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Abstract

We describe how a logic with commutative and non-
commutative connectives can be used for capturing the
essence of discrete quantum causal propagation.

1 Causal graphs and locative slices

In this note we describe how the kinematics of quantum
causal evolution can be captured by the logic BV [2]. The
setting is discrete quantum mechanics. We imagine a fi-
nite “web” of spacetime points. They are viewed as vertices
in a directed acyclic graph (DAG); the edges of the DAG
represent causal links mediated by the propagation of mat-
ter [1]. The fact that the graph is acyclic captures a basic
causality requirement: there are no closed causal trajecto-
ries. The DAG represents a discrete approximation to the
spacetime on which a quantum system evolves. The graph
is technically a dangling graph; there is a set of half edges—
in addition to the ordinary edges—divided into two disjoint
subsets: the incoming edges and the outgoing edges. An
incoming edge has no initial point but has a terminal point,
and dually for outgoing edges.

A pre-causal graph G consists of a quadruple
(VG ,BG , IG ,OG), where VG is a set of vertices, BG is a set
of directed (binary) edges, IG is a set of incoming edges,
and OG is a set of outgoing edges, such that VG , BG , IG ,
and OG are pairwise disjoint (and finite), and two functions
sourceG :BG ∪ OG → VG and targetG :BG ∪ IG → VG ,
called source and target, respectively. The elements of the
set EG = BG ∪ IG ∪ OG are called edges. On this set we
define the precedence relation ≺G⊆ EG × EG as e1 ≺ e2

iff target(e1) = source(e2) The ancestor relation <G is the
transitive closure of ≺G . If <G is irreflexive we say that
G is a causal graph. A slice S in a causal graph G is an
anti-chain in ≤G . A slice does not need to be maximal.

To each edge in a causal graph we can associate a Hilbert
space H and a density matrix ρ associated with the subsys-
tem on that edge. At each vertex we imagine that we have

an interaction, which may be any one of the following: sub-
systems come together, a subsystem breaks into pieces, a
subsystem is subject to a unitary transformation, a subsys-
tem is subject to a measurement, or a subsystem is partly
discarded. When subsystems come together we form the
tensor product of their state spaces. If they have no inter-
action we form the tensor product of their density matrices,
otherwise we have a unitary operator acting on the com-
bined density matrices. When a system breaks apart we can
have a single density matrix for all the pieces; if, however,
we wish to separate the density matrices of the individual
components we compute partial traces, which has the ef-
fect of removing information about nonlocal correlations.
In fact, the presence of non-local correlations is what dis-
tinguishes this from Petri nets.

Density matrices can be associated with any slice. If we
keep all the data associated with maximal slices then we
cannot guarantee that information does not propagate be-
tween acausal paths. One solution to guaranteeing causal
propagation is to only propagate along the individual edges.
In this scheme we would only allow the operators (com-
pletely positive maps) at the vertices to act on density ma-
trices associated with single edges. This would indeed guar-
antee causal propagation but would kill all nonlocal corre-
lations. The solution to the problem of ensuring causal evo-
lution while preserving important non-local correlations is
to work with locative slices, which are defined below.

Let G be be a causal graph, and let S ⊆ E and let v ∈ V
be a vertex such that target−1(v) ⊆ S. Then the set S ′ =
S\target−1(v)∪source−1(v) is called the propagation of S
through v. Clearly, if S is a slice, then the propagation of S
through v is also a slice. We say a slice S ′ is reachable from
a slice S if there are an n ≥ 0 and slices S0, . . . ,Sn ⊆ E
and vertices v1, . . . , vn ∈ V such that for all i ∈ {1, . . . , n}
we have that Si is the propagation of Si−1 through vi, and
S = S0 and S ′ = Sn. A slice S in a causal graph G is
called locative, if it is reachable from a slice I ′ ⊆ I.

The point is that if S is locative then its density matrix
can be computed without ever comuting partial traces: no
information is lost.



2 A Logic for Causal Propagation

After having discussed the “physics” of discrete quan-
tum causal propagation, we will no describe a logic cap-
turing the essence of the concept of “locative” slice. The
basic idea is to have a propositional logic where the edge
of the causal graph are represented by atoms. The ver-
tices are represented by axioms and the locative slices
correspond to derivable formulas. The approach taken
in [1] was to use as key unit of deduction a sequent
a1, . . . , ak ` b1, . . . , bl meaning that the slice {b1, . . . , bl}

is reachable from {a1, . . . , ak}. However, this approach
was not able to entirely capture the notion of locative slices,
because correlations develop dynamically as the system
evolves, or equivalently, as the deduction proceeds. The
solution taken in [1] was to let axioms evolve dynamically.

The deep reason behind the problems of [1] was that
the underlying logic was multiplicative linear logic (MLL):
The sequent above represents the formula a1 � · · · � ak (
b1 O · · · O bl or eqvivalently a⊥1 O · · · O a⊥k O b1 O · · · O bl,
i.e., the logic is not able see the aspect of time in the causal-
ity. For this reason we propose to use the logic BV, which
is essentially MLL (with mix) enhanced by a third binary
connective / (called seq or before) which is associative and
non-commutative and self-dual, i.e., the negation of A / B
is A⊥ / B⊥. It is this non-commutative connective, which
allows us to properly capture quantum causality.

A vertex v ∈ VG in a causal graph G is now encoded by
the formula V = (a⊥1 � · · · � a⊥k ) / [b1 O · · · O bl], where
{a1, . . . , ak} = target−1(v) is the set of edges having
their target in v, and {b1, . . . , bl} = source−1(v) is the
set of edges having their source in v. For a slice S =
{e1, . . . , en} ⊆ EG we define its encoding to be the formula
S = e1 O · · · O en.

Let us now define the rules of the game. Since there is no
sequent system for BV [5], we give a system in the calculus
of structures, using deep inference. The inference rules are:

F{◦}
ai↓

F{a O a⊥}
F{A � [B O C]}

s
F{(A � B) O C}

F{a � a⊥}
ai↑

F{◦}

F{[A O C] / [B O D]}
q↓

F{〈A / B〉 O 〈C / D〉}
F{〈A / B〉 � 〈C / D〉}

q↑
F{(A � C) / (B � D)}

They have to be read as ordinary rewrite rules acting on the
formulas inside arbitrary contexts F{ }. Note that we push
negation via DeMorgan equalities to the atoms, and thus,
all contexts are positive. The letters A,B, C, D stand for
arbitrary formulas and a is an arbitrary atom. The rewriting
is done modulo the associativity of all three connectives O,
/, and �, the commutativity of the two connectives O and �,
and the unit laws for ◦, which is unit to all three connectives,
i.e., A = A O ◦ = A � ◦ = A / ◦ = ◦ / A.

The set of rules {ai↓, ai↑, s, q↓, q↑} is called SBV, and

the set {ai↓, s, q↓} is called BV [2]. We write
P
‖
‖ SBV

Q

to de-

note a derivation from P to Q using SBV. The system BV
obeys cut elimination, i.e., the general cut rule (the rule ai↑
without the restriction to atoms) is admissible for BV. As a
corollary, we have the following:

2.1 Theorem
A
‖
‖ SBV

B

if and only if
◦
‖
‖ BV

A⊥ O B

.

Let us now come back to causal graphs. Recall the en-
coding of vertices and slices described above. We can now
formulate our main result:

2.2 Theorem Let G be a causal graph. A subset S ⊆ EG
is a locative slice if and only if there is a derivation

I � V1 � . . . � Vn

‖
‖ SBV

S

,

where S is the encoding of S, and I is the encoding of a
subset of IG , and V1, . . . , Vn encode vertices v1, . . . , vn ∈
VG .

The “only if” direction is easy. We simply simulate in
SBV the propagation of slices in the DAG. The “if” direc-
tion is a bit tricky. We make crucial use of Theorem 2.1,
and the following property of BV:

2.3 Proposition For any pairwise distinct atoms
a1, a2, . . . , an the formula

〈a1 / a⊥2 〉 O 〈a2 / a⊥3 〉 O · · · O 〈an / a⊥1 〉

is not provable in BV.

For more details on this property, the reader is referred
to [4]. In [3] an extension of BV by the exponentials ! and ?
of linear logic is proposed, which can be used to provide a
more general version of Theorem 2.2.
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