG iteration in O(m). It can be shown [24] that for a

spanning tree T of G, κ(L†TLG) ≤ stretchT (G), where the stretch is defined as
the sum of the distances in the tree between any two vertices connected by an



edge in G. Together with Eq. 1 this can be used to establish the convergence of
the preconditioned Conjugate Gradient for Laplacian matrices.

We note briefly that better bounds can be proved by also looking at the distri-
bution of the eigenvalues. A proof using a lower bound for all eigenvalues and an
upper bound on the number of eigenvalues above a certain threshold yields that

PCG computes an ε−approximation in O
(

(stretchT (G))
1/3

log(1/ε)
)

iterations

(see Lemma 17.2 in [24]). In the past several years, this basic framework for
solving linear systems with Laplacian matrices has been extended significantly,
with two major research directions: finding trees that can optimize the stretch
with respect to arbitrary large graphs [1], and changing this basic framework
to use a more sophisticated hierarchical graph approximation scheme in which
preconditioners themselves can be solved via iterative (and possibly recursive)
schemes [16]. Unfortunately, both of these directions lead to highly complex
algorithms and their practical performance has been evaluated only very re-
cently [13]. Rather than trying to improve either of these two directions, our
goal is to show that a simple modification to the tree preconditioner can signifi-
cantly improve the performance of the iterative solver both in theory (for some
restricted cases) and in practice (over a large number of graph classes).

3 Contribution: enhancing tree-based preconditioners

As mentioned in the introduction, our main goal is to show that a simple mod-
ification of the combinatorial (tree) preconditioner can have a positive impact
on the practical performance of the preconditioned conjugate gradient. Indeed,
as has been noted by Chen et al. [9] and we confirm in Section 4, the basic
version of Vaidya’s approach rarely results in significant practical benefits for
PCG. The critical remark behind our work is that it is possible to add posi-
tive terms to the diagonal of the preconditioning matrix LT without changing
its combinatorial structure that enables the fast resolution of associated linear
systems. Thus, we introduce the matrix HT = LT + DG − DT = DG − AT .
Note that the matrix HT has the same diagonal as the Laplacian LG, but the
same sparsity structure as the Laplacian of the subgraph T . Therefore, solving
a linear system of equations of the type HTx = b can still be done in exactly the
same time as solving LTx = b. Nevertheless, as we show below theoretically (on
some restricted cases) and empirically on a large number of different graphs and
linear systems, this simple modification can significantly boost the performance
of the PCG method. Before proceeding to the analysis of our modification to
Vaidya’s preconditioner, we first note that unless T = G, the matrix HT will be
full-rank, unlike the LG which has a kernel consisting of vectors parallel to the
constant vector 1n. While in practice, this does not change the method shown in
Figure 1, we note that the analysis needs to be adapted slightly. Namely, since
we are operating in the space orthogonal to the constant vector 1n, we need to
make sure that the condition number of the preconditioned system is calculated
correctly. For this, the following Lemma, which is readily verified, is useful:



Lemma 1. The eigenvalues of the generalized eigenvalue system LGx = λHTx
are the same as those of the system LGx = λPHTx, where P = (In − 1

n1n1
T
n )

is the projection onto the space of vectors orthogonal to the constant vector.

Therefore, computing the condition number κ(LG, HT ) of the preconditioned
system can be done by considering the ratio of the largest to smallest non-zero
eigenvalues of the matrix H−1T LG. Equivalently, one can consider the smallest
and largest value c such that xT (LG−cHT )x ≥ 0 for all x, such that xTHTxc = 0.

To motivate the use of our preconditioner as well as to provide some intuition
on its behavior we proceed in two stages. First, we show some bounds on the
condition number for special graphs, and second, we demonstrate empirically
that for a very wide range of large scale graphs and linear systems our approach
can significantly outperform other baseline preconditioners (Section 4).

3.1 Some bounds for special graphs

Here we provide bounds on the condition number of the preconditioned sys-
tem for Laplacians and show that we can obtain significant improvement over
Vaidya’s preconditioners in some important special cases (proofs are given in [8]).

The complete graph Let us first consider G = Kn, the complete graph on n
vertices and let T be a star spanning tree, consisting of one root vertex of degree
n− 1 which is adjacent to all remaining n− 1 vertices.

Lemma 2. Given the complete graph G and the tree T described above, then for
any n > 2 we have κ(LG, HT ) = n

n−1 < κ(LG, LT ) = n.

Note, in particular that κ(LG, HT )→ 1 whereas κ(LG, LT ) grows with n.

The ring graph Another important example is the cycle (ring) graph with n
vertices. Here, the tree T differs from G by a single edge. In this case:

Lemma 3. If G is a cycle and T is a spanning tree of G, then κ(LG, HT ) < 2,
while κ(LG, LT ) = n for any n.

Note that again, the system preconditioned withHT remains well-conditioned for
all n, unlike the system preconditioned by the tree itself, which has an unbounded
condition number. Indeed, a strictly more general result holds:

Lemma 4. Let G be any graph and T be a tree on G, such that the edge-
complement T c of T in G is a star. Then: κ(LG, HT ) ≤ 2.

Note that this lemma generalizes the previous one since the complement of
the tree in the ring graph is a single edge.

The wheel graph Our final example is the wheel graph, consisting of a cycle
with n− 1 vertices that are all connected to a central vertex s, which does not
belong to the cycle. In this case, let T be the star graph centered around s.

Lemma 5. Given the graph G and the spanning tree T described above then,
for any n odd, κ(LG, HT ) < κ(LG, LT ) = 5.

This example is instructive since the wheel graph can be considered to be a
simple case of a triangle mesh, a class of graphs for which we show empirically
a significant improvement over Vaidya’s preconditioners in the next section.



Network/Graph n m κ(LG) κ(LG, LT ) κ(LG, HT ) κ(LG, LT ) κ(LG, HT )

(max tree) (max tree) (min tree) (min tree)

C. Elegans 453 2025 922.53 373.03 20.42 11857 19.67

Email URV 1133 5451 217.44 16476 9.71 24540 10.23

Power grid network 4941 6594 26487 452.89 2366 6445 2331

Random triang. 102 300 115.42 102.65 42.95 286.51 41.59

Random triang. 1002 3000 2009 1206 461 2359 475.11

Fig. 2. Condition numbers for unweighted graphs: we consider a few example of com-
plex networks and random triangulations. Left pictures show the metabolic system of
the C. elegans worm and a random planar triangulation (picture by Nicolas Curien).

A counterexample We also note that there exist graphs for which the condi-
tion number of our system is worse than that of the unmodified approach. The
simplest example of such a graph is a path-graph with 6 nodes, with additional
edges between nodes (1, 3) and (4, 6), and where the tree is the path. In this case,
it can be shown that κ(LG, LT ) = 3 < κ(LG, HT ). Nevertheless our experiments
suggest that such cases are rare, and seem to occur when G is very close to the
tree T . We leave the characterization of such cases as interesting future work.

4 Experimental results

We provide experimental evaluations 1 of the performance of our preconditioner
against CG (conjugate gradient with no preconditioning), the diagonal precondi-
tioner JPCG (Jacobi preconditioned conjugate gradient) and TPCG (tree-based
Vaidya’s preconditioned conjugate gradient). As our preconditioner is a combi-
nation of the tree-based and diagonal approaches, we denote it by JTPCG.We
run our experiments on a wide collection of graphs including triangle meshes (ob-
tained from the AIM@SHAPE Shape repository), 2D regular grids, and complex
networks (from the Stanford Large Network Dataset Collection). We also con-
sider random planar triangulations, generated by the uniform random sampler
by Poulalhon and Schaeffer [18], as well as graphs randomly generated according
to the small-world and preferential attachment models.

4.1 Evaluating the condition number

Regular grids. Our first experiments concern the evaluation of the condition
numbers for regular grids, for which we know how to construct spanning trees of
high and low stretch factors. It is not difficult to see that the total stretch of the
blue tree Th in Fig. 3 is Θ(n

√
n) (observe that a vertical edge (ui, vi) ∈ G \ T

belonging to the i-th column contributes with a stretch of Θ(i), where i ranges
from 1 to

√
n). The red edges in Fig. 3 define a spanning tree Tl having a low

stretch factor, which can be evaluated to be O(n log n) using an inductive ar-
gument (we refer to [16] for more details). These bounds reflect the numerical
evaluation of the condition numbers for both trees Th and Tl (plotted as dashed

1 A pure Java implementation of our algorithms is available at
www.lix.polytechnique.fr/∼amturing/software.html.



high stretch

low stretch

κ(LG, Th)

κ(LG, Tl)

κ(LG, Hh)

κ(LG, Hl)

κ

4k1k25664164

Th(16)

Tl(16)

1000

2000

3000

4000

5000

6000

7000

size

grid κ(LG) κ(LG, T ) κ(LG,H) κ(LG, T ) κ(LG,H)

size (low stretch) (low stretch) (high stretch) (high stretch)

4 2 4 1.6 4 1.6

16 11.6 9.88 4.52 21.02 4.84

64 50.54 42.64 17.37 95.14 19.63

256 206.17 187.02 77.07 399.89 87.82

1024 828.69 788.56 332.88 1631.64 379.68

4096 3318 3242 1390 6585 1585

Fig. 3. We compute condition numbers for regular (unweighted) grids endowed with
different spanning trees: blue and red edges correspond to trees with high and low
stretch factors respectively. Our precondition matrix H allows to drastically decrease
the condition number in both cases, when compared to standard tree preconditioning
(dashed lines).

3D Mesh n m κ(LG) κ(LG, LT ) κ(LG,HT) κ(LG, LT ) κ(LG,HT)

(max tree) (max tree) (min tree) (min tree)

Sphere 162 480 33.4 723. 25.6 1384 26.06

Helmet 496 1482 245.8 2885 142.4 5341 143.8

Venus 711 2106 411.8 2591 229.6 3950 251.46

Genus 3 mesh 1660 4992 304.9 5862 226.5 13578 227.2

Triceratops 2832 8490 2079 12342 1454 13332 1530

Cow 2904 8706 2964 15184 1853 8868 1982

Fig. 4. Condition numbers for 3D surface meshes: we compare tree preconditioning
and Jacobi-tree preconditioning. Meshes are endowed with both minimum (blue) and
maximum (red) spanning trees (weights correspond to Euclidean edge length).

lines in Fig. 3). Experimental evaluations show that our Jacobi-tree precondi-
tioner allows to drastically decrease the condition numbers for both trees Th
and Tl. More interestingly, using HT instead of LT we obtain new bounds which
are extremely close, despite the very different performances of the correspond-
ing spanning trees. Not surprisingly, this behavior does not only concern regular
grids, but it is common to a wide class of graph Laplacians, as suggested by
experimental evidence provided in next sections.

Mesh graphs and complex networks. We also compute the condition numbers for
Laplacians corresponding to several 3D meshes, of different sizes and topology
(see Fig. 4). We test and compare our preconditioner against the CG method
(without preconditioning) and tree preconditioning, using as test trees both min-
imum and maximum spanning trees. We consider min spanning trees because
their performances are in general worse than those of maximum spanning trees:
weights are computed according to the Euclidean edge length of the 3D em-
bedding (in the case of unweighted graphs, in order to compute min and max
spanning tree, we reweight edges according to a vertex degree driven strategy).
We note that our experiments confirm the intuition of Vaidya’s seminal work:
maximum spanning trees perform in general better as preconditioners than other
trees. Once again, our preconditioner is able to get condition numbers which are
significantly lower than the ones obtained with the simple preconditioner LT .
We note that this difference in performance is much less prominent when using
HT . These phenomena occur for all tested graphs and result in a significant
improvement of the performance of iterative solvers.
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Fig. 5. Fluid simulation: we compare JTPCG against CG and TPCG (the performance
of JPCG is very similar to CG). We plot the proportion of the number of iterations
required to solve 100 (resp. 200) linear systems with a precision of 1e−5. For instance,
JTPCG (colored curves) takes between 51 and 127 iterations per system on a grid of
size 4096, while CG (black curve) requires between 75 and 184 iterations.

4.2 Counting iterations: comparison of iterative linear solvers

In this section we provide experimental evidence for the improvement achieved by
our JTPCG preconditioner. We test it against other linear solvers (CG, JPCG,
and TPCG) on a large set of surface meshes and random graphs. In order to
obtain a fair comparison, we measure the convergence rates of linear solvers for
Lx = b counting the total number of iterations required to achieve a given error:
as metrics we use the standard relative residual error. We use iterative solvers as
core linear solvers for simulating fluid diffusion on regular 2D grids of different
sizes, while counting the number of iterations required by different solvers at each
time step (we use fixed precision 1e−5). As shown by the plots in Fig. 5, JTPCG
is able to drastically decrease the number of iterations, using both the high and
low stretch factor spanning trees (red and blue curves). Observe that tree-based
preconditioner perform pretty well (even without diagonal modification) when
combined with low stretch factors (red curves in Fig. 5).

Graph n m CG JPCG TPCG JTPCG TPCG JTPCG
no prec. (max tree) (max tree) (min tree) (min tree)

Triceratops 2832 8K 225 196 341 188 426 181

Cow 2904 8K 214 192 347 170 366 182

Egea 8268 24K 305 249 701 219 974 221

Bunny 26002 78K 536 432 1632 416 1892 419

Feline 49864 149K 962 745 1946 663 2362 682

Eros 476596 1.4M 2185 1560 16122 1474 13257 1488

Random triang. 100002 300K 2382 1215 1776 1082 1247 1006

Table 1. Solving linear systems: we compare the JTPCG against the classical CG
method, the JPCG and TPCG preconditioners. We count total number of iterations
required to achieve fixed precision 1e− 7.

Solving mesh laplacians. The results reported in Table 1 concern the resolution
of linear systems of the form Ax = b, where the vector b is a random vector



Graph n m CG JPCG TPCG JTPCG TPCG JTPCG
no prec. (max tree) (max tree) (min tree) (min tree)

Triceratops 2832 8K 5139 5057 6811 4842 7505 4997

Cow 2904 8K 5158 5145 6854 4907 6989 4980

Egea 8268 24K 7980 7314 12525 6988 15206 7031

Bunny 26002 78K 32187 30634 49048 30231 51405 30312

Aphrodite 46096 138K 13669 12228 37547 11803 41991 11303

Feline 49864 149K 46404 42217 62595 40371 71095 40727

Iphigenia 49922 149K 19490 18111 54008 16984 60973 17306

Fig. 6. The picture above shows a mesh together with its 3D spectral embedding. The
table reports the total number of iterations performed by the iterative linear solvers
during the inverse power iteration (our tests are run with fixed precision 1e− 5).

Network n m CG JPCG TPCG JTPCG nan
(max tree) (max tree) nan

C. Elegans 453 2025 8123 7129 7795 7051 nan

Email URV 1133 5451 24395 23540 25684 23435 nan

Facebook social circles 4039 88234 11832 7702 8044 7677 nan

Power grid network 4941 6594 15623 13430 8812 10481 nan

PGP network 10680 24316 64068 54806 55356 53852 nan

Pref. attachment 100000 500K 61125 59399 80451 59455 nan

Small world 100000 500K 4972 5010 125446 4963 nan

Gowalla 196591 950K 202247 146883 176644 147322 nan

Fig. 7. Spectral clustering and complex networks: the picture above shows a partition
into five sets of a social network (facebook, 4k nodes) obtained by applying the K-means
algorithm to the spectral embedding of the graph.

orthogonal to the constant vector. We use the same starting vector as an initial
guess for all linear solvers (tests are repeated several times, in order to take
into account the dependency of the convergence speed on the initial guess). As
confirmed by the results reported in Table 1, our preconditioner always performs
better than other solvers (this has been confirmed for all tested meshes).

Iterative eigensolvers. Spectral methods proved their relevance in various appli-
cation domains, ranging from graph drawing and data visualization to complex
networks analysis (for more details we refer to [15,25]). We also have integrated
our preconditioner as the core of an iterative eigensolver (we have implemented
a hybrid version of the inverse power iteration). We evaluate its performance by
computing the smallest non-trivial eigenvalues of the Laplacian: a fundamental
step in problems such as spectral drawing and spectral clustering. Tables in Fig. 6
and 7 report the number of iterations performed by the linear solvers required
to compute the first three eigenvalues for 3D meshes and complex networks.
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