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Abstract pendently from any formal deductive system. Furthermore,
the close connection to the sequent calculus causes certain
We present two new aspects of the proof theory of MLL2.design flaws in Girard’s proof nets, namely, it necessitates
First, we will give a novel proof system in the framework the concept of boxes in order to protect subproofs.
of the calculus of structures. The main feature of the new In [21},[17], it was shown how boxes for the multiplica-
system is the consequent use of deep inference. Due to thive units can be avoided by entirely dropping the connec-
new freedom of permuting inference rules, we are able totion between nodes in the proof net and rules in the sequent
observe a decomposition theorem, which is not visible in thecalculus. Here, these ideas are pushed further to accommo-
sequent calculus. Second, we show a new notion of (boxdate the quantifiers. We consider here only second order
free) proof nets which is inspired by the deep inferencefproo propositional quantifiers because the first order case has a
system. Nonetheless, the proof nets are independent fronmather weak proof theory in multiplicative linear logic ése
the deductive system. We have “sequentialisation” into the [2] for a detailed treatment). But with second order quanti-
calculus of structures as well as into the sequent calculus.fiers, the logic becomes already undeciddble.
We present a notion of cut elimination which is terminating  This work is motivated by the question “What consti-
and confluent, and thus gives us a category of proof nets. tutes a proof with quantifiers?” l.e., what is the essential
data structure that remains if we abstract away from the de-
ductive systems?
1 Introduction To make some progress towards an answer, we first in-
troduce a new deductive system fdiLL2, which will not
be given in the sequent calculus, but in the calculus of struc
tures [11[1P,5]. Then we present a new notion of proof nets
without boxes foMLL2, which comes with a cut elimina-
tion procedure which is confluent and terminating. Hence,
we get a well-defined category of proofs fdiL2.
We will also show, how the three different presentations
of proofs, sequent calculus, calculus of structures, andfpr
nets, are translated into each other.

Second order propositional multiplicative linear logicthe
fragment of linear logic that contains the multiplicativene
nectives and second order quantifiers, i.e., one can gyantif
over propositional variables. We will denote the logic by
MLL2, following the nomenclature of[15], where its unde-
cidability was shown. The logic has first been investigated
by Girard in [10] where a deductive system in the sequent
calculus was given together with a proof of cut elimination
and a notion of proof nets. .
Girard’s proof nets foMLL2 are tightly tied to the se- 2 MLL2 inthe sequent calculus
?vl\;ggrz iﬁlecl;:ll:‘:ret:ferenﬁeaaggﬁcgi8:: ;Ogesszzdgggseze@efore we start, let us recall hoMLL?2 is presented in the
PR . -~ 'sequent calculus. Le¥ = {a,b,c,...} be a countable set
proof and the *links” in the correspondmg proof r_1et. This of propositional variables Then the set# of formulasis
can be seen as an advantage because it makes it easy to rgé nerated by
cover the deductive tree structure from the proof net. How- P i P
ever, it can also be seen as a rather unfortunate fact because F w= Lo [[FeF] | (FeF)|
the sequent calculus is not the only framework for present- Vo F |3 F

ing logical systems (although it has a monopoly), and_ide' INote that second order propositional classical logic, f@uantified
ally, proof nets should capture the essence of a proof inde-Boolean Formulas”, is decidable (PSPACE-complete).
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Figure 1. Sequent calculus system for MLL2
Formulas are denoted by capital Latin letteds B, C, . . .). The inference rules now work directly (as rewriting
Linear negatior{—)* is defined by the De Morgan laws: rules) on the formulas. The system f@iLL2 is shown in
1L =1 14 = | Figurel2. ThereS{ } stands for an arbitrary (positive) for-
at =gt atl =g mula context. We omit the braces if the structural parenthe-
_ _ fill the hole. E.g.S[A B] abbreviatesS{[A = B]}.
(A9 B]* = (At ®BY) (A®B): =[Alw B Ses e ; .
(Ja.A)L = Va.AL (Va.A): = Jq.AL The system in FigurEl2 is calleRlLL2p,;. We consider

here only the so-calledown fragmenbf the system, which
corresponds to the cut-free system in the sequent calBulus.
Note that thev-rule of MLL2s.q is in MLL2p,; decomposed
into three pieces, namely|, u|, andf|. We also need an
explicit rule for associativity which is in the sequent aalc
lus “built in". The relation between th@-rule and the rules

Is andrs (calledleft switchandright switch has already in
detail been investigated by several authbr$[8, 91 111, 14]. A
‘derivationZ in the systenMLL2p,, is denoted by

Sequentare finite lists of formulas, separated by comma,
and are denoted by capital Greek lettefsA,...). The
notions offree andbound variableare defined in the usual
way, and we can always rename bound variables.

In view of the later parts of the paper, and in order to
avoid changing syntax all the time, we use the following
syntactic conventions:

(i) We always put parentheses around binary connectives
For readability we usé . .] for g and(. . .) for ®.

(i) We omit parentheses if they are superfluous under the A
assumption that? and ® associate to the left, e.g., MLL2py; H 9
[A7 B Ce D] abbreviates$|[A e B] s C] s D). B

(iii) The scope of a quantifier ends at the earliest possible L » . .
place (and not at the latest possible place as usual).and is simply a rewriting path from to B using the infer-

This helps saving unnecessary parentheses. For ex&nce rules ifMLL2py,. We sayA is thepremiseand B the

ample, in[Va.(a ® b) ® Jc.c’9 a], the scope o¥a is conclusiorof Z. A proof in MLL2p, is a derivation whose
(a®b), and the scope dlc is juste. In particular, the premise isl. The following theorem ensures thet_L2p

o atthe end is free. is indeed a deductive system figi_L2.
The inference rules foMLL2 are shown in Figur€ll. In 3.1 Theorem For every proof of - A;,..., A, in
the following, we will call this systenMLL2s.,. As shown MLL2s.q, there is a proof of A, - --® A,] in MLL2py,
in [L0], it has the cut elimination property: and vice versa.
2.1 Theorem The cutrule As for MLL2s.q, We also have foMLL2p,, the cut elim-
cut FT,A  F AL A ) ination property, which can be stated as follows:

FILA 3.2 Theorem The cutrule (i.e., the “identity up rule”)

is admissible for systeiLL2s.,. S(A® AL)
i — (2)

3 MLL2 in the calculus of structures S{L}

is admissible for systeMLL2p, .

Let us now present a deductive systemKbcL2 based on

deep inference. We use the calculus of structures, in whichUr convention it would be written as@(b(a-* ®c)). Our conven-
! tion can therefore be seen as an attempt to please both catreaurin

the distinction between formulas and sequents d|Sappearsparticular, note that the motivation for the syntactic aemtion (jii) above

This is the reason for the syntactic conventions introducedis the collapse of the on the formula level and the comma on the sequent

in the previous Sectiﬂ‘_ level, e.g.,[Va.(a@ b) 2 de.c® a} is the same aﬁia.(a, b), E|C.C7 a}.

3Theup fragmen{which corresponds to the cut in the sequent calculus)
2In the literature on deep inference, e.gl] [5J] 11], the fdemu s obtained by dualizing the rules in the down fragment, bg.negating

(a®[b®(at ® c)]) would be written aga, [b, (a, c)]), while without and exchanging premise and conclusion. See, E.gLI[IE14] for details.
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Figure 2. Deep inference system for MLL2

The following theorem states an important property of
MLL2p; which has no counterpart in the sequent calculus.

1

3.3 Theorem Every proof MLL2p, H@ can be
transformed into a proof c
1

{ail, L1, 1l el} || 2
A

{al,ol,ls,rs,ul} | 2 3)
B

{n],fl} H Ds
C

for someA and B.

This decomposition is obtained by permuting all in-
stances ofi|, L |,1],e| up and permuting all instances of
nl,f| down. The attentive reader might wonder why there
are two versions of the “switch” iMLL2p, |, theleft switch
Is, and theright switchrs. For completeness (Theoréml3.1),
thels-rule would be sufficient, but for obtaining the decom-
position in Theoreri 313 we need therule as well.

If a derivationZ uses only the rules|,o|,ls,rs,u],
then premise and conclusion 6f (and every formula in

4 Some observations on locality

In the sequent calculus therule has a non-local behavior,

in the sense that for applying the rule we need some global
knowledge about the contekt namely, that the variable

a does not appear freely in it. This is the reason for the
existence of boxes in Girard’s proof nets]10]. In the calcu-
lus of structures this “checking” whether a variable appear
freely is done in the rulé|, which is as non-local as the
V-rule. However, with deep inference, this rule can be made
local, i.e., reduced to an atomic version (in the same sense
as the identity axiom can be reduced to an atomic version).
For this, we need an additional set of rules which is shown
in Figure[3 (again, we show only the down fragment), and
which is calledLf]. Clearly, all rules are sound, i.e., proper
implications ofMLL2. Now we have the following:

4.1 Theorem Every derivation
B B
{n],fl} H 2 can be transformed into{n|} U Lf] H 9",
C C
and vice versa.

There are seemingly two other sources of non-locality in
MLL2p;. The first is the renaming of bound variables (

between the two) must contain the same atom occurrencesconversion) that might be necessary for applyirjgor f|

Hence, theatomic flow-graphl] of the derivationZ de-

(or af|). However, if we see bound variables as pointers to

fines a bijection between the atom occurrences of premisethe quantifier which binds them, as for example in DeBruijn

and conclusion of7. Here is an example of a derivation
together with its flow-graph.

A () g
el athelt i)
Va.vb. [Jﬁ [(a®b") ] @
Va.[3.4 w Wb [(h @) ]
Elb}él 2[3b.(4® k) '8 Vb.1]]

[Va.3b.4" ' Ja.[3b.(4 @ b™) 9 Vb.Y]]

To avoid crossings in the flow-graph, we left some applica-

tions ofa] ando| implicit.

presentation[18], thew-conversion is no issue anymBre
What remains is the substitution of an arbitrary formula for
a variable in the instantiation of an existential quantifibe
n]-rule), in which we have the unbounded number of occur-
rences of the quantified variable and the unbounded size of
the formula to be substituted. It is a question of future re-
search whether some sort of explicit substitutian [1] can be
coded directly into the inference rules in order to obtain a
completely local system and by this closing the gap between
the formal deductive system and the implementation.

4The only reason for not using DeBruijn presentation hersigtiread-
ability for human beings.
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Figure 3. Towards a local system for MLL2

5 Proof nets for MLL2

For defining proof nets foMLL2, we follow the ideas pre-
sented inl[2l],17] where the axiom linking of multiplicative
proof nets has been replaced blyrking formulato accom-
modate the unit§ and L. In such a linking formula, the
ordinary axiom links are replaced ky-nodes, which are
then connected bys. A unit can then be attached to a sub-
linking by another®, and so on. Here we extend the syntax
for the linking formula by an additional construct to accom-
modate the quantifiers. Now, the sgt of linking formulas

is generated by the grammar

L= 1| (ZedN) | (102)|[L9L]| 3. &L

In [21,[17] a proof net consists of the sequent forest and the

linking formula. The presence of the quantifiers, in partic-
ular, the presence of instantiation and substitution, méke

5.1 Definition LetI be an expanded sequentstetch-
ing o for T consists of two binary relation% and<~ on the
set of nodes of (i.e., the set of its subformula occurrences)
such that% and < are disjoint, and whenevet-*~B or
A& BthenA = 3a. A’ with A’ < BinT.

In other words, a stretching consists of edges connect-
ing 3-nodes with some of its subformulas, and these edges
can be directed towards tfiienode or away from it. When
writing an expanded sequehitwith a stretchings, shortly
denoted byl « o, we will draw these edges either insitle
when it is written as a tree, or beloWwhen it is written as
string. Examples are shown in Figufd$§}, 6 Bhd 7 below.

Now we are ready to see the definition ofpee-proof
graph The “pre-" means that we do not yet know whether
it really comes from an actual prof.

necessary to expand the structure of the sequent in the proo®.2  Definition A pre-proof graphis a quadruple, de-

net. The se€ of expanded formul8ss generated by
& Ll | at|[698]|(ERE) |
Vod. & | 3. & | . & | A &

There are only two additional syntactic primitives: the
calledvirtual existential quantifigrand the3, calledbold
existential quantifier An expanded sequeid a finite list

noted by P & I« o, whereP a linking formula,I" is an
expanded sequent,is a stretching fol", andv is a bijec-
tion &T % &P such that only dual atoms/units are paired
up. IfT"is simple, we say that the pre-proof graplsisple

In this caser is empty, and we can simply write 5T.

For B € &I" we write B¥ for its image under in &P,

of expanded formulas, separated by comma. We denote eXyhen we draw a pre-proof graph YT <o then (follow-

panded sequents by capital Greek lettérs 4, ...). For

ing the tradition) the roots of the formula treeslirwill be

disambiguation, the formulas/sequents introduced in Sec-grawn at the bottom below the leaves. and the rod? ofill

tion[ (i.e., those without and3) will also be callecsimple
formulas/sequents
In the following we will identify formulas with their syn-

be drawn above the leaves. The leave®andI" are con-
nected by edges according:to In order to save space we
can also writeP andI as strings above each other. Figlire 4

tax trees, where the leaves are decorated by elements ofpqws an example written in both ways.

o/ Ug/+U{1, L}. We can think of the inner nodes as dec-
orated either with the connectives/quantifierse, Va, Ja,
a, Ja, or with the whole subformula rooted at that node.
For this reason we will use capital Latin lettet, (B, C,
...) to denote nodes in a formula tree. We writex B
if A is a (not necessarily proper) ancestoriffi.e., B is a
subformula occurrence id. We writeZT" (resp.£ A) for
denoting the set of leaves of a sequErftesp. formulaA).

5There is some similarity to Millersxpansion treefi[d]. The idea is
to code a formula and its “expansion” together in the samessjic object.
But our case is simpler than ii_1l18] because we do not havedbwvdn
duplication.

Let us now turn our attention towards correctness. For
this we concentrate first on simple pre-proof graphs and be-
gin with the standard notion of multiplicative correctness

5.3 Definition A DR-switchings of a simple pre-proof
graphP & T is the graph that is obtained frof & I by
removing for eachg-node one of the two edges connect-
ing it to its children. A simple pre-proof grapR & Tis
multiplicatively correctif all its DR-switchings are acyclic

6The concept of a “not yet proof” is in the literature (e.d])[@lso
called “proof structure”.
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Figure 4. Two ways of writing a proof graph

and connected]7]. For a pre-proof graﬁh’i '« o we de-
fine multiplicative correctnesgsccordingly, but we ignore

4. Foreveryd-nodeA’ in P there is exactly ong-nodeA
in T with A’ &L A.

5. If A/&L A, and A’&S A,, then there is no DR-
switchings with A; _(5) A,.

Every quantifier node i® must be ar, and every quan-
tifier node inT" has exactly one of them as partner. On the
other hand, aid in P can have many partners Ity but ex-
actly one of them has to be ah Following Girard [10],
we can call ard in P together with its partners il the
doors of anv-boxand the sub-graph induced by the nodes
that have such a door as ancestor is called/thexassoci-
ated to the uniqu¥-door. Even if the boxes are not really
present, we can use the terminology to relate our work to
Girard’s. Furthermore, all the properties of these boxas th
are postulated in[10], e.g., that every box is correct in it-
self, follow from the global multiplicative correctnesscan
the five conditions above. In order to help the reader to
understand these five conditions, we show in Fidiire 5 six
simple pre-proof graphs, where the first fails Condifidn 1,
the second one fails Conditi@h 2, and so on; only the sixth
one is well-nested.

5.5 Definition A simple pre-proof graptP & T is cor-
rectif it is well-nested and multiplicatively correct. In this
case we will also speak ofsample proof graph

Let us now turn our attention towards substitution, which

the edges of the stretching when checking acyclicity and is theraison d®trefor the expansion witf ands.

connectedness.

5.6 Definition For an expanded formulagZ and a

Note that for multiplicative correctness the quantifiers stretchingo, we define theseiling and thefloofll, denoted
are treated as unary connectives and are therefore comby [E <o and| E « o], respectively, to be simple formulas,
pletely irrelevant. Clearly, the example in Figlile 4 is mul- which are inductively defined as follows:

tiplicatively correct. However, for involving the quanéfs

into a correctness criterion, we need some more conditions.

Let s be a DR-switching foi & T, and letA and B be
two nodes inl’. We write A_(5) B if there is a path ins
from A to B, starting fromA by going down to its parent
and coming intoB from below. Similarly, one can define
the notationsA "B andA(5)_B andA_G B.

Let A and B be nodes il with A < B. Thequanti-
fier depthof B in A, denoted by\/ , B, is the number of
guantifier nodes on the path fromhto B (including A if it
happens to be avior an3). Similarly we definé\/. 5. For
guantifier nodesd’ in P andA in T', we sayA and A’ are

partners denoted byA’ &b A, if there is a leafB € &T
with A < BinT,and4’ < BYin P,and{ ,B =V 4, B".
5.4 Definition We say a simple pre-proof graplhlg r
is well-nestedf the following five conditions are satisfied:
1. ForeveryB € &T', we have\/.B =/, B".
2. If A/&L A, thenA’ and A quantify the same variable.
3. For every quantifier nodd in T" there is exactly one
3-nodeA’ in P with A’&£aL A,

[1<0]=1 [A®Bao|=[A«d"|®[B<d"]
(La0]=1 [A®B<o|=[A«o'|&[Bxo"]
[a<0]=a [Va.A«o] =Va.[A«o|

[at «0] =at [Ja.A<«o]=3a.[A«0]

[3a.A<«c] =Fa.[A« o]
[Ja.A«c] =A<

[1«0] =1 |A®B<o|=|A«d’|®|B<d"]
Le0l=1 (1880 =[4+oalneo
La<@J=a |Va.A<«c| =Va.|A« o]
lat <« 0] =at LEICL.AMJJ—EIQ |A«o]

|S3a.A«c| =|A«0]

|3a.A«0| =3a.|AG]
whereo’ is always the restriction of to A, ando” is al-
ways the restriction of to B. The expanded formuld in
the last line is obtained from as follows: For every node
B with A < B and3a.A % B remove the whole subtree
B and replace it by:, and for everyB with 3a.4 “ B

"These correspond to Miller’s functiomeepand Shallow[[[g].
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Figure 5. Examples (1)—(5) are not well-nested, only (6) isw  ell-nested

replaceB by a*. The stretching is the restriction ofr to a at bt

A. For an expanded sequédhtwe proceed analogously. a\ /b a* b< /b \Xg/ /
Note that ceiling and floor of an expanded sequedif- 4 / ® \

fer fromI" only on3 and3. In the ceiling, thel is treated as \xg v‘b (Sf

ordinaryd, and thed is completely ignored. In the floor, the \ \ a

3 is ignored, and th& uses the information of the stretch- 3c Ja |

ing to “undo the substitution”. To provide this information 3c

on the location is the only purpose of the stretching. How-
ever, to ensure that we really only “undo the substitution”
instead of doing something weird, we need some further
constraints, which are given by Definitibnb.7 below.

LetI' « o be given, and letl andB be nodes ii” with A

Ac.[(a®b)ygar] FaVb.[pTeb] Fc.Ja.([w9at]®bh)

Figure 6. Examples of expanded sequents
with stretchings that are not appropriate

being a quantifier node andl < B. Then we writed« B if Lot
Ais a3-node and there is a stretching edge betwéemd a b at btop a\ /a
B, or Ais an ordinary quantifier node arglis the variable \ / \ / ® /
(or its negation) that is bound iA. ®\ / 5‘? \®
5.7 Definition A pairI’« o is appropriate if the follow- ? 3a \
ing three conditions hold: EL: V‘b Ellc
1. |fA’q=‘Bl andAf—TsBQ,then[B1< 0'1J = LB2< O'QJ, =
|fAkiBl andA“iBQ,thenLB1<0'1J = LB2<O'2J, N N N
if A% ByandA & By, then|By«oy| = |By<oa|t, Ac.[(a®b)pa’] Vb.Ia.prwb]  Fa.Ac.([wpat]®bT)
(whereo; ando, are the restrictions af to B; andBs,
respectively). Figure 7. Appropriate examples of expanded
2. If Aj—=B; andA;«=By; andA; < A; andB; < Bas, sequents with StretChingS

then31 < AQ.
3. For all3la.A, the variablen must not occur free in the

formula| A« o’ | (whereo” is the restriction ofr to A). independently of a deductive system, we have to make ev-

erything explicit.
The first condition above says that in a substitution a
variable is instantiated everywhere by the same fornitila ) . » .
The second condition ensures that there is no variable cap€orrectif the simple pre-proof grapl? > [T' « o] is correct
turing in such a substitution step. The third condition is ex and the paid” « s is appropriate. In this case we say that
actly the side condition of the rufe in Figurel2. For better P > T « o is aproof graphand|T" « o | is its conclusion
explaining the three conditions above, we show in Fifilire 6  The example in Figui@4 is correct. Theie« o] is
three examples of paifs « o that are not appropriate: the L L N
first fails Conditior[, the second fails Conditigh 2, and the ™ 2¢-(¢” ® ™), (Ve[e® d ®(a™ ®a™) @ L), [a'® a'pla™ 9 d]]
third fails Conditior[B. In Figur€l7 all three examples are and the conclusiofl” « ¢ | is
appropriate. The example in Figufé (4) is also appropriate. 1 n
In [LQ], the first two conditions if Definitiol Bl 7 appear F3d(d@d),3e.(a7@a® L) [aBasla 5 al
only implicitly without being mentioned in the treatment of ~ Due to the presence of the multiplicative units, we need
the 3-rule. However, for capturing the essence of a proof to enforce an equivalence relation on proof graphs.

5.8 Definition We saythata pre-proofgraﬂh§ T«ois



5.9 Definition Let ~ be the smallest equivalence rela-
tion on the set of proof graphs satisfying

PQ®R]5T«0 ~ P[R9Q|bT«0c
P[[Q®R]S|5T«0c ~ P[Q®R®S]||5T <0
P1e(1®Q)ET<0 ~ PUR(18Q) 5 T0o
P1®[Q®R])bT«0 ~ P[1®Q)9R|5T <o

P1®3a.Q)ET{Ll} <0 ~ P{Fa.(1®Q)} ¢ T{3a.L} <o

~

2

~

~

where in the third line/ is obtained fromv by exchanging

the preimages of the twis. In all other equations the bi-
jectionv does not change. In the last limenust match the

1 and_L. A proof netis an equivalence class &f.

The first two equations in Definitidn 3.9 are simply as-
sociativity and commutativity of inside the linking. The
third is a version of associativity ab. The fourth equa-
tion could destroy multiplicative correctness, but sinae w
defined~ only on proof graphs we do not need to worry
about thall The last equation says thatlacan freely tun-
nel through the borders of a box. Let us emphasize that
this quotienting via an equivalence is due to the multiplica
tive units. If one wishes to use a system without units, one
could completely dispose the equivalence by usiragyss
in the linking.

6 Sequentialisation

In this section we will discuss how we can translate proofs

in the sequent calculus and the calculus of structures into .

proof nets, and how we can read back a deductive proof
from a proof net.

For traditional reasons let us begin with the sequent cal-
culus. The translation fronMLL2s., proofs into proof
graphs is done inductively on the structure of the sequent
proof as shown in FigurE 8. For the rulesand1, this is
trivial (v andv, are uniguely determined and the stretch-
ing is empty). In the rulelL, thev, is obtained fronv by
adding an edge between the newnd_ L. Theexch and-
rules are also rather trivia{, v, ande remain unchanged).
For the® rule, the two linkings are connected by a ngw
node, and the two principal formulas are connected Iy a

in the sequent forest. The two interesting rules are the ones

for V and3. In theV-rule, to every root node of the proof
graph for the premise a quantifier node is attached. This is

we do not do this replacement. We keep ebut to every
place where it has to be substituted we add a stretching edge
from the new3a. Similarly, whenever &+ should be re-
placed bya', we add an edge from this position to tBe.
The new stretching is’. Finally, thecut is treated similar
to the®-rule. It will be discussed in the next section.

We will call a pre-proof graptSC-sequentializabli it
can be obtained from a sequent proof as described above.
Note that if a pre-proof grapR & I'« o is obtained this way
then the simple sequef « ¢ | is exactly the conclusion of
the sequent proof we started from. We have immediately

6.1 Theorem Every SC-sequentializable pre-proof
graph is a proof graph.

For the other direction, i.e, for going from proof graphs
to MLL2s.q proofs we need to consider two linking formu-
las P, and P, to be equivalent modulo associativity and

commutativity ofp. We write this asP; k3 P,. Then, we
have to remove alf-nodes fronT in order to get a sequen-
tialization theorem because the translation shown in Fig-
ure[@ never introduces ahnode inI". For this we replace

in T everyda.A with 3a.3a.A and by add a stretching edge
between the neda and every: anda that was previously
bound by3a (i.e, is free inA). Let us writeT" « o for the
result of this modification applied 0 « o.

6.2 Theorem If P & I « ¢ is correct, then there is a
P' R P,suchthatt’ £ T « o is SC-sequentializable.

The proof works in the usual way by induction on the
size of P & T « 0. Itis a combination of the sequentializa-
tion proofs in [17] and([10], and it makes crucial use of the
“splitting tensor lemma” which in our case also needs the
well-nestedness condition.

Let us now discuss the translation between proof nets
and derivations in the calculus of structures. This can be
done in a more modular way than for the sequent calculus.
Let us start with some properties of linking formulas:

6.3 Proposition An MLL2 formula P is a linking for-
mula if and only if there is a derivation

1

fail, L, 1L,el} | 2 (5)
PL

6.4 Lemma LetP; and P, be two linkings. Then there

what ensures the well-nestedness condition. It can be comis a derivation

pared to Girard’s putting a box around a proof net. The
purpose of thél can be interpreted as simulating the border
of the box. The3-rule is the only one where the stretching
o is changed. As shown in Figuk& 1, in the conclusion of
that rule, the subformul® of A is replaced by the quanti-
fied variablen. When translating this rule into proof graphs,

8In [27,[17] the relation~ is defined on pre-proof graphs, and therefore
a side condition had to be given to that equation (see [algp. [13

Py
{al,ol,rs} H 9
P
if and only if the simple pre-proof graph, > Pj- is correct.

If P, andP, have this property, we say th&f is weaker
thanP,, and denote ita®; < P,. We can now characterize
simple proof graphs in terms of deep inference as follows:



i PtT <o
a®at ¥ at a<) (1®@P) 5T, Lo L5140
PET,A,B,A<c PEABT«0 PET, A<o OLB A«r
exch —; ® — ® T
PoT,B, A, A«c P>[A®B],T«o [P2Q] > I, (A®B),A<cUT
o PS8 A By,...,By<c 5 PIZF,A<(I\B><O' tPlgF,Aﬂj QliAL,A<T
o o cu
Ja.P>Va.A,3a.By,...,3a.By, <0 P>T,3a.A(a\B) <o’ [P Q] N I, (ADAL),A<cUT
Figure 8. Translating sequent calculus proofs into proof ne ts
6.5 Proposition A simple pre-proof grapt® & I' is cor- We can now easily translate LL2p,; proof into a pre-
rect if and only if there is a linking®’ with P’ < P and a proof graph by first decomposing it into the shapé (3)
derivation N via Theoren 313 and then applying Propositiénd 6.5,
P andB.b. We get a pre-proof graphs I « o with PL = A
{al,ol,ls,rs,ul } ’ 72 (6) and[T'«o| = Band|T'« o] = C. Let us call a pre-proof
r graphDI-sequentializabléf is obtained in this way from a

such that coincides with the bijection induced by the flow MLL2pi, proof. We immediately havg )
graph of 2. 6.7 Theorem Every Dl-sequentializable pre-proof

As an example for this proposition, consider the deriva- graph is a proof graph.

tion in @) which corresponds to example (6) in Figlie 5. By the method presented in_J20], it is also possible to
Finally, we characterize appropriate paifs o in terms translate aMLL2p,, directly into a proof graph without prior
of deep inference. decomposition. However, the decomposition is the key for

the translation from proof graphs inMLL2p,; proofs (i.e.,

6.6 Proposition For every derivation “sequentialization” into the calculus of structures). e

D sitiond6.B[6b, and 4.6 give us the following:
{nl,fl} H g (7) 6.8 Theorem If P & I' « o is correct, then there is a
C P’ < P, such thatP’ & I « ¢ is DI-sequentializable.
there is an appropriate pail’ « o with There is an important difference between the two se-
D=[T«o] and C=|T<o| . ®8) guentializations. While for the sequent calculus we have

a monolithic procedure reducing the proof graph node by

Conversely, ifl* « o is appropriate, then there is a deriva- node, we have for the calculus of structures a modular

tion (@) with (&). procedure that treats the different parts of the proof graph
We can explain the idea of this proposition by consid- (which correspondto the three different aspects of theclogi

ering again the examples in Figulds 6 &hd 7. To the non-separately. The core is Propositibnl6.5 which deals with

appropriate examples in Figutk 6 would correspond the fol- the purely multiplicative part. Then comes Proposifiod 6.6

lowing incorrect derivations: which only deals with instantiation and substitution, fhes
3a.(la® at] @ b) second-order aspect. Finally, Propositiod 6.3 takes chare o
[(a®b)®at] Voot eb]  fl W the linking, whose task is to describe the role of the units
a a

in the proof. Therefore the equivalencdinl5.9, which is due

Je(c®@ch) to the mobility if the L, only deals with the linkings. This

modularity in the sequentialization is possible because of

the decomposition in TheordmB.3, which can be seen as a

N version of Herbrand’s theorem.

[(a®b)®at] Vo.bt wb  nl Ja.(fawa”]®b) Note that for both sequentializations only part of the
Ja.3e(c®ch) equivalenc&nhl9 is needed. However, cut elimination in the

Je.(c®ch) next section relies of the full power of this equivalence.

n
Je.lew et JaVb.[a®b]  n]

And to the appropriate examples in Figlile 7 correspond the
following correct derivations:

n
3e[(c®b)®ct] Vb.3a.la’9b]  f]



7 Cut elimination

A cut in a proof graphP tT<«cisa special binary con-
nective®, such that whenever we have® B in T', then
we must have A « | = |B « o). Morally, a® may
occur only at the root of a formula ih. However, due to
well-nestedness we must allow cuts to haveodes as an-
cestors. Then the is treated in the correctness criterion in
exactly the same way as tlgg and sequentialization does
also hold for proof graphs with cut.

The cut reduction relation- is defined on proof graphs
as shown in Figur€l9. For cuts not involving quantifiers
we proceed as i [17]: If we have an atomic et @ a,
then we must have iR two “axiom links” (a* ® a), which
are by the leaf mapping attached to the two atoms in the
cut. Via the equivalence [03.9, we can bring the two pairs
next to each other such th&thas|(a ® a*) ®(a ® a-)] as
subformula. We can replace this by a single- ® a) and
remove the cut. For a cut® L, the situation is analogous.
Finally, a cut{A»® B] ©(C ® D) is simply replaced by two
smaller cutsA © C andB @ D.

Let us now consider the cuts that involve the quantifiers.
There are three cases, one for eacB,af, and3. If we have
a cutda.A @ Va.B, then letC be a node wittBa.A%~C or
Ja.AC. Inthe one case léh = [C « o, in the other let
D = |C«c|*. BylE2H,D is independent from the choice
of C. If there are no stretching edges, thenllet= a. Now
we substitute inside the box vfi. B the variablen with D
and remove all doors of thé-box, and replace the cut by
A @ B. Note that “removing a door” means foZathat the
node is removed, but for af it means that the node is re-
placed by ard and a stretching edge is added to/from every
D (resp.D+) substituted fow (resp.a') formerly bound
by the3-node. Note also that by substitutingvith D we
get “axiom links” which are not atomic anymore, but it is
straightforward to make them atomic again.

If we have a cutla.A © B, leteB be theempireof B,
i.e, largest sub-proof graph d? & I « o that hasB as a
door, and letB, . . ., B,, be the other doors afB insideT’,
and letR be the door oB in P. If eB has more than one
root-node inside the linkind®, then we can rearrange the
®-nodes inP via our equivalence such thaB has a single
©p-root in P. Furthermore, we can get iR a subformula
[Fa.Q % R] where3a.Q is the partner oBa.A. We replace
this by 3¢.[Q ® R], add an additionalla-node to each of
By, ..., B,, and reduce the cut fda.(A © B). Hence, we
have pulled the whole empire &f inside the box ofa. A.

Finally, if we have a cuBla.A © Va.B, then we simply
merge the two boxes into one.

This cut reduction relation is defineal priori only on
pre-proof graphs. But we have immediately the following:

7.1 Theorem The cut reduction relation preserves cor-
rectness and is well-defined on proof nets.
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Figure 9. Cut reduction for MLL2 proof nets



Our main results is now:

7.2 Theorem The cut reduction relation is terminat-
ing and confluent on proof nets.

An important consequence is that we have a category of
proof nets: the objects are (simple) formulas and a map [2]

A — B is a proof net with conclusior- A, B. The

composition of maps is defined by cut elimination. Unfor-
tunately, we do not know much about this category, apart [3]
from the fact that it is *-autonomou5[IL7]. But there are
some observations that we can make about the units, which

can be expressed with the second-order quantifiers:
1 =Va.[at 9 d] and L=3a.(a®a’) (9)

An interesting question to ask is whether these logical
equivalences should be isomorphisms in the categorifica-
tion of the logic. In the category of coherent spacdes [10]
they are, but in our category of proof nets they are not.
This can be shown as follows. The two canonical maps

Va.[at s a] — 1 andl — Va.[a" 2 a] are given by:

[Lo(1® L) (1®3a.(a®at))
NV N and ) )
Ja.(1®1), 1 1, Va.lat9a]
respectively. Composing them means eliminating the cut 10
from
[L2(1®1)2(1®3a.(a®ab))]
\ VN \ (12)
a.(1® 1), 10 L, Ya.[a' 2 d]
This yields
[J_ ?(1 ®Ja.(a®at))]
\ (12)
Ja. (1®J_) , Ya.lat 9 a]

If the two maps in[(TI0) where isos, the reslifl(12) must be

the same as the identity mafa.[a 9 a] — Va.[a" 9 a]
which is represented by the proof net
Ja.[(a* ®a)®(a®@at))
(13)
Ja.(a®a’t), Ya.[at 5 a
This is obviously not the case (even if we replacedby

Ja.Ja as for Theorer ®]2). A similar situation occurs with

the additive units, for which we have
0 =Va.a and T =daa (14)

Since we do not haveé and T in the language, we cannot
check whether we have these isos in our category. However,[19
since0 andT are commonly understood as initial and termi-
nal objects of the category of proofs, we could ask whether
Ya.a and3a.a have this property: We clearly have a canon-

ical proof forVa.a — A for every formulaA, but it is not
necessarily unique.

However, the correct treatment of additive units in proof

nets is still an open problem for future research.
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