
January 22, 2007 — A version with complete proofs is atwww.lix.polytechnique.fr/∼lutz/papers/ObsPT-MLL2-long.pdf

Some Observations on the Proof Theory of Second Order Propositional
Multiplicative Linear Logic

(Extended Abstract)

Lutz Straßburger
INRIA Futurs, Projet Parsifal

École Polytechnique — LIX — Rue de Saclay — 91128 Palaiseau Cedex — France

http://www.lix.polytechnique.fr/∼lutz

Abstract

We present two new aspects of the proof theory of MLL2.
First, we will give a novel proof system in the framework
of the calculus of structures. The main feature of the new
system is the consequent use of deep inference. Due to the
new freedom of permuting inference rules, we are able to
observe a decomposition theorem, which is not visible in the
sequent calculus. Second, we show a new notion of (box-
free) proof nets which is inspired by the deep inference proof
system. Nonetheless, the proof nets are independent from
the deductive system. We have “sequentialisation” into the
calculus of structures as well as into the sequent calculus.
We present a notion of cut elimination which is terminating
and confluent, and thus gives us a category of proof nets.

1 Introduction

Second order propositional multiplicative linear logic isthe
fragment of linear logic that contains the multiplicative con-
nectives and second order quantifiers, i.e., one can quantify
over propositional variables. We will denote the logic by
MLL2, following the nomenclature of [15], where its unde-
cidability was shown. The logic has first been investigated
by Girard in [10] where a deductive system in the sequent
calculus was given together with a proof of cut elimination
and a notion of proof nets.

Girard’s proof nets forMLL2 are tightly tied to the se-
quent calculus: there is a one-to-one correspondence be-
tween the inference rule applications in a given sequent
proof and the “links” in the corresponding proof net. This
can be seen as an advantage because it makes it easy to re-
cover the deductive tree structure from the proof net. How-
ever, it can also be seen as a rather unfortunate fact because
the sequent calculus is not the only framework for present-
ing logical systems (although it has a monopoly), and ide-
ally, proof nets should capture the essence of a proof inde-

pendently from any formal deductive system. Furthermore,
the close connection to the sequent calculus causes certain
design flaws in Girard’s proof nets, namely, it necessitates
the concept of boxes in order to protect subproofs.

In [21, 17], it was shown how boxes for the multiplica-
tive units can be avoided by entirely dropping the connec-
tion between nodes in the proof net and rules in the sequent
calculus. Here, these ideas are pushed further to accommo-
date the quantifiers. We consider here only second order
propositional quantifiers because the first order case has a
rather weak proof theory in multiplicative linear logic (see
[2] for a detailed treatment). But with second order quanti-
fiers, the logic becomes already undecidable.1

This work is motivated by the question “What consti-
tutes a proof with quantifiers?” I.e., what is the essential
data structure that remains if we abstract away from the de-
ductive systems?

To make some progress towards an answer, we first in-
troduce a new deductive system forMLL2, which will not
be given in the sequent calculus, but in the calculus of struc-
tures [11, 12, 5]. Then we present a new notion of proof nets
without boxes forMLL2, which comes with a cut elimina-
tion procedure which is confluent and terminating. Hence,
we get a well-defined category of proofs forMLL2.

We will also show, how the three different presentations
of proofs, sequent calculus, calculus of structures, and proof
nets, are translated into each other.

2 MLL2 in the sequent calculus

Before we start, let us recall howMLL2 is presented in the
sequent calculus. LetA = {a, b, c, . . .} be a countable set
of propositional variables. Then the setF of formulasis
generated by

F ::= ⊥ | 1 | A | A ⊥ | [F OF] | (F � F) |

∀A. F | ∃A. F

1Note that second order propositional classical logic, i.e., “Quantified
Boolean Formulas”, is decidable (PSPACE-complete).

www.lix.polytechnique.fr/~lutz/papers/ObsPT-MLL2-long.pdf
http://www.lix.polytechnique.fr/~lutz

id
⊢ a⊥, a

⊢ Γ
⊥
⊢ ⊥, Γ

1
⊢ 1

⊢ Γ, A, B, ∆
exch

⊢ Γ, B, A, ∆

⊢ A, B, Γ
O
⊢ [AO B], Γ

⊢ Γ, A ⊢ B, ∆
�
⊢ Γ, (A� B), ∆

⊢ A〈a\B〉, Γ
∃
⊢ ∃a.A, Γ

⊢ A, Γ
∀
⊢ ∀a.A, Γ

in the ∀-rule, the
variable a must
not be free inΓ

Figure 1. Sequent calculus system for MLL2

Formulas are denoted by capital Latin letters (A, B, C, . . .).
Linear negation(−)⊥ is defined by the De Morgan laws:

⊥⊥ = 1 1⊥ = ⊥

a⊥ = a⊥ a⊥⊥ = a

[AO B]⊥ = (A⊥ �B⊥) (A� B)⊥ = [A⊥ O B⊥]

(∃a.A)⊥ = ∀a.A⊥ (∀a.A)⊥ = ∃a.A⊥

Sequentsare finite lists of formulas, separated by comma,
and are denoted by capital Greek letters (Γ, ∆, . . .). The
notions offreeandbound variableare defined in the usual
way, and we can always rename bound variables.

In view of the later parts of the paper, and in order to
avoid changing syntax all the time, we use the following
syntactic conventions:

(i) We always put parentheses around binary connectives.
For readability we use[. . .] for O and(. . .) for �.

(ii) We omit parentheses if they are superfluous under the
assumption thatO and � associate to the left, e.g.,
[AO B OC O D] abbreviates[[[AO B] OC] O D].

(iii) The scope of a quantifier ends at the earliest possible
place (and not at the latest possible place as usual).
This helps saving unnecessary parentheses. For ex-
ample, in[∀a.(a � b)O ∃c.c O a], the scope of∀a is
(a � b), and the scope of∃c is justc. In particular, the
a at the end is free.

The inference rules forMLL2 are shown in Figure 1. In
the following, we will call this systemMLL2Seq. As shown
in [10], it has the cut elimination property:

2.1 Theorem The cut rule
⊢ Γ, A ⊢ A⊥, ∆

cut
⊢ Γ, ∆

(1)

is admissible for systemMLL2Seq.

3 MLL2 in the calculus of structures

Let us now present a deductive system forMLL2 based on
deep inference. We use the calculus of structures, in which
the distinction between formulas and sequents disappears.
This is the reason for the syntactic conventions introduced
in the previous section.2

2In the literature on deep inference, e.g., [5, 11], the formula
(a �[b O(a⊥ � c)]) would be written as(a, [b, (a⊥, c)]), while without

The inference rules now work directly (as rewriting
rules) on the formulas. The system forMLL2 is shown in
Figure 2. There,S{ } stands for an arbitrary (positive) for-
mula context. We omit the braces if the structural parenthe-
ses fill the hole. E.g.,S[AO B] abbreviatesS{[AOB]}.
The system in Figure 2 is calledMLL2DI↓. We consider
here only the so-calleddown fragmentof the system, which
corresponds to the cut-free system in the sequent calculus.3

Note that the∀-rule ofMLL2Seq is in MLL2DI↓ decomposed
into three pieces, namely,e↓, u↓, andf↓. We also need an
explicit rule for associativity which is in the sequent calcu-
lus “built in”. The relation between the�-rule and the rules
ls andrs (calledleft switchandright switch) has already in
detail been investigated by several authors [3, 9, 11, 14]. A
derivationD in the systemMLL2DI↓ is denoted by

A

MLL2DI↓
‖
‖ D

B

and is simply a rewriting path fromA to B using the infer-
ence rules inMLL2DI↓. We sayA is thepremiseandB the
conclusionof D . A proof in MLL2DI↓ is a derivation whose
premise is1. The following theorem ensures thatMLL2DI↓

is indeed a deductive system forMLL2.

3.1 Theorem For every proof of ⊢ A1, . . . , An in
MLL2Seq, there is a proof of[A1 O · · ·O An] in MLL2DI↓,
and vice versa.

As for MLL2Seq, we also have forMLL2DI↓ the cut elim-
ination property, which can be stated as follows:

3.2 Theorem The cut rule (i.e., the “identity up rule”)

S(A� A⊥)
i↑

S{⊥}
(2)

is admissible for systemMLL2DI↓.

our convention it would be written asa �(b O(a⊥
� c)). Our conven-

tion can therefore be seen as an attempt to please both communities. In
particular, note that the motivation for the syntactic convention (iii) above
is the collapse of theO on the formula level and the comma on the sequent
level, e.g.,[∀a.(a � b) O ∃c.c O a] is the same as[∀a.(a, b), ∃c.c, a].

3Theup fragment(which corresponds to the cut in the sequent calculus)
is obtained by dualizing the rules in the down fragment, i.e., by negating
and exchanging premise and conclusion. See, e.g., [19, 4, 5,12] for details.

2

S{1}
ai↓

S[a⊥ O a]

S{A}
⊥↓

S[⊥OA]

S{A}
1↓

S(1 �A)

S{1}
e↓

S{∀a.1}

S[[AOB] O C]
α↓

S[AO[B O C]]

S[AO B]
σ↓

S[B O A]

S([AOB] � C)
ls

S[AO(B � C)]

S(A�[B OC])
rs

S[(A� B)OC]

S{∀a.[AOB]}
u↓

S[∀a.AO∃a.B]

S{A〈a\B〉}
n↓

S{∃a.A}

S{∃a.A}
f↓

S{A}
In thef↓-rule, the variablea must not be free inA.

Figure 2. Deep inference system for MLL2

The following theorem states an important property of
MLL2DI↓ which has no counterpart in the sequent calculus.

3.3 Theorem Every proof

1

MLL2DI↓
‖
‖ D

C

can be
transformed into a proof

1

{ai↓,⊥↓, 1↓, e↓} ‖
‖ D1

A

{α↓, σ↓, ls, rs, u↓} ‖
‖ D2

B

{n↓, f↓} ‖
‖ D3

C

(3)

for someA andB.

This decomposition is obtained by permuting all in-
stances ofai↓,⊥↓, 1↓, e↓ up and permuting all instances of
n↓, f↓ down. The attentive reader might wonder why there
are two versions of the “switch” inMLL2DI↓, theleft switch
ls, and theright switchrs. For completeness (Theorem 3.1),
thels-rule would be sufficient, but for obtaining the decom-
position in Theorem 3.3 we need thers-rule as well.

If a derivationD uses only the rulesα↓, σ↓, ls, rs, u↓,
then premise and conclusion ofD (and every formula in
between the two) must contain the same atom occurrences.
Hence, theatomic flow-graph[6] of the derivationD de-
fines a bijection between the atom occurrences of premise
and conclusion ofD . Here is an example of a derivation
together with its flow-graph.

∀a.∀b.([⊥
O] �[⊥

O])
ls

∀a.∀b.[⊥
O(�[⊥

O])]
rs

∀a.∀b.[⊥
O[(�

⊥) O]]
u↓

∀a.[∃b. ⊥
O ∀b.[(�

⊥) O]]
u↓

∀a.[∃b. ⊥
O[∃b.(�

⊥) O∀b.]]
u↓

[∀a.∃b. ⊥
O∃a.[∃b.(�

⊥) O∀b.]]

∀a.∀b.([a⊥
O a] �[b⊥ O b])

ls
∀a.∀b.[a⊥

O(a �[b⊥ O b])]
rs

∀a.∀b.[a⊥
O[(a � b⊥) O b]]

u↓
∀a.[∃b.a⊥

O ∀b.[(a � b⊥) O b]]
u↓

∀a.[∃b.a⊥
O[∃b.(a � b⊥) O∀b.b]]

u↓
[∀a.∃b.a⊥

O∃a.[∃b.(a� b⊥) O∀b.b]]

(4)

To avoid crossings in the flow-graph, we left some applica-
tions ofα↓ andσ↓ implicit.

4 Some observations on locality

In the sequent calculus the∀-rule has a non-local behavior,
in the sense that for applying the rule we need some global
knowledge about the contextΓ, namely, that the variable
a does not appear freely in it. This is the reason for the
existence of boxes in Girard’s proof nets [10]. In the calcu-
lus of structures this “checking” whether a variable appears
freely is done in the rulef↓, which is as non-local as the
∀-rule. However, with deep inference, this rule can be made
local, i.e., reduced to an atomic version (in the same sense
as the identity axiom can be reduced to an atomic version).
For this, we need an additional set of rules which is shown
in Figure 3 (again, we show only the down fragment), and
which is calledLf↓. Clearly, all rules are sound, i.e., proper
implications ofMLL2. Now we have the following:

4.1 Theorem Every derivation
B

{n↓, f↓} ‖
‖ D

C

can be transformed into

B

{n↓} ∪ Lf↓ ‖
‖ D

′

C

,

and vice versa.

There are seemingly two other sources of non-locality in
MLL2DI↓. The first is the renaming of bound variables (α-
conversion) that might be necessary for applyingu↓ or f↓
(or af↓). However, if we see bound variables as pointers to
the quantifier which binds them, as for example in DeBruijn
presentation [8], thenα-conversion is no issue anymore4.
What remains is the substitution of an arbitrary formula for
a variable in the instantiation of an existential quantifier(the
n↓-rule), in which we have the unbounded number of occur-
rences of the quantified variable and the unbounded size of
the formula to be substituted. It is a question of future re-
search whether some sort of explicit substitution [1] can be
coded directly into the inference rules in order to obtain a
completely local system and by this closing the gap between
the formal deductive system and the implementation.

4The only reason for not using DeBruijn presentation here is its unread-
ability for human beings.

3

S{∃a.∀b.A}
x

S{∀b.∃a.A}

S{∃a.∃b.A}
y↓

S{∃b.∃a.A}

S{∃a.[AOB]}
v↓

S[∃a.AO∃a.B]

S{∃a.(A� B)}
w↓

S(∃a.A� ∃a.B)

S{∃a.1}
1f↓

S{1}

S{∃a.⊥}
⊥f↓

S{⊥}

S{∃a.b}
af↓

S{b}

S{∃a.b⊥}
âf↓

S{b⊥}

in af↓ and âf↓,
the variablea is
different fromb

Figure 3. Towards a local system for MLL2

5 Proof nets for MLL2

For defining proof nets forMLL2, we follow the ideas pre-
sented in [21, 17] where the axiom linking of multiplicative
proof nets has been replaced by alinking formulato accom-
modate the units1 and⊥. In such a linking formula, the
ordinary axiom links are replaced by�-nodes, which are
then connected byOs. A unit can then be attached to a sub-
linking by another�, and so on. Here we extend the syntax
for the linking formula by an additional construct to accom-
modate the quantifiers. Now, the setL of linking formulas
is generated by the grammar

L ::= ⊥ | (A �A
⊥) | (1 �L) | [L OL] | ∃A. L

In [21, 17] a proof net consists of the sequent forest and the
linking formula. The presence of the quantifiers, in partic-
ular, the presence of instantiation and substitution, makes it
necessary to expand the structure of the sequent in the proof
net. The setE of expanded formulas5 is generated by

E ::= ⊥ | 1 | A | A ⊥ | [E OE] | (E � E) |

∀A. E | ∃A. E | EA. E | ∃∃∃∃∃∃∃∃∃A. E

There are only two additional syntactic primitives: theE,
calledvirtual existential quantifier, and the∃∃∃∃∃∃∃∃∃, calledbold
existential quantifier. An expanded sequentis a finite list
of expanded formulas, separated by comma. We denote ex-
panded sequents by capital Greek letters (Γ, ∆, . . .). For
disambiguation, the formulas/sequents introduced in Sec-
tion 2 (i.e., those withoutEand∃∃∃∃∃∃∃∃∃) will also be calledsimple
formulas/sequents.

In the following we will identify formulas with their syn-
tax trees, where the leaves are decorated by elements of
A ∪A ⊥ ∪ {1,⊥}. We can think of the inner nodes as dec-
orated either with the connectives/quantifiers�, O, ∀a, ∃a,
∃∃∃∃∃∃∃∃∃a, Ea, or with the whole subformula rooted at that node.
For this reason we will use capital Latin letters (A, B, C,
. . .) to denote nodes in a formula tree. We writeA ¤ B

if A is a (not necessarily proper) ancestor ofB, i.e.,B is a
subformula occurrence inA. We writelΓ (resp.lA) for
denoting the set of leaves of a sequentΓ (resp. formulaA).

5There is some similarity to Miller’sexpansion trees[18]. The idea is
to code a formula and its “expansion” together in the same syntactic object.
But our case is simpler than in [18] because we do not have to deal with
duplication.

5.1 Definition LetΓ be an expanded sequent. Astretch-
ing σ for Γ consists of two binary relationsσñ and σð on the
set of nodes ofΓ (i.e., the set of its subformula occurrences)
such that σñ and σð are disjoint, and wheneverA σñB or
A

σðB thenA = ∃∃∃∃∃∃∃∃∃a.A′ with A′ ¤ B in Γ.

In other words, a stretching consists of edges connect-
ing ∃∃∃∃∃∃∃∃∃-nodes with some of its subformulas, and these edges
can be directed towards the∃∃∃∃∃∃∃∃∃-node or away from it. When
writing an expanded sequentΓ with a stretchingσ, shortly
denoted byΓ � σ, we will draw these edges either insideΓ
when it is written as a tree, or belowΓ when it is written as
string. Examples are shown in Figures 4, 6 and 7 below.

Now we are ready to see the definition of apre-proof
graph. The “pre-” means that we do not yet know whether
it really comes from an actual proof.6

5.2 Definition A pre-proof graphis a quadruple, de-
noted byP

ν
⊲ Γ � σ, whereP a linking formula,Γ is an

expanded sequent,σ is a stretching forΓ, andν is a bijec-
tionlΓ

ν
→ lP such that only dual atoms/units are paired

up. If Γ is simple, we say that the pre-proof graph issimple.
In this caseσ is empty, and we can simply writeP

ν
⊲ Γ.

ForB ∈ lΓ we writeBν for its image underν inlP .
When we draw a pre-proof graphP

ν
⊲ Γ � σ, then (follow-

ing the tradition) the roots of the formula trees inΓ will be
drawn at the bottom below the leaves, and the root ofP will
be drawn above the leaves. The leaves ofP andΓ are con-
nected by edges according toν. In order to save space we
can also writeP andΓ as strings above each other. Figure 4
shows an example written in both ways.

Let us now turn our attention towards correctness. For
this we concentrate first on simple pre-proof graphs and be-
gin with the standard notion of multiplicative correctness:

5.3 Definition A DR-switchings of a simple pre-proof
graphP

ν
⊲ Γ is the graph that is obtained fromP

ν
⊲ Γ by

removing for eachO-node one of the two edges connect-
ing it to its children. A simple pre-proof graphP

ν
⊲ Γ is

multiplicatively correctif all its DR-switchings are acyclic

6The concept of a “not yet proof” is in the literature (e.g., [7]) also
called “proof structure”.

4

⊥ ⊥ ⊥ ⊥ ⊥

⊥ ⊥ ⊥ ⊥ ⊥

O

∃c O

O O �

� � � � �

c c⊥ c c⊥ a a⊥ a a⊥ 1 a a⊥

c⊥ c⊥ c c a⊥ a⊥ ⊥ a a a⊥ a

� O � O O

∃∃∃∃∃∃∃∃∃d ∀c ∃∃∃∃∃∃∃∃∃c OEc �

�

∃∃∃∃∃∃∃∃∃a

∃c.[(c�c⊥)O(c�c⊥)O[(a�a⊥)O(a�a⊥)O(1�(a�a⊥))]]Ec.∃∃∃∃∃∃∃∃∃d.(c⊥�c⊥),∃∃∃∃∃∃∃∃∃a.(∀c.[cOc]�∃∃∃∃∃∃∃∃∃c.(a⊥�a⊥)�⊥), [aOaO[a⊥Oa]]

Figure 4. Two ways of writing a proof graph

and connected [7]. For a pre-proof graphP
ν
⊲ Γ � σ we de-

fine multiplicative correctnessaccordingly, but we ignore
the edges of the stretching when checking acyclicity and
connectedness.

Note that for multiplicative correctness the quantifiers
are treated as unary connectives and are therefore com-
pletely irrelevant. Clearly, the example in Figure 4 is mul-
tiplicatively correct. However, for involving the quantifiers
into a correctness criterion, we need some more conditions.

Let s be a DR-switching forP
ν
⊲ Γ, and letA andB be

two nodes inΓ. We writeA ��s����������B if there is a path ins
from A to B, starting fromA by going down to its parent
and coming intoB from below. Similarly, one can define
the notationsA �� s����������B andA ��s����������B andA ��s����������B.

Let A andB be nodes inΓ with A ¤ B. Thequanti-
fier depthof B in A, denoted by

`
AB, is the number of

quantifier nodes on the path fromA to B (includingA if it
happens to be an∀ or an∃). Similarly we define

`
Γ
B. For

quantifier nodesA′ in P andA in Γ, we sayA andA′ are

partners, denoted byA′
←→P Γ A, if there is a leafB ∈ lΓ
with A ¤ B in Γ, andA′ ¤ Bν in P , and

`
AB =

`
A′B

ν .

5.4 Definition We say a simple pre-proof graphP
ν
⊲ Γ

is well-nestedif the following five conditions are satisfied:
1. For everyB ∈lΓ, we have

`
Γ
B =

`
P Bν .

2. If A′
←→P Γ A, thenA′ andA quantify the same variable.
3. For every quantifier nodeA in Γ there is exactly one

∃-nodeA′ in P with A′
←→P Γ A.

4. For every∃-nodeA′ in P there is exactly one∀-nodeA

in Γ with A′
←→P Γ A.
5. If A′
←→P Γ A1 and A′
←→P Γ A2, then there is no DR-

switchings with A1
��s����������A2.

Every quantifier node inP must be an∃, and every quan-
tifier node inΓ has exactly one of them as partner. On the
other hand, an∃ in P can have many partners inΓ, but ex-
actly one of them has to be an∀. Following Girard [10],
we can call an∃ in P together with its partners inΓ the
doors of an∀-boxand the sub-graph induced by the nodes
that have such a door as ancestor is called the∀-boxassoci-
ated to the unique∀-door. Even if the boxes are not really
present, we can use the terminology to relate our work to
Girard’s. Furthermore, all the properties of these boxes that
are postulated in [10], e.g., that every box is correct in it-
self, follow from the global multiplicative correctness and
the five conditions above. In order to help the reader to
understand these five conditions, we show in Figure 5 six
simple pre-proof graphs, where the first fails Condition 1,
the second one fails Condition 2, and so on; only the sixth
one is well-nested.

5.5 Definition A simple pre-proof graphP
ν
⊲ Γ is cor-

rect if it is well-nested and multiplicatively correct. In this
case we will also speak of asimple proof graph.

Let us now turn our attention towards substitution, which
is theraison d’̂etrefor the expansion with∃∃∃∃∃∃∃∃∃ and E.
5.6 Definition For an expanded formulaE and a
stretchingσ, we define theceiling and thefloor7, denoted
by ⌈E �σ⌉ and⌊E �σ⌋, respectively, to be simple formulas,
which are inductively defined as follows:

⌈1 � ∅⌉ = 1 ⌈AOB � σ⌉ = ⌈A � σ′⌉O⌈B � σ′′⌉
⌈⊥ � ∅⌉ = ⊥ ⌈A�B � σ⌉ = ⌈A � σ′⌉�⌈B � σ′′⌉
⌈a � ∅⌉ = a ⌈∀a.A � σ⌉ = ∀a.⌈A � σ⌉
⌈a⊥ � ∅⌉ = a⊥ ⌈∃a.A � σ⌉ = ∃a.⌈A � σ⌉

⌈ Ea.A � σ⌉ = ∃a.⌈A � σ⌉
⌈∃∃∃∃∃∃∃∃∃a.A � σ⌉ = ⌈A � σ′⌉

⌊1 � ∅⌋ = 1 ⌊AOB � σ⌋ = ⌊A � σ′⌋O⌊B � σ′′⌋
⌊⊥ � ∅⌋ = ⊥ ⌊A�B � σ⌋ = ⌊A � σ′⌋�⌊B � σ′′⌋
⌊a � ∅⌋ = a ⌊∀a.A � σ⌋ = ∀a.⌊A � σ⌋
⌊a⊥ � ∅⌋ = a⊥ ⌊∃a.A � σ⌋ = ∃a.⌊A � σ⌋

⌊ Ea.A � σ⌋ = ⌊A � σ⌋
⌊∃∃∃∃∃∃∃∃∃a.A � σ⌋ = ∃a.⌊Ã � σ̃⌋

whereσ′ is always the restriction ofσ to A, andσ′′ is al-
ways the restriction ofσ to B. The expanded formulãA in
the last line is obtained fromA as follows: For every node
B with A ¤ B and∃∃∃∃∃∃∃∃∃a.A

σñ B remove the whole subtree
B and replace it bya, and for everyB with ∃∃∃∃∃∃∃∃∃a.A

σð B

7These correspond to Miller’s functionsDeepandShallow[18].

5

(1)
∃a.∃c.[(a � a⊥) O(c � c⊥)]

∃c.a⊥,∀a.[∃c.(a � c⊥)O ∀c.c]

(2)
∃a.∃c.[(a � a⊥) O(c � c⊥)]

∀a.∃b.a⊥,∃a.[∃d.(a� c⊥) O∀c.c]

(3)
∃a.[∃c.(a � a⊥) O∃c.(c � c⊥)]

∀a.∃c.a⊥,∃a.[∃c.(a � c⊥) O∀c.c]

(4)
∃a.∃c.[(a � a⊥) O(c � c⊥)]

∃a.∀c.a⊥, ∃a.[∃c.(a� c⊥) O∀c.c]

(5)
∃a.[∃c.(a � a⊥) O∃c.(c � c⊥)]

∀a.∃c.a⊥,∃a.[(∃c.a� ∃c.c⊥)O ∀c.c]

(6)
∃a.∃c.[(a � a⊥) O(c � c⊥)]

∀a.∃c.a⊥,∃a.[∃c.(a � c⊥) O∀c.c]

Figure 5. Examples (1)–(5) are not well-nested, only (6) is w ell-nested

replaceB by a⊥. The stretching̃σ is the restriction ofσ to
Ã. For an expanded sequentΓ, we proceed analogously.

Note that ceiling and floor of an expanded sequentΓ dif-
fer fromΓ only on∃∃∃∃∃∃∃∃∃ and E. In the ceiling, the Eis treated as
ordinary∃, and the∃∃∃∃∃∃∃∃∃ is completely ignored. In the floor, theEis ignored, and the∃∃∃∃∃∃∃∃∃ uses the information of the stretch-
ing to “undo the substitution”. To provide this information
on the location is the only purpose of the stretching. How-
ever, to ensure that we really only “undo the substitution”
instead of doing something weird, we need some further
constraints, which are given by Definition 5.7 below.

Let Γ�σ be given, and letA andB be nodes inΓ with A

being a quantifier node andA ¤ B. Then we writeAòB if
A is a∃∃∃∃∃∃∃∃∃-node and there is a stretching edge betweenA and
B, or A is an ordinary quantifier node andB is the variable
(or its negation) that is bound inA.

5.7 Definition A pairΓ�σ is appropriate, if the follow-
ing three conditions hold:
1. If A

σñ B1 andA
σñ B2, then⌊B1 � σ1⌋ = ⌊B2 � σ2⌋,

if A
σð B1 andA

σð B2, then⌊B1 � σ1⌋ = ⌊B2 � σ2⌋,
if A

σñ B1 andA
σð B2, then⌊B1�σ1⌋ = ⌊B2�σ2⌋⊥,

(whereσ1 andσ2 are the restrictions ofσ to B1 andB2,
respectively).

2. If A1òB1 andA2òB2 andA1 ¤ A2 andB1 ¤ B2,
thenB1 ¤ A2.

3. For all Ea.A, the variablea must not occur free in the
formula⌊A �σ′⌋ (whereσ′ is the restriction ofσ to A).

The first condition above says that in a substitution a
variable is instantiated everywhere by the same formulaB.
The second condition ensures that there is no variable cap-
turing in such a substitution step. The third condition is ex-
actly the side condition of the rulef↓ in Figure 2. For better
explaining the three conditions above, we show in Figure 6
three examples of pairsΓ � σ that are not appropriate: the
first fails Condition 1, the second fails Condition 2, and the
third fails Condition 3. In Figure 7 all three examples are
appropriate. The example in Figure (4) is also appropriate.

In [10], the first two conditions if Definition 5.7 appear
only implicitly without being mentioned in the treatment of
the∃-rule. However, for capturing the essence of a proof

a b a⊥

�

O

∃∃∃∃∃∃∃∃∃c

b⊥ b

O

∀b

∃∃∃∃∃∃∃∃∃a

a a⊥ b⊥

O

�Ea
∃∃∃∃∃∃∃∃∃c

∃∃∃∃∃∃∃∃∃c.[(a�b)Oa⊥] ∃∃∃∃∃∃∃∃∃a.∀b.[b⊥Ob] ∃∃∃∃∃∃∃∃∃c. Ea.([aOa⊥]�b⊥)

Figure 6. Examples of expanded sequents
with stretchings that are not appropriate

a b a⊥

�

O

∃∃∃∃∃∃∃∃∃c

b⊥ b

O

∃∃∃∃∃∃∃∃∃a

∀b

a a⊥ b⊥

O

�

∃∃∃∃∃∃∃∃∃cEa
∃∃∃∃∃∃∃∃∃c.[(a�b)Oa⊥] ∀b.∃∃∃∃∃∃∃∃∃a.[b⊥Ob] Ea.∃∃∃∃∃∃∃∃∃c.([aOa⊥]�b⊥)

Figure 7. Appropriate examples of expanded
sequents with stretchings

independently of a deductive system, we have to make ev-
erything explicit.

5.8 Definition We say that a pre-proof graphP
ν
⊲ Γ�σ is

correct if the simple pre-proof graphP
ν
⊲ ⌈Γ � σ⌉ is correct

and the pairΓ � s is appropriate. In this case we say that
P

ν
⊲ Γ � σ is aproof graphand⌊Γ � σ⌋ is its conclusion.

The example in Figure 4 is correct. There⌈Γ � σ⌉ is

⊢ ∃c.(c⊥ � c⊥), (∀c.[c O c] �(a⊥
� a⊥) �⊥), [a O aO[a⊥

O a]]

and the conclusion⌊Γ � σ⌋ is

⊢ ∃d.(d � d), ∃a.(a⊥ � a �⊥), [a O a O[a⊥ O a]] .

Due to the presence of the multiplicative units, we need
to enforce an equivalence relation on proof graphs.

6

5.9 Definition Let ∼ be the smallest equivalence rela-
tion on the set of proof graphs satisfying

P [Q OR]
ν

⊲ Γ � σ ∼ P [R OQ]
ν

⊲ Γ � σ

P [[Q OR] O S]
ν

⊲ Γ � σ ∼ P [Q O[R O S]]
ν

⊲ Γ � σ

P (1�(1� Q))
ν

⊲ Γ � σ ∼ P (1�(1�Q))
ν
′

⊲ Γ � σ

P (1�[Q OR])
ν

⊲ Γ � σ ∼ P [(1� Q)O R]
ν

⊲ Γ � σ

P (1�∃a.Q)
ν

⊲ Γ{⊥} � σ ∼ P{∃a.(1� Q)}
ν

⊲ Γ{ Ea.⊥} � σ

where in the third lineν′ is obtained fromν by exchanging
the preimages of the two1s. In all other equations the bi-
jectionν does not change. In the last lineν must match the
1 and⊥. A proof netis an equivalence class of∼.

The first two equations in Definition 5.9 are simply as-
sociativity and commutativity ofO inside the linking. The
third is a version of associativity of�. The fourth equa-
tion could destroy multiplicative correctness, but since we
defined∼ only on proof graphs we do not need to worry
about that.8 The last equation says that a⊥ can freely tun-
nel through the borders of a box. Let us emphasize that
this quotienting via an equivalence is due to the multiplica-
tive units. If one wishes to use a system without units, one
could completely dispose the equivalence by usingn-aryOs
in the linking.

6 Sequentialisation

In this section we will discuss how we can translate proofs
in the sequent calculus and the calculus of structures into
proof nets, and how we can read back a deductive proof
from a proof net.

For traditional reasons let us begin with the sequent cal-
culus. The translation fromMLL2Seq proofs into proof
graphs is done inductively on the structure of the sequent
proof as shown in Figure 8. For the rulesid and1, this is
trivial (ν0 andν1 are uniquely determined and the stretch-
ing is empty). In the rule⊥, theν⊥ is obtained fromν by
adding an edge between the new1 and⊥. Theexch andO-
rules are also rather trivial (P , ν, andσ remain unchanged).
For the� rule, the two linkings are connected by a newO-
node, and the two principal formulas are connected by a�
in the sequent forest. The two interesting rules are the ones
for ∀ and∃. In the∀-rule, to every root node of the proof
graph for the premise a quantifier node is attached. This is
what ensures the well-nestedness condition. It can be com-
pared to Girard’s putting a box around a proof net. The
purpose of the Ecan be interpreted as simulating the border
of the box. The∃-rule is the only one where the stretching
σ is changed. As shown in Figure 1, in the conclusion of
that rule, the subformulaB of A is replaced by the quanti-
fied variablea. When translating this rule into proof graphs,

8In [21, 17] the relation∼ is defined on pre-proof graphs, and therefore
a side condition had to be given to that equation (see also [13]).

we do not do this replacement. We keep theB, but to every
place where it has to be substituted we add a stretching edge
from the new∃∃∃∃∃∃∃∃∃a. Similarly, whenever aB⊥ should be re-
placed bya⊥, we add an edge from this position to the∃∃∃∃∃∃∃∃∃a.
The new stretching isσ′. Finally, thecut is treated similar
to the�-rule. It will be discussed in the next section.

We will call a pre-proof graphSC-sequentializableif it
can be obtained from a sequent proof as described above.
Note that if a pre-proof graphP

ν
⊲ Γ�σ is obtained this way

then the simple sequent⌊Γ �σ⌋ is exactly the conclusion of
the sequent proof we started from. We have immediately

6.1 Theorem Every SC-sequentializable pre-proof
graph is a proof graph.

For the other direction, i.e, for going from proof graphs
to MLL2Seq proofs we need to consider two linking formu-
las P1 and P2 to be equivalent modulo associativity and

commutativity ofO. We write this asP1

O
∼ P2. Then, we

have to remove all∃-nodes fromΓ in order to get a sequen-
tialization theorem because the translation shown in Fig-
ure 8 never introduces an∃-node inΓ. For this we replace
in Γ every∃a.A with Ea.∃∃∃∃∃∃∃∃∃a.A and by add a stretching edge
between the new∃∃∃∃∃∃∃∃∃a and everya anda⊥ that was previously
bound by∃a (i.e, is free inA). Let us writeΓ̂ � σ for the
result of this modification applied toΓ � σ.

6.2 Theorem If P
ν
⊲ Γ � σ is correct, then there is a

P ′ O
∼ P , such thatP ′ ν

⊲ Γ̂ � σ is SC-sequentializable.

The proof works in the usual way by induction on the
size ofP

ν
⊲ Γ � σ. It is a combination of the sequentializa-

tion proofs in [17] and [10], and it makes crucial use of the
“splitting tensor lemma” which in our case also needs the
well-nestedness condition.

Let us now discuss the translation between proof nets
and derivations in the calculus of structures. This can be
done in a more modular way than for the sequent calculus.
Let us start with some properties of linking formulas:

6.3 Proposition An MLL2 formula P is a linking for-
mula if and only if there is a derivation

1

{ai↓,⊥↓, 1↓, e↓} ‖‖ D .

P⊥

(5)

6.4 Lemma Let P1 andP2 be two linkings. Then there
is a derivation

P1

{α↓, σ↓, rs} ‖‖ D

P2

if and only if the simple pre-proof graphP2 ⊲ P⊥
1

is correct.

If P1 andP2 have this property, we say thatP1 is weaker
thanP2, and denote it asP1 . P2. We can now characterize
simple proof graphs in terms of deep inference as follows:

7

id
a � a⊥

ν0

⊲ a⊥, a � ∅ P
ν
⊲ Γ � σ

⊥
(1 �P)

ν⊥

⊲ Γ,⊥ � σ
1
⊥

ν1

⊲ 1 � ∅
P

ν
⊲ Γ, A, B, ∆ � σ

exch
P

ν
⊲ Γ, B, A, ∆ � σ

P
ν
⊲ A, B, Γ � σ

O
P

ν
⊲ [AO B], Γ � σ

P
ν
⊲ Γ, A � σ Q

f
⊲ B, ∆ � τ

�
[P OQ]

e∪f
⊲ Γ, (A� B), ∆ � σ ∪ τ

P
ν
⊲ A, B1, . . . , Bn � σ

∀
∃a.P

ν
⊲ ∀a.A, Ea.B1, . . . , Ea.Bn � σ

P
ν
⊲ Γ, A〈a\B〉 � σ

∃
P

ν
⊲ Γ, ∃∃∃∃∃∃∃∃∃a.A〈a\B〉 � σ′

P
ν
⊲ Γ, A � σ Q

f
⊲ A⊥, ∆ � τ

cut

[P OQ]
e∪f
⊲ Γ, (A� A⊥), ∆ � σ ∪ τ

Figure 8. Translating sequent calculus proofs into proof ne ts

6.5 Proposition A simple pre-proof graphP
ν
⊲ Γ is cor-

rect if and only if there is a linkingP ′ with P ′ . P and a
derivation

P ′⊥

{α↓, σ↓, ls, rs, u↓} ‖‖ D

Γ

, (6)

such thatν coincides with the bijection induced by the flow
graph ofD .

As an example for this proposition, consider the deriva-
tion in (4) which corresponds to example (6) in Figure 5.

Finally, we characterize appropriate pairsΓ � σ in terms
of deep inference.

6.6 Proposition For every derivation

D

{n↓, f↓} ‖‖ D

C

(7)

there is an appropriate pairΓ � σ with

D = ⌈Γ � σ⌉ and C = ⌊Γ � σ⌋ . (8)

Conversely, ifΓ � σ is appropriate, then there is a deriva-
tion (7) with (8).

We can explain the idea of this proposition by consid-
ering again the examples in Figures 6 and 7. To the non-
appropriate examples in Figure 6 would correspond the fol-
lowing incorrect derivations:

[(a� b)O a⊥]
n↓

∃c.[c O c⊥]

∀b.[b⊥ O b]
n↓

∃a.∀b.[aO b]

∃a.([a O a⊥] � b)
f↓

([a O a⊥] � b)
n↓

∃c.(c � c⊥)

And to the appropriate examples in Figure 7 correspond the
following correct derivations:

[(a � b)O a⊥]
n↓

∃c.[(c � b) O c⊥]

∀b.[b⊥ O b]
n↓

∀b.∃a.[aO b]

∃a.([a O a⊥] � b)
n↓

∃a.∃c.(c� c⊥)
f↓

∃c.(c � c⊥)

We can now easily translate aMLL2DI↓ proof into a pre-
proof graph by first decomposing it into the shape (3)
via Theorem 3.3 and then applying Propositions 6.3, 6.5,
and 6.6. We get a pre-proof graphP

ν
⊲ Γ � σ with P⊥ = A

and⌈Γ � σ⌉ = B and⌊Γ � σ⌋ = C. Let us call a pre-proof
graphDI-sequentializableif is obtained in this way from a
MLL2DI↓ proof. We immediately have

6.7 Theorem Every DI-sequentializable pre-proof
graph is a proof graph.

By the method presented in [20], it is also possible to
translate aMLL2DI↓ directly into a proof graph without prior
decomposition. However, the decomposition is the key for
the translation from proof graphs intoMLL2DI↓ proofs (i.e.,
“sequentialization” into the calculus of structures). Propo-
sitions 6.3, 6.5, and 6.6 give us the following:

6.8 Theorem If P
ν
⊲ Γ � σ is correct, then there is a

P ′ . P , such thatP ′ ν
⊲ Γ � σ is DI-sequentializable.

There is an important difference between the two se-
quentializations. While for the sequent calculus we have
a monolithic procedure reducing the proof graph node by
node, we have for the calculus of structures a modular
procedure that treats the different parts of the proof graph
(which correspond to the three different aspects of the logic)
separately. The core is Proposition 6.5 which deals with
the purely multiplicative part. Then comes Proposition 6.6
which only deals with instantiation and substitution, i.e,the
second-order aspect. Finally, Proposition 6.3 takes care of
the linking, whose task is to describe the role of the units
in the proof. Therefore the equivalence in 5.9, which is due
to the mobility if the⊥, only deals with the linkings. This
modularity in the sequentialization is possible because of
the decomposition in Theorem 3.3, which can be seen as a
version of Herbrand’s theorem.

Note that for both sequentializations only part of the
equivalence 5.9 is needed. However, cut elimination in the
next section relies of the full power of this equivalence.

8

7 Cut elimination

A cut in a proof graphP
ν
⊲ Γ � σ is a special binary con-

nective�, such that whenever we haveA� B in Γ, then
we must have⌊A � σ⌋ = ⌊B � σ⌋⊥. Morally, a � may
occur only at the root of a formula inΓ. However, due to
well-nestedness we must allow cuts to haveE-nodes as an-
cestors. Then the� is treated in the correctness criterion in
exactly the same way as the�, and sequentialization does
also hold for proof graphs with cut.

The cut reduction relation; is defined on proof graphs
as shown in Figure 9. For cuts not involving quantifiers
we proceed as in [17]: If we have an atomic cuta⊥ � a,
then we must have inP two “axiom links” (a⊥ � a), which
are by the leaf mappingν attached to the two atoms in the
cut. Via the equivalence in 5.9, we can bring the two pairs
next to each other such thatP has[(a � a⊥)O(a � a⊥)] as
subformula. We can replace this by a single(a⊥ � a) and
remove the cut. For a cut1 �⊥, the situation is analogous.
Finally, a cut[AOB] �(C � D) is simply replaced by two
smaller cutsA� C andB � D.

Let us now consider the cuts that involve the quantifiers.
There are three cases, one for each of∃∃∃∃∃∃∃∃∃, E, and∃. If we have
a cut∃∃∃∃∃∃∃∃∃a.A�∀a.B, then letC be a node with∃∃∃∃∃∃∃∃∃a.A

σñC or
∃∃∃∃∃∃∃∃∃a.A

σðC. In the one case letD = ⌊C � σ⌋, in the other let
D = ⌊C �σ⌋⊥. By 5.7-1,D is independent from the choice
of C. If there are no stretching edges, then letD = a. Now
we substitute inside the box of∀a.B the variablea with D

and remove all doors of the∀-box, and replace the cut by
A�B. Note that “removing a door” means for aEthat the
node is removed, but for an∃ it means that the node is re-
placed by an∃∃∃∃∃∃∃∃∃ and a stretching edge is added to/from every
D (resp.D⊥) substituted fora (resp.a⊥) formerly bound
by the∃-node. Note also that by substitutinga with D we
get “axiom links” which are not atomic anymore, but it is
straightforward to make them atomic again.

If we have a cut Ea.A� B, let eB be theempireof B,
i.e, largest sub-proof graph ofP

ν
⊲ Γ � σ that hasB as a

door, and letB1, . . . , Bn be the other doors ofeB insideΓ,
and letR be the door ofeB in P . If eB has more than one
root-node inside the linkingP , then we can rearrange the
O-nodes inP via our equivalence such thateB has a single
O-root in P . Furthermore, we can get inP a subformula
[∃a.Q OR] where∃a.Q is the partner of Ea.A. We replace
this by ∃a.[Q OR], add an additional Ea-node to each of
B1, . . . , Bn, and reduce the cut toEa.(A� B). Hence, we
have pulled the whole empire ofB inside the box of Ea.A.

Finally, if we have a cut∃a.A� ∀a.B, then we simply
merge the two boxes into one.

This cut reduction relation is defineda priori only on
pre-proof graphs. But we have immediately the following:

7.1 Theorem The cut reduction relation preserves cor-
rectness and is well-defined on proof nets.

O

� �

a a⊥ a a⊥

a⊥ a a⊥ a

�EcnEc1 ;

�

a a⊥

a⊥ a

O

�

Q

⊥ 1

1 ⊥

�EcnEc1 ;

Q

A B C D

O �

�EcnEc1 ;

A C B D

� �Ecn EcnEc1 Ec1
∃a

R

· · ·

A B B1 Bn

∃∃∃∃∃∃∃∃∃a ∀a Ea ∃a

�EcnEc1 ;

R′

· · ·

A B′ B1 B′

n

� ∃∃∃∃∃∃∃∃∃aEcnEc1
O

∃a R

Q

· · · A · · ·

∀a Ea Ea B B1 Bn

�EcnEc1 ;

∃a

O

Q R

· · · A B B1· · ·Bn

∀a Ea � Ea EaEaEcnEc1
O

∃a ∃a

Q R

· · · A B · · ·

∀a Ea ∃a ∀a Ea ∃a

�EcnEc1 ;

∃a

O

Q R

· · · A B · · ·

∀a Ea � Ea ∃aEaEcnEc1
Figure 9. Cut reduction for MLL2 proof nets

9

Our main results is now:

7.2 Theorem The cut reduction relation; is terminat-
ing and confluent on proof nets.

An important consequence is that we have a category of
proof nets: the objects are (simple) formulas and a map
A → B is a proof net with conclusion⊢ A⊥, B . The
composition of maps is defined by cut elimination. Unfor-
tunately, we do not know much about this category, apart
from the fact that it is *-autonomous [17]. But there are
some observations that we can make about the units, which
can be expressed with the second-order quantifiers:

1 ≡ ∀a.[a⊥ O a] and ⊥ ≡ ∃a.(a � a⊥) (9)

An interesting question to ask is whether these logical
equivalences should be isomorphisms in the categorifica-
tion of the logic. In the category of coherent spaces [10]
they are, but in our category of proof nets they are not.
This can be shown as follows. The two canonical maps
∀a.[a⊥ O a]→ 1 and1→ ∀a.[a⊥ O a] are given by:

[⊥O(1 �⊥)]

∃∃∃∃∃∃∃∃∃a.(1�⊥) , 1
and

(1 �∃a.(a � a⊥))

⊥ , ∀a.[a⊥ O a]
(10)

respectively. Composing them means eliminating the cut
from

[⊥O(1�⊥)O(1 �∃a.(a � a⊥))]

∃∃∃∃∃∃∃∃∃a.(1 �⊥) , 1�⊥ , ∀a.[a⊥ O a]
(11)

This yields

[⊥O(1 � ∃a.(a � a⊥))]

∃∃∃∃∃∃∃∃∃a.(1�⊥) , ∀a.[a⊥ O a]
(12)

If the two maps in (10) where isos, the result (12) must be
the same as the identity map∀a.[a⊥ O a] → ∀a.[a⊥ O a]
which is represented by the proof net

∃a.[(a⊥ � a)O(a � a⊥)]

∃a.(a � a⊥) , ∀a.[a⊥ O a]
(13)

This is obviously not the case (even if we replaced∃a byEa.∃∃∃∃∃∃∃∃∃a as for Theorem 6.2). A similar situation occurs with
the additive units, for which we have

0 ≡ ∀a.a and ⊤ ≡ ∃a.a (14)

Since we do not have0 and⊤ in the language, we cannot
check whether we have these isos in our category. However,
since0 and⊤ are commonly understood as initial and termi-
nal objects of the category of proofs, we could ask whether
∀a.a and∃a.a have this property: We clearly have a canon-
ical proof for∀a.a → A for every formulaA, but it is not
necessarily unique.

However, the correct treatment of additive units in proof
nets is still an open problem for future research.

References

[1] M. Abadi, L. Cardelli, P.-L. Curien, and J.-J. Lévy. Ex-
plicit substitutions. Journal of Functional Programming,
1(4):375–416, 1991.

[2] G. Bellin and J. van de Wiele. Subnets of proof-nets in
MLL −. In Advances in Linear Logic, pages 249–270. Cam-
bridge University Press, 1995.

[3] R. Blute, R. Cockett, R. Seely, and T. Trimble. Natural
deduction and coherence for weakly distributive categories.
Journal of Pure and Applied Algebra, 113:229–296, 1996.

[4] K. Brünnler. Deep Inference and Symmetry for Classical
Proofs. PhD thesis, Technische Universität Dresden, 2003.

[5] K. Brünnler and A. F. Tiu. A local system for classical
logic. InLPAR 2001, volume 2250 ofLNAI, pages 347–361.
Springer, 2001.

[6] S. R. Buss. The undecidability ofk-provability. Annals of
Pure and Applied Logic, 53:72–102, 1991.

[7] V. Danos and L. Regnier. The structure of multiplicatives.
Annals of Mathematical Logic, 28:181–203, 1989.

[8] N. G. de Bruijn. Lambda-calculus notation with nameless
dummies, a tool for automatic formula manipulation.Indag.
Math., 34:381–392, 1972.

[9] H. Devarajan, D. Hughes, G. Plotkin, and V. R. Pratt. Full
completeness of the multiplicative linear logic of chu spaces.
In (LICS 1999), 1999.

[10] J.-Y. Girard. Linear logic.Theoretical Computer Science,
50:1–102, 1987.

[11] A. Guglielmi. A system of interaction and structure. To
appear inACM Transactions on Computational Logic, 2002.

[12] A. Guglielmi and L. Straßburger. Non-commutativity and
MELL in the calculus of structures. In L. Fribourg, editor,
CSL 2001, volume 2142 ofLNCS, pages 54–68. Springer-
Verlag, 2001.

[13] D. Hughes. Simple free star-autonomous categories andfull
coherence. 2005.

[14] J.-B. Joinet. Completeness of MLL proof nets w.r.t. weak
distributivity, 2006. To appear inJournal of Symbolic Logic.

[15] Y. Lafont and A. Scedrov. The undecidability of second or-
der multiplicative linear logic. Information and Computa-
tion, 125:46–51, 1996.

[16] F. Lamarche and C. Retoré. Proof nets for the Lambek-
calculus — an overview. In V. M. Abrusci and C. Casadio,
editors, ”Proofs and Linguistic Categories”, pages 241–
262. CLUEB, Bologna, 1996.

[17] F. Lamarche and L. Straßburger. From proof nets to the free
*-autonomous category.Logical Methods in Computer Sci-
ence, 2(4:3):1–44, 2006.

[18] D. Miller. A compact representation of proofs.Studia Log-
ica, 46(4):347–370, 1987.

[19] L. Straßburger.Linear Logic and Noncommutativity in the
Calculus of Structures. PhD thesis, TU Dresden, 2003.

[20] L. Straßburger. From deep inference to proof nets. InStruc-
tures and Deduction — The Quest for the Essence of Proofs
(Satellite Workshop of ICALP 2005), 2005.

[21] L. Straßburger and F. Lamarche. On proof nets for multi-
plicative linear logic with units. InCSL 2004, vol. 3210 of
LNCS, pages 145–159. Springer, 2004.

10

	Introduction
	MLL2 in the sequent calculus
	MLL2 in the calculus of structures
	Some observations on locality
	Proof nets for MLL2
	Sequentialisation
	Cut elimination

