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Résumé du projet (maximum 5000 caractères)

Ce projet réunit trois équipes par leur intérêt commun pour une nouvelle approche de la

théorie de la démonstration, « l'inférence profonde », qui a été développée durant les cinq

dernières années par un groupe de chercheurs réunis autour d'Alessio Guglielmi.  Nous

visons à raffiner son énorme potentiel et à l'appliquer à des problèmes liés aux fondements

de  la  logique,  ainsi  qu'à  des  questions  plus  pratiques  d'algorithmique  des  sytèmes  de

déduction.

Parmis les problèmes théoriques il y a le besoin fondamental d'une théorie de l'identification

correcte des démonstrations et son corollaire, l'obtention d'une approche vraiment générale

des  réseaux  de  démonstration.  Une  autre  question  très  voisine  est  l'extension  de

l'interprétation  de  Curry-Howard  à  ces  nouvelles  représentations.  Parmi  les  problèmes

pratiques nous aborderons des questions de stratégie et de complexité en recherche des

preuves, en particulier dans des systèmes d'ordre supérieur.  Ces questions sont reliées

intimement à la formulation même de ces logiques, et le rapport évident entre l'inférence

profonde et des techniques bien établies---comme la déduction modulo et l'unification sur

les quantificateurs---sont des sujets que nous avons l'intention d'approfondir, étant donné

leur  ancrage  commun dans  la  théorie  de  la  réécriture.  Nous  voulons  aussi  explorer  la

formulation  et  l'utilisation  de  systèmes  logiques  plus  «  exotiques  »,  de  nature  non-

commutative, dont l'intérêt provient de l'existence d'applications, comme en liguistique et en

calcul quantique. Ceci prolonge naturellement certains des premiers travaux en inférence

profonde.

Il est assez évident que des résulats probants pourront obtenus pour les problèmes de la

partie « pratique » de ce programme de recherche.  La partie « théorique » par contre

s'inscrit dans une quête qui avance pas à pas depuis des décennies maintenant, et il est

difficile  de  faire  des  prédictions  exacte,  sauf  que  nous  avons  la  certitude  que  notre

positionnement autour de l'inférence profonde nous permettra des progrès substantiels.



Abstract (Not exceed 5000 car.)

This project is a grouping of three teams through their common interest for a new approach

to proof theory, called « deep inference », that has been developed during the last five

years by a group of researchers centered around Alessio Guglielmi. We aim at refining its

enormous potential and at applying it to problems related to the foundations of logic and to

more practical questions in the algorithmics of deductive systems.

Among the list of theoretical problems there is the fundamental need for a theory of correct

identification of proofs, and its corollary, the development of a really general and flexible

approach to proof  nets.  A closely related problem is the extension of the Curry-Howard

isomorphism to these new representations. Among the list of more practical problems we

will tackle questions of strategy and complexity in proof search, in particular for higher-order

systems. These questions are intimately related to how proofs themselves are formulated in

these systems, and the obvious relationship betwen deep inference and well established

techniques---like  deduction  modulo  and  unification  for  quantifiers---are  subjects  that  we

intend  to  deepen,  given  their  common  grouding  in  rewriting  theory.  We also  intend  to

explore  the  formuation  and  use  of  more  «  exotic  »  logical  systems,  for  example  non-

commutative  ones,  that  have  interesting  applications,  as  in  linguistics  and  quantum

computing. This is a natural continuation of some of the first results that were obtained in

deep inference.

It is rather obvious that clear positive, measurable results will be obtained for some of the

more « practical » parts of this research program. But the « theoretical » aspect belongs to

a quest  that  has been seen steady progress  for  decades,  and it  is  hard to  make hard

predictions, except that our choice of deep inference is the right way to go and that we are

expecting serious progress.
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Programme blanc 2006
B - Description du projet

Acronyme ou titre court du projet :  INFER

B-1 – Objectifs et contexte : (2 pages maximum en Arial 11, simple interligne)
On précisera les objectifs et les enjeux en les situant dans le contexte international

The purely theoretical phase of this project addresses foundational issues in logic, issues that matter very much in

computer  science.  These  theoretical  issues  have  a  direct  connection  to  much  more  practical  matters,  like  the

algorithmics  of  proof  search  and its  complexity,  and we will  describe  some of  these.  Everything in  the end is

connected with the very difficult, real-world problem of producing reliable  software.

In what follows, when we write « mathematical logic », we will basically mean « proof theory », even if some other

areas like model theory and set theory are sometimes concerned.

Mathematical logic has been around for more than a hundred years, but in some ways it is still not really mature, in

the sense that it still lacks coherent theoretical foundations: a general language to express formal systems and the

problems that are naturally associated to them, and a general methodology to suggest solutions and express them.

This is sharp contrast with, say, algebraic topology, which was born at about the same time as logic, but for which the

foundational issues, and the solutions that have been proposed to them, have had tremendous conceptual influence

on 20th century mathematics. The rapid expansion of logic in computer science makes this need for conceptual

foundations even more pressing. Deep results are being proved, but they are becoming more and more technical.

The outcome is that researchers become more and more specialized, and some duplication of effort happens in

related fields, due to the fact that people don't understand what their neighbors are doing anymore. And the virtuosity

which is sometimes needed for proving of some of these results seems sometimes unnecessary, seemingly having

to do more with artifacts of the chosen formalism than with inherent difficulty.  Researchers have been aware of this

for a long time, and the two most important advances in that direction for logic in the last half decade have been

category theory and linear logic. 

Lambek and Lawvere remarked more than forty years ago that important constructs in logic can be formulated in

terms of category-theoretical concepts like adjunction. This has made many aspects of logic more algebraic, but the

basic category theorist's conceptual kit  is not always perfectly suited to the syntactic issues associated to proof

theory; sometimes there is a slight mismatch, and the abstractions provided by category theory are always some

distance away from the actual stuff that proof theorists work with.

The discovery of linear logic by Girard has shown that even if adding the constraint of linearity weakens the logic

itself, this constraint brings a new geometric viewpoint to concepts like formula and cut-elimination (and thus the

possibility of using geometric intuition). The more traditional logics can then be recovered by new connectives. One

great triumph of linear logic is the introduction of proof nets, which, when they can be used, give very synthetic

presentations of proofs for the right logics. Interestingly, proof net models usually have very nice properties from the

category-theoretical viewpoint.

The present research project is interested in furthering what we believe is the next important advance, one which has

been around for about only five years. In general it should and will be called « deep inference », but the current, most

visible formulation of its underlying principles is called the « calculus of structures ». The main development of these

ideas has been accomplished by the Proof  Theory Group in Dresden (Germany) led by Alessio Guglielmi.  The

coordinateur of this project was in the fortunate situation to participate in that development while writing his doctoral

thesis.



One aspect of proof theory which has been remarkably stable during the 20th century is how deductive systems are

formulated. There has not been any significant departure from Gentzen's seminal work, which introduced the sequent

calculus and natural deduction in the mid-thirties (and Tableaux-systems are a variant of  sequent calculus;  and

earlier Frege-Hilbert-style systems are still  used sporadically today). For example the deductive system that are

associated with linear logic are formulated in these traditional terms, the more frequent  one being the sequent

calculus.

Deep inference's innovation lies at this very level:  how a  formal system is presented. It furthers the importance of

linearity by incorporating it at the level of  deduction steps themselves. Furthermore, in the calculus of structures,

inference rules do not work on the root connective of the formula (as we know it from tableaux, sequent calculus, or

natural deduction) but are conducted as rewriting steps (as in ordinary term rewriting), potentially at any depth inside

the formula.  This  why the name « deep  inference »  was given to  the whole  enterprise.  From the viewpoint  of

structural proof theory, deep inference seems like a step back in history, because modern proof theory has been

made possible only through Gentzen's idea of rigorously exploring the concept of the main connective. The dropping

of this concept caused a breakdown of all proof theoretical techniques developed since then. Indeed, most of the

early research on deep inference went into the development of new techniques for proving things like cut elimination.

However, the use of deep inference results in a much finer analysis of proofs than what traditional systems permit; in

particular it allows the proof of more precise versions of the classical theorems of proof theory, like interpolation and

Herbrand's theorem; it also gives a more synthetic view of a formal proof.  Now that these « preliminary » results are

established, one important goal of the present project is to move on to the next step, namely tackling problems that

are directly relevant to computer science. Furthermore, the above preliminary work has led to the discovery of  logics

that cannot be formalized otherwise than by deep inference (as shown by Tiu), and these logics are relevant to

computer science, as we will see.

We would like to emphasize that within only 5 years (since 2000) deep inference has developed from « not existing »

to a very active and continuously growing field of research. There have been at least 25 publications in the area of

deep inference that went through international peer reviewing, 7 in journals and 18 in conferences and there are

several more that currently undergo the reviewing process. Apart from the three French laboratories mentioned in

this proposal, there are now groups in Bath (UK), Bern (Switzerland), Ottawa (Canada), Stanford (USA), Canberra

(Australia), and, of course, Dresden (Germany) working on deep inference. There is a webpage dedicated to deep

inference at http://alessio.guglielmi.name/res/cos/index.html (maintained by Alessio Guglielmi). 

Our project proposal is a grouping of three laboratories whose expertise in the field of proof theory in computation is

acknowledged on a world-wide scale. We intend to benefit from the pooling of the wide-ranging competences they

represent to attack and solve a certain number of important open problems in the proof theory of deep inference. As

we have said we also intend to apply deep inference method in areas of computer science where proof theory

already plays a crucial role. For this we will have a close collaboration with the international groups listed in the

previous paragraph. We have selected 7 key representative active lines of research, the first 4 of them are about the

further theoretical development of deep inference, and the last three are about applications of deep inference in

computation.

1. Reduction of bureaucracy and identity of proofs

2. Size of proofs

3. Proof nets

4. Computational interpretation of logical systems

5. Deduction modulo

6. Proof search in first-order and higher-order logic

7. Non-commutative logics

They will be discussed in more detail in Section B-2.



B-2 – Description du projet et résultats attendus : (8 pages maximum en Arial 11, simple interligne)
L’originalité et le caractère ambitieux du projet devront être explicités. L’interdisciplinarité et l’ouverture à diverses
collaborations seront à justifier en accord avec l’orientation du projet. La capacité de ou des équipes «  porteuse
(s) » devra être attestée par la qualification et les productions scientifiques antérieures de leurs membres. Leurs
rôles dans les différentes phases du projet devront être précisés et la valeur ajoutée des collaborations entre les
différentes équipes sera argumentée. On décrira le déroulement prévisionnel et les diverses phases intermédiaires
ainsi  que  les  méthodologies  employées.  Les  moyens  demandés  devront  être  en  accord  avec  les  objectifs
scientifiques du projet. 

We give in the following a detailed presentation of the seven lines of research we have selected.

1. Reduction of bureaucracy and identity of proofs

As  we  have  said  in  the  introduction,  proof  theory  is  still  in  a  primitive  stage  compared  to  many  other

mathematical  theories.  This  can  be  summarized  in  a  nutshell  by  saying  that  it  is  still  at  the  stage  of

presentations---as in presentation of a group by generators and relations---since we are able to manipulate

and transform proofs in various ways and prove deep theorems about them. But we have been waiting too

long for logic to reach the next stage in the natural development of a mathematical theory, that of definitions,
where for example we have a clear idea of when to identify two proof objects because we have a precise

definition of what they are. J-Y Girard has coined the colorful term of bureaucracy to express the source of the

problem: the present state of syntax is too bureaucratic, it forces us to make unneccessary distinctions, that

are only artifacts of that syntax, and keep us away from the essence that we are trying to reach. Proof nets

have been the one major advance in the the fight agains bureaucracy.

Finding the right definitions is, of course, of utter importance for logic and proof theory for its own sake. We

can only speak of a real « theory of proofs », if we are able to identify its objects. Apart from that, the problem

is of relevance not only for philosophy and mathematics, but also for computer science, because many logical

systems permit a close correspondence between proofs and programs.  In the view of this so-called Curry-

Howard correspondence (see also point 4 below), the question of the identity of proofs becomes the question

of the identity of programs, i.e., when are two programs just different presentations of the same algorithm. In

other  words,  the  fundamental  proof  theoretical  question  on  the nature  of  proofs  is  closely  related  to  the

fundamental question on the nature of algorithms. In both cases the problem is finding the right formulation

that is able to avoid unnecessary syntactic bureaucracy. And naturally, as have we have said, present-day

theoretical computer science is suffering from strong centrifugal tendencies that have to be countered, if we

want it to stay a coherent body of work.

From this viewpoint the concept of deep inference seems to be a step back in history. Due to the new freedom

of applying inference rules, the number of possible trivial rule permutations explodes, compared to formalisms

based on the main connective. However, the possibility of deep inference opens up the possibility of designing

new formalisms that are a priori free from bureaucracy. There is already preliminary research on this subject

by  Brünnler,  Lengrand,  Guglielmi,  and  Strassburger,  which  identifies  various  kinds  of  bureaucracy  and

suggests ways how these can be avoided. 

An interesting aspect  of  this  work  on classifying bureaucracies  is  that  much of  it  has a natural  category-

theoretical  translation,  in  terms  of  functoriality  and  naturality.  This  is  because  the  relationship  between

categories and deep inference is very natural  but different  and more subtle than the standard categorical

interpretation of proofs, where, given a map (morphism) 

A --> B 



in a category of proofs, it  makes no difference in saying that it is a a proof that A implies B or that it is a

deduction of B from A. For deep inference, a map 

A --> B 

is a only a deduction  of A from B, which is different in general from a proof of 

A => B . 

This is because the standard adjunction that defines implication does not hold in general in these categories.

In particular composition of deductions cannot be interpreted as cut-elimination (as is usual), and it is a much

more primitive,  simple-minded operation.  This  is one important  illustration of  the idea that deep inference

provides a finer analysis of proofs: its main constituents are inherently weaker, forcing us to formulate more

precisely the strength that is needed to construct a logic.

This correspondence has led Yves Guiraud (to appear in APAL) to incorporate ideas from higher-dimensional

rewriting, following the work by Burroni on polygraphs (TCS 1993) and Baez and Dolan on n-categories (e.g.,

Advances in Mathematics 1998). In this setting, formulas are two-dimensional objects and proofs are three-

dimensional maps. Consequently, transformations between proofs are objects in four dimensions. The various

kinds of bureaucracy are resolved by isotopy relations. This approach not only promises a uniform approach to

all kinds of bureaucracy investigated so far, it also suggests new tools for solving the problem of the identity of

proofs.  Their  three-dimensional  representation  now  allows  one  to  apply  topological  methods  that  were

unavailable before.

One relatively easy aspect of this research should be the obtention of a proper, general, realistic categorical

axiomatization of deep inference, But the real exciting work begins when we start looking for representations

of these abstract categories, i.e., "deductive proof nets" (see below). We now have evidence that it may be

necessary to go from 1-dimensional complexes---graphs---which have been the norm so far for proof nets, to

higher-dimensional ones.

2. Proof nets

Proof  nets  are  abstract  (graphical)  presentations  of  proofs  such  that  all  "trivial  rule  permutations"  are

quotiented away. Ideally the notion of proof net should be independent from any syntactic formalism. But due

to the almost absolute monopoly of the sequent calculus, most notions of proof nets proposed in the past were

formulated in terms of their relation to the sequent calculus.  Consequently we could observe features like

« boxes » and explicit « contraction links ». The latter appeared not only in Girard's proof nets for linear logic

but also in Robinson's proof nets for classical logic. In this kind of proof nets every link in the net corresponds

to a rule application in the sequent calculus.

The concept of deep inference allows to design entirely new kinds of proof nets. Recent work by Lamarche

and Strassburger (CSL 04) could extend the theory of proof nets for multiplicative linear logic to multiplicative

linear logic with units. This seemingly small step---just adding the units---had for long been an open problem,

and the solution was found only by consequently exploiting the new insights coming from deep inference. A

proof net no longer just mimicks the seqent calculus proof tree, but rather an additional graph structure that is

put on top of the formula tree (or sequent forest) of the conclusion. This naturally leads to the following open

problem:



� Extending the Lamarche/Strassburger proof nets for MLL with units to larger fragments of linear logic, i.e.,

including the additives (in particular, the additive constants), the exponentials, and the quantifiers, without

using boxes.

Also for classical  logic,  for which it  was long believed that one cannot  have symmetric  proof  nets  with a

confluent cut elimination, it was deep inference that provided the insights that led to the design of such proof

nets (Lamarche and Strassburger, TLCA 05). There are now two important open problems: 

� Finding (for classical logic) a notion of proof nets that is deductive, i.e., can effectively be used for doing

proof seach. An important property of deductive proof nets must be that the correctness can be checked in

linear time. For the classical logic proof nets by Lamarche and Strassburger this takes exponential time (in

the size of the net).  There is  in  fact a very close relationship to point  1 above:  We actually hope that

eventually the right bureaucracy-free formalism and the deductive proof nets will turn out to be only two

different appearances of the same mathematical objects.

� Finding a category theoretical axiomatization for the proof identifications made by the proof nets. It is well

understood that the notion of cartesian closed category provides the right axioms for proof identification in

intuitionistic logic and that *-autonomous categories axiomatize the proof identifications for linear logic. But

for classical logic, there is no commonly agreed notion of such a category. In fact, the work by  Lamarche

and Strassburger (LICS 05) suggests that there is a wide range of possibilities, and not just one canonical

way.

3. Size of proofs

Deep inference rules have a much finer granularity than inference rules based on the main connective. One

inference rule in the sequent calculus or in a tableau system usually corresponds to a sequence of  inference

rules in the calculus of structures. On one side, this means that proofs in the calculus of structures are longer

(but only by a constant factor) than in other systems, but on the other side this means that the calculus of

structures can p-simulate many other calculi that can (in general) not p-simulate each other. This includes the

sequent calculus, resolution, the tableau method, Frege-Hilbert-systems, and even the truth-table method. 

As a matter of fact, given this great expressivity of deep inference, we should be able to think of traditional

formalisms like the sequent calculus as subsystems of a general theory of deep inference, and a good theory

of proof identification should turn the above simulations into homomorphisms.

This uniformity allows to exhibit short (i.e., polynomial size) proofs for all tautologies that have short proofs in

one of the proof systems mentioned above. The important point here is that this can be done cut-free, i.e.,

analytic, which is not the case for Frege-Hilbert-systems, which are usually used when the size of proofs is

investigated. We can, for example, in the calculus of structures give short cut-free (i.e., analytic) proofs for

classes of tautologies which do not have short cut-free proofs in the sequent calculus (but only short proofs

with cut). This suggests that deep inference should become a standard tool for analysing the complexity of

proofs. But so far there has been only preliminary research in this promising direction. 

4. Computational interpretation of logical systems

Intuitionistic  logic  is  the theoretical  cornerstone of  functional  programming;  this  comes through the Curry-



Howard  isomorphism,  that  establishes  a  correspondence  between  proofs  in  intuitionistic  logic  and  typed

functional  programs (written  as  lambda  terms).  This  is  because  the  constructivist  viewpoint  (the  ideology

behind intuitionistic logic) says that, for example, a proof of A=>B  is an algorithm that transforms proofs of A

into proofs of B. If we think of A, B as data types, we have a functional program. This has been an important

field of research for the last 25 years.

The Curry-Howard correspondence was extended to classical logic at the beginnning of the 90s, notably via

the  lambda-mu calculus  introduced  by  M.  Parigot,  which  is  closely  related  to  actual  control  operators  in

programming languages. Since then several computational interpretations of classical logic have been proved

« essentially equivalent », by the means notably of linear logic and polarizations. We still have to understand

the untyped versions of these classical systems (for instance the pure lambda-mu calculus) and in particular

their denotational models. It can be hoped that deep inference can provide new insights in this new, pretty

much uncharted, direction of research.

But  the technological  transfer  also  goes  in  the other  direction:  So far,  the computational  meaning  of  the

nomalization (i.e., cut elimination) procedure of deep inference systems is not at all investigated. By now most

of the commonly used logics have a presentation as deep inference system. This includes classical  logic,

intuitionistic logic, linear logic, as well as various modal logics. They all come with their own cut elimination

method, which is in most cases based on the technique of « splitting » (due to Guglielmi,  2002). It is  an

important objective of this project to provide a computational interpretation, in the sense of the  Curry-Howard

correspondence to these systems and their cut elimination. The goal is to provide a uniform method to do this

for all systems that use Guglielmi's splitting for cut elimination.

It could very well be that deep inference has introduced a completely unexpected turn to the Curry-Howard

view of things, perhaps the end of its hegemony. Recently Tiu proposed a completely local deep inference

system  for  intuitionistic  logic.  That  means  that  every  inference  rule  only  needs  a  bounded  amount  of

computational  resources (i.e.,  time and space).  In particular  the contraction rule  is  applied only  to atoms.

(Before it was believed that this could be done only for logics with involutive negation, i.e, classical and linear

logic.) It is however completely unknown what the Curry-Howard isomorphism means in this new setting.

Another example that things are seriously being shaken up by these new developments is given by the proof

nets for classical logic of Lamarche and Strassburger (see point 2 above). The important question of their

computational  interpretation  is  still  open.  This  is  because,  although  these  nets  normalize  perfectly,  their

behavior  shows some surprising properties with  respect  to rules like contraction.  One reason is  that their

perfect symmetry makes them much less sequential than the polarized interpretations mentioned above.

Perhaps  we  will  end  up  concludiing  that  some  logical  systems  are  not  amenable  to  the  Curry-Howard

ideology, and that something new has to be invented. Or perhaps these new examples simply open a window

on the difficult problem of the relationship between functional programming and parallelism, since traditional

systems are very much sequential when viewed through the Curry-Howard lens.

5. Deduction modulo

Deduction modulo (Dowek/Hardin/Kirchner) is a framework that integrates computation and deduction in a

single notion of proof. Instead of having only inference rules as smallest steps within a proof, one allows also

computation steps. It is particularily well-suited to study proofs and proof search methods in various theories,

such as equational theories, simple type theory, set theory, stratified set theories, etc. Similar to what happens

with deep inference, such a radical change in the notion of formal proof causes a breakdown of many well-



established proof theoretical techniques and properties, including cut elimination.

Deduction modulo  and deep inference,  are concerned with  very similar  problems.  First,  both of  them are

deeply related with rewriting. Furthermore, in deduction modulo, the computation steps can be incorporated in

the  deduction  inference  rules,  so  that  proofs  are  identified  if  they  follow  the  same  deductive  process,

independently from the computation occurring in them. This is very close to the ideas of point 1. Moreover, this

leads to shorter proofs (point 3): on the one hand because computations steps can be considered as negligible

compared to deduction, on the other hand because computation (blind execution) can be more direct than

deduction (non-deterministic search). A good example for this is the proof of 2+2=4 : quite elaborate in the

sequent calculus with, as hypothesis, some presentation of arithmetic; but trivial if one allows computation.

Deduction modulo seems to be limited by the formalism upon which it is built, i.e. the sequent calculus. Recent

work by Kirchner and Burel shows that the cut elimination property can be recovered by adding computation

rules following the idea of Knuth-Bendix-completion on term rewriting systems. It seems that for doing so the

sequent calculus poses artificial syntactic restrictions. For example, one can consider only computation rules

that rewrite atomic propositions. There is therefore no simple way to add rewrite rules corresponding to a

sequent involving quantifiers. It is very clear that deep inference naturaly overcomes this difficulty due to the

greater flexibility in the design of rules. However, to actually make use of this flexibility, it is first necessary to

redefine the concept of deduction modulo within deep inference. 

Deep inference might also help to give an exact characterization of systems in deduction modulo for which the

cut  elimination holds.  So far,  there are only  sufficient  or necessary conditions.  It  is  not even clear  how it

depends on the used formalism (i.e., the sequent calculus). For this, a direction of research could be based on

the observation that, if only terms are rewritten, the cut elimination property is equivalent to the confluence of

the rewrite system (shown by Dowek). Since this does in general not hold when one rewrites propositions, one

could interpret cut elimination as some sort of « confluence property » of the deep inference deductive modulo

systems, property which has to be closely determined. 

6. Proof search in first-order and higher-order logic

The proof-theoretical  foundations for proof search in higher-order logic are provided by Gentzen's sequent

calculus.  For  implementation,  a  unification  procedure  has  been  put  on  top  of  that.  Usually,  a  unification

problem is a conjunction of equations between simply-typed lambda-terms where the free variables in the

equations  can  be  universally  or  existentially  quantified  (in  the  first-order  case  they  are  only  existentially

quantified). How to deal with mixed quantification has been worked out by Miller (JSC 92).

The  problem in  implementing  proof  search  is  deciding  at  what  point  the  unification  should  happen.  The

sequent calculus tells us to instantiate a variable in the moment the rule for the existial quantifier is applied.

However, at that moment, the machine has no way to know with what the variable should be instantiated. Only

later  when the proof search reaches an identity axiom, this knowledge is revealed (of course, the human

reasoner always has the possibility of making a clever guess).

In practical implementations this problem is usually solved by laziness. One keeps a « hole » in the proof and

postpones the unification to the very end of the proof. While this clearly works well for practical purposes, it is

a disaster for the theory of proofs, because there is no well defined notion of « proof object ». There are only

meta-language descriptions.

It  is  again  the  concept  of  deep  inference  that  can  solve  that  problem in  a  very  elegant  way  by  simply



postponing the application of the rule that removes the existential quantifier. This is easily possible by working

inside the formula. (Recall that the sequent calculus has to remove the quantifier in order to get access to the

formula inside in the first place.) This can give a proper proof theoretical treatment to the implementations.

In  order  to  make  proper  use  of  the  freedom of  deep  inference,  it  is  however  necessary  to  extend  deep

inference systems to logics with higher-order quantification. The work by Bruennler on first-order logic (Studia

Logica 2006) shows that this can be done in a very clean way.

7. Non-commutative logics

Deep inference has already shown its ability to produce deductive systems for logics that cannot be formalized

otherwise. The paradigmatic example is system BV, which is closely related---and probably equivalent to---

Retore's pomset logic, and for which there is a proof that it cannot be formulated in the sequent calculus (this

is due to A. Tiu, to appear in LMCS). Non-commutative logics are used in linguistics, and also in the theory of

concurrency via its formulation through logic programming. Such applications need flexibility, in the sense that

one has to be able to easily construct taylor-made logics, for a given application. One goal of this research

project is to test deep inference's ability to provide flexible, non-standard logics that are suited for their target

applications.

One specific  example of this is the development of braided logics, where the word braided has the same

meaning  as  in  conformal  field  theory.  It  now seems that  the pioneering  work  of  Fleury  (PhD-thesis)  and

Bellin/Fleury (Archive of Math. Logic 1988) could not be finalized because it was (out of necessity) bound to

the sequent calculus.

But deep inference also has something to say on how such nonstandard logics are interpreted.

Blute, Ivanov, and Panangaden (Int. J. of Theoretical Phsysics 2002) proposed the notion of a quantum causal

graph  for  describing  the  evolution  of  open  quantum systems.  Within  these  graphs  the  notion  of  locative

(spacelike) slice is defined in order to capture nonlocal correlations. They propose a way to use linear logic to

describe the evolution of the locative slices, but to do so, it is in certain cases necessary to update the axioms

of the system during the computation. It is a surprising observation by Strassburger, that the logic BV can fulfill

this task without the need of updating the axioms during the computation.

This is very surprising. Strassburger's encoding of the causal graph mimicks Guglielmi's original intuition for

introducing the logic in the first place: the non-commutative connective is used to to describe the temporal

relation between two events, and the two commutative connectives are used to describe entanglement (par)

and non-entanglement (tensor) of two particles. But the appeal to quantum-theoretical intuition was not posited

at first: it appeared as a way to solve the problem given by Blute et al.

This clearly indicates that the last word on the application of deep inference methods in this area has not been

said yet. An important next step would be to find out whether deep inference methods can be used to go

beyond  mere  locativity,  i.e.,  make  qualitative  statements  about  entanglement,  whithout  having  to  do  the

calculations in Hilbert spaces.  

Naturally we also intend to tackle the problem of the equivalence between BV and pomset-logic.



B-3 – Justification scientifique des moyens demandés pour chaque équipe partenaire impliquée
dans le projet. 
On présentera ici une justification scientifique des moyens demandés pour chacun des partenaires impliqués dans le
projet, en distinguant les demandes en équipement, fonctionnement, personnels. Pour les demandes d’équipement,
préciser si les achats envisagés doivent être complétés par d’autres sources de crédits, le montant et l’origine des
crédits complémentaires qui seront utilisés.

Partenaire 1

Ce projet vise à faire émerger une nouvelle communauté, qui n'a pas encore vraiment pignon sur rue.

Certains  membres  potentiels  sont  à  l'étranger,  risquent  d'y  rester.  En  tant  que  bénéficiaires  d'un

« programme blanc » nous prendrions la responsabilité de structurer globalement cette communauté, en

particulier au moyen de colloques spécialisés, ouverts sur la scène internationale. Les Partenaires 1 et 2

prendont en charge chacun l'organisation d'un de ces colloques et doit bénéficier pour cette raison d'un

complément budgétaire pour des participatns extérieurs au projet. Toujours dans l'objectif de structurer

cette  communauté  les  trois  partenaires  procéderons  aussi  à  l'invitation  pour  des  cours  séjours  de

chercheurs étrangers. Naturellement tous les partenaires doivent profiter aussi de leur propre buget de

voyage et de participation à ces événements. Il convient de noter, que le fait que le projet regroupe une

communauté émergente signifie aussi que le nombre de participants sur chaque site, qui actuellement

limité devrait croitre au cours des trois années du projet.

Partenaire 2

La spécificité du parteraire 2 est son éloignement de Paris, et la plus grande difficulté à faire venir des

étudiants motivés et bien formés pour des thèses (ceci  est aussi dû à la structuration du laboratoire

d'accueil.)  Le  besoin  de  bourses  de  thèse  est  particulièrement  important  dans  cet  environnement.

Comme indiqué précédemment le partenaire 2 procédera aussi à l'organisation d'un colloque.

Partenaire 3

Comme nous l'avons dit, un de nos buts est de favoriser l'organisation d'une communauté qui en train de

se cristalliser. Certains membres important de la mouvance de l'inférence profonde sont à l'étranger, en

particulier en Suisse, en Allemagne et en Angleterre. Il est naturel d'aider leurs étudiants (ainsi que les

nôtres) à s'insérer dans la communauté scientifique. Deux bourses postdoctorales sont prévues à cet

effet, une pour le Partenaire 3 et l'autre pour le Partenaire 1 (il va sans dire que nous pensons privilégier

les candidats provenant de l'extérieur de notre projet).


