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Clock Synchronization
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Sensor network localization
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Protein conformation fromm NMR data

[Crippen & Havel 1988]



Clock synchronization: solutions
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Distance Geometry Problem (DGP)

Given: Determine whether 4.
— a simple graph G = (V, E

PIe grapt (V. E) a realization z 1 V — R¥ s.t.
— an edge function d: E — R>q Y{u, v} € B
— an integer K € N v

|y — zol|2 = duw

1 1 ? //T
GL oL

Let n=|V|



More applications

e Autonomous underwater vehicles [Bahr et al. 2009]

e Statics of rigid structures [Maxwell 1864]

e Matrix completion [Laurent 2009]

e Statistics [Boer 2013]

e Psychology [Kruskal 1964]

[Liberti et al., SIREV 2014]
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Definitions

e Decision problem: mathematical YES/NO-type question depending
on a parameter vector =«

e Instance: same as above with 7 replaced by given values v

e Certificate: proof that a given answer is true

e P: all decision problems solvable in at most p(|xr|) steps
where p is a polynomial

e NP: all decision problems with |YES certificate| < p(|r])
where p is a polynomial
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Reductions

e P, (). decision problems

e If d algorithm A which:

1. reformulates instances P of P into instances Q of Q
2. has answer(P) = YES iff answer(A(P)) = YES
3. is polytime in the instance size |P|

then A is a reduction of P to Q

13



NP-hardness

e () is NP-hard if every problem in NP reduces to @

e () is NP-complete if it is NP-hard and is in NP

Why does it work?

polytime reduction

(. how hard?

any P in NP

v

Suppose () easier than P

Solve P by reducing to @ in polytime and then solve @
Then P as easy as (), against assumption

= () at least as hard as P

So if Q is NP-hard it is as hard as any problem in NP
= () IS as hard as the hardest problem in NP

14



NP-hardness proofs

Given a new problem (), take any known
NP-hard problem P and reduce it to @

Why does it work?

P: NP-hard polytime reduction > | (). how hard?

e As before: Suppose ... (etc.) = @ at least as hard as P
e Since P is NP-hard, it is hardest in NP, and so is )

= @ is NP-hard

15



Complexity of the DGP

Complexity of the DGP
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DGP c NP?

e NP: YES/NO problems with polytime-checkable proofs for YES

e DGP is a YES/NO problem

e Solutions might involve irrational numbers when K > 1

e Some empirical evidence that DGP € NP [Beeker et al. 2013]
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The DGP is NP-hard

Partition

Given a = (a1,...,an) € N7, 3[@{1,...,7’&} s.t. Ya, = > a; ?
el 11

e Reduce (NP-hard) Partition to DGP;
e a —> cycle C with V(C) ={1,...,n}, E(C) ={{1,2},...,{n,1}}
e For 1 <n let di,i—l—l = a;, and dn,n—l—l = d,1 = an

e E.g. fora=1(1,4,1,3,3), get cycle graph:

[Saxe, 1979]
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Partition is YES = DGP;, is YES

e Given: IC{l,...,n} s.t. Y a; = > a;
el 1Z1

e Construct: realization x of C in R
l. x1 =0 // start

2. induction step: suppose x; known

ifiel

let ;41 = x; +d; ;41 // go right
else

Tiy1 = T; — dj 41 // go left

e Correctness proof. by the same induction
but careful when i = n. have to show x,41 = o1



I =1{1,2,3}




lel



lel












Partition is YES = DGP; is YES

(1) = Z(%‘Jrl —x;) = > dijiy1=

=y 1e1
= Z a; = Z a; =
icl i1
=) dii41 = ) (zi—xziq1) = (2)
i1 i1
D =02)=)> (zj41—z) = (z;—zi41) = > (Ti41 — ;)
el 11 1<n
= (Tp41 —2n) + (@n —xp—1) + -+ (z3 —22) + (22 — 71)

— Tp+1

26
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Partition is NO = DGP; is NO

e By contradiction: suppose DGPq is YES, z realization of C
o FF={{u,v} € EC)|xzy <ay}, E(C)NF = {{u,v} € E(C) | xy, > xv}

e Trace xq,...,xn: follow edges in ' (—) and in E(C) \ F ()
(xv - xu) — (wu - xv)

x4 r1 s r3 22 {u%:eF {u%:%F

o | ° # | # #

3 =2 -1 0 1 2 3 D lw—w| = Y feu—

{u,w}eF {u,w}¢F

IS Z duyw = Z duw
{uw}eF {u,v}¢F

e let J={i<n|{i,i+1} e F}u{n|{n,1} € F}
= Z a; = Z a;
icJ iZJ
e SO J solves Partition instance, contradiction
e = DGP is NP-hard, DGPq is NP-complete

27
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With congruences

e (G,K): DGP instance

e X C RE™: set of solutions

e Congruence:. composition of translations, rotations, reflections

e C = set of congruences in RE

e x ~y means dp € C (y = px):
distances in z are preserved in y through p

o = if [X| >0, |X| =20

29



Modulo congruences

~

e Congruence is an equivalence relation ~ on X
(reflexive, symmetric, transitive)

e Partitions X into equivalence classes

e X = X/~ sets of representatives of equivalence classes

e Focus on |X]| rather than |X]|

30



Cardinality of X

infeasible & | X| =0

rigid graph & | X| < X

globally rigid graph < |X| =1

flexible graph < |X| = 280

| X | = Ng: impossible by Milnor's theorem

31



Milnor’s theorem implies | X| £ Ng

e System S of polynomial equations of degree 2

Vi<m pi(z1,...,2,5) =0

e Let X be the set of x € R satisfying S

e Number of connected components of X is O(3”K)
[Milnor 1964]

e If | X| is countable then G cannot be flexible
= incongruent elements of X are separate connected components
= by Milnor’s theorem, there’'s finitely many of them
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Examples

vi=1{1,2,3}

E' = {{u,v} | u < v}
dl =1
V2=Vviu{4}

E?=FE'Uu{{1,4},{2,4}}
d?>=1A dig = \/5

Vi=Vv?
dt =1

T3
1 T2
T4

T3
T o
T4 x3
T1 o

p congruence in R?
= px Vvalid realization
|1 X|=1

p reflects x4 wrt x1, x>

= px Vvalid realization

X =2 (49

p rotates z>x3, T1xa by 6
= px Vvalid realization

| X| is uncountable
(/7 =)

33



Mathematical optimization formulations

Mathematical optimization formulations
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System of quadratic constraints

V{iu,v} € E | — %HQ = d?2w

e Around 10 vertices

e Computationally useless

35



Quadratic objective

min Y (ou— w0l — d2,)2
TERM Ly v)eE

e Globally optimal value zero iff x is a realization of GG
e SBB: 10-100 vertices, exact solutions

e heuristics: 100-1000 vertices, poor quality

[Lavor et al., 2006]
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Convexity and concavity

max, > lzw — zoll?
zER™ {uv}teFE

V{u,v} € E ||zy — xv||2 < d%w

e Convex constraints, concave objective

e Computationally no better than “quadratic objective”
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Pointwise reformulation

ma?é{ Z quk(xuk — ka)
z€R {uwlteE k<K

V{u,v} € E ||zy — :cv||2 < d%w

e Convex subproblem in stochastic iterative heuristics
“‘guess 6 and solve”

e 100-1000 vertices, good quality

[L. IOS14/MAGO14(slides)]
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SDP formulation

min Z (qu + Xov — QXUU)
Xz0 {uv}er
V{iu,v} € E  Xyu + Xov — 2Xup 2> d12w

e Similar to those of Ye, Wolkowicz — works better for proteins

e 100 vertices, good quality

[D'Ambrosio et al., in progress]
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Realizing complete graphs

Realizing complete graphs
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Cliques

4-clique
3-clique

2-clique

(—

(K 4+ 1)-clique = K-clique @ a vertex
Given a realization of the K-clique, find the position of the vertex

41



Trilateration

1 2 3
1 1
1 5 3 0 1 2
Example: realize triangle on a line
e From |jz3 —z1|| =2 and ||z3 — xp|| = 1 get
:1:% — 2x123 + az% = 4 (1)
:1:% — 2xox3 + :1:% = 1. (2)

e (2) — (1) yields

CB%—CB%—:%

2x3(x1 — )
= 2x3

|
B

e Hence xz3 = 2

42



Realizing a (K + 1)-clique in R¥—1

e Apply trilateration inductively on K
assume z1,...,rx € RE=1 known, compute y = 214

e K quadratic egns (Vj < K ||y — z;]|2 = d? ) in K — 1 vars

J,K+1
{ lyll2 =221 -y + |22l = 2y, [1]
[yl — 22k -y + llzxl* = digqy [K]
e Form system Vj < K — 1 ([j] — [K])
{ 2(z1 — k) y = |lzall® = llexll® —df giq + di geta [1] — [K]
2(@x-1—2x) y = |ex-1ll® — |zk|* - d%{—l,K—l—l + d%(,K—I—l [K —1] - [K]

e Thisisa (K —1) x (K —1) linear system Ay =b

Solve to find y

[Dong, Wu 2002]
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“Solve” ?

1. What if A is singular?

2. Or: A nonsingular but instance is NO

44



Singularity: rkA =K — 2

One row z; — ri of A depends on the others

N o o +
K =2 | triangle in R 1 — I 0] 237 @i—zo @3
' 5(34?
3
K = 3 | 4-clique in R? | z1,x2,23 On a line MAEER ¢ ®
T To
O 584?
//7/.335?
e
. . . - 2 3\
K =4 | 5-clique in R3 | z1,...,x4 in a plane z® o’
\\\\‘\\O/ T5?

Trend continues: rk A= K — 2 = |X| = 2 (see later)
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Singularity: rkA =K — 3

Two rows z; — z; depend on the others

K = 3 | 4-clique in R?

Tr1 = T = I3

T4,

L X1=T2=123

K = 4 | 5-clique in R3

ri,...,T4 ON a line

Trend continues: [Hendrickson, 1992]

Thm. 5.8. If a graph G is connected, flexible and has more than K vertices, X

contains almost always a submanifold diffeomorphic to a circle

46



Hendrickson’s theorem also applies to non-cliques

a7



Nonsingular matrix A with NO instance

e Infeasible quadratic system Vj < K ||z 41 — zj||? = d]?K_H
e Take differences, get nonsingular A and value for xy 4

e ...but it's wrong!

Shit happens!

Every time you solve the linear system Ay = b
check feasibility with quadratic system

48



Algorithm for realizing complete graphs in RE

e Assume:
(i) G = (V,E) complete
(i) |[V]=n>K 42

(III) we know x1,... y TRK+41
e Increase K: we know how to realize zj 1o in RE

e Use this inductively for each i € {K +2,...,n}

49



Algorithm for realizing complete graphs in RE

// realize next vertex iteratively
foric {K+2,...,n} do
// use (K + 1) immediate adjacent predecessors to compute x;
if rkA = K then
z; = A"'b // A,b defined as above
else
xi = oo // A singular, mark co and exit
break
end if
// check that x; is feasible w.r.t. other distances
for {j e N(i) | j < i} do
if ||£l?z — CBJH # dz'j then
// if not, mark infeasible and exit loop
break
end if
end for
if z; =0 then
break
end if
end for
return z«

50



Complexity of Alg. 1

e Outer loop: O(n)

e Rank and inverse of A: O(K?3)

e Inner loop: O(n)

e Get O(n2K?3)

e But in most applications K is fixed

e Get O(n?)

But how do we find the realization of the first K + 1 vertices?

51



Realizing (K + 1)-cliques in R¥

Realizing (K + 1)-cliques in RE—1 yields “flat simplices”
(e.g. triangles on lines)

Use “natural” embedding dimension R

Same reasoning as above:
get system Ay =b where y = xx 1 and A; = 2(z; — zg)

But now Ais (K—-1) x K

Same as previous case with A singular

52



Almost square

How can you solve the following system Ay = b:

ai1 aip ... Q1K Y1 b1

aK-11 OK—-12 --- OK_1K YK br_1

where A has one more column than rows and rank K — 17

53



Basics and nonbasics

Sincerk A=K -1, d K —1 linearly independent columns
B: set of their indices

N: index of remaining column

B: (K —1) x (K — 1) square matrix of columns in B

= B is nonsingular

Can partition columns as A = (B|N)
Column 5 corresponds to variable Y;

Variables yi are called basic variables

Variable yas is called nonbasic variable

54



The dictionary

(BIN)y
= Byg+ Nyy = b

|
S

Y
N~
()]

|
3
T
3
gl—‘
=

Basics expressed in function of nonbasic
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One quadratic equation

e From value of yus, can use dictionary to get yg

e Use one quadratic equation

1.

2.

6.

Pick any h € {1,..., K — 1}, equation is |lz; — y|3 = dix

y = (yglyn) '

. Replace yg with B~1b — B~1 Ny, in equation
. Solve resulting quadratic equation in one variable yus

. Get 0,1 or 2 values for yus

= Get 0,1 or 2 positions for x4 1

56



What if B—1N is zero?

e yg = B~ b — B~1Ny, reduces to yg = B~ 1b

e Use one quadratic equation

1.

2.

6.

Pick any h € {1,..., K — 1}, equation is |lz; — y|3 = dix

y = (yglyn) '

. Replace yg with B~1b in equation
. Solve resulting quadratic equation in one variable yus

. Get 0,1 or 2 values for yus

= Get 0,1 or 2 positions for x4 1

57



T he difference

o B-1N -+ 0: ypr dlctlonary> ”

e Different values y]\L/ =Y — yT,y~ with different components

drati .
e« B-1N =0 B quadratic eqn)yN

e Even if y]\'} 7 Yn, K —1 components of y+,y_ are equal
aff(zy,...,zx_1) = {y € R® |y = 0}

58



The case of no solutions

e No realizations exist for this (K 4+ 1)-clique in R¥

e DGP instance is NO

59



The case of one solution

e Assume for simplicity: N =K, h=1, B"IN #0
Then |lzj, — yl|? = dj ;. becomes:

Ay%( —2uyxg +v = 0, where
A= 1+ Z Biia5k
<K
p = xix + Z Beja;k (Beibe — T1¢)
li<K
v = Z Beibe(Beibe — 2214) + ||z1]|* — d kya
li<K

e (Exactly one solution for yx) < u2 = v, not a tautology

e The set of all (K + 1)-clique DGP instances in R® s.t. u2 = \v
has Lebesgue measure 0O

e Ignore them, they happen with probability* O!

* Assuming continuous distributions over the reals. For floating point number, who knows? . ..
but we'll ignore these instances anyhow
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Discriminant >0, =0

61



T he case of two solutions

e K spheres S¥~1 ... sp~1in RK
centered at z1,...,xx
with radii dl,K+17---7dK,K—|—1

e x5 must be at the intersection of S¥~1, ... sk—1

o If ﬂ-SJK_l # &, then |ﬂjS§{_1| = 2 in general

J

e Wwill not mention “probability 0" or “in general” anymore

[Coope 2000]
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Mirror images

o Let :r;‘l' = {a:l, . . ,iBK,iB[t_l_l}, r = {ifz‘l, JEI 733K733[_(_|_1}
assume dim aff(zq,...,2x) = K — 1 ()

e [ heorem
T, 2z~ are reflections w.r.t. hyperplane defined by z1,...,zx

e Proof
1. z1, 2~ congruent by construction

2. Vi< Kz; €zt na™ — 21,2~ not translations

3. letne |=K< |zt | =z | 52T,z

4. = must be reflections

not rotations by (1)

63



Algorithm for realizing (K + 1)-cliques in RX

// realize 1 at the origin
x1 = (0,...,0)
// realize next vertex iteratively
for/e{2,..., K+ 1} do
// at most two positions in Rt~ for vertex ¢
S= NS
1<t
if S =9 then
// warn: infeasible
return 0
end if
// arbitrarily choose one of the two points
choose any zy € S
end for
// return feasible realization

return =«
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Complexity of Alg. 2

e Outer loop: O(K)

e Gaussian elimination on A: O(K?3)

e SOome messing about to obtain :1:};_'_1,
o Get O(K?%)

e But in most applications K is fixed

e Get O(1)

Triq: FO(K?)
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Back to complete graphs

Alg. 2: realize 1,...,K +1 in R¥: O(1)
Alg. 1: Realize K +2,...,n: O(n?)
= 0(n?)

What about |X|?

— Alg. 1 is deterministic: one solution from x1,...,Tg41
— Alg. 2 is stochastic: pick one of two values K times

= |X| = 2K

66



Let’s look at sparser graphs
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K-laterative graphs

e In Alg. 1 we only need each v > K + 1 to have K -+ 1 adjacent
predecessors in order to find a unique solution for x,

e Determination of =, from K+41 adjacent predecessors: K-lateration

e K-laterative graph:

(i) has a vertex order ensuring this property
(ii) the initial K + 1 vertices induce a (K + 1)-clique
the order is called K-lateration order

e Alg. 1 realizes all K-laterative graphs

The DGP restricted to K-laterative graphs in RE is tractable

[Eren et al. 2004]
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The story so far

e Lots of nice applications

e DGP is NP-hard

e May have 0O, 1, finitely many or 280 solutions modulo congruences
e Continuous optimization techniques don't scale well

e Using K + 1 adjacent predecessors, realize K-laterative graphs in
RE in polytime

e DO we need K + 1 adjacent predecessors, or can we do with
less?

69



T he Branch-and-Prune algorithm

The Branch-and-Prune algorithm

70



Fewer adjacent predecessors

e Alg. 2 only needs K adjacent predecessor

e Extend to n vertices: (K — 1)-laterative graphs

e Can we realize (K — 1)-laterative graphs in RE7?

e A small case: graph consisting of two K + 1 cliques

1 1




Take a closer look. ..

e Realization of a K 4+ 1 clique in RE knowing T1y.- oy LE

e We know how to do that!
e Consistent with 2 solutions for xzg, reflected across plane through
LD, X3, T4

72



Discretization and pruning edges

e (K — 1)-laterative graph G = (V, E):

e Discretization edges:
Ep={{u,v} € E|u,v< K} U {{u,v} € E|v>KAu€ Uy}
initialvclique verte;order

e Pruning edges Ep = FE \ Ep

73



Role of discretization edges

Missing discretization edge
= non-rigid structure
= X uncountable

Else: X finite

74



Role of pruning edges

No pruning edges: 8 incongruent realizations in R2

1 3 5 1 3 5
5
\
4 4
/ RN
3 3%5 5 3
AN AN AN / AN
2 2 4%2
/ / /
1 1 1
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Role of pruning edges

Pruning edge {1,4}: only 4 realizations remain valid

2
/N
5 1%3
N %
2 4 2 4 4
//// N / % N
1 3 5 1 3 5
5
N
4 4
/ AN
3 3 5 5 3
N N
2 2 4%2
/ / %
1 1 1
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Motivation

e [otal order < onV

Protein backbones

e Covalent bond distances: {u— 1,u} € E

e Covalent bond angles: {u —2,u} € F

e NMR experiments: {u —3,u} € F
(and other edges {u,v} with v —u > 3)

[Lavor et al., COAP 2012]

Generalize “3"” to K

77



“DMDGP graphs

Generalization of protein backbone order:
v > K is adjacent to K immediate predecessors v — 1,...,v — K

KDMDGP: Discretizable Molecular Distance Geometry Problem
78



The Branch-and-Prune (BP) algorithm

BP(v, 7, X):
1. Given v > K, realization x = (z1,...,2y—1)
2. Compute S= N Sk-1

’LLEUU
3. For each xy € S s.t. V{u,v} € Ep (u < v — ||y — zo|| = duv)

(a) let z = (z, zv)

(b) if v =mn add x to X, else call BP(v+ 1, z, X)

e Recursive: starts with BP(K + 1, (z1,...,2x), D)
e All realizations in X are incongruent*®
e Can be easily modified to find only p solutions for given p

e Applies to all (K — 1)-laterative graphs in R¥
Specialize to KDMDGP graph by setting U, ={v—-1,...,v— K}

* with probability 1, and aside from one reflection at v =K + 1

[L. et al. ITOR 2008]
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Complexity of BP

Most operations are O(K") for some fixed h = O(1)
Distance check at Step 3: O(n)

Recursion on at most 2 branches at each call: binary tree
Only recurse when v > K,v < n: 2" & nodes

Overall O(n2" 1) = O(2")

Worst-case exponential behaviour

80



Hardness of XDMDGP

e The KDMDGP is NP-hard for each K
— every DGP instance is also DMDGP if K =1

— reduction from Partition can be extended to any K

e (K — 1)-lateration graphs are NP-hard by inclusion

e NoO polytime algorithm unless P=NP

Trilaterative graphs in RE are complexitywise borderline at K
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Correctness

Thm.
When BP terminates, X contains every incongruent realization of GG

Proof.

e Let y be any realization of G

e Since G has an initial K-clique, can rotate/translate/reflect y to
y[K] = z[K] for all z € X

e BP exhaustively constructs every extension of z[K] which is feasible
with all distances, so y € X

for a realization y, y[h] = (y1,..., yp) IS the initial segment of y

82



Two examples




Empirical observations

e Fast: up to 10k vertices in a few seconds on 2010 hardware

e Precise: errors in range O(10~9)-0(1012)

e Number of solutions always a power of 2:
obvious if Ep = &, but otherwise mysterious

e Linear-time behaviour on proteins:
this really shouldn't happen
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Symmetry in the X"DMDGP

Symmetry in the X"DMDGP

[L. et al. DAM 2014]
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Partial reflections

e For each v > K, let
gv(fC) — (:Cla ey Ly—1, quljj(mv)a et Rg(fﬁn))
be the partial reflection of x w.r.t. v

e Note: the gy's are idempotent operators
o Gp = (V,Ep): subgraph of GG given by discretization edges
e Vv > K reflection RY gives a binary choice in general*

e X C R™ contains 2"~ incongruent realizations of Gp

* subsequent results hold ‘“with probability 1"
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Discretization group

e Yp = (gv | v> K): the discretization group of G w.r.t. K
subgroup of a Cartesian product of reflection groups

e An element g € ¥p has the form @ g%, where ay, € {0,1}
v>K

e Action of ¥p on Xp: g(x) = (g}l{Kfll o oggn) (x)
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Commutativity of partial reflections

Lemma A ¢p is Abelian
Proof Assume K < u < v. Then

gugv(z) = gu(x1,...,Ty_1, Rp(zv), ..., Rz(zn))
= (21...,Ty—1, R;U(x) (Tu), .- Rg (@RU (zv), - 9o (x)RU (zn))
= (x1...,2%y—1, Rp(xu),..., gu(x)Rx(xU),. T (x)Ru(:cn))
= guv(x1,...,2y_1, Ra(xe), .., Ry (xn))
= gvgu(x)

where equality of these terms holds by a Technical Lemma
(next slide)

[L. et al. 2013]
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Commutativity of partial reflections

Technical Lemma

(Proof sketch for K =2) Let ylLAff(xy_1,...,2,_k) and p¥ = RY

pZpYt = pf Y p*t
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One realization generates all others

Lemma B The action of ¥p on X is transitive

99 € Dp (y = g(2)): namely, v = gs(ga(g3(@)))

Proof By induction on v: assume result holds to v — 1 with ¢/, then either

it holds for v and g = ¢/, else flip and let g = g,¢’

[L. et al. 2013]
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Structure and invariance

e ¢ is Abelian and generated by n — K idempotent elements

— %D = CS_K

o ¥p < Aut(Xp) by construction

91



Solution sets

e X: set of incongruent realizations of GG

e G p defined on same vertices but fewer edges
= fewer distance constraints on realizations
= more realizations

e All realizations of G are also realizations of Gp
= X g XD
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Losing invariance on pruning edges

Lemma C Let W"W ={u+ K+ 1,...,v} be the range of {u,v}
Ve € X, u,w,v €V (w € W' & |[xy — xo|| # ||gw(®)u — gw(x)v]|)

Proof sketch for K =2

Corollary If {u,v} € Ep and w € W%, gy(x) € X

[L. et al. 2013]
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Pruning group

Define:

—|
|

{gw €9p | w > K AV{u,v} € Ep (w & W)}
(r)

-
|

Lemma D X is invariant w.r.t. ¥p
Proof
Follows by corollary, invariance of Xp w.r.t. ¥p and X C Xp
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Transitivity of the pruning group

Lemma E The action of ¥p on X is transitive

e Given z,y € X, aim to show dg € ¥p (y = g(x))

e Lemma B = dg € ¥p with y = g(x) € Xp

e Suppose g € ¥p and aim for a contradiction

o = FH{u,v} € Ep and w € W* s.t. g, iS @ component of g

o Lemma C = [|gw(2)y — gu(@)s|| Z duv

e If w is the only such vertex, = y = g(z) € X, contradiction
e Suppose d another z € W s.t. g, is a component of g

e Set of cases s.t. ||zu — zoll = [|9:9u(®)u — g:9u(@)ul| given ||gu(z)u — gu(a)u]| #
|y — xo|| # ||g(x)y — g-(x)y|| has Lebesgue measure 0 in all DGP inputs

e By induction, holds for any number of components g, of g with z € W"

= y = g(x) # = against hypothesis, done

[L. et al. 2013]
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T he main result

Theorem |X| = 2!l

e Lemma A =¥, = Cg_K = |9p| = pn—K

o ¥p <Y = EMEN(gpgcé),With €=||_|

e Lemma E=Vre X |¥Ypx=X

e Idempotency = Vg € ¥p g_1 =g
1

=Vg,hc%,xc X (gqr=hx -h lgr=2—hgr=2—hg=e—h=g 1=g)
= the mapping ¥px — ¥p given by gz — g is injective

e Vghe¥9p,x € X (9 #h — gxr #= hx)
= the mapping gz — g is surjective

e = the mapping gxr — g is a bijection
o = |Ypx| = |¥9p|
o =>VreX |X|= |9z =|9| =2

[L. et al. 2013]
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Symmetry-aware BP

e Don’'t need to explore all branches of BP tree

e Build [ as a pre-processing step

e Run BP, terminating as soon as |X| =1

e For each g € ¥p, compute gz

[Mucherino et al. JBCB 2012]
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Complexity

e Computing I": O(mn)
1. initialize indicator vector « = (tg41,...,tn) fOr gy €T
2. initialize + =1
3. for each {u,v} € Ep and w € W' let 1, =0

e BP: O(2")
e Compute gz for each g € ¥p: O(2|r|)
e Overall: O(2")

e Gains depend on the instance
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Tractability of protein instances

Tractability of protein instances

[L. et al. 2013]
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Let’s handle the BP tree

Max depth: n, looks good! Aim to prove width is bounded
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Number of solutions at each BP tree level

Depends on range of longer pruning edge incident to level v

K+ 1 2 3 4 5 6 7 8 9
2; 4 8 16 32 64 128—= 256—= 512 no pruning edges
\\\ shortest pruning edge {6, K + 7}
2— — > 4- — > 8\ 16 32 64 128 256
\ \ longer {5, K + 7}
\
2 4 \\ 8 16 32 64 128
\ ‘\\\ longest {1, K + 7}
2 4——>8—-->1§ 32 64
\
\
2 4 8 ‘\ 16 32
\
\
8 nodes at level K + 4 2 4 \\ 8 16
\
{3, K+5} € Ep = gk+4,9k45 €T \ A W4 .
— no symmetry at levels K + 4 \
and K +5 > 4
= only 4 nodes at level K +5 \
2 K-trilaterative
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Periodic pruning edges

4 5 6 7 8 9 10 11 12
2 ——4——38 16 32 64 128 256 512
\
2 4 8 16 32 64 128 256
\
2 4 8 16 32 64 128
\\
2 4 8 16 32 64
\
2 4 8 16 32
\\
2 4 8 16
2 4\8
2 4

e 2/ growth up to level ¢, then constant: O(2‘n) nodes in BP tree
e BP is Fixed-Parameter Tractable (FPT) in a bunch of cases
e For all tested protein backbones, ¢ <5 = BP linear on proteins!
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The story so far

e Nice applications, problem is hard, could have many solutions

e Continuous methods don't scale

e If certain vertex orders are present, use mixed-combinatorial methods
e Realize K-laterative in polytime but (K — 1)-laterative are hard

e If adjacent predecessors are immediate, theory of symmetries

e Number of solutions is a power of two

e For proteins, BP is linear time

e How do we find these vertex orders?
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Finding vertex orders

Applications

Definition

Complexity primer

Complexity of the DGP

Number of solutions

Mathematical optimization formulations
Realizing complete graphs

The Branch-and-Prune algorithm

Symmetry in the KDMDGP

© © N o 0 & W b=

—
-

Tractability of protein instances

[
[

. Finding vertex orders

12. Approximate realizations

[Cassioli et al., DAM]
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...wasn't the backbone providing them?

e NMR data not as clean as I pretended

e Have to mess around with side chains

e \What about other applications, anyhow?

Methods for finding trilaterative orders automatically
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Mostly bad news

e Finding K-laterative orders is NP-complete  :-(

e But also FPT =)

e Finding XDMDGP orders is NP-complete for all K :-(

e It’'s also really hard in practice, and methods don’t scale well
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Definitions

e Trilateration Ordering Problem (TOP)

Given a connected graph G = (V, E) and a positive integer
K, does G have a K-lateration order?

e Contiguous Trilateration Ordering Problem (CTOP)

Given a connected graph G = (V, E) and a positive integer
K, does G have a (K — 1)-lateration order such that U, =
{v—1,...,v— K} foreachv > K?

Both problems are in NP
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Hardness of TOP

e Essentially due to finding the initial clique

— brute force: test all (}'}) subsets of V

— (;g) is O(n®), polytime if K fixed

e Reduction from K-Clique problem:
Given a graph, does it have a K-clique?

[Mucherino et al., OPTL 2012]
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Reduction from K-Clique

K =3 K — 1 dummy nodes

e If K-Clique instance is YES
— start with o = (initial clique of G,U)
— induction: if a,_1 defined, pick «, at shortest path distance 1 from [J«

e If K-Clique instance is NO
— By contradiction: suppose 3 trilateration order o in G’
— Initial clique o[K] = (a1,...,ax) must have K — 1 vertices in G, 1 in U
— ag+1 must be in G, hence 3 K-clique in G

[Cassioli et al., DAM]
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Once the initial clique is known

Greedily grow a trilateration order o

e Initialize o with initial K-clique K
o Llet W =V K

e Vv > K ay = |vertices in K adjacent to v
// at termination, a, will be the number of adjacent predecessors of v

e While W # &
1. choose v € W with largest ay
2. if apy < K, no trilateration order from this K, terminate
3. a<+ (a,v)
4. for all w € W adjacent to v, increase aqy
5. W« W ~ {v}

e Instance is YES

[Mucherino et al., OPTL 2012]
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Greedy algorithm is correct

e Assume TOP instance is YES, proceed by induction
— start: by maximality, a1 > K
— assume « is a valid TOP up to v—1, suppose ay < K
— but instance is YES so there is another z € W with a, > K
— contradicts maximality of ay

e Assume TOP instance is NO
— '"WYES" termination when W = @ contradicts the NO
— hence it must terminate with W %= @ and “NQO" answer
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Complexity

e Outer while loop: O(n)

e Choice of largest ay: O(n)

e Inner loop on W: O(n)

e Overall: O(n?)

e If we add brute force initial clique: O(25n?)

e Polytime if K fixed, FPT otherwise
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CTOP is hard

e Reduction from Hamiltonian Path (HP)

Given a graph G, does it have a path passing through each
vertex exactly once?

e aaH. pathin G = Vv # 1,n ay is adjacent to ay,_1,a,41

e Apart from initial 1-clique a4
every oy IS adjacent to its immediate predecessor

e = o is a "DMDGP order in G with K = 1
e HP is the same as CTOP with K =1

e = BY inclusion, CTOP is NP-hard

[Cassioli et al., DAM]
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CTOP is hard for all K

e Reduction from HP

3
1
=
reduction \
2 2 .
cl?

e Technical proof

[Cassioli et al., DAM]
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How do we find “"DMDGP orders?

Mathematical optimization & CPLEX

o 1,, — 1 iff vertex v has rank ¢ in the order
e Each vertex has a unique order rank:
VWEV Y my=1;
i€
e Each rank value is assigned a unique vertex:

Vi€ n mezl;

veV
e [ here must be an initial K-clique:

VWweViie{2,...,K} > ) my > (i— Dz
ueN (v) j<i
e Each vertex with rank > K must have at least K contiguous adjacent predecessors
\V/’UEV,?:>K Z Z :quZKaj‘m;.
ueN (v) 1—K<j<u

e DO not expect too much; scales up to 100 vertices
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How about those 10k-atom backbones?

We have Carlile for those

e Note the repetitions — they serve a purpose!
e Repetition orders are also hard to find for any K

e ... but Carlile knows how to handcraft them!

[Lavor et al. JOGO 2013]
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And what about the side-chains?

The Carlile4+Antonio tool!

[Costa et al. JOGO, 2014]
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Approximate realizations

Approximate realizations
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Data errors

Distance values are never precise

e Covalent bonds are fairly precise

¢ NMR data is a mess [Berger, J. ACM 1999]
— experimental errors yield intervals [dL  dY
— NMR outputs frequencies of (atom type pair, distance value)
weighted graph reconstruction yields systematic error

— some atom type pairs yield more error (“only trust H—H")
e Properties of specific molecules give rise to other constraints

e The protein graph may not be (K — 1)-laterative based on
the backbone
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The Lavorder comes to the rescue!

e Carlile’s handcrafted repetition orders properties:
— repetitions allow a ‘“virtual backbone” of H atoms only
— discretization edges: {v,v — i} covalent bonds for i € {1, 2},
{v,v — 3} sometimes covalent sometimes from NMR
— most NMR data restricted to pruning edges

e VWhen dv,v—3 IS an interval: intersect two spheres with sph. shell
dL

e Discretize circular segments and run BP with modified S
Algorithm no longer exhaustive
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Die Symmetriktheoriedammerung

e Intervals and discretization break‘the theory of symmetries

e Only some bounds for the number b of BP solutions:
= 2€qlC <b< Qn_3qM

q = |discretization points|, M = |NMR discretization edges|
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But at least it’s producing results

Joint work with Institut Pasteur

[Cassioli et al., BMC Bioinf., 2015]
123



General approximate methods

e All these methods are specialized to
protein distance data fromm NMR

e What about general approximate methods?

e Assume large-sized input data with errors

e NO assumptions on graph structure
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The Isomap method: Ingredients

e PDM

Partial Distance Matrix (a representation of G)

e EDM Euclidean Distance Matrix

1. Complete the given PDM d to a symmetric matrix D

2. Find a realization z (in some dimension K)
s.t. the EDM (||xy — xv]|) is “close” to D

3. Project =z from dimension K to dimension K,
keeping pairwise distances approximately equal
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Completing the distance matrix

o V{u,v} € F let Dy, = length of the shortest path u — v

e Use Floyd-Warshall's algorithm O(n3)

// n xmn array D;; to store distances
D=0
for {i,j} € E do
end for
for k€ V do
for j €V do
for : €V do
if Dik -+ ij < DZJ then
// D;; fails to satisfy triangle inequality, update
Dij = D + Dy;
end if
end for
end for
end for

=t

0N R WN

e e T e = T
o R 0N = O
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Finding a realization

e Let's give ourselves many dimensions, say K = n
e Attempt to find =z : V — R™ with (||zy — zv||2) = (Duv)

e If we had the Gram matrix B of z, then:
1. find eigen(value/vector) matrices A, Y of B
2. since B is PSD, A > 0 = VA exists
3. = B=YAY! = (YVANYVA)

4. ' =Y/Aissuch that z'z = B

e Can we compute B from D7
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Schoenberg’s theorem

¢ Standard method for computing B from D?
e Also known as classic MultiDimensional Scaling (MDS)

e Apply many algebraic manipulations to

T T T

d’IQLU — HCUU,_CUUHQ — Ty xu+xv xv_zxu Ly

where the centroid > z,. =0 for all u <n

kE<n
o Get B = —3(In — +1,)D%(In — 11,), i.e
Ly - CB’U——Z(dk‘I'de)_dQQw_ dehk
k<n h<n

k<n

e D “approximately” EDM = B “approximately” Gram

[Schoenberg, Annals of Mathematics, 1935]
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Project to R¥ for a given K

e Only use the K largest eigenvalues of A

e Y[K] = K columns of Y corresp. to K largest eigenvalues
e N[K] = K largest eigenvalues of A on diagonal

o 2! = Y[K]\/m is a K x n matrix

® Y[K] span the subspace where x ‘“fills more space”, i.e. neglecting other

dimensions causes smaller errors w.r.t. the realization in R"

This method is called Principal Component Analysis (PCA)
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Isomap

Given K and PDM d:

1. D = FloydWarshall(qd)

MDS(D)
— PCA(B

2. B=
3. x

K)

Y

[Tenenbaum et al. Science 2000]
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Bonus material



Other topics

e DGP on a sphere

e DGP with different norms
017 boo? geodesics?

e Unassigned DGP
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Realizing rigid graphs on a unit sphere

trivial extension: we get one more constraint ||z||?> = 1 for free!



Everything’s simpler on S

main building block: K-lateration

Realize y knowing z1,..., v 41
and distances d; from z; toy (1 < K+ 1)

o -yl = d?
lzil|? + Iyl — 22y = d?
14+1—2zy = d?
ry = 1—d?/2
Ay = b
T11 12 L1,K+1
where A = 5 = " :
TK+1,1 TK+12 " TK4+1K+1

b= (1—d?2/2|i<K+1)
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(K — 1)-lateration on S#

As in the Euclidean case, replace dictionary in ||y|| = 1, get

2
ly[[© = 1
lysl> +vy = 1
1B~ ' —ynBIN|P+yx = 1

—(B~1)(B"IN) +/(B"% B IN)2 — |B~IN|* 4 1
IB7INJ|? +1

YN

YE B b —yyB™IN

Again, < 2 possible positions for y
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When distances are geodesic



Godel’s Distance Geometry theorem

Thm.

Any weighted 4-clique which can be realized in R3 but not R? can
also be realized on rS? (for some r > 0) with geodesic distances.

Uber die metrische Einbettbarkeit
der Quadrupel des R, in Kugelflachen

(1933b)

In Beantwortung einer im 37. Kolloquium (Klanfer 1933) aufgeworfe-
nen Frage gilt: FEin metrisches Quadrupel, das mit vier Punkten des Ra
kongruent ist, ist, wenn es nicht mit vier Punkten der Ebene kongruent ist,
auch kongruent mat vier Punkten einer Kugelfliche, in welcher als Abstand
je zweier Punkte die Lange des kiirzesten sie auf thr verbindenden Bogens
erklart itst. Zum Beweise sei T' ein Tetraeder im Rj, dessen sechs Kan-
tenldngen ay,as,...,as den Abstanden der vier gegebenen Punkte gleich
seien und von dem wir | annehmen kénnen, daf§ es nicht in einer Ebene
liegt. R heifle der Radius der T umgeschriebenen Kugel. Wir setzen

2 a; T
a; = —8In
! T 2
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Proof 1/3: geodesic and chord lengths

® ai,...,aqg. given distance lengths on 4-clique edges
aim to realize them on a sphere as geodesics

e c;(a): length of chord of geodesic a having radius r = 1/x
(8%

cp(a)

1/
e 7(z): tetrahedron in R3 having side lengths ¢z (a;) for i < 6

e ¢(x): radius inverse of circumscribed sphere about 7(x)
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Proof 2/3: straighten the geodesics

e T realization aq,...,ag in R3

e 1. radius of the sphere circumscribed around T

{radii:, 0.01, 1.41969,
dist:, {1.13535, 1.31202, 1.06585, 1.39681, 0.910665, 0.601585},
geod:, {1.32034, 1.68777, 1.20882, 2.02924, 0.990212, 0.621555}}
T

o limcy(a) =«
x—0
as 1/x — oo implies chord lengths = geodesic lengths

e = Ilim7(x)=T and Iim ¢(z) =1/r
x—0 x—0
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Proof 3/3: the fixed point

e By existence of T, ¢(0) = 1/r makes ¢ continuous at O

e Technical claim: ¢ has a fixed point in the interval I = (0,n/d’),
where o/ = max(aq,...,ag)

e Let y by the fixed point of ¢, i.e. ¢(y) =y
e 7(y) circumscribed by a sphere o having radius 1/y

e By defn. 7(y): tetrahedron s.t. side lengths = chords subtending
geodesics a1,...,ag ON circumscribed sphere

e = rlz. 7(y) on o has geodesic lengths equal to a1,...,aq
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{radii:, 0.01, 1.41969,
dist:, {1.13535, 1.31202, 1.06585, 1.39681, 0.910665, 0.601585},
geod:, {1.32034, 1.68777, 1.20882, 2.02924, 0.990212, 0.621555}}
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{FP!radii:, 1.75, 1.74955,
dist:, {0.957609, 1.04224, 0.917924, 1.07413, 0.817311, 0.574186},
geod:, {1.1352, 1.31172, 1.06573, 1.39637, 0.910601, 0.601569}}
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Other norms?

Open research question
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Unassigned DGP

Given two integers K > 0, n > 0 and a sequence d = (dq,...,dy) for
some h, find a configuration z = (z1,...,zn) € RE such that:
Vi<hIu<v<n |zu—z0l? =d;. (3)

Another open research question

But look for the works of Phil Duxbury
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